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Abstract

Let L/K be any separable extension of complete discrete valued fields of degree p. This work,

is a study of some ”standard over-extensions” of L/K, with the description of their Galois

groups. The second target, which is the aim of this work, concerns the Galois closure of L/K.

The study of the normal case has been done in some former work.
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Introduction

Let L/K be a separable extension of degree p of complete discrete valued fields having residue fields

of characteristic p > 0. The content of this paper is as follows:

Section 1 is a general view of the standard over-extensions of K. Some specific results and examples

on the extension M = K((K?)1/p−1)/K, in general, are also given.

Section 2 is a description of the Galois groups of the standard extensions, the question of the

finitude of the Number of Galois extensions having a given degree is studied and a Method for the

determination of some cyclic extensions of a local number field is given.

Section 3 is the study of the Galois closure of L/K (the aim of this work). The existence of the

intermediate extension and an explicit determination of it are studied.

1 Standard over-extensions

By ”local field” we mean a complete discrete valued field, meanwhile ”standard over-extensions” of

a local field K are, the maximal abelian extension M of K of exponent p−1, the maximal p-abelian

extension of M , and the Galois closure of a p-extension of K.

1.1 Case of finite residue field

Let K a local field with finite residue field, k = Fpf . The maximal abelian extension of exponent

p−1 of K is M = K((K?)1/p−1), regardless of the characteristic of K, that is the compositum of two

cyclic Kummer linearly disjoint extensions of K both of degree p− 1. The unramified and a totally

ramified K( p−1
√
π) (π uniformizer of K). M/K is the compositum of all cyclic extensions of K of

degree dividing p−1. From Kummer Theory for abelian extensions (see [12] ch:VI), Γ = gal(M/K)
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(the Galois group of M/K) is dual to K?/K?(p−1), under the pairing:

ϕ : Γ× (K?/K?(p−1)) 7−→ F?p
(σ, x) 7−→ σ(y)/y

with (yp−1 = x);

so F?p ⊂ K?, is identified with the group of the p − 1-th roots of unity. N the maximal abelian

extension of exponent p of M is compositum of all extensions of K of degree p.

First case char(K) = 0

Here, N = M( p
√
M?); furthermore M/K, and N/M are normal.

• Γ = gal(M/K), is abelian of degree (p− 1)2 isomorphic to (Z/(p− 1)Z)2.

• Write ∆ = gal(N/M) seen as Γ -module (from the action of Γ on it, Γ acts on M?/M?p and on

µp ⊂ M . ∆ ' Hom (M?/M?p, < ζp >) so it is isomorphic to the filtered Γ-module M?/M?p of

Fp-dimension p2+[M :Qp]. See Remark (1.1).

• G = gal (N/K), need not be nilpotent. It is a semidirect product G = ∆ o Γ0, where Γ0 is a

subgroup of G isomorphic to Γ ( Schur-Zassenhaus Theorem, see [14]Chap.7. Th.7.24).

Remark 1.1. If the extension L/Qp is finite then the order of the group L?/L?p is

• 1. If L contains the p-th roots of unity then the order of the group L?/L?p is p2+[L:Qp].

• 2. If L does not contain the p-th roots of unity p1+[L:Qp]

Set [L : Qp] = ef , from L? = πZ × µpf−1 × U1 for π a uniformizer of L, µn the group of the n-th

roots of unity and U1 the group U1 = {a ∈ L; a− 1 ∈ ML}, so L? ' Z× µpf−1 × U1. From Prop.

10, Ch.XIV §.4 in [17], U1 is a direct product of a cyclic p-group and a Zp-module of rank [L : Qp],
so U1 ' µph × Z

[L:Qp]
p with h ≥ 0, µph ⊂ L and µph+1 not in L, so h = 0 if and only if L does not

contain µp (see the following Note). So,

L? ' Z× µpf−1 × µph × Z
[L:Qp]
p

L?/L?p ' Z/pZ× {1} × µph/µ
p
ph
× (Z/pZ)[L:Qp]

(1.1)

• If h = 0 then µph/µ
p
ph

is of dimension zero.

• If h > 0 then µph/µ
p
ph
' Z/pZ that is of dimension 1.

In consequence dim(L?/L?p) = 1 + 1 + [L : Qp] if h > 0 meanwhile dim(L?/L?p)

= 1 + [L : Qp] if h = 0. See for example Corollary of Proposition 6 §.3 Ch.II in [7].

Note: we prove, U1 ' µph × Z
[L:Qp]
p .

For L/Qp finite, the p-adic logarithm is a Zp-module homomorphism log : U1 →ML, and ker(log)

is the p-th power roots of unity in L. This kernel is finite, since high p-th power order roots of

unity have high degree over Qp, and can’t lie in a finite extension of Qp if the order is sufficiently

large. The p-adic logarithm is an isomorphism from a sufficiently small closed disc D around 1 to

a sufficiently small closed disc around 0, with its inverse being the p-adic exponential. A closed

disc around 0 in ML is a scalar multiple of ML, and ML ' Z
[L:Qp]
p , so D ' Z[L:Qp]

p . Since D is

a Zp-submodule of U1 with finite index, U1 is a finitely generated (multiplicative) Zp-module that

contains a submodule of finite index which is free of rank [L : Qp], so by the structure theorem for
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finitely generated modules of a PID, U1 as a Zp-module is T×Z[L:Qp]
p , T is the torsion submodule of

U1. The submodule T is T = µph ⊂ U1. Thus U1 ' µph ×Z
[L:Qp]
p . A special case is for p = 2, since

all 2-adic field contains the 2-th roots of unity nevertheless the result still holds. For example, if

L = Q2, Q?2 ' Z×Z2×Z/2Z ' Z×U, (U = U1 ), and U1 = Z?2 = {+/−1}×(1+4Z2) ' {+/−1}×Z2

since the 2-adic logarithm is an isomorphism between 1 + 4Z2 and 4Z2 ' Z2.

Remark 1.2. Since N/M a p-elementary abelian, gal(N/M) = ∆ ' (Z/pZ)n with n = 2+[M : Qp]
and from classical group theory (Z/pZ)n has exactly(

n
i

)
p

= (pn−1)(pn−1−1)...(pn−i+1−1)
(pi−1)(pi−1−1)...(p−1)

subgroups of order pi, (
(
n
i

)
p

the Gaussian p-binomial coefficient (n choose i)p for i ≤ n). (The

number of i-dimensional subspaces of an n-dimensional vector space over Fp). By the theorem of

classical Galois theory, N/M contains
(
n
i

)
p

extensions of M of degree pn−i.

Second case: char(K) = p > 0, K = F ((T )), with F a finite field. Then N = M(℘−1(M));

(℘ : x→ xp − x)(Artin-Schreier).

• Γ = gal(M/K), which is abelian of degree (p− 1)2 isomorphic to (Z/(p− 1)Z)2.

• ∆ = gal(N/M) is isomorphic to the filtered Γ-module M/(℘(M)) of Fp-dimension +∞, which is

abelian too of exponent p, isomorphic to a countably infinite product of copies of Z/pZ in general

see Proposition (1.5).

• G = gal (N/K), G need not be nilpotent, since G = ∆ o Γ0 , Γ ' Γ0 ⊂ G, (Generalized Schur-

Zassenhaus [13]. §.2.3; page: 41)). Indeed from Krull topology, (see [12] ch:VII), ∆ is a closed

normal subgroup of G and the exponents are relatively prime. So, we have a split short exact

sequence 1→ ∆→ G → Γ0 → 1.

Note: Having Γ ' Γ0, in the next, we write Γ instead of Γ0 since no confusion can occur.

