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Abstract

This paper is concerned with four-point boundary value problems of the one-dimensional gen-

eralized Lane-Emden systems on whole lines. The Green’s functions G(t, s) for the problem

—(p(t)2'(t)) = 0 with boundary conditions lim z(t) — kz(£) = lim x(t) —Ilz(n) = 0 and
t——oo t——+oo

tiiinoo z(t) — kx(§) = tii?oo p(t)x'(t) — lp(n)z’(n) = 0 are obtained respectively. We proved

that G(t,s) > 0 under some assumptions which actually generalize a corresponding result in

[J. Math. Anal. Appl. 305 (2005) 253-276]. Sufficient conditions to guarantee the existence of
positive solutions of this kind of models are established. Examples are given at the end of the

paper.
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1 Introduction

It is well known that the following systems are called homogeneous and non-homogeneous Lane-
Emden systems, respectively,
—Au(z) =vP(z),z € Q,
—Av(z) = ul(z),z € Q, (1.1)
u(z) > 0,v(x) >0,z € Q, ’
u(z) =v(z) =0,z € 9N

and
—Au(z) = vP(x) + Af(x),z € Q,
—Av(z) = ul(z) + Ag(x),x € Q,

(@) > 0,0(x) > 0,2 € O, (1.2)
uw(z) =v(x) =0,z € 0N
where p, ¢ € (1,+00), © is a domain in the n-dimensional Euclidean space R™, A = Z 027 . Lane-

i=1
Emden systems (1.2) and (1.2) arise naturally from the study of various nonlinear phenomena, such

as pattern formation, population evolution, chemical reaction, and so on see [28], and has attracted
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considerable attention in recent years. In the literature, properties of solutions to (1.1), such as:
a priori estimate; existence results; Liouville type theorems; and some symmetric and uniqueness
results, were obtained, see [11, 12]. Multiplicity results have also been proved for problem (1.2)
under certain conditions see [17].
The one-dimensional cases of problems (1.1) and (1.2) are the following forms, respectivly:
(

—u”(t) = vP(t) + Af(t), t € (=, 1),
(1) = ut(1) + Mg(t). 1 € (~L,1) )
u(t) > 0,v(t) > 0,t € (=1,1), ’
u(=l) =v(=l)=u(l)=v(1)=0
and
—’U,N(t) ’Up(t)at € (_la l)7
’U”(t) = Uq(t),t € (713 l)a
u(t) > 0,0(t) > 0,¢ € (—1,1) (1.4)

The multiplicity of positive solutions of problem (1.4) were studied in [13, 12] by making use of the
nondegeneracy and uniqueness of solutions of problem (1.3).

The asymptotic theory of ordinary differential equations is an area in which there is great
activity among a large number of investigators. In this theory, it is of great interest to investigate,
in particular, the existence of solutions with prescribed asymptotic behavior, which are global in
the sense that they are solutions on the whole line. The existence of global solutions with prescribed
asymptotic behavior is usually formulated as the existence of solutions of boundary value problems
on the whole line.

Motivated by mentioned papers, we consider the following four-point boundary value problem
for second order singular differential system on the whole line

o)z (D)) + f(t,2(1),y(), 2'(1),y' (1)) = 0,a.e.,t € IR,

le@)y' (D))" + g(t, (1), y(t), 2'(£),y' (1)) = 0, a.e.,t € IR,
lim z(t) — az(§) = 0,

t_l}i?oo x(t) —bx(n) =0, (1.5)
lim y(t) — cy(§) =0,
lim o(t)y'(t) — do(n)y'(n) = 0,

where

(a) —oc0o < €< n<+o00,a,b,c,d> 0 are constants,

(b) f, g are nonnegative (p, 9)—Carathéodory functions see Definition 2.2, and f(¢, ¢,y,0,v) Z 0,
g(t, z, c,u,0) Z 0 on each subinterval of IR,

(c) RT = [0,00), p, 0 are nonnegative and continuous at almost every points on IR and may
be singular at several points on IR.

Nonlocal boundary value problems for ordinary differential equations (ODEs) was initiated by
II'in and Moiseev [18]. Since then, more general nonlocal boundary value problems (BVPs) were
studied by several authors, see the text books [1, 14, 16], the papers [26], and the survey papers
[21, 22] and the references cited there. However, the study on existence of positive solutions of
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nonlocal boundary value problems for differential equations on whole real lines does not seem to be
sufficiently developed [2, 4, 3, 5, 6, 27] and the references therein.

In recent years, the existence of solutions of boundary value problems of the differential equations
on the whole lines has been studied by many authors, see [9, 10, 15, 23, 24, 6, 8, 7, 20] and the
references therein. It is easy to see that BVP(1.5) is a generalized form of BVP(1.3) and (1.4). We
call (1.5) a one-dimensional generalized Lane-Emden system since it is actually a generalization of
(1.3) and (1.4).

A function z : R — IR is called a solution of BVP(1.5) if x € C(IR), pz’ is continuous at almost
all points on IR (except several removable discontinuity points), (p(t)z’'(t))" exists at almost all
points on IR and is measurable on IR and all equations in (1.5) are satisfied.

The purpose is to establish sufficient conditions for the existence of positive solutions of BVP(1.5).
Our results and methods are different from those in [3, 4, 7, 27, 6, 2, §].

The remainder of this paper is organized as follows: the preliminary results are given in Section
2, the existence result of positive solutions of BVP(1.5) is proved in Section 3. In Section 4, an
example is given to illustrate the efficiency of the main result.

2 Preliminary results

In this section, we present some background definitions in Banach spaces see [14]. A Banach space
is proved and the relatively compact properties of subsets of the Banach space are described. The
preliminary results are given too.

