Retraction Note

K.K.Dewan and A.Ahuja, Growth of polynomials with prescribed zeros, II, Tbilisi Math. J. 8 (2) (2015), 69-74, De Gruyter Open,

DOI 10 1515/tmj - 2015 - 0011 .
The authors have requested that their paper be withdrawn because main results of the text were published in Mathematick Vesnik,
S.M.Pukhta, Growth of polynomials with prescribed zeros, Journal of Mathematick Vesnik 65 (1) (2013), 137-142.

Growth of polynomials with prescribed zeros - II

Abstract

K. K. Dewan ${ }^{1}$ and Arty Ahuja ${ }^{2}$ ${ }^{1}$ Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia (Central University), New Delhi 110025, India ${ }^{2}$ GGSSS, VV-II, Delhi-92, under Directorate of Education, GNCT of Delhi, India E-mail: aarty_ahuja@yahoo.com

Abstract In this paper we consider a class of polynomials $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} \mu_{n}-z^{n-j}, 1=\mu \leq n$ having all its zeros on $|z|=k, k \leq 1$. Using the notation $M(p, t)=\max _{z \mid=t}|p(z)|$, we measure the growth of p by estimating $\left\{\frac{M(p, t)}{M(p, 1)}\right\}^{s}$ from above for any $t \geq 1$, sheing an arbitrary positive integer.

\section*{1 Introduction and Statement of Result}

For an arbitrary entire function $f(z)$, let $M(f, r)-\max _{z \mid=r}|f(z)|$. As a consequence of maximum modulus principle [5, Vol. I, p. 137, Problem MI. 269]) it is known that if $p(z)$ is a polynomial of degree n, then

$$
\begin{equation*}
M(p, R) \leq R^{n} M(p, 1) \tag{1.1}
\end{equation*}
$$

The result is best possible and equality holds for polynomials having zeros at the origin.
Ankeny and Riylin[1] considered polynomials not vanishing in the interior of the unit circle and obtained refinement of inequality (1.1) by proving that if $p(z) \neq 0$ in $|z|<1$, then

$$
\begin{equation*}
M(p, R) \leq\left(\frac{R^{n}+1}{2}\right) M(p, 1), \quad R \geq 1 \tag{1.2}
\end{equation*}
$$

The result is sharp and equality in (1.2) holds for $p(z)=\alpha+\beta z^{n}$, where $|\alpha|=|\beta|$.
trying to obtain inequality analogous to (1.2) for polynomials not vanishing in $|z|<k$, ently theauthors [2] proved the following result.
$p(z)=\sum_{j=0}^{n} c_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for cvery positive integer s

$$
\begin{equation*}
\{M(p, R)\}^{s} \leq\left(\frac{k^{n-1}(1+k)+\left(R^{n s}-1\right)}{k^{n-1}+k^{n}}\right)\{M(p, 1)\}^{s}, \quad R \geq 1 . \tag{1.3}
\end{equation*}
$$

By involving the coefficients of $p(z)$, Dewan and Ahuja [2] in the same paper obtained the following refinement of Theorem A.

Theorem B. If $p(z)=\sum_{j=0}^{n} c_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s

$$
\{M(p, R)\}^{s} \leq \frac{1}{k^{n}}\left(\frac{n\left|c_{n}\right|\left\{k^{n}\left(1+k^{2}\right)+k^{2}\left(R^{n s}-1\right)\right\}+\left|c_{n-1}\right|\left\{2 k^{n}+R^{n s}-1\right\}}{2\left|c_{n-1}\right|+n\left|c_{n}\right|\left(1+k^{2}\right)}\right)\{M(p, 1)\}^{s}, R \geq 1
$$

In this paper, we consider a class of polynomials $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n}$ all its zeros on $|z|=k, k \leq 1$ and generalize Theorem A and Theorem
Theorem 1. If $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu<n$, is a polynomial of degree having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s

$$
\begin{equation*}
\{M(p, R)\}^{s} \leq\left(\frac{k^{n-2 \mu+1}+k^{n-\mu+1}+R^{n s}-1}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right)\{M(p, 1)\}^{s}, \quad R \geq 1 \tag{1.5}
\end{equation*}
$$

