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1 Introduction and Preliminaries

Let R and C denote respectively, the sets of real and complex numbers and let N := {1, 2, 3, · · · } be
the set of positive integers, and N0 := N∪ {0} . A generalized binomial coefficient

(
λ
µ

)
(λ, µ ∈ C) is

defined, in terms of the familiar (Euler’s) gamma function, by(
λ

µ

)
:=

Γ (λ+ 1)

Γ (µ+ 1) Γ (λ− µ+ 1)
, (λ, µ ∈ C),

which, in the special case when µ = n, n ∈ N0, yields(
λ

0

)
:= 1 and

(
λ

n

)
:=

λ (λ− 1) · · · (λ− n+ 1)

n!
=

(−1)
n

(−λ)n
n!

(n ∈ N),

where (λ)ν (λ, ν ∈ C) is the Pochhammer symbol defined, also in terms of the gamma function, by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

 1 (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),

it being understood conventionally that (0)0 := 1 and assumed that the Γ-quotient exists.
Let

Hn =

n∑
r=1

1

r
= γ + ψ (n+ 1) =

∫ 1

0

1− tn

1− t
dt (H0 := 0)

be the nth harmonic number. Here, as usual, γ denotes the Euler-Mascheroni constant and ψ(z) is
the Psi (or Digamma) function defined by

ψ(z) :=
d

dz
{log Γ(z)} =

Γ′(z)

Γ(z)
or log Γ(z) =

∫ z

1

ψ(t) dt.

A generalized harmonic number H
(m)
n of order m is defined, for positive integers n and m, as follows:

H(m)
n :=

n∑
r=1

1

rm
, (m,n ∈ N) and H

(m)
0 := 0 (m ∈ N)
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and

ψ(n)(z) =
dn

dzn
{ψ(z)} =

dn+1

dzn+1
{log Γ(z)} (n ∈ N0).

In the case of non integer values of the argument z = r
q , we may write the generalized harmonic

numbers, H
(α+1)
z , in terms of polygamma functions

H
(α+1)
r
q

= ζ (α+ 1) +
(−1)

α

α!
ψ(α)

(
r

q
+ 1

)
,
r

q
6= {−1,−2,−3, ...} ,

where ζ (z) is the Riemann zeta function. When we encounter harmonic numbers at possible rational

values of the argument of the form H
(α)
r
q
, they may be evaluated by an available relation in terms

of the polygamma function ψ(α) (z) or, for rational arguments z = r
q , and we also define

H
(1)
r
q

= γ + ψ

(
r

q
+ 1

)
, and H

(α)
0 = 0.

The evaluation of the polygamma function ψ(α)
(
r
a

)
at rational values of the argument can be

explicitly done via a formula as given by Kölbig [8], or Choi and Cvijović [2] in terms of the
polylogarithmic or other special functions. Some specific values are given as follows:

H
(1)

− 1
2

= −2 ln 2, H
(2)

− 1
2

= −2ζ (2) ,

H
(1)

− 3
4

= −π
2
− 3 ln 2, and H

(2)

− 3
4

= −8G− 5ζ (2) .

Many others are listed in the books[15], [22] and [23]. In this paper we will develop identities, closed
form representations of alternating harmonic numbers and reciprocal binomial coefficients of the
form

Sk (p) =

∞∑
n=1

(−1)
n+1

Hn

np
(
n+ k
k

) , (1.1)

for p = 0, 1 and 2.
While there are many results for sums of harmonic numbers with positive terms, there are fewer

results for sums of the type (1.1). Let us define the alternating zeta function

−
ζ (z) :=

∞∑
n=1

(−1)
n+1

nz
=
(
1− 21−z) ζ (z)

with
−
ζ (1) = ln 2, and

S+−
p,q =

∞∑
n=1

(−1)
n+1

H
(p)
n

nq
.

Sitaramachandrarao [11] gave, for 1 + q an odd integer,

2S+−
1,q = (1 + q)

−
ζ (1 + q)− ζ (1 + q)− 2

q
2−1∑
j=1

−
ζ (2j) ζ (1 + q − 2j)
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and, in another special case, gave the integral

S+−
1,1+2q =

∫ 1

0

ln2q (x) ln (1 + x)

x (1 + x)
dx.