Definition 2.1. Let X and Y be Banach spaces. An operator T : X — Y is completely continuous
if it is continuous and maps bounded sets into relatively compact sets.
Definition 2.2. F is called a (p, o)—Carathédory function, that is

(i)t = F (t, 1, X2, %, %) is defined almost every point on IR and is measurable on R for

each x1,29,r3,24 € R,
(ii) (x1,x9,x3,24) = F (t,xl, To, %, %) is continuous on IR* for almost every ¢ € R,

(iii) for each 7 > 0, there exists nonnegative function ¢, € L!(IR) such that |z;| < r(i =1,2,3,4)

implies
‘F (t,ml,xg, 2 “)’ < o,(t), a.et € R. (2.6)
p(t) " o(t)
Suppose that

+oo g +oo ¢

U 7y < Fo0, I 20y < +o0, (2.7)
+oo du n du

+00 du u

A=i(1—a) [ du bf"oo A ta(1-0) [5 dn >0, (2.8.3)

c<1,d< 1. (2.8)
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For a function ¢ : R — IR, denote ||p|lo = sup |¢(t)|and ||¢||1 = fj;: lp(s)|ds if they exist.
teR
Choose
/ . .
v {x g, €O,y €OM), lm aft), lim a(t) }

. , : ; . .
t_l}r_noo p(t)z'(t), t_lgpoo p(t)x’(t) exsit and are finite

For x € X, define
||lzllx = max {[[z[o, ||plz'[|o}-

Lemma 2.1. X is a Banach space with || - || x defined.
Proof. It is easy to see that X is a normed linear space. Let {z,} be a Cauchy sequence in X.
Then ||z, — zy|| = 0, u,v = +oco. It follows that

lim x,(¢), lim x,(t), l}im p(t)z, (), lim p(t)x) (t) exist,

t——o0 t—+o0 t——o0 t—4oc0
[|zy — 20l = 0, u, v = 400,

[lp(z, =zl |lo, u, v — +o0.
Thus there exists two functions xg,yo defined on R such that

lim () = zo(t), lim p(t)al,(t) = yo(t).

Uu—+00 U—r+00
It follows that
[|z — zollo — 0,u = +00,
o2, (t) = yollo — 0,u — +oo.

This means that functions zg,yo : IR — IR are well defined.
Step 1. Prove that zg,y0 € C(IR).
We have for t; € R that

[0 (t) — o (to)| < |2o(t) — xn (8)] + [en () — 2N (o) + [2n (to) — zo(to)]

S 2||(EN *(EoHo + |1’N(t) 7$N(to)| .

Since ||z, — xo|lo — 0,u — +o0 and x,(¢) is continuous on IR, then for any € > 0 we can choose
N and ¢ > 0 such that ||ay — 20|lo < € and |xn(t) — xn(to)| < € for all |t — tg| < 6. Thus
|zo(t) — xo(to)] < 3¢ for all |t — ] < 4. So zp € C(IR). Similarly we can prove that yo € C(IR).
Step 2. Prove that the limits tl}IElOO xo(t), tilgm xo(t), ti}{llm yo(t), ti}gloo yo(t) exist.
Suppose that tli{noo x4y (t) = Ay . By ||zy — xy|lo = 0, u,v — 400, we know that A, is a Cauchy

sequence. Then lim A, exists. By ||z, — %o]lo — 0,u = +00, we get that

u——+00
Jm zo(t) = lm - Tim zy(t) = Hm  lim 2(t) = Tm A

Hence tkr}loo xo(t) exists. Similarly we can prove that tilgloo xo(t), til{noo yo(t), tilgrnoo yo(t) exist.
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Step 3. Prove that yo(t) = p(t)z((¢).
We have for some ¢, € R that

Zy(t) — lim xu(t)—ft vo(s) gg) =

t——o0 oo p(s)

t t s
J- oo Tu(s)ds -J- ooypo((s))dsl

<[

v (s) = 3 ds < [ Gy sup (1), (1) (1)

Sf 0 p(t)d5||933 —yollo = 0 as u — +oo.

So lim (xu(t)—tlim x(t ) = f_ yo(é)ds Then xo(t) — co f_ v(s) s Tt follows that
——00

u—~+00 oo p(s oo p(s)

p((tt)) = z((t). So zy € X with x,, — z¢ as u — +oo. It follows that X is a Banach space. [ ]

Lemma 2.2. Let M be a subset of X. Then M is relatively compact if and only if the following
conditions are satisfied:

(i) both {z:2z € M} and {t — p(t)2’(t) : € M} are uniformly bounded,

(ii) both {z:x € M} and {t — p(t)2'(t) : © € M} are equicontinuous in any subinterval [a, b]
in R,

(iii) both {z:x € M} and {¢t — p(t)z'(¢) : € M} are equi-convergent as t — £o0.
Proof. ” < 7. From Lemma 2.1, we know X is a Banach space. In order to prove that the subset
M is relatively compact in X, we only need to show M is totally bounded in X, that is for all
€ > 0, M has a finite e-net.

For any given ¢ > 0, by (i) and (iii), there exist constants A,,C,, T > 0,a > 0, we have

(1) — Az| < 5, 1p()2"(t) = Ca| < 5.t < =T,z € M,
[2(t1) — 2(t2)] < 5, [p(t1)2' (t1) — p(t2)2’ (t2)| < 3,t1,t2 2 T w € M,

[z(t1) —2(t2)| < 5. |p(t)2' () — p(t2)z’ (t2)| < 5,11, t2 < =T,z € M.

For T' > 0, define X|_p ) = {x: x,p(t)z’ € C[-T,T]}. For v € X|_r 1), define

lollr = max { s 1)l s p(0)a'0)] |
Similarly to Claim 2.1, we can prove that X _7 7] is a Banach space.