Remark 1. If we choose $\mu=1$ in Theorem 1, then inequality (1.5) yeduces to Theorem A.
For $s=1$ in Theorem 1, we get the following result.
Corollary 1. If $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1<\mu<n$. is polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then

$$
\begin{equation*}
M(p, R) \leq\left(\frac{k^{n-2 \mu+1}+k^{2}-\mu+1}{k^{n-2 \mu}+R^{n}+k^{n}-1}\right) M(p, 1), \quad R \geq 1 . \tag{1.6}
\end{equation*}
$$

The following corollary immediately follows from inequality (1.6) by taking $k=1$.

we involve the coefficients of $p(z)$ also, then we are able to obtain a bound which is better he bound of Theorem 1. In fact, we prove
Theorem 2. If $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu<n$, is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s

$$
\{M(p, R)\}^{s} \leq \frac{1}{k^{n-\mu+1}}\left(\frac{\left.\begin{array}{c}
n\left|c_{n}\right|\left\{k^{n}\left(1+k^{\mu+1}\right)+k^{2 \mu}\left(R^{n s}-1\right)\right\} \\
+\mu\left|c_{n-\mu}\right|\left\{k^{n-\mu+1}\left(1+k^{\mu-1}\right)+k^{\mu-1}\left(R^{n s}-1\right)\right\} \tag{1.8}\\
\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)+n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)
\end{array}\right)\{M(p, 1)\}^{s}, R \geq 1 .}{} .\right.
$$

To prove that the bound obtained in the above theorem is, in general, better than the bound obtained in Theorem 1, we show that

$$
\begin{aligned}
& \frac{1}{k^{n-\mu+1}} \frac{\binom{n\left|c_{n}\right|\left\{k^{n}\left(1+k^{\mu+1}\right)+k^{2 \mu}\left(R^{n s}-1\right)\right\}}{+\mu\left|c_{n-\mu}\right|\left\{k^{n-\mu+1}\left(1+k^{\mu-1}\right)+k^{\mu-1}\left(R^{n s}-1\right)\right\}}}{\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)+n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)} \\
& \quad \leq \frac{k^{n-2 \mu+1}+k^{n-\mu+1}+R^{n s}-1}{k^{n-2 \mu+1}+k^{n-\mu+1}}
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& n\left|c_{n}\right|\left(k^{n-2 \mu+1}+k^{n-\mu+1}\right)\left(k^{n}+k^{n+\mu+1}+k^{2 \mu} R^{n s}-k^{2 \mu}\right) \\
& +\mu\left|c_{n-\mu}\right|\left(k^{n-2 \mu+1}+k^{n-\mu+1}\right)\left(k^{n}+k^{n-\mu+1}+k^{\mu-1} R^{n s}\right. \\
& \leq n\left|c_{n}\right|\left(k^{n}+k^{n+\mu+1}\right)\left(k^{n-2 \mu+1}+k^{n-\mu+1}+R^{n s}\right. \\
& \quad+\mu\left|c_{n-\mu}\right|\left(k^{n}+k^{n-\mu+1}\right)\left(k^{n-2 \mu+1}+k^{n}\right.
\end{aligned}
$$

which implies

$$
\begin{aligned}
& n\left|c_{n}\right|\left(k^{2 n-2 \mu+1}+k^{2 n-\mu+2}+k^{n+1} R^{n s}-k^{n+1}+k^{2 n-\mu+1}+k^{2 n+2}+k^{n+\mu+1} R^{n s}-k^{n+\mu+1}\right) \\
& +\mu\left|c_{n-\mu}\right|\left(k^{2 n-2 \mu+1}+k^{2 n-3 \mu+2}+k^{n-\mu} R^{n s}-k^{n-\mu}+k^{2 n-\mu+1}+k^{2 n-2 \mu+2}+k^{n} R^{n s}-k^{n}\right) \\
& \leq n\left|c_{n}\right|\left(k^{2 n-2 \mu+1}+k^{2 n-\mu+1}+k^{n} R^{n}-k^{\mu}+k^{2 n-\mu+2}+k^{2 n+2}+k^{n+\mu+1} R^{n s}-k^{n+\mu+1}\right) \\
& \quad+\mu\left|c_{n-\mu}\right|\left(k^{2 n-2 \mu+2}+k^{2 n-3 \mu+2}+k^{n-\mu+1} R^{n s}-k^{n-\mu+1}+k^{2 n-2 \mu+1}+k^{2 n-\mu+1}+k^{n} R^{n s}-k^{n}\right)
\end{aligned}
$$