In the case where p and q are both positive integers and p+ q is an odd integer, Flajolet and Salvy
[7] gave the identity:

2S+−
p,q = (1− (−1)

p
) ζ (p)

−
ζ (q) + 2

∑
i+2k=q

(
p+ i− 1
p− 1

)
ζ (p+ i)

−
ζ (2k)

+
−
ζ (p+ q)− 2

∑
j+2k=p

(
q + j − 1
q − 1

)
(−1)

j
−
ζ (q + j)

−
ζ (2k) ,

where
−
ζ (0) = 1

2 ,
−
ζ (1) = ln 2, ζ (1) = 0, and ζ (0) = − 1

2 in accordance with the analytic contin-
uation of the Riemann zeta function. Flajolet and Salvy [7], further gave some specific examples,
such as

∞∑
n=1

(−1)
n+1

Hn

2n+ 1
=
π ln 2

2
−G

where

G :=

∞∑
n=0

(−1)
n

(2n+ 1)
2 u .91596 is Catalan’s constant.

Some other interesting cases are given by Coffey [5]

∞∑
n=1

(−1)
n+1

H
(2)
n

(n+ 1)
2 =

65

16
ζ (4) + ζ (2) ln2 2− 1

6
ln4 (2)− 7

2
ζ (3) ln 2− 4Li4

(
1

2

)
where Li4 (·) is the polylogarithm function, Coffey [6] also gave the expression

∞∑
n=1

(−1)
n+1

ψ(p)(n+ a+ 1)

nq
= (−1)

q
∫ 1

0

∫ 1

0

xa+1 lnq−1 (y) lnp (x)

(1 + xy) (1− x)
dxdy,

where ψ(p)(·) is the polygamma function. Some results for finite sums of alternating harmonic
numbers may be seen in the works of [1], [3], [4], [9], [12], [13], [14], [16], [24], [25], [26] and
references therein. For results on alternating quadratic harmonic number sums see [17]. Some
results for sums of positive terms may be seen in the works [10], [18], [19], [20] and [21].

The following lemma will be useful in the development of the main theorems.

Lemma 1.1. Let r be a positive integer. Then:

r∑
j=1

(−1)
j

j
= H[ r

2 ] −Hr (1.2)
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where [x] is the integer part of x. We also have the known results. For 0 < t ≤ 1

ln2 (1 + t) = 2

∞∑
n=1

(−t)n+1
Hn

n+ 1

and when t = 1,

ln2 2 = 2

∞∑
n=1

(−1)
n+1

Hn

n+ 1
= ζ (2)− 2Li2

(
1

2

)
, (1.3)

= 2

∞∑
n=1

s (n, 2)

n!
,

where s (n, 2) are Stirling numbers of the first kind.

t ln (1 + t) =

∞∑
n=1

(−t)n+1

n
,

hence

ln 2 =

∞∑
n=1

(−1)
n+1

n
=

∞∑
n=1

1

n2n
=

1

2

∞∑
n=1

Hn

2n
. (1.4)

Proof. To prove (1.2) we write,

r∑
j=1

(−1)
j

j
=

r∑
j=1

1

j
+

[ r
2 ]∑

j=1

1

j
− 2

[ 2r+1
2 ]∑

j=1

1

j

= Hr +H[ r
2 ] − 2H

[ 2r+1
2 ]

, since r is a positive integer

= H[ r
2 ] −Hr.

Lemma 1.2. Let r be a positive integer. Then

Sr : =

∞∑
n=1

(−1)
n+1

Hn

n+ r
=

(−1)
r+1

2
ln2 2 + (−1)

r

(
2Hr−1 −H

[ r−1
2 ]

)
ln 2

+ (−1)
r
r−1∑
j=1

1

j

(
H[ j

2 ] −Hj

)
, for r ≥ 2, (1.5)

and

S0 =

∞∑
n=1

(−1)
n+1

Hn

n
=

1

2
ζ (2)− 1

2
ln2 2, S1 =

∞∑
n=1

(−1)
n+1

Hn

n+ 1
=

1

2
ln2 2.
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Proof. By a change of counter

Sr : =

∞∑
n=1

(−1)
n+1

Hn

n+ r
=

∞∑
n=2

(−1)
n
Hn−1

n+ r − 1
=

∞∑
n=2

(−1)
n

n+ r − 1

(
Hn −

1

n

)

= −
∞∑
n=1

(−1)
n+1

Hn

n+ r − 1
+

r−1∑
n=1

(−1)
n+1

n (n+ r − 1)

= −Sr−1 +

r−1∑
n=1

(−1)
n+1

r − 1

(
1

n
− 1

n+ r − 1

)
.