Let M|_pq = {t = x(t),t € [-T,T] : v € M}. Then M|_7 1) is a subset of X|_7 7. By (i)
and (ii), and Ascoli-Arzela theorem, we can know that M|[_r 1) is relatively compact. Thus, there
exist x1,x2, -+ ,xr € M such that, for any x € M, we have that there exists some i = 1,2,--- |k
such that

|:c—x1-||T=max{ sup [a(t) —ai(t)], sup p<t>|x/<t>—x;<t>}<§.

te[-T,T] te[-T,T]
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Therefore, for x € M, we have that

lz — zillx = max{ sup |x(t) —xi(t)], sup p(t)|z'(t) — i(t)],
te[—T,T) te[—T,T)

sup |z(t) — z;(t)], sup p(t)|2'(t) — @i ()] sup |z(t) —z;(2)], sup p(t)|2’(t) —xé(t)}
t>T t>T t<—-T t<—T

< max {g, sup |z(t) — z(T)| 4+ sup |z(T) — 2;(T)| + sup |z;(T) — x; ()],
t>T t>T t>T

sup lp(t)a’ (t) — p(T)2'(T)| + sup p(T)"(T) — p(T)(T)| + sup p(T)xi(T) — p(t);(t)]

sup |2(t) —z(T)| + sup [z(T) — zi(T)| + sup |a;(T) — z;(t)],
t<-T t<-T t<-T

sup |p(t)a’(t) = p(1)a'(T)] + sup [p(T)a'(T) = p(T)a{(T)] + sup [p(T)a(T) ~ p<t>x4<t>|} <e.

So, for any € > 0, M has a finite e-net {U,,,Us,, -+ ,Us, }, that is, M is totally bounded in X.
Hence M is relatively compact in X.

=-. Assume that M is relatively compact, then for any £ > 0, there exists a finite e-net of M.
Let the finite e-net be {Uy,,Uy,, -+ , Uy, } with x; C M. Then for any = € M, there exists Uy,
such that x € U,, and

[x(®)| < |2(t) — 2 ()| + |2: ()] < & + max {jlelg |z ()] :i=1,2,--- ,k} ,

POl ()] < e+max{supp<t>x;<t>| =12, k-}
telR

It follows that both M and {p(t)z’ : x € M} are uniformly bounded. Then (i) holds. Furthermore,
there exists T > 0 such that |x;(t1) — x;(t2)] < € for all 1,5 > T and all ¢1,t2 < —T and
i1=1,2,--- , k. Then we have for t1,t5 € R that

|z(t1) — z(t2)| < |z(t1) — zi(tr)] + |zi(t1) — zi(t2)| + |zi(t2) — z(t2)]
< 3¢ for all t1,ta > T,t1,t2 < —T,x c M.

Similarly we have that |p(t1)2'(t1) — p(t2)x’(t2)| < 3¢ for all t1,t5 > T, t1,ta < =T,z € M. Thus
(iii) is valid. Similarly we can prove that (ii) holds. Consequently, the proof is proved. |

Choose

, . .
. {y:IR_HR: y € C(R), oy’ € C(R), lm y(t), lm y(t) }

. / . ) . :
tilr}loo o(t)2'(t), tilgrnoow(t)x (t) exist and are finite
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For y € Y, define ||ly|lly = max{||yllo, ||oy'|lo}. Let E = X x Y be defined with the norm
[|(, y)[| = max{{|z||x, ||y[[y}-

Lemma 2.3. Y is a Banach space with || - ||y defined. E is a Banach space.
Proof. Similarly to Lemma 2.1 and the proof is omitted. |

Lemma 2.4. Let M be a subset of Y. Then M is relatively compact if and only if the following
conditions are satisfied:

(ii) both {y:y € M} and {t — o(t)y'(t) : y € M} are uniformly bounded,

(ii) both {y:y € M} and {t — o(t)y'(t) : y € M} are equicontinuous in any subinterval [a, D]
in IR,

(ii) both {y:y € M} and {t — o(t)y'(t) : y € M} are equi-convergent as t — $o0.

Proof. Similarly to Lemma 2.2, we omit the details. |
Denote
+00 du n 3 du t du
— (1 - a)foom* —a)b [ s +a(l foom}fsm
t +oo g n € d
+ (1 b)af—oo p u) —o0 p(ﬁ + bf oo p(u } fa p(z
t 13 u U
—|I=a) [ )+abf oo,flu)} o)
t 1S du +00  du :
+la- @fmmw+afmﬂayg s <minf€, 1),

13 + u
w—wﬁmm4wfmﬁﬁgway

¢ +00 du n € _du
|:(1_b)a’f oopu) af oo p(u) +abf oop(u)] fs p(u)

s > max{n,t},

— |- ap [l gt ab L (H o)
| ¢ oo .
G(S,t)zl +>(1_a)f—oop(u)+ f ] s t<8<§<17’

[ 3 n _du
__(l_a)bfoop(u)+abf u:| s p(u)
+ _(1 —a) f_oo g Ta ffoo p(u)] f+oo du_ mm{t & <s<n,

I +00 _dy 7 € du
- _(1 _a’) f—oo p(u) - 1 —a bf oo p(u —|—(1( b) f—oo p(u):|
3 du n _du
O —agn [ gty b [ gt | L
t u o0 du
+_(1_a)foop(u)+a'f£oop[fu):|f+ du 3€<S<ma’x{t 77}3

t du
Jo oty

I +00  du u 13 u
— 0= [ - (a7 B a1 - b) 6 ]

—oo p(u) oo p(u)
I t 3 du +o0  du
+_(17a)foop(u)+afoom]fs m,€<7}<5§t

t du
Jo oty
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and
s t
c(l—d)[” g(u) +(1-c)1—d) [ Q(u),s<m1n{§ t},
cf d7u 1—c)f OOQ(U),s>max{n,t}
(1—d)(1—c)fjOo Q%Z)—i—c(l—d)fsoo g(u),t<s<§<77,
H(s,t) = m=oaa

d) €t (1= )1 —d) [1 25 min{t, €} <5 <,

—d) [* 2 € < s < max{t,n},

cff ‘f +(1-0o)(1 d)ftoog(u,f<n<s<t

Lemma 2.4. Suppose that (2.7), (2.8.1), (2.8.2), (2.8.3) and (2.8) hold. Then (z,y) € E is a
solution of BVP(1.5) if and only if (z, ) € F and

=[2Gty 9)f (s, 2(s),y(s), 2/ (5), 4/ (s))ds,

(2.9)
= [T H(t,5)g(s,2(5),y(s), 2'(5),/(5))ds.
Proof. Since (z,y) € E, f, g are Caratheodory functions, then
(2, y)|| = max {Sup [z(t)], sup p(t)|2’(t)], sup |y(t), sup Q(f)ly’(tﬂ} =71 < +0o0,
teR teR teR teR
and fjooj flr,z(r),y(r), 2’ (r),y (r))dr and ftfg (r,x(r),y(r), ' (r),y'(r))dr converge. If (x,y) is

a solution of BVP(1.5), we get from [p(t)z' ()] + f(t,x(t),y(t),z'(t),y'(t)) = 0 that there exist
constants A, B € IR such that

p(0)a'(£) = A= 1 [ (s,2(s),y(s), 2/ (5), 4/ (s))ds.

w(t) =B+ A [ [t (), y(u), o (a), o () duds.