$$
\mu\left|c_{n-\mu}\right|\left\{k^{n-\mu}\left(R^{n s}-1\right)-k^{n-\mu+1}\left(R^{n s}-1\right)\right\} \leqslant n\left|c_{n}\right|\left\{k^{n}\left(R^{n s}-1\right)-k^{n+1}\left(R^{n s}-1\right)\right\}
$$

$$
\mu\left|c_{n-\mu}\right| k^{n-\mu} \leq n\left|c_{n}\right| k^{n}
$$

$$
\frac{\mu\left|c_{n-\mu}\right|}{n\left|c_{n}\right|} \leq k^{\mu}
$$

which is always true (see Lemma
If we choose $s<1$ in Theorem 2, we get the following result.
Corollary 3. If $p(\mathbf{x})=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu<n$, is a polynomial of degree n having all its zeros on
$M(p, R) \leq \frac{1}{k^{n-\mu-1}}\left(\frac{+\mu\left|c_{n-\mu}\right|\left\{k^{n-\mu+1}\left(1+k^{\mu-1}\right)+k^{\mu-1}\left(R^{n}-1\right)\right\}}{\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)+n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)}\right) M(p, 1), R \geq 1$.
Remark 2. (i) If we choose $\mu=1$ in Theorem 2,then inequality (1.8) reduces to Theorem B.
(ii) For $\mathcal{k}=1$ in inequality (1.9), we get Corollary 2.

2 Lemmas

We need the following lemmas for the proof of these theorems. The first lemma is due to Dewan and Hans [3].

Lemma 1. If $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu<n$, is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-2 \mu+1}+k^{n-\mu+1}} \max _{|z|=1}|p(z)| . \tag{2.1}
\end{equation*}
$$

Lemma 2. If $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu<n$, is a polynomial of degree n having all zeros on $|z|=k, k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-\mu+1}} \frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)+n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)} \mathrm{m} \tag{2.2}
\end{equation*}
$$

Abstract

The above lemma is due to Dewan and Hans [4].

Lemma 3. Let $p(z)=c_{0}+\sum_{v=\mu}^{n} c_{v} z^{v}, 1 \leq \mu \leq n$, be a polynomial of degree n having no zero in the disk $|z|<k, k \geq 1$,

$$
\frac{\mu}{n}\left|\frac{c_{\mu}}{c_{0}}\right| k^{\mu} \leq 1
$$

The above lemma was given by Qazi [6,
Lemma 4. Let $p(z)=c_{n} z^{n}+\sum_{j=y}^{n} c_{n-j} z^{n-j}, 1 \leq \mu \geq n$, be a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$,

$$
\begin{equation*}
\frac{\mu}{n}\left|\frac{c_{n-\mu}}{c_{n}}\right| \leq k^{\mu} \tag{2.4}
\end{equation*}
$$

Proof of Lemma 4. If $p(z)$ has all its zeros on $|z|=k, k \leq 1$, then $q(z)=z^{n} p\left(\frac{1}{\bar{z}}\right)$, has all its zeros on $|z|=\frac{1}{k}, \frac{1}{k} \geq 1$ Now applying Lemma 3 to the polynomial $q(z)$, Lemma 4 follows.

3 Proof of the theorems

Proof of Theorem 1. Let $M(p, 1)=\max _{|z|=1}|p(z)|$. Since $p(z)$ is a polynomial of degree n having all its zeros on $|z| F k, k \leq 1$, therefore by Lemma 1, we have

$$
\leq \frac{n}{k^{n-2 \mu+1}+k^{n-\mu+1}} M(p, 1) \quad \text { for } \quad|z|=1
$$

Now $p^{\prime}(z)$ is a polynomial of degree $n-1$, therefore, it follows by (1.1) that for all $r \geq 1$ and $0 \leq \theta<2 \pi$

$$
\begin{equation*}
\left|p^{\prime}\left(r e^{i \theta}\right)\right| \leq \frac{n r^{n-1}}{k^{n-2 \mu+1}+k^{n-\mu+1}} M(p, 1) \tag{3.1}
\end{equation*}
$$

