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Abstract

A semiring S is said to be a t-k-simple semiring if it has no non-trivial proper left k-ideal
and no non-trivial proper right k-ideal. We introduce the notion of t-k-simple semirings and
characterize the semirings in SL+, the variety of all semirings with a semilattice additive reduct,
which are distributive lattices of t-k-simple subsemirings. A semiring S is a distributive lattice
of t-k-simple subsemirings if and only if every k-bi-ideal in S is completely semiprime k-ideal.
Also the semirings for which every k-bi-ideal is completely prime has been characterized.
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1 Introduction

The notion of the semirings, in its most generalized form e.g. a universal algebra with two associative
binary operations ′+′ and ′·′ which are connected by the ring like distributive laws, was introduced
by Vandiver [22] in 1934. Though they appeared in Mathematics long before e.g. the semiring of
all ideals of a ring, the semiring of all endomorphisms on a commutative semigroup, the positive
cone in ordered ring, etc., they found their full place in mathematics recently e.g. idempotent
analysis[15] which are being used in theoretical physics, optimization etc., various applications in
theoretical computer science and algorithm theory[11], [14]. The underlying semirings used both in
idempotent analysis and theoretical computer science is one in which the additive reduct is both
idempotent and commutative.

From the algebraic point of view while studying the structure of semigroups, semilattice de-
composition of semigroups was first defined and studied by A. H. Clifford[9]. The idea consists of
decomposing a semigroup S into subsemigroups(components) through a congruence η on S such
that S/η is the greatest semilattice homomorphic image of S and each η-class is a component sub-
semigroup. The idea of decomposing into Archimedean components has since been studied and
generalized by M. S. Putcha, T. Tamura, N. Kimura, S. Bogdanović, M. Ćirić, F. Kmet ([8], [13],
[18], [21]) and many others. Y. Cao[7] studied the structure of ordered semigroups and characterized
the ordered semigroups which are semilattices(chains) of t-simple subsemigroups.

The present paper is a continuation of our study on the structure of semirings whose additive
reduct is a semilattice ([2], [3], [4], [5], [16], [17]). Interestingly, the semiring of all finite subsets of
a semigroup is a free model in the variety of such semirings and there are interesting connections
between the subvarieties of semigroups and different subclasses of these semirings.

The preliminaries and prerequisites for this article are discussed in Section 2. In Section 3 we
characterize semirings which are distributive lattices(chains) of t-k-simple semirings.
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2 Preliminaries

A semiring (S,+, ·) is an algebra with two binary operations + and · such that both the addi-
tive reduct (S,+) and the multiplicative reduct (S, ·) are semigroups and such that the following
distributive laws hold:

x(y + z) = xy + xz and (x+ y)z = xz + yz.

Thus the semirings can be regarded as a common generalization of both rings and distributive
lattices. By SL+ we denote the variety of all semirings (S,+, ·) such that (S,+) is a semilattice,
i.e. a commutative and idempotent semigroup. Throughout this paper, unless otherwise stated, S
is always a semiring in SL+.

Let A be a nonempty subset of S. The k-closure of A is defined by

A = {x ∈ S | x+ a1 = a2 for some a1, a2 ∈ A}.

If (A,+) is a subsemigroup of (S,+), then A ⊆ A,

A = {x ∈ S | x+ a = a for some a ∈ A},

and A = A since (S,+) is a semilattice. A is called a k-set if A ⊆ A. An ideal(left, right) A of S
is called a k-ideal(left, right) if it is a k-set, i.e. A = A.

A semiring S is called a k-regular semiring[6] if for every a ∈ S, there exists an s ∈ S such that
a+ asa = asa. For any semigroup F , the set Pf (F ) of all finite subsets of F is a semiring in SL+,
where addition and multiplication are defined by the set union and usual product of subsets of a
semigroup respectively. The semiring Pf (F ) is a k-regular semiring if and only if F is regular[20].

For a ∈ S, the principal left k-ideal(resp. principal right k-ideal, principal k-ideal)([1], [3], [4])
generated by a is the least left k-ideal(resp. least right k-ideal) of S containing a. Bhuniya and
Jana[1] introduced k-bi-ideals in a semiring in SL+. A non-empty subset B of S is said to be a
k-bi-ideal of S if BSB ⊆ B and B is a k-subsemiring of S. The structures of the principal left k-
ideal(resp. principal right k-ideal, principal k-ideal and principal k-bi-ideal) are given, respectively
by

Lk(a) = {x ∈ S | x+ a+ sa = a+ sa, for some s ∈ S},

Rk(a) = {x ∈ S | x+ a+ as = a+ as, for some s ∈ S},

Ik(a) = {x ∈ S | x+ a+ sa+ as+ sas = a+ sa+ as+ sas, for some s ∈ S}

and
Bk(a) = {x ∈ S | x+ a+ a2 + asa = a+ a2 + asa, for some s ∈ S}.