Since

f o p(s f— ’LL x(“)»y(u)ail(u)7y/(U))duds

= S I (), y(), 2 ),y () dud ()

= S (), ), ') ) ()|
S Y CEORTORIORIO)E
= " ([ 755 F(s.2(s),y(s).a' (). 9/ () ds.
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Then
w(t) =B+ A [t (L) £s a(s),u(s),2/ (), 0/ (5))ds. (2.10)
From tii{rloom(t) —ax(§) =0 and tilgloox( ) — bx(n) = 0, we have
(L—a)B—af dma——af* (J5a) f(sa(s),y(s)a'(5),y/(5)ds,

(L= 0B+ ([7 b ) A= 1 (548 f(s,a(s), y(s),2/(s), o/ ())ds

—0 7 (7 585) F(sia(s),y(s), ' (), o/ () ds.
It follows that

A= [~ —ap " (J755) Fs.a(s),y(s), 2 (), 9/ (5))ds

(1= a) 1 (1 A) Fls,w(s),y(s), 2/ (5), () ds

=) [, ([ 25) Fls,w(5),y(s),2/ (), v/ ()ds]

B=%[-a ([T v ") [ (S ) £s () p(s), o/ (),0/(5))ds
ta [t (< (725 F(s.a(s),y(s),0'(5), /() ds

131 ) £l wls)y(s) (), v/ ())ds ) |

Substituting A, B into (2.10), we get that

()=~ [ (I 225) £(s.2(5).u(5).2'(5). /()

[ gty - KT b+ 2 gt ] S (U5 785) £ 000 wlo), () v ()

[t gt b S ] (f7 ) f(s,a(s), y(s), o (), (5))ds

R St & 1T (U ) Fs(s), y(s), @' (5), () .
On sees from

A=(l—a) [T (1 —a)p " A a1 ) ¢

oo p(u) —oo p(u)
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that the following cases are included:
(1) t <& < n. We have

P. Yang and Y. Liu

1S d t 4
b)f_ooﬁ)}fsﬁ)

o] (s, a(9),9(5), 2/ (5), () ds
o] (s, w(s), y(s), @' (), o/ (5))ds

f;roo %} f(s,2(8),y(s),2'(s),y'(s))ds

w(t) = f [ [(1— a) _ﬁjpﬁg) 1—azf" Aot a(1 -
+00 du n 5 du
& du n _du
- |- bfoop(uﬁbfoom]sm
13 u +0o  du
((1 )foopu)+afoopd7u))f a
§  du N _du
+-ﬁ£|: (1_ oop(u)+abfoopu)) s p(u)
£ d n d
= (- >+“bfooﬁi>)sﬁ>
€ u
+((1 a)f )+afoopd7u))
+oo t 5 U +o0 du
I (e s e ) [

2) £ <t<n. Wehave
Ui

| £(s.2(5).9(5). 2" (5). ' ())ds

w(t) =[5 [ [ =) [T 8 - a7 a1t b) [ ] [l

+ (1 b) ftoopg(iZ) f+oooo po(lZ)+abfnoopu):| fé du
(1 foop(u)+abf£oo%] sn%

(- [l s afi ,;i:z)) i %} Fs,2(5). y(s), 2 (s), ' (5))ds

<<1*abfw<u +abff ) :;zz
+(-a [l +a)i; )f*‘” 2 (s, (), y(s), (), o/ (5)ds
+ﬁﬂ—(1—abprw+-@ﬁm£%):ﬁ%
(=) [ s a S, Aa) [ ] f(s,a(s),y(s), 2/ (), 9/ (5))ds

44?”Ku—mfmmu+ I )

S s (s, n(s),u(s), ' (5), 4/ () ds
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(8) & <n<t. We have

x(t) = ﬁ - [(ka)f?ﬁ%f a7, s a(l—b) [ ] )
+|d- f—oo p(u —Jro? p%z)+ bfnoopu)}f5 o
—|1—ap [ o p(u +abffoo %] o
(=) [l s ra [ ) [ ] s a(s),y(s), ' (5), o (5))ds

+fg7[ (1—@ +<>05de) abfﬁoopn({z 1—b)ffoo%)
(1 abfoop(u _|_abff ) "du
(17a)ftoo p(u)+af§ )erOO%} Lz(s),y(s),2'(s),/(s))ds

t du
Jo 7t

+
/\A

[ [0 [ g — a7ty a0 S g U
(=) [l raft ) T %} F(s.2(5),y(s),2'(5), /' (5))ds

+ K(l —a) 4 o T fﬁoo p%) Jre %Z)} f(s,z(s),y(s), 2/ (s),y (s))ds

From Case (1), Case (2) and Case (3) we know that z(t) = f+ G(t,s)f(s,x(s),y(s),z'(s),y'(s))ds.
Similarly we can prove that y(t) = ff;: H(t,s)g(s,z(s),y(s),z'(s),y ( )) . Then (z,y) satis-
fies (2.9).
On the other hand, if (z,y) € E satisfies (2.9), it is easy to show that (z,y) is a solution of
BVP(1.5). The proof is completed. [ |

Define the operator T on E by

(TG )(t) = (T (2, 9)(0), (Ta () (1))
= (Gl ) 1 5,2(5), y(s),2"(5), o' (5))ds, [ H 8, 9)g(s,2(5), (5), 25,/ (5))ds ) , (2, ) € .