Remark 1.3. ∆ is the single Sylow p-subgroup of G, so the number of subgroups of G of order pi

equals the number of subgroups of ∆ of order pi for all i, namely,(
n
i

)
p

= (pn−1)(pn−1−1)...(pn−i+1−1)
(pi−1)(pi−1−1)...(p−1)

1.2 On the prime and Equi-characteristic Case

Remain that for a complete discrete valued field K having the same characteristic p as its residue

field F we can write K = F ((T )) with T a transcendental element over F .

1.2.1 Infinitude of K/℘(K)

Proposition 1.4. K = F ((T )), with F a complete discrete valued field of characteristic p then

K/℘(K), is countably infinite, ( ℘ : x→ xp − x).

Proof. Consider 1
Tn , for n > 0 and p does not divide n. If 1

Tn − 1
Tn′ ∈ ℘ (K), with n 6= n′ and

p does not divide nn′, then 1
Tn − 1

Tn′ = fp − f , for some f ∈ K = F ((T )) but f /∈ K = F [[T ]],
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necessarily (since n, n′ > 0 and distinct ) (which is no more true if F is finite). Thus f has a leading

polar term with degree −r < 0, so fp has a pole with degree −rp < −r, that is fp − f has a pole

of order rp that is divisible by p yet the difference 1
Tn − 1

Tn′ , does not have this property since n

and n′ are distinct and not divisible by p. So, we found infinitely many different elements outside

of a subspace.

For the infinity of the codimension. (Tn)n with n negative prime to p numbers is free in K/℘(K).

Let n1 < · · · < nm be negative prime to p integers, and a1, . . . , am ∈ F non-zero. We have to

prove that f = a1T
n1 + · · · + amT

nm does not lie in ℘(K). Let v be the canonical valuation of

K = F ((T )). Then v(f) = n1 < 0. By contradiction, suppose that f = gp − g for some g ∈ K.

Then v(g) < 0, so v(gp − g) = pv(g). f = gp − g implies that n1 = v(f) = v(gp − g) = pv(g),

thus p divides n1. So, we get the contradiction. Now, by Hensel’s Lemma ℘(K) contains an open

neighborhood of 0 so K/℘(K) is just countably infinite. q.e.d.

Note: Prop.(1.4) can be generalized to any infinite and commutative field K,

char(K) = p with ℘(K)  K (strict inclusion). Indeed, the equality can occur, for example if K is

algebraically closed, the equation T p−T − t is separable, with K separably closed and char(K) = p

we get ℘(K) = K, K/℘(K) is then trivial.

Let K be a commutative and infinite field and L/K finite with [L : K] > 1. The element 1 can be

extended to a K-basis e1, ..., en of L, with e1 = 1 and n > 1 . Then L = Ke1 +Ke2 + ...+Ken =

K + Ke2 + ... + Ken (the sums are direct sums). Passing to additive quotient groups, L/K is

isomorphic to Ke2 + ... + Ken, which is infinite since K is infinite. So, a similar argument works

when L is any field extension of K that is larger than K (not just finite extensions of K ) by using

a K-basis of L that contains K.

1.2.2 Description of the product ∆

Proposition 1.5. For L = F((T )) a local functional field with F a finite field of characteristic p, let

N be the maximal exponent-p abelian extension of L. Then gal(N/L) is a product of an countable

infinite product of copies of Z/pZ.

Proof. By Kummer’s theory, gal(N/L) embeds into Hom(L/℘(L),Z/pZ)

' (Z/pZ)(α), and is a direct product of a non-necessarily countable number of copies of Z/pZ, of

course L/℘(L) ' gal(N/L) and L/℘ (L) embeds into (Z/pZ)(α). Since L/℘(L) is just countably

infinite (see Prop.1.4) and thus has only countably infinite dimension then with Pontryagin duality

that swaps direct sums for direct products we see that gal(N/L) is thereby obtained as a countably

infinite product. q.e.d.

By use of the notations of §.1.2. K = F((T )) (F finite of characteristic p), M/K is Kummer-

abelian of degree (p−1)2, then M = K
(

p−1
√
K?
)

with M = V ((X)) too (V finite)V = F( p−1
√

(ε)) (ε

a generator of F?, and X = p−1
√
T ). Now, by ”continuity of roots” for separable monic polynomials,
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there are only countably many finite separable extensions of a local function fields see Example(2.9)

(as such fields have a countable dense subset), ∆ is necessarily a countable infinite product of copies

of Z/pZ. Furthermore, Prop. (1.5) gives a direct proof of

Corollary 1.6. From Prop.(1.5). The group ∆ = gal(N/M) (where N = M(℘−1(M)) and M =

K
(

p−1
√
K?
)

), is a product of an countable infinite product of copies of Z/pZ.

1.3 Remarks on the extension M = K((K?)1/p−1)/K in general

• In local case with finite residue field of characteristic p we have seen that

M = K((K?)1/p−1)/K, is an abelian extension of degree (p − 1)2 the Galois group of

which is isomorphic to (Z/(p− 1)Z)2.

• Meanwhile, if K is a complete field with respect to a discrete valuation having a residue field not

necessarily finite of characteristic p, then we have M = K((K?)1/p−1)/K is not necessarily finite,

but it is still abelian of exponent p− 1, since K contains the p− 1-th roots of unity.

• Otherwise, the extension M/K need not be finite; if it is finite it need not be Galois; and if it is

finite and Galois it need not have that Galois group. Indeed see the following.

Example 1.7. 1). • Let K = k((t)), where k = Q(ζ3) and ζ3 is a primitive cube root of unity. So

K is a complete discretely valued field.

Let p = 3. k((k?)1/p−1)/k is infinite. Hence so is K((K?)1/p−1)/K.

2). • K = Q(ζ3) where ζ3 is a 3-th root of unity. Therefore, M/K = K((K?)1/p−1)/K =

Q(ζ3)((Q(ζ3)?)1/2)/Q(ζ3), is infinite, since adjoining to K the square roots of different prime ele-

ments of Z[ζ3] will lead to disjoint quadratic extensions whose composite has degree a large power

of 2 (the power being the number of primes).

More generally we have the following result:

3). • ”Consider K = Q(ζp) where ζp is a p-th root of unity, p being an odd prime number. Then

K( 1/p−1
√
K?)/K = Q(ζp)(

1/p−1
√
Q(ζp)?)/Q(ζp), is infinite”.

Indeed, from the well known result ”For relatively prime integers a1, ..., an, the 2n algebraic num-

bers
√
ai1 , ..., aik with i1 < ... < ik and 0 ≤ k ≤ n are linearly independent over Q, so are a Q-basis

for Q(
√
ai1 , ...,

√
aik). In particular, the degree of that field over Q is the maximum possible 2n”, we

can deduce that Q((Q?)1/2)/Q is infinite. Since Q(ζp)/Q is finite then Q(ζp)((Q(ζp)
?)1/2)/Q(ζp) is

infinite, therefore Q(ζp)((Q(ζp)
?)1/p−1)/Q(ζp)is infinite too. The result is proved.

Note that the degree of Q(ζp)(
√
ai1 , ...,

√
aik) over Q(ζp) is 2n or 2n−1; it depends on whether the

set the numbers ai union +p or −p is still independent or not and
√

+p or
√
−p belongs to Q(ζp),

depends on whether p ≡ 1 mod 4 or p ≡ 3 mod 4.

4). • Let k be an algebraically closed field of characteristic 0, and let K = k((t)).

Then K((K?)1/p−1)/K is Galois with group Z/(p− 1)Z, not (Z/(p− 1)Z)2.

5). • Let k be the field of 3 elements, and let K = k((t)).