From Lemma 1.1 and using the known results

Sr = −Sr−1 +
1

r − 1

(
ln 2− (−1)

r
∞∑
n=1

(−1)
n

n
−

r−1∑
n=1

(−1)
n

n

)

= −Sr−1 +
ln 2

r − 1
(1 + (−1)

r
) +

(−1)
r

r − 1

(
H[ r−1

2 ] −Hr−1

)
,

which, for r ≥ 2, yields the recurrence relation

Sr + Sr−1 =
ln 2

r − 1
(1 + (−1)

r
) +

(−1)
r

r − 1

(
H[ r−1

2 ] −Hr−1

)
. (1.6)

By the subsequent reduction of the Sr, Sr−1, Sr−2, ...S1 terms in (1.6), we arrive at the identity
(1.5).

It is of some interest to note that Sr may be expanded in a slightly different way so that it gives
rise to another unexpected harmonic series identity. This is pursued in the next lemma.

Lemma 1.3. For r ∈ N0, we have the identity

Vr : =

∞∑
j=1

Hj+ r−2
2
−Hj+ r−3

2

2 (2j − 1)
=

(−1)
r+1

2
ln2 2 + (−1)

r

(
2Hr−1 −H

[ r−1
2 ]

)
ln 2

+
H r−1

2

2 (r − 1)
+ (−1)

r
Hr−1

(
H[ r

2 ] −Hr

)
− 1

8

(
H2

r−2
2

−H2
r−3
2

+H
(2)
r−2
2

−H(2)
r−3
2

)

+ (−1)
r
r−1∑
j=1

(−1)
j+1

j

(
H[ r−j

2 ] −Hr−j +
jHj

j + 1

)
. (1.7)

Proof. By expansion

Sr :=

∞∑
n=1

(−1)
n+1

Hn

n+ r
=

∞∑
n=1

(
H2n

(2n+ r) (2n+ r − 1)
− 1

2n (2n+ r − 1)

)
,
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since we know that H2n = 1
2Hn +

∑n
j=1

1
2j−1 then

Sr =
1

2

∞∑
n=1

Hn

(2n+ r) (2n+ r − 1)
+

∞∑
n=1

n∑
j=1

1

(2j − 1) (2n+ r) (2n+ r − 1)

−
∞∑
n=1

1

2n (2n+ r − 1)
(1.8)

=
1

8

(
H2

r−2
2

−H2
r−3
2

+H
(2)
r−2
2

−H(2)
r−3
2

)
−

H r−1
2

2 (r − 1)

+

∞∑
n=1

n∑
j=1

1

(2j − 1) (2n+ r) (2n+ r − 1)
. (1.9)

For an arbitrary double sequence Yk,l we have that

∞∑
k=0

k∑
l=0

Yk,l =

∞∑
l=0

∞∑
k=0

Yk,l+k,

and from (1.9)

Vr =

∞∑
n=1

n∑
j=1

1

(2j − 1) (2n+ r) (2n+ r − 1)

=

∞∑
j=1

∞∑
n=0

1

(2j − 1) (2n+ 2j + r) (2n+ 2j + r − 1)

=

∞∑
j=1

1

2 (2j − 1)

(
Hj+ r−2

2
−Hj+ r−3

2

)
.

Upon utilizing (1.9) and the known result (1.5) for Sr, we are able to write

∞∑
j=1

1

2 (2j − 1)

(
Hj+ r−2

2
−Hj+ r−3

2

)
= Sr +

H r−1
2

2 (r − 1)

−1

8

(
H2

r−2
2

−H2
r−3
2

+H
(2)
r−2
2

−H(2)
r−3
2

)
.

Substituting for Sr and upon simplification we have the result (1.7) for Vr.

Remark 1.4. We note that Lemma 1.3 states the difference of two diverging harmonic series
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produce a converging series:

V0 =

∞∑
j=1

Hj −Hj− 1
2

2j + 1
= ζ (2)− 2 ln 2,

V1 =

∞∑
j=1

Hj+ 1
2
−Hj

2j + 1
=

1

2
ζ (2) + 2 ln 2− 2,

V2 =

∞∑
j=1

Hj+1 −Hj+ 1
2

2j + 1
= 1− 1

2
ζ (2) , and

V3 =

∞∑
j=1

Hj+ 3
2
−Hj+1

2j + 1
=

1

2
ζ (2)− 2

3

The next several theorems relate the main results of this investigation, namely the closed form
and integral representation of (1.1).