Remark 2.1. From (2.8.3), we know A > 0. Then (1 —a)? + (1 —b)? # 0. We suppose that a # 1.
So for (z,y) € E satisfying

lim z(t) —ax(§) =0, lim x(t) —bx(n) =0,

t——o0 t——+o0

lim y(t) —cy(§) =0, lim o(t)y'(t) — do(n)y'(n) = 0,

t——o0 t—+oo
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we have that

lim z(t)—a lim z(t)‘
t [eS]

(1) < [ gyl + 1=

- t——o00 t——o00 oo p(u)

|z(t)| < |z(t) — lim x(t)‘-i-

az(§)—a lim z(t) az(g)ftliinxm(t)‘

— —o0 +oo u
< I s 7 sup p(t)|a' (£)] + = ) </ %fgﬂgp(t)\x'(t)l e

\1 al+a ptoo g
< Tiar s a1 lo-

It follows that ||z, < L=ete f+oo du) | pz’{|o-

MT—a] J—oc o(u

Similarly we get from (2.8) that

l—c|+c o+
lollo < B 127 2825 sup o(t)y/ (1)

+
=1 /7 st lleyllo-

It follows that

l—al+a [+
ol < max {1, Lgebba o dud oo,
(2.11)
Jr
lly < max {1, 11 [* b lloy'llo.

Lemma 2.5. Suppose that (2.7), (2.8.1), (2.8.2), (2.8.3) and (2.8) hold. Then
(i) (=,y) € E is a positive solution of BVP(1.5) if and only if (z,y) is a fixed point of T in X.
(ii) T:X — X is well defined and is completely continuous.
Proof. (i) From Lemma 2.4, we know that (z,y) € E is a solution of BVP(1.5) if and only if (z,y)
is a fixed point of T in E i.e., (T1(x,y), To(z,y)) = (x,y).
Step 1. Prove that (T1(z,y))(t) = x(t) > 0, (Te(z,y)) = y(t) > 0 for all t € R.
Note that f, g are nonnegative Caratheodory functions. By the definition of 77, T5, it suffices
to prove that G(t,s) > 0 and H(t,s) > 0 for all t,s € R. For ease expression, denote fb % = fb
Case 1. For s > max{n,t}, we see from (2.8.1) that

t § u +00  du
AG(t,s) = [(1 —a) [ s taft, %] /. ,ffu)

= |a=a) [l ra ] [IT =00,

v

(=0 [T 4a [ ] [/ 200> 1.
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Case 2. For s < min{¢, ¢}, we have from (2.8.2) that
AG(t,s) = [(1 a) [T (1 —a)p [T +a(1—b) [ }ft
+=ba [ —a [T vab " ] [
fﬁlf@@ﬁm+mﬁijﬂ7[1 a) [* —mfg}f“°
= [ =) )]
=L ] 20 <,
> [° [f +(1 - bf"]>0,b>1.

Case 3. Fort < s < ¢ <1, we have from (2.8.2) that
AG(t,s) = [(1 —ba [ —a [T tab fi’m} JE- [(1 —a)b [*_ +ab ffoo} )
+la-a) [ raf ] [
= [ (= ) wa (=0 1) 2 0.

Case 4. For max{t,&} < s <7, we have from (2.8.1) and (2.8.2) that
AG(ts) == [ =ap ' +ab [E ] [+ [0 —a) [ a JL ] 1
> (=02 (S —afi)
= (= +a-v 1)) (ff+-a) f)

iy ) — ) — )

> (e aa-n ) (St -a) ) 200> 1,0<1,
> (S +=n 1) (S +01 - af£+°°>>0a<1b>1
>

S —b) [” )(fé +(1—a) [ )a>1b>1
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Case 5. For £ < s < min{¢t,n}, we have from (2.8.1) and (2.8.2) that
AG(ts) == [(1=a) [*Z =1 =) ", +a(l = 1) [£ ] [
— =@ [ rab L] T (=) [ L] S
t (17(1 A )+bft(1fa )5 aft )zo,ngt,
_ ( (1-a) f_oo+affoo) ([ ra-n ) 20>t
Case 6. For { <n < s <t, we have (2.8.1) that

AG( ) =~ [(1—a) 72 (- ap [ +all—b) [ ] I
[1—af —|—af£ }f""’o
= t+oo ((1 —a) fjoo +a ffoo> + bfst ((1 —a) fjm +a ffoo) > 0.

From cases 1-6 and (2.8.3), we have G(t,s) > 0. Similarly we can prove that H(¢,s) > 0.
Step 2. We prove that z(t) > 0 and y(t) > 0 on R if (z,y) is a solution of BVP(1.5).
Suppose that there exists o € IR such that z(tg) = 0. Since (p(¢)2'(t)) = —f(t,z(t),y(¢),
2'(t),y'(t)) <0 for all t € R, we know that p(¢)a’(t) > 0 on R or p(t)z’(t) < 0 on IR or there exists
t1 € R such that p(t)z’(t) > 0 on (—oo,t1] and p(t)a’(t) < 0 on [t1,+00). We consider three cases:

Case 1. p(t)2'(t) <0 for all t € IR. Then 2/(¢t) <0 for all t € R. It is easy to see that z(t) =0
for all ¢ € [tg, +00). Then f(¢,0,y(t),0,y'(t)) = —(p(t)2’'(t))’ = 0 on [ty, +00), a contradiction.

Case 2. p(t)z'(t) > 0 for all ¢ € R. Then /() > 0 on IR. It is easy to see that z(t) = 0 for
all t € (—oo,tg]. Then f(t,0,y(t),0,y'(t)) = —(p(t)z'(t))’ = 0 on (—o0,to], a contradiction.

Case 3. there exists t; € IR such that p(t)z’(t) > 0 for ¢ € (—o0,t1] and p(t)a’(t) < 0 for
t € [t1,+00). Then 2/(t) > 0 on (—o0,t;] and 2’(t) < 0 on [t1, +00). When g < t1, we get z(t) =0
for all t € (—o0,to], thus f(¢,0,y(t),0,9'(t)) = —(p(t)z'(t)) = 0 on (—o0,t], a contradiction.
When tg > t1, we get z(¢) = 0 for all ¢ € [tg, +00). Then f(¢,0,y(¢),0,y'(t)) = —(p(t)z'(t))’ =0 on

[to, +00), a contradiction.