Let p = 11. Then K((K?)1/p−1)/K is Galois with group Z/2Z× Z/10Z.
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6). • Let k be the field of 3 elements, and let K = k((t)).

Let p = 7 Then K((K?)1/p−1)/K has degree 12 (not 36), but it is not Galois because it is not

separable, since t1/3 is in this field.

7). • ” For any fractions field K, with characteristic p 6= 2, of a Dedkind ring A having infinite

many prime ideals , we have M = K((K?)1/p−1)/K, is infinite”.

Indeed, it suffices to notice that when adjoining to K the square roots of two different prime el-

ements of A will lead to disjoint quadratic extensions. In fact, let L = K(
√
p) and L′ = K(

√
q).

They are both quadratic. Necessarily L∩L′ = K otherwise L = L′, this means that
√
q = a+ b

√
p

for a, b ∈ K, thus q = a2 + 2ab
√
p + b2p. Clearly b has to be non-zero. If a is also non-zero, then

this formula shows
√
p ∈ K, so a has to be zero. Then q = b2p, localizing at q, p is a unit and q is

a uniformizer so this cannot happen.

8). • In contrary, in characteristic 2 F2(T )(
√
T ) = F2(T )(

√
T + 1) Is a counter-example.

Note:

Concerning items 7) and 8), the different result for characteristic 2 is really just an artifact. More

generally , if p is any prime and a positive integer n is not a power of p, then M = K((K?1/n)/K is

infinite for rings as in item 7). Of course if p is prime and n = p− 1, then n cannot be a power of a

prime q unless q = 2, which leads to the item 8). But if we take a different n (e.g. take n = p− 2),

then characteristic 2 need not be the exception.

2 Description of the over-extensions

2.1 Case of mixed characteristic

2.1.1 Explicit description of the semidirect product

From §.1.1 First case, Γ ' (Z/(p−1)Z)2, and ∆ ' (Z/pZ)n. Write ∆ =< α1, α2, ...., αn >. M?/M?p

being a Fp[Γ]-module of dimension n, by local class field theory M?/M?p ' ∆ = gal(N/M).

Furthermore, ∆ ' Hom (M?/M?p, < ζ >) with ζ a primitive p-th root of unity. So, N is generated

over M by n elements bi such that bpi ∈ M that is N = M(b1, b2, ..., bn), so consider ∆ =<

α1, α2, ...., αn > such that αi(bi) = ζibi with ζi a p-th root of unity, and αi(bj) = bj if i 6= j. To

sum up we have the result:

Proposition 2.1. For N = M(b1, b2, ..., bn), with bpi ∈M . Then

∆ = gal(N/M) =< α1, α2, ..., αn > is defined by αi(bi) = ζibi with αi(bj) = bj if i 6= j.

Let ϕ : (Z/(p− 1)Z)2 → Aut((Z/pZ)n) a non trivial homomorphism.

Set ∆ oϕ Γ = (Z/pZ)n oϕ (Z/(p − 1)Z)2 =< α1, α2, ...., αn > oϕ < g1, g2 >, by use of the basic

representation theory, every representation of Γ is completely reducible by the theorem of Maschke

see [4]. Further |Hom(Γ,F?p)| = |Γ|, so every irreducible representation of Γ over Fp has dimension

1. then, if V is a vector space over Fp and ϕ : Γ→ Aut(VFp
) a homomorphism, there exists a basis
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B of V and homomorphisms ϕb : Γ → F?p , b ∈ B such that ϕ(g)(b) = ϕb(g)b for every g ∈ Γ and

every b ∈ B. So we get:

Proposition 2.2. The semi-direct product G,

G = ∆oϕ Γ = (Z/pZ)n oϕ (Z/(p− 1)Z)2 =< α1, α2, ...., αn > oϕ < σ, τ >,

is defined by the 2n relations:

σαiσ
−1 = ζiαi, and ταiτ

−1 = ξiαi, for i = 1, ..., n; ζi, ξi being elements of (Z/pZ)?.

That is by terms of characters, for χi ∈ Γ̂ = Hom(Γ,F?p) (dual of Γ); write

M1 = diag(χ1(σ), χ2(σ), ..., χn(σ)), and M2 = diag(χ1(τ), χ2(τ), ..., χn(τ)),

for the diagonal matrices images of σ and τ , then the action above becomes:

σαiσ
−1 = χi(σ)αi, and ταiτ

−1 = χi(τ)αi.

2.1.2 Noticeable remarks on the group G
Remark 2.3. :

• 1. In general such groups are metabelian, but nonnilpotent. Meanwhile, they can be nilpotent,

then abelian, if and only if for all i; ζi = ξi = 1 (G is then a direct product).

Concerning the center Z(G) of G. Since (Z/pZ)n and (Z/(p − 1)Z)2 are abelian, any generator of

the first subgroup that commutes with the generators of the second lies in the center and vis versa.

So:

• 2. G = ∆ oϕ Γ = (Z/pZ)n oϕ (Z/(p − 1)Z) note the action of Γ on ∆ the homomorphism

ϕ : Γ → Aut(∆) then ker(ϕ) consists of all σaτ b for which ζai ξ
b
i = 1 for all i. Put C = C∆(Γ) =

C∆(σ) ∩ C∆(τ) it is described in terms of the i such that ζi = ξi = 1. Then C = ∆ ∩ Z(G). For

στ ∈ G with σ ∈ ∆ and τ ∈ Γ then στ ∈ CG(Γ) ⇔ σ ∈ C. On the other hand στ ∈ CG(∆) ⇔ τ ∈
CΓ(∆) = ker(ϕ). Finally Z(G) = CG(Γ) ∩ CG(∆).

• 4. For m < n if there are exactly m indices i with ζi = ξi = 1 then #Z(G) ≥ pm.

• 5. #Z(G) > pm if and only if there exist a, b not both are zero, such that 0 ≤ a, b < p − 1 ,

and ζai · ξbi = 1 for all i. Indeed, for g ∈ G, g = nh with n ∈ (Z/pZ)n and h ∈ (Z/(p − 1)Z)2, g is

central if and only if both n and h are central. Since, central elements in G contained in (Z/pZ)n

are generated by the αi for which ζi = ξi = 1. So h = σaτ b is central if and only if the condition

above holds, so there can be more than pm elements in the center. Also, #Z(Z(G)) = pm · c with

c a proper divisor of (p− 1)2.

• 6. Particularly if ζi = ξi for all i; then σ−1τ lies in the center that is (p− 1)|#Z(G). Likewise if

ζi = ξ−1
i for all i; then τσ lies in the center that is (p− 1)|#Z(G) too.

• 7. If none of the conditions 4.), 5.) and 6.) hold then G is centerless.

Proposition 2.4. Let G0 be a subgroup of G = (Z/pZ)
n oϕ (Z/ (p− 1)Z)

2
of index p , then

G0 ∩ (Z/pZ)
n

is normal in G.

Proof. First note that (Z/pZ)
n
, is the p-Sylow subgroup of G and is normal in it. Since G0

contains a copy of (Z/ (p− 1)Z)
2
, then (Z/ (p− 1)Z)

2
, normalizes G0 and therefore normalizes
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G0 ∩ (Z/pZ)
n
. By other hand (Z/pZ)

n
normalizes G0 ∩ (Z/pZ)

n
, since (Z/pZ)

n
is abelian. In

consequence G0 ∩ (Z/pZ)
n

is normal in G. q.e.d.

Remark 2.5. The result above does not mean that any subgroup of index p of (Z/pZ)
n
, is normal

in G = (Z/pZ)
n oϕ (Z/ (p− 1)Z)

2
. See the following counter-examples.