2 Closed form and Integral identities

We now prove the following theorems.

Theorem 2.1. Let k be real positive integer. Then from (1.1) with p = 0 we have

Sk (0) =

∞∑
n=1

(−1)
n+1

Hn(
n+ k
k

) = 2k−2k ln2 2 (2.1)

−
k∑

r=1

r

(
k
r

)
(

2Hr−1 −H
[ r−1

2 ]

)
ln 2 +Hr−1

(
H[ r

2 ] −Hr

)
−
∑r−1
j=1

(−1)j

j

(
H[ r−j

2 ] −Hr−j +
jHj

j+1

)
 .

Proof. Consider the expansion

Sk (0) =

∞∑
n=1

(−1)
n+1

Hn(
n+ k
k

) =

∞∑
n=1

(−1)
n+1

k! Hn

(n+ 1)k

=

∞∑
n=1

(−1)
n+1

k! Hn

k∑
r=1

Λr
n+ r

,

where

Λr = lim
n→−r


n+ r
k∏
r=1

n+ r

 =
(−1)

r+1
r

k!

(
k

r

)
.
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Hence

Sk (0) =

k∑
r=1

(−1)
r+1

r

(
k

r

) ∞∑
n=1

(−1)
n+1

Hn

n+ r

=

k∑
r=1

(−1)
r+1

r

(
k

r

)
Sr . (2.2)

From Lemma 1.2, (1.5) substituting into (2.2),

Sk (0) =

k∑
r=1

(−1)
r+1

r

(
k

r

)


(−1)r+1

2 ln2 2 + (−1)
r

(
2Hr−1 −H

[ r−1
2 ]

)
ln 2

+ (−1)
r
Hr−1

(
H[ r

2 ] −Hr

)
− (−1)

r∑r−1
j=1

(−1)j

j

(
H[ r−j

2 ] −Hr−j +
jHj

j+1

)


= 2k−2k ln2 2

−
k∑

r=1

r

(
k
r

)
(

2Hr−1 −H
[ r−1

2 ]

)
ln 2 +Hr−1

(
H[ r

2 ] −Hr

)
−
∑r−1
j=1

(−1)j

j

(
H[ r−j

2 ] −Hr−j +
jHj

j+1

)
 ,

and Theorem 2.1 follows.

The other two cases of Sk (1) , Sk (2) can be evaluated in a similar fashion. We list the results
in the next corollary.

Corollary 2.2. Under the assumptions of Theorem 2.1, we have,

Sk (1) =

∞∑
n=1

(−1)
n+1

Hn

n

(
n+ k
k

) =
1

2
ζ (2) +

(
2k−1 − 1

)
ln2 2 (2.3)

+

k∑
r=1

r

(
k
r

)
(

2Hr−1 −H
[ r−1

2 ]

)
ln 2 +Hr−1

(
H[ r

2 ] −Hr

)
−
∑r−1
j=1

(−1)j

j

(
H[ r−j

2 ] −Hr−j +
jHj

j+1

)
 ,

and

Sk (2) =

∞∑
n=1

(−1)
n+1

Hn

n2

(
n+ k
k

) =
5

8
ζ (3)− 1

2

(
ζ (2)− ln2 2

)
Hk (2.4)
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+

k∑
r=1

1

r

(
k
r

)
1
2 ln2 2−

(
2Hr−1 −H

[ r−1
2 ]

)
ln 2−Hr−1

(
H[ r

2 ] −Hr

)
+
∑r−1
j=1

(−1)j

j

(
H[ r−j

2 ] −Hr−j +
jHj

j+1

)
 .

Proof. The proof follows directly from Theorem 2.1 and using the same technique.

It is possible to represent the alternating harmonic number sums (2.1), (2.3) and (2.4) in terms
of an integral, this is developed in the next theorem.

Theorem 2.3. Let k be a positive integer. Then we have:

Sk (0) =

∞∑
n=1

(−1)
n+1

Hn(
n+ k
k

) = −k
∫ 1

0

∫ 1

0

xy (1− x)
k−1

(1− y) (1 + xy)
dxdy, (2.5)

= −k
∫ 1

0

∫ 1

0

x (1− x)
k−1

ln (1− y)

(1 + xy)
2 dxdy (2.6)

=

(
1− k

2

)
ln (2)− k

1 + k

∫ 1

0

(k + y) 2F1

[
1, 1

2 + k

∣∣∣∣∣− y
]

ln (1 + y)

(1 + y)
2 dy.