Sen and Bhuniya [19] defined four equivalence relations namely L, R, J and H analogous to
the Green’s relations, on a k-regular semiring S in SL+. Bhuniya and Mondal[4] generalized the
Green’s relations L and J on a semiring S in SL+ and they are

L = {(x, y) ∈ S × S | Lk(x) = Lk(y)}

and
J = {(x, y) ∈ S × S | Ik(x) = Ik(y)}.
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Here we define the Green’s relations R and H on a semiring S in SL+ by:

R = {(x, y) ∈ S × S | Rk(x) = Rk(y)}

and
H = L ∩R.

If S ∈ SL+, then both L and R are congruences on (S,+) and L is a right congruence and R
is a left congruence on (S, ·).

A semiring S is said to be left k-simple(respectively right k-simple)[5] if it has no non-trivial
proper left k-ideal(resp. right k-ideal). The description of the principal k-bi-ideal in S motivates
us defining the following:

Definition 2.1. A semiring S is called t-k-simple if it is both left k-simple and right k-simple.

Example 2.2. Let N be the set of all natural numbers. Then (N,+, ·) is a semiring in SL+, where
+ and · are defined by: a+ b =max{a, b}, a · b is the usual multiplication of a and b. Then (N,+, ·)
is a t-k-simple semiring.

Example 2.3. (Maslov’s dequantization semiring) Let R be the field of real numbers and R+, the
semiring of all positive real numbers(with respect to the usual addition and product).

Consider the change of variables x 7−→ u = h lnx, where x ∈ R+, h > 0; thus x = exp(u/h) and
this defines a natural map Dh : R+ −→ A = R ∪ {−∞}.

Denote byAh the setA equipped with the two operations⊕(generalized addition) and�(generalized
multiplication) borrowed from the usual addition and multiplication in R+ by the map Dh; thus

u⊕ v = h ln(exp(u/h) + exp(v/h)), u� v = u+ v.

Also Dh(u + v) = Dh(u) ⊕Dh(v) and Dh(uv) = Dh(u) �Dh(v). It is easy show that u ⊕ v =
h ln(exp(u/h) + exp(v/h))→ max{u, v} as h −→ 0.

Let us denote by Rmax the set A = R ∪ {−∞} equipped with operations ⊕ =max and � = +;
we set � = −∞, I = 0. Then (Rmax,⊕,�) is a t-k-simple semiring.

Example 2.4. Consider the semiring (N, max, ·) and set S = {
(
a b
c d

)
| a, b, c, d ∈ N}. Then

(S,+, ·) is a t-k-simple semiring, where + is defined by: for all A =

(
a b
c d

)
, B =

(
e f
g h

)
∈ S

A+B =

(
max{a, e} max{b, f}
max{c, g} max{d, h}

)
and · the usual multiplication of A and B.

Example 2.5. Let R+ denotes the set of all positive real numbers, and consider the group (R+, ·).
Let Pf (R+) be the set of all finite subsets of R+. Define + and · on Pf (R+) by: A+B = A∪B and
A ·B = {ab | a ∈ A, b ∈ B} for all A,B ∈ Pf (R+). Then (Pf (R+),+, ·) is a t-k-simple semiring.

Remark 2.6. It is interesting to observe that every t-k-simple semiring is a k-regular semiring
but the left k-simplicity or right k-simplicity of a semiring does not give the same implication, in
general. This is the fact that makes the importance of studying the t-k-simple semirings.
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A semiring S is called a distributive lattice of t-k-simple semirings if there exists a congruence
ρ on S such that S/ρ is a distributive lattice and each ρ-class is a t-k-simple semiring. Since (S,+)
is a semilattice the proof of the following lemma becomes easy.