Example 2.6. (Counter-example)

In Proposition (2.4) when considering p = 3 , n = 2 take for example for the action defining the

semi-direct product [ϕ(x, y)](a, b) = (a, yb) (here we identified Z/ (p− 1)Z with F?p). The subgroup

{(a, a)|a ∈ Z3} is obviously not normal in G.

Example 2.7. (Counter-example)

LetK = Q3, considerM = K
(√

K?
)

= Q3

(
i,
√

3
)
, and consider E = M

(
3
√

1 +
√

3
)

, that is a nor-

mal 3-extension ofM . The Galois closure of E/K isN = M
(

3
√
M?
)

i.e., N=M
(

3
√

1+
√

3,
3
√

1−
√

3
)

and gal (N/M) = (Z/3Z)
2
. But E/K is not normal otherwise there should be an intermediate

subextension E′/K of degree 3 of E/K and an automorphism σ of E that maps
√

3 to −
√

3, which

is the identity on E′, furthermore σ(
3
√

1 +
√

3), must be a cubic root of σ(1 +
√

3) = 1−
√

3, but

E contains no such root, since E is strictly contains in N . Hence the subgroup gal (N/E) is not

normal in gal (N/K).

2.2 Equi-characteristic Case

For ∆ a p-profinite group, product of a countable number of copies of Z/pZ, N is generated over

M by a countable number of elements bi such that bpi − bi ∈M . So, ∆ is generated by αi of order

p with αji (bi) = bi + j for 0 ≤ j < p, i ∈ N and αi(bk) = bk for i 6= k. So:

Proposition 2.8. With a countable number of relations, we define G=∆oϕΓ=< α1, α2, ..., αn, ... >

oϕ < σ, τ >, is σαiσ
−1 = ζiαi, and ταiτ

−1 = ξiαi; for i ∈ N ; and ζi, ξi ∈ (Z/pZ)?. That are,

σαiσ
−1 = χi(σ)αi, and ταiτ

−1 = χi(τ)αi where χi ∈ Γ̂.

2.3 On the Number of Galois extensions having a given degree

The finitude of the number of all extensions of a local number field having a given degree” was

studied and explicitly computed first by I.R.Safarevič in [15], M.Krasner in [6] then by J.P.Serre in

[16]. In characteristic p > 0 this result holds no more. See the Example:

Example 2.9. For instance,

• The field Fp((X)), (Fp of p elements), has only one inseparable extension of degree p. Indeed for

L an inseparable extension of degree p, Lp = Fp((X)), of course p-th power in K = Fp((X)) are

Laurent series in Xp (Fp is perfect). So, if f ∈ K, f = a0 + a1X + + ap−1X
p−1 each ai is a p-th

power. K( p
√
f) lies in K( p

√
X) , and so K( p

√
X) is the only purely inseparable extension of degree

p, and L = Fp((X)1/p)). Meanwhile, it has infinitely many separable ones (Artin-Schreier) of this
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degree. In fact the question reduces to whether , K/℘ (K), (℘ : x→ xp − x), is infinite? which is

true. Prop. ( 1.4).

• In imperfect residue field case, we have the following beautiful example. K = k(x)((z)) (k is

algebraically closed of characteristic p) has infinitely many extensions of degree p. Extensions given

by yp − y = xj , (j ∈ N and j - p), are all disjoint Galois p-extensions.

Now, let us first state some important results on groups:

Lemma 2.10. A finitely generated group G has only finitely many normal subgroups of a given

index n, and only finitely many subgroups of G of bounded index.

Proof. Let G =< x1, ..., xk > be a finitely generated group and H a fixed finite group. There

are finitely many homomorphisms from G to H (for each tuple g1, ..., gk there is at most one sending

xi to gi). So there are finitely many normal subgroups N of G such that G/N ' H (for each such

N there exists at least one homomorphism from G to H with kernel N). As, up to isomorphism

there are finitely many groups of fixed order, then there are finitely many normal subgroup of G

having fixed (or even bounded index). Let K be a subgroup of G of finite index m, it has at most m

conjugates K1, ...,Kl and the intersection of all Ki is a normal subgroup of index at most ml ≤ mm.

(The normal core of K). As for a normal subgroup N of index s there are at most 2s subgroups

containing N , then the number of subgroups of bounded index in G is bounded. q.e.d.

Theorem 2.11. Let G be a topologically finitely generated profinite group, then:

• For each natural number n the number of open subgroups of G of index n is finite.

• Identity element 1 of G has a fundamental system of neighborhoods consisting of countable chain

of open characteristic subgroups of G = V0 ⊇ V1 ⊇ V2... See [13] (Prop. 2.5.1)

The Galois group of any infinite extension is a profinite group, the converse is also true. So in

case of Theorem (2.11), ”the finitude” still holds.

Corollary 2.12. If gal(Ks/K) is topologically finitely generated, then there are only finitely many

Galois extensions of a given degree of K. Particularly if K is quasi-finite.

In ”Serre’s sense” a field is said to be quasi-finite if it is perfect and gal(Ks/K) ' Ẑ.

2.4 Method for the determination of some cyclic extensions of a local number field

Let K/Qp be a finite extension, [K : Qp] = r. Set Kc the compositum of all cyclic extensions of K

of degree p.

2.4.1 On the compositum of all cyclic p-extensions

Proposition 2.13. With the hypothesis above,

1 • [Kc : K] = pr+1 and gal(Kc/K) ' (Z/pZ)r+1, if the p − th roots of unity are in K. 2 •
[Kc : K] = pr+2 and gal(Kc/K) ' (Z/pZ)r+2, if K contains the p− th roots of unity.
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Proof. By local class field theory, K?/K?p is isomorphic to the Galois group of the maximal

elementary abelian p-extension of K ie. Kc. Remark.(1.1 ) gives the result. q.e.d.

2.4.2 Explicitness for the case K = Qp
Application: The Maximal p-abelian extension of Qp
For p 6= 2, Qp has exactly p+ 1 cyclic extensions of degree p, all are totally ramified except one is

unramified. For p = 2 a detailed classification of the quadratic and the quartic extensions is given

in [10]. Put r = 1 in Prop.(2.13) to determine the compositum of all cyclic extensions of Qp of

degree p. Exhibit two cyclic linearly disjoint extensions of degree p of Qp ( the unramified Qp(λ),

and the subextension Qp(η) (totally ramified) of degree p of Qp(ζp2); ζp2 is a primitive p2-th root of

unity). The p+1 cyclic extensions of degree p of Qp are the subextensions of Qp(λ, η). Respectively

write, Gλ = gal(Qp(λ))/Qp and Gη = gal(Qp(η))/Qp. There are natural isomorphisms from Gλ

and Gη into Fp.
To determine the primitive elements, set η = 1 +

∑
0<i<p2;ip−1≡1 mod p ζ

i
p2 an uniformizer (the

trace), their conjugates ηk = 1 +
∑

0<i<p2;ip−1≡1 mod p ζ
i+kp
p2 , with 0 ≤ k ≤ p − 1 (action of Fp

on the conjugates of η). For a prime q, q ≡ 1 mod p; and p(q−1)/p not congruent to 1 mod q

and p(q−1)/p not congruent to 1 mod q, write λ =
∑
j modq;j(q−1)/p≡1 mod q ζ

j
q the conjugates are

λk =
∑
j modq;j(q−1)/p≡1 mod q ζ

j
qζ
k
p , with 0 ≤ k ≤ p − 1. The expression λr1ηs1 + ... + λrpηsp gives

the primitive elements for the p-cyclic extensions of Qp.