(2.7)

Proof. Let j ∈ N0, k ∈ N and |t| ≤ 1. Consider the expansion

∞∑
n=1

tn(
n+ k
k

)(
n+ j
j

) = kj

∞∑
n=1

tn Γ (k) Γ (n+ 1) Γ (j) Γ (n+ 1)

Γ (n+ k + 1) Γ (n+ j + 1)

= kj

∞∑
n=1

tnB (k, n+ 1)B (j, n+ 1) ,

where B (·, ·) is the classical Beta function. Therefore

∞∑
n=1

tn(
n+ k
k

)(
n+ j
j

) = kj

∫ 1

0

∫ 1

0

(1− x)
k−1

(1− y)
j−1

∞∑
n=1

(txy)
n
dxdy.

= kj

∫ 1

0

∫ 1

0

(1− x)
k−1

(1− y)
j−1

txy

1− txy
dxdy.
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The next step is to differentiate both sides with respect to j then put j = 0 and t = −1, from which
we obtain

Sk (0) =

∞∑
n=1

(−1)
n+1

Hn(
n+ k
k

) = −k
∫ 1

0

∫ 1

0

xy (1− x)
k−1

(1− y) (1 + xy)
dxdy := Jk (0) . (2.8)

Hence (2.5) follows. The identity (2.6) follows from the expansion

∞∑
n=1

tn(
n+ k
k

)(
n+ j
j

) = k

∫ 1

0

∫ 1

0

(1− x)
k−1

(1− y)
j

y

∞∑
n=1

n (txy)
n
dxdy

= k

∫ 1

0

∫ 1

0

(1− x)
k−1

(1− y)
j
tx

(1− txy)
2 dxdy

differentiating and making the appropriate substitutions (2.6) follows. Moreover from (2.6)

Sk (0) = −k
∫ 1

0

∫ 1

0

x (1− x)
k−1

ln (1− y)

(1 + xy)
2 dxdy = (k − 1)

∫ 1

0

ln (1− y)

(1 + y)
2 dy

− k

1 + k

∫ 1

0

(k + y) 2F1

[
1, 1

2 + k

∣∣∣∣∣− y
]

ln (1 + y)

(1 + y)
2 dy,

which is the identity (2.7). If we let

Ik (0) :=
k

1 + k

∫ 1

0

(k + y) 2F1

[
1, 1

2 + k

∣∣∣∣∣− y
]

ln (1 + y)

(1 + y)
2 dy

we note that Ik (0) may be written explicitly in terms of the right hand side of (2.1), moreover we
note that

Ik (0) + Jk (0) =

(
1− k

2

)
ln 2.

Similar integral representations can be evaluated for Sk (1) and Sk (2) , the results are recorded
in the next theorem.

Theorem 2.4. Let the conditions of Theorem 2.3 hold. Then we have:

Sk (1) =

∞∑
n=1

(−1)
n+1

Hn

n

(
n+ k
k

) = −
∫ 1

0

∫ 1

0

(1− x)
k

ln (1− y)

1 + xy
dxdy,
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=

∫ 1

0

(1− x)
k

ln (1 + x)

x (1 + x)
dx

=
1

1 + k
3F2

[
1, 1, 1

2, 2 + k

∣∣∣∣∣− 1

]

+2k−1

(
2 ln 2 Hk − ln2 2−H2

k −H
(2)
k + k 4F3

[
1, 1, 1, 1− k

2, 2, 2

∣∣∣∣∣ 1

2

])
.

Also

Sk (1) = −k
∫ 1

0

∫ 1

0

x (1− x)
k

ln (1− y)

1 + xy
dxdy.

For Sk (2) ,

Sk (2) =

∞∑
n=1

(−1)
n+1

Hn

n2

(
n+ k
k

) = −k
∫ 1

0

∫ 1

0

(1− x)
k−1

ln (1− y) ln (1 + xy)

y
dxdy,

and also,

Sk (2) = −
∫ 1

0

∫ 1

0

(1− x)
k

ln (1− y)

1 + xy
dxdy

= − 1

1 + k

∫ 1

0
2F1

[
1, 1

2 + k

∣∣∣∣∣− y
]

ln (1 + y) dy.

Proof. The proof follows from the same pattern as that employed in Theorem 2.3.