From above discussion, we know that z is positive on IR. Similarly we can prove that y is
positive on IR. We obtain (z,y) is a positive solution of BVP(1.5). This completes the proof of (i).
|

(ii) We prove that T is completely continuous.

Step 1. we prove that T : (z,y) = (Ti(z,y), T2(x,y)) is continuous on E. It suffices to
prove that both T} : (z,y) — Ti(z,y) and Ty : (x,y) — Ta(z,y) are continuous. Since f, g are
Carathéodory functions, the result follows.

Step 2. we show that T is maps bounded subsets into bounded sets.

Given a bounded set D C E. Then, there exists M > 0 such that D C {(z,y) € E : ||z|, ly]] <
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M}. Then there exists oy € L(R) such that
Lf(t2(t), y(t),2'(£), ¥ ()] < @r(t), ace. t € R,

lg(t, 2(t). y(t). 2’ (1), ' (1))] < 1 (1), acet € R.

By the definitions of T} and 75, we have
p)(T1 (2, ) (O] + f(t,2(t),y(t),2'(t),y'(t) = 0,ae.,t € R,
lo(t)(T2(z, ) (1)) + g(t, 2(t),y(t), 2 (t),y' (1)) = 0,a.e.,t € IR,

Jlim (T3 (2, 9))(0) — ofT3(2,9)(€) = 0, lim_(Ti(2,9))(¢) — b(T1 (2,) () = 0,

Jlim (T, 9))(t) — e(T5(,9)(6) =0, Tim_o(t)(Ta(w,y))' (1) — do(n)(Ts(z,9)) (1) = 0.
By the definitions of T} and Tb, we have

PO (,9) (1) = & [0 = b 7 ([ 585) S (s (),y(5). ' (), 9/ () ds
(1= a) [ (S ) S5, (), y(5), 25,/ () ds
H(1-b)a [’ (ff %) Fls,(5), y(s). x’(s»y'(s))ds] = I F (s (), (), 2 (), ' (5))ds,
o()(Ta(a,))' (1) =~ [ S (5 0(5),y(5). '),y (5))ds

i [T f(s (), y(s), 2/ (s), 4/ (s))ds — [ f(s,x(s),y(s), 2/ (s),y/ (s))ds.
So

oo p(u)

+00  du +00  dqu
p(O)|(T1(z, ) gﬂu—awfmpdu)ﬂl o [Fo
+O° du
+|1 —bla oopu)+:|

o0 (Ta(,y)) (1) < (14 + 1) J7 onls)ds.
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Similarly to the Remark 2.1, we have

T3 ) [ = max{ > <T1<z,y>><t>,§ggp<t><T1<z,y>>'<t>|}

teR

< max {1, e 1 gt bsup p(0) (T () (1)

[1—a|+a p+o0 du 1 +o0o du oo du
Smax{ s e e p<u>}A[ I 7 Bl e B o

+|1 — bla fj:oo % + A} fj—;: ©or(s)ds

and

teER teR

Taa, Iy = max{ 5 |<T2<x,y>><t>,supg<t>|<T2<x,y>>'<t>|}

<max {1, 2 7T 5t Fsup oo, ) ()] [ o0 (s)ds

oo du d
gmax{l, %foo g(u)}(lJr Jrl)f or(s)ds.
It follows that
(T (2, y))[| = max{|[T1(z, y) || x, || T2(x, y) ||y } < oc.

So, {T'D} is uniformly bounded.

Step 3. we prove that both {t — (T1(z,y))(t) : (z,y) € D}, {t = (To(x,y))(t) : (z,y) € D} and
{t = (p(t)(T1(z,v)) (t) : (z,y) € D} and {t — (p(t)(T2(x,y))'(t) : (x,y) € D} are equi-continuous
on each finite subinterval on IR.

The proof is standard and is omitted. One may see [19].

Step 4. we show that both {t — (T1(z,v))(t) : (x,y) € D}, {t = (Ta(z,v))(¢t) : (z,y) € D} and
{t = (p(t)(T1(z,9)) (t) : (z,y) € D} and {t — (p(t)(T2(x,y))'(t) : (x,y) € D} are equi-convergent
at both 400 and —oo respectively.

We have that

(T ) = [~ & 172 o+ 7 ] 1 (S 285) fGs,a(s),y(s),a'(5), () ds
[ ] g (S ) £s a(s),u(s), 2/ (), 0/ () ds
+lE ] (

S ) £ (s, w(9),0(5), 2/ (5), () ds|

Sfjoo@r(s)dsf+oo %Z) + [\1 bla+ [1— albJr [1— a\}f Oop(u) erOOSDr )dsfj;o%

— 0 uniformly as t — —oo.
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Further more, we have that

()T 9)) (1) = & [~ =a)b [" (S 85) F(s,(5), y(s), 2'(5), ' (5))ds

(1= a) 7 ([ A2 f(s,0(5), (), 2/ (5), 4/ (9))ds

(1 =va [ ([F85) F(s.2(s), y(s). ' (), v/ ()ds|

< f s)ds — 0 uniformly as ¢t — —oo.

Hence {t — p(t)(Tl(x,y))’(t) : (x,y) € D} and {t — (Ti(z,y))(t) : (z,y) € D} are equicon-
vergent as ¢ — —oo. Similarly we can prove that {t — p(t)(Thi(z,v)) (t) : (z,y) € D} and
{t = (T1(z,9))(¢t) : (x,y) € D} are equiconvergent as t — +oc.

Similarly we can prove that both {t — (T2(z,v))(t) : (x,y) € D} and {t — (p(t)(T2(z,v)) (t) :
(x,y) € D} are equiconvergent as t — £oo. The details are omitted.

From Steps 1-4, we see that T" maps bounded sets into relatively compact sets.