Lemma 2.7. Let S be a semiring in SL+.
(a) If a, b, c, d ∈ S are such that c+ xa+ a = xa+ a and d+ yb+ b = yb+ b for some x, y ∈ S, then
there is z ∈ S such that c+ za+ a = za+ a and d+ zb+ b = zb+ b.
(b) If a, b, c, d ∈ S are such that c+ ax+ a = ax+ a and d+ by+ b = by+ b for some x, y ∈ S, then
there is z ∈ S such that c+ az + a = az + a and d+ bz + b = bz + b.
(c) If a, b, c, d ∈ S are such that c+a+a2+axa = a+a2+axa and d+b+b2+byb = b+b2+byb for some
x, y ∈ S, then there is z ∈ S such that c+a+a2+aza = a+a2+aza and d+b+b2+bzb = b+b2+bzb.

By the above lemma it is clear that Bk(a) ⊆ Lk(a)∩Rk(a) = Hk(a) for all a ∈ S, and Hk(a) is
also a k-bi-ideal of S containing a.

We define an equivalence relation B on S by:

B = {(x, y) ∈ S × S | Bk(x) = Bk(y)}.

Since (S,+) is a semilattice, by the structure of Bk(a) it is clear that B is additive congruence.
A nonempty subset A of S is called completely prime(respectively completely semiprime) if for

all x, y ∈ S, such that xy ∈ A one has x ∈ A or y ∈ A(respectively if for all x ∈ S such that
x2 ∈ A one has x ∈ A). Let F be a subsemiring of S. F is called a filter of S if: (i) for any
a, b ∈ S, ab ∈ F ⇒ a, b ∈ F ; and (ii) for any a ∈ F, b ∈ S, a + b = b ⇒ b ∈ F . The least
filter of S containing a is denoted by N(a). Let N be the equivalence relation on S, defined by
N = {(x, y) ∈ S × S | N(x) = N(y)}.

For undefined concepts in semigroup theory we refer to [10], [12] for undefined concepts in
semiring theory cf. [11].

The following lemma plays a crucial role in proving the main theorem of this article.

Lemma 2.8 ([5], 2.2). Let S be a semiring in SL+. Then we have the following:
(i) For a ∈ S,N(a) = N(a2).
(ii) For a, b ∈ S,N(ab) = N(ba).
(iii) For a, b ∈ S,N(a+ ab) = N(a).
(iv) For a, b, c ∈ S,N(a) = N(b) implies N(ac) = N(bc).
(v) For a, b ∈ S,N(a) ∪N(b) ⊆ N(ab).

3 Distributive lattices of t-k-simple semirings

In this section we characterize the semirings that are distributive lattices of t-k-simple semirings.
First we note that a semiring S is said to be left k-simple(resp. right k-simple, t-k-simple)iff L(resp.
R,H) = S × S. S is said to be B-simple iff B = S × S iff it has no non-trivial proper k-bi-ideal of
S.

Before we go to the main theorem we have the following lemma:

Lemma 3.1. Let S be a semiring in SL+. Then the following conditions are equivalent:

1. S is t-k-simple;
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2. S is H-simple;

3. S is B-simple.

Proof. (1) ⇒ (2) : Let a, b ∈ S. Since S is t-k-simple, Lk(a) = Lk(b) and Rk(a) = Rk(b). Then
Hk(a) = Lk(a) ∩Rk(a) = Lk(b) ∩Rk(b) = Hk(b). Hence S is H-simple.
(2) ⇒ (3) : For every x, y ∈ S, xHy, whence xLy and xRy. Therefore Lk(x) = Lk(y) and
Rk(x) = Rk(y). Let a, b ∈ S. Then there exists s ∈ S such that a + sb + b = sb + b. Also
s ∈ Rk(s) = Rk(b), and so there exists t ∈ S such that s+ bt+ b = bt+ b. Then a+ sb+ b = sb+ b
gives a+ btb+ b2 + b = btb+ b2 + b. This yields a ∈ Bk(b) so that Bk(a) ⊆ Bk(b). Similarly, we can
obtain Bk(b) ⊆ Bk(a). Thus Bk(a) = Bk(b), and so S is B-simple.
(3) ⇒ (1) : Let a, b ∈ S. Then a ∈ Bk(b) and b ∈ Bk(a). By Lemma 2.7, there exists s ∈ S such
that a+ b+ b2 + bsb = b+ b2 + bsb and b+ a+ a2 + asa = a+ a2 + asa. Then a+ b+ (b+ bs)b =
b + (b + bs)b and b + a + (a + as)a = a + (a + as)a imply a ∈ Lk(b) and b ∈ Lk(a). These give
Lk(a) = Lk(b), and so S is L-simple. Similarly S is R-simple. Thus S is t-k-simple. q.e.d.

Now we present the main theorem of this article.