Example 2.14. For a numerical example, consider the case p = 7 we have

[Q7(ζ49) : Q7] = 42, so we can take η = 1 + ζ49 + ζ−1
49 + ζ18

49 + ζ−18
49 + ζ19

49 + ζ−19
49 thus we get [Q7(η) :

Q7] = 7 with Q7(η)/Q7 cyclic totally ramified. Then by taking q = 29 we get [Q7(ζ29) : Q7] = 28

therefore, we can take λ = ζ29 + ζ−1
29 + ζ12

29 + ζ−12
29 and thus [Q7(λ) : Q7] = 7 with Q7(λ)/Q7 cyclic

unramified.

For a detailed study (see [8] §.3 page 139). With software Pari, for several values of p, the Eisenstein

polynomials corresponding to the p cyclic extensions are determined, as well as their reduites (in

Krasner’s sense).

2.4.3 Determination of the cyclic extensions of degree d of Qp, with d|p− 1)

p an odd prime, and d = qr11 .q
r2
2 ...q

rs
s (qi prime) for d|p − 1. By Kummer theory, the cyclic

extensions of degree d of Qp are in bijection with the cyclic subgroups of order d of Q?p/Q?dp .

Since Q?p = pZ × Zp = pZ × µp−1 × U1 (µn n-th roots of unity), and Ud1 = U1, so Q?p/Q?dp '
pZ/pdZ × µp−1/µ(p−1)/d '< p > × < ζ > a product of two cyclic groups of order d. These

extensions come from taking a d-th root of ξpi, (i integer determined mod d, ξ is a p− 1-th root of

unity (determined up to multiplication by a ((p− 1)/d)-th root of unity). This gives the product

of two cyclic groups of order d. Now The number of cyclic non-isomorphic extensions of degree d of

Qp is equal to the number of cyclic subgroups of order d of (Z/dZ)× (Z/dZ). Since, a cyclic group

of order d contains ϕ(d) elements of order d, (Euler’s totient). For g(d) the number of elements
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of order d in a group, the number of cyclic subgroups is g(d)/ϕ(d). The order of any element

of G (direct product of two cyclic groups of order d) divides d. If m divides d, then the set of

elements whose orders divide m is the subgroup of G which is the direct product of two cyclic

groups of order m, whose order is m2. So, if g(m) is the number of elements of order exactly

m, m2 =
∑
k|m g(k), and by möbius inversion (µ) g(m) =

∑
k|m k

2µ(m/k). For m = d gives the

number of elements of order d in G. The number of cyclic subgroups of order d in the group G is

g(d)/ϕ(d) = (
∑
k|d k

2µ(d/k))/ϕ(d).

For d = 60, ϕ(d) = 16 and then the number of elements of order 60 is 602− 302− 202− 122 + 102 +

62 + 42 − 22 = 2304, so the number of cyclic subgroups of order 60 is 144.

For d a prime, it is (d2− 1)/(d− 1) = d+ 1 see Huppert in [3] (Hilfssatz 8.5). The number of cyclic

groups of order d in an elementary abelian d-group of rank n, is (dn − 1)/(d− 1).

Description of Galois groups of cyclic extensions of degree d of Qp with d|p−1. For r = 1

and s = 1 then d is prime, these are in bijection with the pairs (i, j) ∈ (Z/dZ)2 with either i = 1

or (i, j) = (0, 1), corresponding to the Fd points on the projective line.

A similar description for prime-powers, say qr, the subgroups generated by pairs (1, j) for all j and

those generated by pairs (i, 1) for all i divisible by the prime q.

For the general case use the canonic splitting into the direct product of the Sylow subgroups and

combine for each Sylow subgroup.

Example 2.15. Description of cyclic extensions of degree 3 of Q7?

By local class field theory, this is the same as the number of one-dimensional subspaces of the

F3-vector space Q?7/(Q?7)3. As 3 divides 6 = 7− 1, this is 2-dimensional: the cubes in Q?7 are 73nε

where ε = +− 1 (mod 7). So there are 4 such extensions.

Q7 contains the cube roots of unity. So, the degree 3 cyclic extensions are Kummer extensions,

they are generated by the cube roots of 2, 7, 14 and 28.

3 Embedding of an extension of prime degree in its Galois closure

3.1 Existence of the intermediate extension

Proposition 3.1. Let K be a commutative field, for every separable extension L/K of degree p,

p an odd prime, G = gal(LC)/K the Galois group of the Galois closure of L/K is solvable. Then

there exists a cyclic extension F/K of degree m dividing p− 1 such that LF/F is cyclic of degree

p and LF/K is Galois (ie. LC = LF ). Furthermore if L/K is not cyclic ( LF/K is hence not

abelian), then L has exactly p conjugates over K in LF .

Proof. G is solvable, its order is divisible by p but not by p2. Seen as a transitive subgroup

of the symmetric group Sp, then according to ([1], ch.3, th.7) G contains a unique subgroup P of

order p so it is normal in G. P is contained in its normalizer N(P ) in Sp. Also N(P ) seen as

the affine linear group GA1(Fp), we have the isomorphism F?p → Aut(P ), and a split short exact
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sequence : 1→ P → N(P )→ F?p → 1

Furthermore, N(P ) is isomorphic to the group of all 2×2 matrices overGF (p) of the form

(
x 0

y 1

)
In consequence G/P is cyclic of order m dividing p− 1. Therefore, and since G ⊂ N(P ) it is also

a semidirect product G = P oM with M cyclic of order m.

If the semidirect product is a direct product then it is cyclic since m and p are co-prime.

Otherwise G is not abelian. In such case M being cyclic then all its conjugates are cyclic too.

Write m in the form m =
∏r
i=1m

αi
i , mi being different prime numbers, and N for the number

of the conjugates of M (note that according to Hall’s theorem(see [14]Chap5. Th5.23. page 85)

all the subgroups of G of order m are conjugate). Since M is cyclic it contains one and only one

subgroup Mi of order mαi
i (Sylow mi-subgroup of G) which is cyclic too. Conversely every Sylow

mi-subgroup of G can be embedded in some conjugate of M . So the number N must divide mp,

being N ≡ 1 modulo mi for all i , thus (N,m) = 1. So the number of conjugates of M is exactly

p if G is not cyclic. Set F the field fixed by P , then the Galois closure of L/K is LC = LF . The

proof is ended. q.e.d.

Remark 3.2. F is unique. Now, L/K being of prime degree, from now on we can suppose that

L/K is totally ramified (so LF/F is too) and write LF = F (π).

3.2 Intermediate extension, explicit determination

From now on, assume that K has a finite residue field of characteristic p.

3.2.1 Description of the Galois closure

Recall that the compact group Γ ' Hom(K?/K?p−1, µp−1) then by duality Γ ' K?/K?p−1. Hence

Γ is of the exponent p− 1, and M/K is Kummer abelian relatively to p− 1. The subextension F of

LC/K (Prop. 3.1), and of M/K, is cyclic Kummer of degree m dividing p− 1 then, F = K
(

m
√
b
)

,

with b ∈ K?. So, K
(

m
√
b
)

= K
(

m
√
d
)

if and only if there exists an integer k ≥ 1; with (k,m) = 1

such that d ∈ bkK?m.