Also for each $\theta, 0 \leq \theta<2 \pi$ and $R \geq 1$, we obtain

$$
\begin{aligned}
\left\{p\left(\operatorname{Re}^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s} & =\int_{1}^{R} \frac{d}{d t}\left\{p\left(t e^{i \theta}\right)\right\}^{s} d t \\
& =\int_{1}^{R} s\left\{p\left(t e^{i \theta}\right)\right\}^{s-1} p^{\prime}\left(t e^{i \theta}\right) e^{i \theta} d t
\end{aligned}
$$

This implies

$$
\left|\left\{p\left(\operatorname{Re}^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| \leq s \int_{1}^{R}\left|p\left(t e^{i \theta}\right)\right|^{s-1}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d t
$$

which on combining with inequalities (3.1) and (1.1), we get

Therefore,

$$
\begin{aligned}
& \qquad \begin{aligned}
\left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| & \leq \frac{n s}{k^{n-2 \mu+1}+k^{n-\mu+1}}\{M(p, 1)\}^{s} \int_{1}^{R} t^{n s} \\
& =\left(\frac{R^{n s}-1}{k^{n-2 \mu+1}+l^{n-\mu+1}}\right)\{M(p, 1)\}^{s} .
\end{aligned}
\end{aligned}
$$

$$
\begin{align*}
\left|p\left(R e^{i \theta}\right)\right|^{s} \leq & \left|p\left(e^{i \theta}\right)\right|^{s}+\left(\frac{R^{n s}-1}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right)\{M(p, 1)\}^{s} \tag{3.2}\\
& \leq\{M(p, 1)\}^{s}+\left(\frac{R^{n s}-1}{k^{n-2 \mu+1}+k^{n}-\mu+1}\right)\{M(p, 1)\}^{s}
\end{align*}
$$

Hence, from (3.2), we conclude

Proof of Theorem 2. The proof of Theorem 2 follows on the same lines as that of Theorem 1 by using Lemma 2 instead of Lemma 1. But for the sake of completeness we give a brief outline of the proof Since $p(z)$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, therefore, by Lemma 2, we have

$$
\left|p^{\prime}(z)\right| \lesseqgtr \frac{n}{k^{n-\mu+1}}\left(\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)+\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)}\right) M(p, 1) \quad \text { for } \quad|z|=1 .
$$

$p^{\prime}(z)$ is a polynomial of degree $n-1$, therefore, it follows by (1.1) that for all $r \geq 1$ and $0 \leq$

$$
\begin{equation*}
\left|p^{\prime}\left(r e^{i \theta}\right)\right| \leq \frac{n r^{n-1}}{k^{n-\mu+1}}\left(\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)+\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)}\right) M(p, 1) \tag{3.3}
\end{equation*}
$$

Also for each $\theta, 0 \leq \theta<2 \pi$ and $R \geq 1$, we have

$$
\left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| \leq s \int_{1}^{R}\left|p\left(t e^{i \theta}\right)\right|^{s-1}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d t
$$

which on combining with inequalities (1.1) and (3.3), we get

$$
\begin{aligned}
& \left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| \\
& \quad \leq\left(\frac{R^{n s}-1}{k^{n-\mu+1}}\right)\left(\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)+\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)}\right)\{M(p, 1)\}^{s}
\end{aligned}
$$

which implies

$$
\begin{aligned}
\left|p\left(R e^{i \theta}\right)\right|^{s} \leq & \{M(p, 1)\}^{s}+\left(\frac{R^{n s}-1}{k^{n-\mu+1}}\right) \\
& \times\left(\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)+\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)}\right)
\end{aligned}
$$

from which the proof of Theorem 2 follows.

References

[1] N. C. Ankeny and T.J. Rivlin, On a Theorem 849-852.
[2] K.K. Dewan and Arty Ahuja, Growth of potymomials ruith ppescribed zeros, J. Math. Inequalities, to appear.
[3] K.K.Dewan and Sunil Hans, On extremal properties for the derivative of polynomials, Mathematica Balkanica, 23 (2009)
S. Bernstein, Pacific J. Math., 5(1955), K.K.Dewan and Sunil Hans. On maximum modulus for the derivative of a polynomial, Annales Univ. Mariae Curie-Sklodowska Lublin, LXIII (2009), 55-62.
[5] G. Pólya and G. Szego, Aufgaben and Lehrsatze aus der Analysis, Springer-Verlag, Berlin, 1925.
[6] M.A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115(1992), 337-343