Theorem 3.2. The following conditions are equivalent on a semiring S in SL+:

1. S is a distributive lattice of t-k-simple subsemirings;

2. for all a, b ∈ S, ab, ba ∈ Bk(a) and a ∈ Bk(a2);

3. for all a ∈ S, Bk(a) is a completely semiprime k-ideal of S;

4. every k-bi-ideal set of S is a completely semiprime k-ideal of S;

5. for all a, b ∈ S, Bk(ab) = Bk(a) ∩Bk(b);

6. for all a ∈ S, N(a) = {x ∈ S | a ∈ Bk(x)};
7. for every nonempty family {Bλ | λ ∈ Λ} of k-ideals of S,

⋂
λ∈ΛBλ is a completely semiprime

k-ideal of S;

8. B = N is the least distributive lattice congruence on S such that each of its congruence
classes is t-k-simple subsemiring.

Proof. Scheme of the proof: (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (7), (6) ⇒ (8), (7) ⇒
(4), (8)⇒ (1).
(1)⇒ (2) : Let S be a distributive lattice D of t-k-simple subsemirings Sα (α ∈ D), and let a, b ∈ S
be such that a ∈ Sα, b ∈ Sβ . Now aba, ab, ba ∈ SαSβ ⊆ Sαβ . Since Sαβ is t-k-simple, abaBab
and abaBba, by Lemma 3.1. Then we have ba ∈ Bk(aba), which implies ba ∈ Bk(a). Similarly,
ab ∈ Bk(a). Also aρa2 implies a, a2 ∈ Sα, and so a ∈ Bk(a2).
(2)⇒ (3) : Let a ∈ S. Then by hypothesis we are only to show that Bk(a) is completely semiprime.
For, let u ∈ S be such that u2 ∈ Bk(a). Then u ∈ Bk(u2) ⊆ Bk(a). Thus Bk(a) is a completely
semiprime k-ideal of S.
(3)⇒ (4) : Follows similarly.
(4)⇒ (5) : Let a, b ∈ S. Then ab ∈ Bk(a)∩Bk(b) and Bk(a)∩Bk(b) is a k-ideal of S containing ab
implies that Bk(ab) ⊆ Bk(a)∩Bk(b). Conversely, let x ∈ Bk(a)∩Bk(b). Then by Lemma 2.7 there is
s ∈ S such that x+a+a2+asa = a+a2+asa and x+b+b2+bsb = b+b2+bsb. From these we have
x2 +(a+a2 +asa)(b+b2 +bsb) = (a+a2 +asa)(b+b2 +bsb), and (a+a2 +asa)(b+b2 +bsb) ∈ Bk(ab)
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implies x2 ∈ Bk(ab) so that x ∈ Bk(ab). Thus Bk(ab) = Bk(a) ∩Bk(b).
(5)⇒ (6) : Let F = {x ∈ S | a ∈ Bk(x)} and x, y ∈ F . Then a ∈ Bk(x)∩Bk(y) implies that there
is u ∈ S such that

a+ x+ x2 + xsx = x+ x2 + xsx and a+ y + y2 + ysy = y + y2 + ysy.

Adding both sides of a+x+x2 +xsx = x+x2 +xsx by y+ y2 +xy+ yx+xsy+ ysx+ ysy we get
a+(x+y)+(x+y)2 +(x+y)s(x+y) = (x+y)+(x+y)2 +(x+y)s(x+y). This implies x+y ∈ F .
Again a ∈ Bk(x)∩Bk(y) = Bk(xy) implies that xy ∈ F . Hence F is a subsemiring of S. Let x, y ∈ S
such that xy ∈ F . Then a ∈ Bk(xy) = Bk(x) ∩Bk(y), and so x, y ∈ F . Now let x ∈ S, y ∈ F such
that y+x = x. Then y ∈ F , and so there is u ∈ S such that a+y+y2 +yuy = y+y2 +yuy. Then
we have a+ (y+x) + (y+x)2 + (y+x)u(y+x) = (y+x) + (y+x)2 + (y+x)u(y+x) which implies
a + x + x2 + xux = x + x2 + xux, and so x ∈ F . Thus F is a filter of S. Let T be a filter of S
containing a and u ∈ F . Then there exists s ∈ S such that a+u+u2 +usu = u+u2 +usu. Now
a ∈ T, T is a filter, so u+ u2 + usu ∈ T . Then a(u+ u2 + usu)a ∈ T , i.e. (a+ au+ aus)ua ∈ T
so that u ∈ T . Therefore F ⊆ T . Thus F = N(a).
(6) ⇒ (7) : Let B =

⋂
λ∈ΛBλ. Then B is a k-bi-ideal of S. Now let a ∈ S be such that a2 ∈ B.