By considering the quotient group K?/K?m the order of the class bK?m; in it is m. Since m is

dividing (p−1), K?/K?m ' (Z/mZ)× (Z/mZ); therefore K?/K?m is of order m2. The number of

the distinct Kummer cyclic extensions of K of degree m is exactly the number of cyclic subgroups

of order m in (K?/K?m). So, the number of the cyclic distinct Kummer extensions of K of degree

m equals the number of the cyclic subgroups of order m included in (Z/mZ) × (Z/mZ), so by

writing m = pα1
1 . . . pαr

r , we get this number equals to
(
pα1

1 + pα1−1
1

)
....
(
pαr
r + pαr−1

r

)
. Furthermore

gal (F/K) ' H; H being a subgroup of gal (LC/K) and LC the Galois closure of L/K; is a

cyclic group of order m dividing (p− 1) that can be embedded in µp−1 the group of the p − 1-

th roots of unity. So, Schur-Zassenhaus theorem ( [14]Chap.7. Th.7.24., page:151 ) ensures the

semi direct product gal (LC/K) ' gal (LC/F ) o H. From local class field theory see [2] the
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isomorphism between the three groups gal (F/K) ' H ' K?/NF/K (F ?) of order m, and the

surjective homomorphism s : K?/K?m ' (Z/mZ)× (Z/mZ) 7→ K?/NF/K (F ?) .

3.2.2 The group gal (LF/K)

Since gal (F/K) is cyclic of order m dividing p−1, write gal(F/K) =< ε > with ε( m
√
b) = ξm( m

√
b),

where ξm a primitive m-th root of unity and name the extension of ε to F (π), ε too. Since

gal(F (π)/F ) is cyclic of order p write gal(F (π)/F ) =< σ >. LF/K being Galois, consider τ any

element of gal(LF/K), thus τ = σiεj , with 1 ≤ i ≤ p and 1 ≤ j ≤ m, then from the normality of

< σ > in gal(LF/K), we have the identity

τστ−1 = σt with 1 ≤ t ≤ p− 1. (1.2)

Consider the affine group AGL (1, p), of all maps from Fp to itself in the form x 7→ ux + v where

u 6= 0 in Fp. gal (LF/K) has order mp and is isomorphic to a subgroup of AGL (1, p), which

is isomorphic to the subgroup GL2 (Z/pZ), of the matrices in form

(
u v

0 1

)
an automorphism

δ corresponds to

(
u v

0 1

)
; δ (ξp) = ξup , and δ(x) = ξvpx; ξp, is a primitive p-th root of unity.

Pick a generator g of (Z/pZ)
?
, for a generator of gal (F/K) take, ε : x 7→ gx that corresponds to(

g 0

0 1

)
and for a generator σ of gal(LF/F ), σ : x 7→ x+ 1 that corresponds to

(
1 1

1 0

)
then

εσε−1 = σg. For any τ of gal(LF/K); τ = σiεj , with 1 ≤ i ≤ p and 1 ≤ j ≤ m, τστ−1 = σg
j

,

also g must verify gm = 1 in Fp. (Z/pZ)
?
, has ϕ (m) elements of order m, ϕ (.) (Euler’s totient).

Meanwhile the equation xm = 1 mod p has exactly m solutions in (Z/pZ)
?
, (m divides p− 1 which

is the order of (Z/pZ)
?
), these solutions are the elements of the cyclic subgroup of order m of the

cyclic group (Z/pZ)
?
, and is isomorphic to the group of the m-th roots of unity.

3.3 Generation of the intermediate extension

3.3.1 Ramification elements of LF/K :

LF = F (π), π uniformizer of L and of LF too. d(.), e(.) and f(.) the respective discriminant,

ramification index and residual degree. So eLF/F = eL/K = p; fLF/F = fL/K = 1.

Write eF/K = eLF/L = t = #|G0/G1| and fF/K = fLF/L = r that is the order of G/G1 (with

respectively G the Galois G0 the inertia and G1 the ramification groups).

For any K-homomorphism σ of L, define the break relative to σ as v = vL(σ(π)
π −1). v is independent

of π and σ and depends of L/K only, see [5]. With a prime degree it is unique with v ≤ ep
p−1 . Its

integrity is a necessary condition for the normality of L/K.

By computing vK(dLF/K) in two different ways, along the towers LF/F/K and LF/L/K we get

vF
(
dLF/F

)
= (p− 1) (1 + v); furthermore we have vK

(
dF/K

)
= vL

(
dLF/L

)
= (t− 1) r = m − r.
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In conclusion we get vK
(
dL/K

)
= (p− 1)

(
1 + v

t

)
. So,

gcd (v, t) = 1. (1.3)

3.3.2 Explicit computation of the break

Let f (X) =
∑p
i=0 aiX

i, be an Eisenstein polynomial of degree p ai ∈ K (f (π) = 0), write π =

π1, π2, . . . , πp, for the roots of f(X) = 0. Set f0 (X)=X−1f (π (X + 1))=X−1
∑p
i=0 aiπ

i (X + 1)
i
=

X−1
∑p
i=0

∑i
t=0 aiπ

i
(
i
t

)
Xt =

∑p−1
j=0

∑p
i=j+1

(
i

j+1

)
aiπ

iXj =∑p−1
j=0 djX

j , with dj =
∑p
i=j+1

(
i

j+1

)
aiπ

i, dp−1 = πp, and d0 =
∑p
i=1

(
i
1

)
aiπ

i =
∑p
i=1 iaiπ

i. Then

w =
vL(d0)−vL(dp−1)

p−1 , so vL (d0) = (p− 1)w + p (vL(.) normalized valuation of L).

Since vL(d0) = inf1≤t≤p(vL(tat) + t), there exists ak the principal coefficient of f , such that

w = vL(k)+vL(ak)+k−p
p−1 . Having d0 ≡ kakπ

k, modulo πvL(kak)+k+1, two cases can be distinguished.

First case, k 6= p, and then w = vL(kak)+k−p
p−1 , with k = (p− 1)w− vL (ak) + p, in the Second k = p

(necessarily char(K) = 0) so w = pe
p−1 . With w = v

t we have:

d0 ≡
(
kakπ

−vL(ak)
) (
π(p−1)w+p

)
moduloπ(p−1)w+p+1. (1.4)

(kakπ
−vL(ak) being an unit of L ).

3.3.3 Explicit computation of the primitive element

Consider g (X) = X−1f (π +X) =
∑p−1
t=0 btX

t, its roots are θi = σi (π) − π, for 1 ≤ i ≤ p − 1.

(σi(θ) ≡ θ mod π, so, NLF/F (θ) ≡ θp ≡ θ mod π), then L (θ2, . . . , θp) is the splitting field

of f over K. g (X) =
∑p−1
t=0

∑p
i=t+1

(
i
t+1

)
aiπ

i−t−1Xt; bt =
∑p
i=t+1

(
i
t+1

)
aiπ

i−t−1, bp−1 = 1 and∏p−1
i=1 θi = b0 =

∑p
i=1

(
i
1

)
aiπ

i−1 =
∑p
i=1 iaiπ

i−1, so d0 = b0π.

vL (b0) = inf1≤t≤p (v (tat) + t− 1) = v (d0)− 1 = (p− 1) (w + 1). So, vL (ak) = (p− 1)w − k + p.

Then
∏p−1
i=1 θi = b0 ≡ kakπk−1 = (kakπ

−vL(ak))(π(p−1)(w+1)) modulo π(p−1)w+p.