Therefore, the operator T : E — FE is completely continuous. The proof of (ii) is complete.
Thus the proof of Lemma 2.5 is ended. |

3 Main results

Now, we prove the main theorems in this paper by using the Schauder’s fixed point theorem. We
need the following assumptions:

(D1) f,g are (p, 0)-Carathéodory functions and satisfy that there exist non-decreasing
functions @, ¥ : R+ — IR+, measurable functions ¢, 1, 1, ; such that

‘f (taxayv ﬁ7 ﬁ) - QO(t)‘ S wl(t)q)(xvyaua U),a?,y,u,v € IR,CL.@.,t € ]Ra

‘g (twrvya ﬁ7 ﬁ) - ’(/}(t)‘ < wl(t)‘l’(xa%uav)’%y’U;U € IRva'ewt € R.

Define
= [12 Gt s)p(s)ds, U(t) = [ H(t, s)v(s)ds.

Denote

1—al+ + u + U + U
P:max{"\lala‘awa}i[ a|bf°°d)+|1 alfood

oo p(u) oo p(u)

+00  du
1= bla J*T o+ Al lleall,

+
Q =max {1, 1 7 4 (B4 1) ).
Theorem 3.1. Suppose that (2.7), (2.8.1), (2.8.2), (2.8.3) and (2.8), (D1) hold. Then BVP(1.5)
has at least one positive solution if

PO(ry + @], r2 + |[2]]), 1 +[[@]], r2 + [[T]]) <71,
B B B B (3.12)
QU(ry + (|, r2 + (W), 1 + [|®l], r2 + [[¥]])) < 7.
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has a couple of positive solution (r,73).
Proof. To apply the Schauder’s fixed point theorem, we should define an closed convex bounded
subset Q of E such that T'(2) C Q. By the definitions of ®, ¥, we have (¢, V) € E and

!

[p()® ()] + p(t) = 0,a.e.,t € R,

[T (1) +1(t) = 0,a.e.,t € R,

lim ®(t) —a®(&) =0, lim ®(t) —bd(n) =0,

t——o0 t——+o0

lim T(t) —cB(€) =0, lim o(t)T () — do(n)¥T (n) = 0.

t——o0 t——+o0
Let 11 > 0,79 > 0, denote Q = {(z,y) € E : ||z —®|| < r1, ||y — ¥|| < r2}. For (z,y) € Q, we get
2]l < [l = @[] + [|2]] < ro + 2], [yl < [ly = Tl + [[¥]] < 72+ [[¥]].

Then (D1) implies that

[t 2(8), (), @' (0),y' (1) = o(8)] = |1 (£ 0(0),y(0), 2050, €00 — o)
< e1®)@(l2ll, llyll, llell,llyl)
< Q1O (rs + [, 2+ [[T]], 1+ [[B]], 2+ [T, ae.t € R,

lg(t, 2(t), y(#), 2" (£), 5 (1)) — ()] < L (@) W(ry + [[@]], r2 + (W], 71+ [[@]], r2 + [[¥]]), a.e..t € R.

By the definition of T and Lemma 2.5, we have (T1(z,y), T2(z,y)) € P. By the methods used in
(2.11), we get that

172G, y)) = @l < ma {1, Bt [ s b sup p(o) (T3 () () — 20

gmax{ ’ [1—a|+a f+oo ﬂ}i[ a‘bf-‘roo du +|1 a|f+00d7u

[1—al oo p(u) oo p(u) oo p(u)

+00 gy = i = 5

1= bla [23 4 A] 22 ou()ds®(r + @], 2 + ([T, 4+ [, 2+ [[T])
= Po(ry + [, 2 + [[W]],r1 + [[@]]; 72 + [[W]]).

Similarly, we have

1T (2, y) — || < QU(ry + ||@f], r2 + [[¥]|,r1 + [|@f], r2 +[[¥]]).

From the assumption, the inequality system (3.12) has positive solution (r1,72). We choose
Q= {(r,y) € E: ||z —Q| <ri,l|ly— Y[ <rz}. Then we get T(Q2) C Q. Hence the Schauder’s
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fixed point theorem implies that T has a fixed point (z,y) € Q. Lemma 2.5 imply that (x,y) is a
positive solution of BVP(1.5). The proof of Theorem 3.1 is complete. ]

(D2) f,g are Carathéodory functions and satisfy that there exist nonnegative constants b;, a;,
7j,04,05,7;(j =1,2,--- ,n) measurable functions ¢, : R — IR such that

n
‘f (t,x,y, —pé‘t),—ga)) - w(t)‘ < 1(t) Zl aj|gj|7j|y|0'j‘u|5j|1}|’yi',t eR,z,y,u,v € R,
i=

n
lg (0,9, 5870 587 ) — VO] < e0@) X bylel |l o] ¢ € Ry, y,u,v € R
j=1

Define
t) = [T2G(t, s)p(s)ds, T(t) = [T H(t, s)p(s)ds.

Denote

A > max{||®||, ||¥]|},

o=max{rj+o0;+0;+7;:j=1,2,---,n},

_ |[1—al4a p+o0 du [1—alb 40 du [1— al T du
]\/[fmax{max{l7 M=l ffoo m}{ A ffoo s T f o p(u)

+Le ple) + 1] llo1]l1 21 ajATitoteit e,

n
max {1, L [ b (144 1) el > bjAmmmwo}.
J:

Theorem 3.2. Suppose that (2.7), (2.8.1), (2.8.2), (2.8.3) and (2.8), (D2) hold. Then BVP(1.5)
has at least one positive solution if

[01)0ra—1w1thM<10ro>1W1th%gﬁ. (3.13)

Proof: To apply the Schauder’s fixed point theorem, we should define an closed convex bounded
subset  of F such that T(Q) C Q.

Let 7 > 0, denote Q = {(x,y) € E : ||(z,y) — (®,P)|| < r}. For (x,y) € Q, we get ||z|| <
lz — @[+ [[@]| < v+ ||, [yl < [ly = ¥[|+ [[¥]] <7+ [[¥]]. Then (D2) implies that

[F(t2(8), y(), 2'(8), 4/ (1) — p(B)] < ¢a(t) é a;lr + |70 [r + [P, t € R,

bylr + @[]+ [r + [[ ][]+, ¢ € R.