Then a2 ∈ N(a) implies that a ∈ Bk(a2) ⊆ B. Thus B is a completely semiprime k-ideal of S.
(6) ⇒ (8) : For x, y ∈ S,Bk(x) = Bk(y) implies x ∈ N(y) and y ∈ N(x), which yield B = N .
Then in view of the fact that B is an additive congruence on S, by Lemma 2.8, it follows that B is
a distributive lattice congruence on S.
Consider an arbitrary distributive lattice congruence ξ on S. Let a, b ∈ S such that aBb. Then
Bk(a) = Bk(b). So there exists s ∈ S such that

a+ b+ b2 + bsb = b+ b2 + bsb and b+ a+ a2 + asa = a+ a2 + asa.

Then we have (a+ b)ξ(a+ b+ b2 + bsb) = (b+ b2 + bsb)ξb, i.e. (a+ b)ξb. Similarly, (b+ a)ξa and
these give aξb. Thus B ⊆ ξ, which proves the minimality of B.

Now we show that each B-class is t-k-simple subsemiring. For, let Si be a B-class. Clearly Si is a
subsemiring of S. Let a, b ∈ S be such that a, b ∈ Si. Then Bk(a) = Bk(b) and so there is s ∈ S such
that a+b+b2 +bsb = b+b2 +bsb and b+a+a2 +asa = a+a2 +asa. Adding both sides of the latter
by a2sa+asa2 +(asa)2 +(a+asa)a(a+asa) we get b+(a+asa)+(a+asa)2 +(a+asa)a(a+asa) =
(a+asa)+(a+asa)2 +(a+asa)a(a+asa), and so we have b ∈ Bk(a+asa) = Bk(a) in Si. Similarly,
a ∈ Bk(b) in Si. Thus aBb in Si. Thus Si is t-k-simple.
(7)⇒ (4) : Obvious.
(8)⇒ (1) : Obvious. q.e.d.

Example 3.3. Let N be the set of all natural numbers. Then A = (N,+, ·) is a semiring in SL+,
where + and · are defined by: a+ b =max{a, b}, a · b =min{a, b} for all a, b ∈ N. Also B = (N,+, ·)
is a semiring in SL+, where + and · are defined by: a+ b =max{a, b}, a · b the usual multiplication
of a and b. Now we take the direct product of A and B. Then S = (A × B,+, ·) is a semiring in
SL+.

Let (m,n) ∈ S. Then Bk(m,n) = {(a, b) ∈ S | a ≤ m, b ≤ n2q for some q ∈ N}. For any
(a, b), (c, d) ∈ S, (a, b)(c, d) = (min{a, c}, bd) ∈ Bk(a, b), since min{a, c} ≤ a and bd ≤ b2q for some
suitable q ∈ N. Similarly, (c, d)(a, b) ∈ Bk(a, b). Also (a, b) ∈ Bk[(a, b)2], since (a, b)2 = (a, b2)
with min{a, a} = a and b ≤ b4p for some suitable choice p ∈ N. Thus S is a distributive lattice of
t-k-simple subsemirings.
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Example 3.4. We take the direct product of the semirings A in Example 3.3 and S in Example
2.4. Then T = (A× S,+, ·) is a distributive lattice of t-k-simple subsemirings.

In the next theorem we characterize the semirings which are chains of t-k-simple semirings. Let
(T,+, ·) be a distributive lattice with the partial order defined by a ≤ b⇔ a+ b = b for all a, b ∈ S.
It is well known that (T,≤) is a chain if and only if ab = b or ab = a for all a, b ∈ T .

Theorem 3.5. The following conditions are equivalent on a semiring S in SL+:

1. S is a chain of t-k-simple subsemirings;

2. for all a, b ∈ S, ab, ba ∈ Bk(a) and a ∈ Bk(ab) or b ∈ Bk(ab);

3. for all a ∈ S, Bk(a) is a completely prime k-ideal of S;

4. every k-bi-ideal set of S is a completely prime k-ideal of S;

5. for all a, b ∈ S, Bk(ab) = Bk(a) ∩Bk(b), and Bk(a) ⊆ Bk(b) or Bk(b) ⊆ Bk(a);

6. for all a, b ∈ S, N(a) = { x ∈ S | a ∈ Bk(x)} and N(ab) = N(a) ∪ N(b);