Write γ = −b0 = −kakπk−1, and extend the normalized valuation vL (.) of L to LF in a nonnor-

malized way (vLF (π) = 1). Denote by g1 (X) = Xp−1 − γ (its roots are the ζip−1
p−1
√
γ , where

ζp−1 is a (p− 1)-th root of unity), and by θ′ any root of g1 (X) = 0. Compute the expression

g (θ′)− g1 (θ′) = g (θ′) in two different ways:

g (θ′)− g1 (θ′) = θ′p−1 − θ′p−1 +
∑p−2
i=1 biθ

′i +
∑p
i=1 iaiπ

i−1 + γ

=
∑p−2
i=1 biθ

′i +
∑p
i=1,i6=k iaiπ

i−1.
(1.5)

All valuations in the sums are≥(p− 1)w+p. Since g (θ′)=
∏p−1
i=1 (θ′−θi) then vLF

(∏p−1
i=1 (θ′−θi)

)
=∑p−1

i=1 vLF (θ′ − θi) ≥ (p− 1)w + p = (p− 1) (w + 1) + 1, so there exists i0 with vLF (θ′ − θi0) ≥
(w + 1) + 1

p−1 , that is vLF (θ′ − θi0) > (w + 1), by Krasner’s Lemma (see [9]) L (θ′) = L (θi0) =

L
(

p−1
√
γ
)

= L (θ2, . . . , θp) = K
(
π, p−1

√
γ
)

= LF . Then:

Theorem 3.3. With the current notations, let L/K be a separable extension of degree p. If

there exist an index k, 1 ≤ k ≤ p − 1, such that vL (ak) + k = inf1≤i≤p (vL (ai) + i), then
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K
(

p−1
√
−kakπk−1

)
/K is cyclic Kummer extension of degree m, m dividing p − 1. Furthermore,

the splitting field of f over K is K
(
π, p−1

√
−kakπk−1

)
.

Notice that θ′ ≡ θi0 ≡ θ mod π and take θ′ = p−1
√
γ, then

θ′ = p−1
√
γ ≡ θ modulo π (1.6)

Furthermore, from the equality k − 1 = (p− 1) (w + 1)− vL (ak), and since w = v
t :

θ′ = p−1
√
γ = ζp−1

p−1
√
−kakπ−vL(ak)π

v
t +1, (1.7)

(p− 1) being prime to p then L?/L?(p−1) ' K?/K?(p−1) ' Z/(p− 1)Z× Z/(p− 1)Z, so

L?/L?(p−1) → K?/K?(p−1)

δL?(p−1) → NL/K(δ)K?(p−1),
(1.8)

is an isomorphism. Since NL/K( γ
NL/K(γ) ) ∈ K?(p−1), thus the pre-image γ

NL/K(γ) ∈ L?(p−1),

that is p−1

√
γ

NL/K(γ) ∈ L?. So L
(

p−1
√
γ
)

= K
(
π, p−1

√
γ
)

= K
(
π, p−1

√
NL/K (γ)

)
, and then F =

K
(

p−1
√
NL/K (γ)

)
, and LF = K

(
π, p−1

√
NL/K (γ)

)
. By other words we can take

p−1
√
NL/K (γ) as primitive element of F/K (1.9)

If the principal coefficient is ap = 1 (char(K) = 0 ), LF = L ( p−1
√
−pπ) = L ( p−1

√
−p) =

K (π, p−1
√
−p) = K (π, ζp) is the splitting field of f over K. (where ζp is a primitive p-th root

of unity). Furthermore, since Xp−1 + p is Eisenstein, K (π, ζp) /K is totally ramified of degree

p (p− 1) (K with no the p-th roots of unity), otherwise L/K is normal. then:

Theorem 3.4. With the current notations, let L/K be a separable extension of degree p. If

vL (ai) ≥ vL (p) + p = p (e+ 1) for i , 1 ≤ i ≤ p − 1 then the splitting field of f over K is

K (π, p−1
√
−p) = K (π, ζp). Furthermore K (π, ζp) /K is totally ramified of degree p (p− 1), (K

with no p -th roots of unity). Otherwise K (π) /K is normal of degree p.

Now let us generate the intermediate extension another way:

Theorem 3.5. With the current notations, let L/K be a separable extension of degree p. Then

there exists c ∈ K?, unique up to K?(p−1), such that the following hold:

• L ( p−1
√
c) is the Galois closure of L/K

• For every τ ∈ Gal (L ( p−1
√
c) /K), and σ ∈ Gal (L ( p−1

√
c) /K ( p−1

√
c)), we have

τστ−1 = σa, with a =
τ( p−1

√
c)

p−1
√
c

modulo p.

Proof. K contains the p − 1-th roots of unity, F/K is Kummer cyclic of degree m, so F =

K
(

m
√
b
)

, b ∈ K?. K
(

m
√
b
)

= K
(

m
√
d
)

; if and only if there exists an integer k ≥ 1; with (k,m) = 1
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such that d ∈ bkK?m. Up to take c = b(p−1)/m, LF = L ( p−1
√
c).

Now τ( p−1
√
c) = σi(εj( p−1

√
c)) = σi(ζjp−1

p−1
√
c) = ζjp−1

p−1
√
c, for every τ ∈ gal (L ( p−1

√
c) = LF/K).

So τ( p−1
√
c)

p−1
√
c

is a unit of L/F . ζjp−1 does not depend on c but on the coclass cK?p−1 only. Indeed

τ( p−1
√
c)

p−1
√
c

=
τ( p−1√

d)
p−1√

d
, if and only if τ

(
p−1
√

c
d

)
= p−1

√
c
d , that is c

d ∈ K
?p−1.

Set θ = σ (π) − π so θ ≡ 0 mod πv+1 and π1 = τ (π) it is uniformizer too. So σ (π1) − π1 =

u(σ (π) − π) = uθ with u unit of LF . u ≡ 1 mod π, as σ(τ(π) − π) ≡ τ(π) − π mod π, so the

class of τ(θ)
θ mod π is independent of π and depends on τ and σ only. Then write

θ = στ−1 (π1)−τ−1 (π1), that is τ (θ) = τστ−1 (π1)−π1. Now, since gal(LF/F ) =< σ > is a normal

subgroup of gal(LF/K) which is not abelian we have τστ−1 = σa, with 1 ≤ a ≤ p − 1, therefore

τ (θ) = (σa (π1)− π1). Since the equality between ideals σ ((πt)) = (πt) holds, by successive

substitutions we get σa (π1)− π1 ≡ a (σ (π1)− π1) ≡ a (σ (π)− π)

modulo πv+2, that is τ (θ) ≡ aθ modulo πv+2 for 1 ≤ a ≤ p− 1, finally we get

τ(θ)
θ ≡ a modulo πv+1 that is modulo p for 1 ≤ a ≤ p− 1 (1.10)

From (1.9); c = NL/K(γ) = NLF/F (γ); γ = −kakπk−1, ak is the principal coefficient of f . By (1.6)
p−1
√
γ ≡ θ mod π ⇒ NLF/F ( p−1

√
γ) ≡ NLF/F (θ) ≡ θp ≡ θ mod π, then finally

τ(NLF/F ( p−1
√
γ))

NLF/F ( p−1
√
γ) ≡ a modulo πv+1 that is modulo p for 1 ≤ a ≤ p− 1 (1.11)

q.e.d.

3.4 Explicit construction of the splitting field

3.4.1 Interpretation in case the principal coefficient is not ap :

By a simple calculation we get the following Theorem ( 3.6) through the equality:

p−1
√
NL/K (γ) = ξp−1kak (−a0)(

v
t +1) p−1

√
−kak (−a0)

−pvK(ak)
. (1.12)

Theorem 3.6. With the current notations, let L/K be a separable extension of degree p. If there

exists an index k, 1 ≤ k ≤ p− 1 such that vL (ak) + k = inf1≤i≤p (pvK (ai) + i) (hence necessarily

vL (ak) + k < vL(p) + p) then the splitting field of f over K is

K

(
π, (−a0)

v
t

p−1

√
−kak (−a0)

−pvK(ak)

)
.

Remark 3.7. It is clear that if the condition ( 1.13) is satisfied then K(π)/K is normal.

p−1

√
−kak (−a0)

−vK(ak) ∈ K(π). (1.13)

Particular case k = 1.