Example 2.5. Some illustrative examples are given as follows:

S4 (0) =

∞∑
n=1

(−1)
n+1

Hn(
n+ 4

4

) = 16 ln2 2− 176

3
ln 2 +

298

9

= −3

2
ln (2)− 4

5

∫ 1

0

(4 + y) 2F1

[
1, 1

6

∣∣∣∣∣− y
]

ln (1 + y)

(1 + y)
2 dy,

S4 (1) =

∞∑
n=1

(−1)
n+1

Hn

n

(
n+ 4

4

) =
1

2
ζ (2)− 8 ln2 2 +

68

3
ln 2− 451

36

=

∫ 1

0

(1− x)
4

ln (1 + x)

x (1 + x)
dx, and
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S4 (2) =

∞∑
n=1

(−1)
n+1

Hn

n2

(
n+ 4

4

) =
5

8
ζ (3)− 25

24
ζ (2) +

16

3
ln2 2− 28

3
ln 2 +

727

144

= −1

5

∫ 1

0
2F1

[
1, 1

6

∣∣∣∣∣− y
]

ln (1 + y) dy.

Generally speaking it should be possible to obtain explicit identities of

∞∑
n=1

(−t)n+1
Hn

np
(
n+ 4

4

) , 0 < t ≤ 1.

For t = 1
2 ,

∞∑
n=1

(
− 1

2

)n+1
Hn(

n+ 4
4

) = 54
(
ln2 3 + ln2 2

)
− 108 ln 2 ln 3− 198 ln

3

2
+

643

9
.

3 Some Observations and Concluding remarks

The alternating sums of harmonic numbers Sk (p) , for p = 0, 1 and 2 have been successfully repre-
sented in integral form and in terms of zeta functions, harmonic numbers and ln functions. It may
also be possible to represent the sums

Sk (p, q, r) =

∞∑
n=1

(−1)
n+1

H
(r)
n

np
(
n+ k
k

)q
in closed form, this work is currently under investigation. It does appear however, that there is an
impasse with the representation Sk (3) in closed form. This is related to the fact that

V (0) :=

∞∑
n=1

(−1)
n+1

Hn

n3

has, currently no closed form representation. In one scenario, Sk (3) necessitates the evaluation of
the difference of two diverging sums

Θ (α) =

∞∑
n=1

H
(α)
n −H(α)

n− 1
2

2n+ 1

for α = 3. Currently we have the known identities

Θ (1) = ζ (2)− 2 ln 2, Θ (2) = (3 ln 2− 2) ζ (2) ,

Θ (3) = 17ζ (4)− (6 + 7 ln 2) ζ (3) + 4 ln2 2ζ (2)− 2

3
ln4 2− 16Li4

(
1

2

)
,

Θ (4) = 2ζ (2) ζ (3)− (15 ln 2− 14) ζ (4)
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and Θ (2m) for m ∈ N. Similarly

∞∑
n=1

(−1)
n+1

Hn

n3
=

1

8
(5ζ (4) + (6− 7 ln 2) ζ (3) + Θ (3))

=
11

4
ζ (4)− 7

4
ln 2ζ (3) +

1

2
ln2 2ζ (2)

− 1

12
ln4 2− 2Li4

(
1

2

)
.

While V (0) appears to have no ”closed” form representation, quite remarkably two subsequent
terms V (r − 1) and V (r) can be represented in closed form in the following way.

Lemma 3.1. The following representation follows,

V (r − 1) + V (r) : =

∞∑
n=1

(−1)
n+1

Hn

(
1

(n+ r − 1)
3 +

1

(n+ r)
3

)

=
ln 2

(r − 1)
3 +

3∑
j=1

(−1)
j

2j (r − 1)
4−j

(
H

(j)
r−1
2

−H(j)
r−2
2

)
, for r ≥ 2,

and for r = 1

V (0) + V (1) :=

∞∑
n=1

(−1)
n+1

Hn

(
1

n3
+

1

(n+ 1)
3

)
=

7

8
ζ (4) .

Proof. Let

V (r − 1) + V (r) =

∞∑
n=1

(−1)
n+1

Hn

(
1

(n+ r − 1)
3 +

1

(n+ r)
3

)

=

∞∑
n=0

(−1)
n+1 (Hn −Hn+1)

(n+ r)
3 =

∞∑
n=0

(−1)
n

(n+ 1) (n+ r)
3

=

∞∑
n=0

(−1)
n

(r − 1)
3

(
1

n+ 1
− 1

n+ r
− r − 1

(n+ r)
2 −

(r − 1)
2

(n+ r)
3

)
and the identity of Lemma 3.1 follows.
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