7. for every non-empty family { Bλ; λ ∈ Λ} of k-bi-ideal sets of S,
⋂
λ∈ΛBλ is a completely

prime k-ideal of S;

8. B = N is the least chain congruence on S such that each of its congruence classes is t-k-simple
subsemiring.

Proof. (1) ⇒ (2) : Let S be a chain C of t-k-simple subsemirings Sα (α ∈ C). Then the first part
follows from Theorm 3.2. Let a, b ∈ S. Then there exist α, β ∈ C such that a ∈ Sα, b ∈ Sβ . Since
C is a chain either αβ = α or αβ = β. Then aba, ab, ba ∈ SαSβ ⊆ Sαβ . Now ab ∈ Sαβ implies
that either ab ∈ Sα or ab ∈ Sβ . If ab ∈ Sα then a, ab ∈ Sα implies aBab which yields a ∈ Bk(ab).
If ab ∈ Sβ then b, ab ∈ Sβ , and so, similarly we have b ∈ Bk(ab). Thus either a ∈ Bk(ab) or
b ∈ Bk(ab).
(2)⇒ (3) : Let a, x, y ∈ S such that xy ∈ Bk(a). Now x ∈ Bk(xy) or y ∈ Bk(xy) implies x ∈ Bk(a)
or y ∈ Bk(a). Thus Bk(a) is a completely prime k-ideal of S.
(3)⇒ (4) : Let B be a k-bi-ideal of S and x, y ∈ S such that xy ∈ B. Since Bk(xy) is completely
prime, xy ∈ Bk(xy) implies either x ∈ Bk(xy) or y ∈ Bk(xy), i.e. x ∈ B or y ∈ B. Thus B is
completely prime.
(4) ⇒ (5) : Let a, b ∈ S. Then Bk(a), Bk(b) and Bk(ab) are completely prime k-ideals of S. Now
ab ∈ Bk(ab) implies a ∈ Bk(ab) or b ∈ Bk(ab). This gives Bk(a) ⊆ Bk(ab) or Bk(b) ⊆ Bk(ab)
so that Bk(a) ∩ Bk(b) ⊆ Bk(ab). Since Bk(a) and Bk(b) are k-ideals, ab ∈ Bk(b) and ab ∈ Bk(a)
implies Bk(ab) ⊆ Bk(b) and Bk(ab) ⊆ Bk(a), these yield Bk(ab) ⊆ Bk(a) ∩ Bk(b). Thus Bk(ab) =
Bk(a) ∩ Bk(b). Again Bk(a) ⊆ Bk(ab) or Bk(b) ⊆ Bk(ab) implies Bk(a) ⊆ Bk(ab) ⊆ Bk(b) or
Bk(b) ⊆ Bk(ab) ⊆ Bk(a), i.e. Bk(a) ⊆ Bk(b) or Bk(b) ⊆ Bk(a).
(5)⇒ (6) : By Theorem 3.2, N(a) = {x ∈ S | a ∈ Bk(x)}. Let a, b ∈ S. Then a, b ∈ N(ab) so that
N(a)∪N(b) ⊆ N(ab). Let x ∈ N(ab). Then ab ∈ Bk(x). Now we have, Bk(ab) = Bk(a) or Bk(ab) =
Bk(b) implies Bk(a) ⊆ Bk(x) or Bk(b) ⊆ Bk(x) so that x ∈ N(a) or x ∈ N(b), i.e. either
N(ab) ⊆ N(a) or N(ab) ⊆ N(b). Therefore N(ab) ⊆ N(a) ∪N(b). Thus N(ab) = N(a) ∪N(b).
(6) ⇒ (7) : Let B =

⋂
λ∈ΛBλ. Then B is a k-bi-ideal of S. Let xy ∈ B for some x, y ∈ S. Then

xy ∈ Bk(xy) implies x ∈ Bk(xy) ⊆ B or y ∈ Bk(xy) ⊆ B so that B is a completely prime.
(6) ⇒ (8) : By Theorem 3.2, we are only to show that N is a chain congruence on S. For, let
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a, b ∈ S. Then ab ∈ N(ab) = N(a) ∪ N(b) implies ab ∈ N(a) or ab ∈ N(b), i.e. N(ab) ⊆ N(a) ⊆
N(a) ∪N(b) = N(ab) or Nab ⊆ N(b) ⊆ N(a) ∪N(b) = N(ab) so that N(ab) = N(a) or N(ab) =
N(b). Thus abNa or abN b.
(8)⇒ (1): Obvious.
(7)⇒ (4): Obvious. q.e.d.
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