M:

lg(t, x(t), y(t), ' (2),y' (1)) — (1) < ¢ (t)

1

J
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By the definition of T', using above inequalities and (2.11), we get that

ITi (@) — Bl| < max {1, Lgelbe f# du } sup p(0)| (71 (2,))' (1) = @' ()

gmax{l, [1—a|l+a p+oo du } |:|1—a|b +oo  du, \1 a| f+oo du,

[1—al —oo p(u) A —oco p(u) oo p(u)
—b + U < T, o
HIRE I 5t 1 2 er(9)ds 32 aglr o BT+ |

[1—a|+a [+oo du [1—alb p+o° du _ |1 a| T _du_
< ma {1, St 2 g (MR T A AT

Jl1bla oo du) +1] [T i(s)ds Y aj[r + A]mitoiteit

oo p(u

alta o0 gu | [l (+2 du | [1al [+ g
Smax{la 1—al ffoo Tz)}{ A f oo p(Z) + f 00 PZ)

1-bla p+o0 du o n T4 St~ —o
R [T 1] ST er(dstr + A)7 3 agan et

< M(r+ A)°.

Similarly, we have

ITo(e,y) = Bl < max {1, Bpebbe [ sup o1)|(Ta(,))' (1) - V()] < M(r+ A).
It follows that |[(T(x,y)) — (®,¥)|| < M(r + A)°.

Case 1. o € [0,1). It is easy to see that there exists o > 0 such that M(rg + A)7 < ry.
Choose Qg = {(x,y) € E : ||(z,y) — (®,¥)|| < ro}. We have T(Q) C Q. Then T has a fixed point
(x,y) € Q. So (x,y) € P is a positive solution of BVP(I. 5)

Case 2. 0 = 1. (3.13) implies M < 1. Choose 9 > =37 and Qo = {(z,y) € E : ||[(z,y) —
(®,0)|| < r9}. We have T(Qp) C Qp. Then T has a ﬁxed pomt (z,y) € Qo. So (z, ) € Pisa
positive solution of BVP(1.5).

Case 3. o > 1. Choose 79 = % and Qo = {(z,y) € E:||(z,y) — (®,V)|| < ro}. From (3.13),
we have -

M(ro+ A’ = M (% +A) < ro.

Then T'(20) C Q. Then T has a fixed point (z,y) € Qo. So (x,y) € P is a positive solution of
BVP(1.5).
The proof of Theorem 3.2 is complete. |

4 An example

In this section, we present two examples to illustrate the main theorems.
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Example 4.1. Consider the following boundary value problem of second order differential equation
on the whole line

[o()z' ()] + f(t,x(t), y(t), 2'(£), ¥/ (t)) = 0,a.e., t € R,

o)y’ (1)) + g(t, =(t),y(t),2'(t), ¥ (t)) = 0,a.e., t € R,

tii{noox(t) —Iz(-1)=0,

Jim a(t) = (1) =0, (4.14)
im y(t) — 5y(=1) =0,

Jim o)y (8) = z50(1)y'(1) =0,

where

p(t):{ &, t€[=1,0)J(0,1], Q(t):{ &, te[-1,0)U(0,1],

th [t > 1,
Ftz,y,u,) = o) + e (are(t)]* + azly(t)]? + aslp(t)a’ (O] + aslo(t)y' (H))?)

g(t, 2, y,u,0) = (E) + e (bi[2(6)]* + baly(1)|7 + bs[p(t)2 ()] + bale(t)y' (1)) ,

_ 42

pr(t) = e, () = e, p(t) = eI, Y(t) =
Then BVP(4.14) has at least one positive solution if o = max{«, 3,7, 0} satisfies

(7 1

UE[O1)01r<7—1w1thM0<101“0>1Wlth(UﬁﬁM0 (4.15)

where M is defined by

a—o
M, = 1695vT {565“"(@1 +01) (37) " 45657 (az + by) (24

B—o

+ 56577 (az + bs) ( f) + 5659~ (a4 + bs) (3\2/;)51 .

Proof. Corresponding to BVP(1.5), we have £ = —1,n =1 and a = %,b = %,c = %,d = % Then

+00  du 8 +00 du 16
I I 15

—oo o(u) 157

— 00 m 3

[l = 1l = T, 191l = lleall = V7,

+o0 3
(l-a) 22 s tallasiy =8 x5+Ex1=73,
+oo n w11
fn ﬁ 1_bfoop(u_6’
. +too  du 77 3 du 1
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So (2.7), (2.8.1), (2.8.2), (2.8.3) and (2.8) hold. By the definition of ® and ¥, we get

= [1—a|+a p+oo g [1—alb rt+oo 4 [1—a| p+oo d
||<1>||§max{, \1aa|afooﬁ)}[ ol ftoo du  [lal pheo du

e [ s 1] [ (s)ds < 565 7 p(s)ds < 565(1 ells + [lell)

oo p(u)

)] < max {1, 25 1 2 b (24 1) el < 565(1lells + [¥]])-

oo o(u)

By direct computation, we have
A= 1E — 565(|[ll1 + [[¢ll1) > max{|[®]|, [|[T|]}, o =max{a, 8, v, 6},
M = max {565| |11 [565*7ar(|[][x + [[9[|1)*~7 + 5657 Taq(||¢ll1 + [|¢]1)"~

45657 as (||l + l[v[[1)7=7 +565°“aa([[ell + [[¥11)°~] |
a—o B—o —c
22 nlh [(&) ba(llell + [19111)*~7 + (5%)" 7 ba(llells + [19]]1)”

(2877 balllelh + 111077+ (28)" ™ ballllly + el }
< 565(1leal 1 -+ [ln] 1) [565° (ar + br) (el 1 -+ [1el]2)* = + 565° (az + ba) (el + [l4]11)°~

+ 56577 (as + b3) ([l + [[¥][1)777 + 565~ (as + ba) (llepll1 + [[4]]1)°~7]

< 1695v7 [565" *(ay +b1)(3f) " 4 5658~ U(a2+b2)(3f)

+ 5657~ "(a3+b3)( f) +565°~ "(a4+b4)( f) }

Then Theorem 3.2 implies that BVP(4.14) has at least one positive solution (z,y) if (3.13) holds.
Since (4.15) implies that (3.13), then BVP(4.14) has at least one positive solution (x,y) if (4.15)
holds. |
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