Corollary 3.8. With the hypothesis and notations of theorem (3.3) , if:

1. vL (a1) ≤ vK (ai) for every i , 2 ≤ i ≤ p− 1 and
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2. vL (a1) ≤ vL(p),

then the splitting field of f over K is K (π, p−1
√
−a1).

If a1 = pα1; α1 ≡ 1 mod PK , (K a local number field) the splitting field of f over K is

K (π, p−1
√
−a1) = K (π, p−1

√
−p) = K (π, ξp), where ξp is a primitive p-th root of unity.

Lemma 3.9. Let (m, p) = 1 and x ∈ K?, then K ( n
√
x) /K is an unramified extension precisely if

x ∈ UKK?n. (See [11]Lemma 5.3.)

From Lemma (3.9) with F = K

(
(−a0)

v
t

p−1

√
−kak (−a0)

−pvK(ak)

)
, we have:

Lemma 3.10. With the conditions of Theorem (3.3)

(p− 1) divides (vK(ak) + k − 1) (ie. the break is integer), if and only if F/K is unramified.

Generation by discriminant:

We have ∆ (f) = (−1)
p(p−1)

2 NK(π)/K (f ′ (π)). f ′ (π) =
∑p
i=1 iaiπ

i−1

= kakπ
k−1

(
1 +

∑
i6=k riπ

i−1
)

, with ri suitable choosen integers. Then it is clear that vL
(
riπ

i−1
)
>

0, for every i, 1 ≤ i ≤ p and i 6= k and therefore, (1 +
∑
i6=k riπ

i−1) ∈ U1
L, thus N0 =

NL/K

(
1 +

∑
i 6=k riπ

i−1
)
∈ U1

K , and then p−1
√
N0 = N ′ ∈ K. Indeed, since U1

K ⊇ NL/K(U1
L) and if

L/K is normal and totally ramifiedNL/K(U1
L) is a subgroup of index p of U1

K . NowNL/K(−f ′(π))=

NL/K(−kakπk−1).N0, therefore p−1
√
−NL/K (f ′ (π)) = ξp−1

p−1

√
NL/K(−kakπk−1).N ′,

then L
(

p−1
√
−kakπk−1

)
= K

(
π, p−1

√
−NL/K (f ′ (π))

)
= K

(
π,

p−1

√
(−1)

p(p−1)
2 +1

∆ (f)

)
.

Theorem 3.11. With the conditions of Theorem (3.3). If there exists an index k,

1 ≤ k ≤ p− 1 such that vL (ak) + k = inf1≤i≤p (vL (ai) + i). Then

K

(
p−1

√
(−1)

p(p−1)
2 +1

∆ (f)

)
/K is a cyclic Kummer extension of degree m, m dividing p − 1.

Furthermore, the splitting field of f over K is K

(
π,

p−1

√
(−1)

p(p−1)
2 +1

∆ (f)

)
.

3.4.2 Interpretation in case the principal coefficient is ap :

Generation by discriminant:

f ′ (π) =
∑p
i=1 iaiπ

i−1 = pπp−1
(

1 +
∑p−1
i=1 riπ

i−1
)

with vL
(
riπ

i−1
)
> 0, for every i,

1 ≤ i ≤ p− 1, so NL/K (−f ′ (π)) = NL/K
(
−pπp−1

)
.N0 = (−p)p (−a0)

p−1
.N0; that is

p−1
√
−NL/K (f ′ (π)) = pζp−1

p−1
√
−pa0N , with N ∈ K thus the splitting field is

K (π, p−1
√
−p) = K (π, ζp) = K

(
π,

p−1

√
(−1)

p(p−1)
2 +1

∆ (f)

)
. With the current notations:

Theorem 3.12. K being a finite extension of Qp. if vL (ai) + i ≥ vL (p) + p = p(e+ 1) for every i

, 1 ≤ i ≤ p − 1 then K (π) /K is normal if and only if the p-th roots of unity lay in K, otherwise

the splitting field of f over K is K (π, ζp) = K

(
π,

p−1

√
(−1)

p(p−1)
2 +1

∆ (f)

)
.
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3.5 Completeness and generation

The generation above by a (p−1)-th root of the discriminant in Propositions (3.11) and (3.12), was

done in a local case with finite residue field, so the completeness is a necessary. Here, a counter-

example of an Eisenstein polynomial defined on Q its splitting field can not be generated by a

(p − 1)-th root of the discriminant, even by adjoining the (p − 1)-th roots of unity to Q, and the

splitting field has a solvable Galois group.

Example 3.13. (Counter-Example):

Consider the number α =
5
√√

26 + 5− 5
√√

26− 5.

By calculation of successive powers of α we get the minimal polynomial of α, Irr(α,Q)(X) =

X5 +5X3 +5X−10 (Eisenstein), α the single real root, (Q(α) ⊂ R). Set r =
5
√√

26 + 5, so we have

α = r − 1/r, and αj = rζj5 − 1/rζj5 , (ζ5 is a primitive 5-th root of unity). By a similar calculation

of successive powers of αj we get that αj and α are conjugate (same minimal polynomial). So

Irr(α,Q)(X) =
∏4
j=0(X − αj) =

∏4
j=0(X − (rζj5 − 1/rζj5)).

1-st case:

Consider K = Q5. Irr(α,Q5)(X) = Irr(α,Q)(X) and is still Eisenstein, then with respect to

(Theorem 4.1. page 336 in [9]), Q5(α)/Q5 is not normal. According thz study above the splitting

field E of Irr(α,Q5) over Q5 is of degree dividing 20.

Now since none of the nonzero coefficients of f is divisible by 25 the principal coefficient of f is a1 = 5

then thanks to corollary (3.8) and Theorem (3.11) the splitting field of f over Q5 is Q5(α, 4
√
−a1) =

Q5(α,
4

√
(−1)

5(4)
2 +1∆(f)). Furthermore, the discriminant of Irr(α,Q5) is ∆(f) = 338000000 =

55.10816 = 55.16.262. As 10816 ≡ 1 modulo 5 it is then a 4-power in Q5, Q5(
4

√
(−1)

5(4)
2 +1∆(f)) =

Q5( 4
√
−5) = Q5(ξ5). That is E = Q5(α, ξ5)

2-nd case:

K = Q(i) (with i2 = −1). The discriminant of Q(i) is −4, it is not divisible by 5, it does not ramify

in Q(i), Irr(α,Q) is still Eisenstein in K. The splitting field M of Irr(α,Q), over Q has a solvable

group of degree 20 (Software Pari), explicitly < σ5 = τ4 = 1, τ−1στ = σ2 >. M is included in

Q(r, ζ5)/Q which is of degree at most 40 (r is a root of the polynomial X10 − 10X5 − 1). Since,

r5 = 5 +
√

26 then Q(r5) = Q(
√

26). Q(α, ζ5,
√

26) = Q(α, ζ5, r
5) is included in Q(r, ζ5). Since

Q(α, ζ5,
√

26)/Q is of degree 40 then Q(α, ζ5,
√

26) = Q(r, ζ5), and the splitting field M is then

included in it.

By degrees consideration K( 4
√
−5) ⊂ K(

√
26, ζ5). Ad absurdum assume that 4

√
−5 ∈ K(

√
26, ζ5) =

Q(
√

26, ζ20). Q(
√

26, ζ20)/Q being abelian cannot contain the non-normal extension Q( 4
√
−5)/Q,

so 4
√
−5
√

26 does not lay in K(α,
√

26, ζ5) neither to the splitting field of Irr(α,K) = Irr(α,Q)

over K that is included in it. Then the counter example.
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