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Abstract

Results on the existence of solutions to a new class of impulsive singular fractional differential
systems with multiple base points are established. The assumptions imposed on the nonlinear-
ities, see ((C) and (D) in Theorem 3.1), are weaker than known ones, (i.e., (A) in Introduction
section). The analysis relies on the well known fixed point theorems. An example is given to
illustrate the efficiency of the main theorems. The investigation shows that these results and
methods are helpful for study in the nonlinear area and the numerical simulation, especially
for study in the the numerical solution of a fractional differential equation with multiple base
points with or without impulse effects. A section ”Conclusions” is given with future work
research directions.

2010 Mathematics Subject Classification. 92D25. 34A37, 34K15
Keywords. Singular fractional differential system, impulsive boundary value problem, Riemann-Liouville fractional differen-
tial equation with multiple base points, fixed point theorem.

1 Introduction

Fractional differential equations is a generalization of ordinary differential equations to arbitrary non
integer orders. The origin of fractional calculus goes back to Newton and Leibniz in the seventieth
century. Recent investigations have shown that many physical systems can be represented more
accurately through fractional derivative formulation.

The theory of impulsive differential equations describes processes which experience a sudden
change of their state at certain moments. Processes with such a character arise naturally and often,
for example, phenomena studied in physics, chemical technology, population dynamics, biotechnol-
ogy and economics. For an introduction of the basic theory of impulsive differential equation.

In recent papers [1-17], the authors studied the existence or uniqueness of positive solutions
or solutions of boundary value problems for the impulsive fractional differential equations. While
the existence of solutions of impulsive boundary value problems for Riemann-Liouville fractional
differential equations has not been given up to now, the research proceeds slowly and appears some
new difficulties.

In [1], the following boundary value problem for fractional differential equation with the base
point t = 0 was discussed{

Dα
0+u(t)− λu(t) = f(t, u(t)), t ∈ (0, 1], 0 < α ≤ 1,

lim
t→0

t1−αu(t) = u(1), (1)
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where Dα
0+ is the Riemann-Liouville fractional derivative of order α, f is continuous and λ ∈ R.

The existence and uniqueness of solutions of BVP(2) are established under some assumptions by
using Banach contraction principle. One of the main assumptions in [1] is as follows (see Theorem
4.3 and Remark 4.4 in [1]):

(B). there exist positive numbers M and k > 0 such that |f(t, x)| ≤M and |f(t, u)−f(t, v)| ≤
k|u− v| hold for all t ∈ [0, 1] and u, v ∈ R or

(C). for each u0 ∈ C1−α[0, 1] fixed, there exists ku0 > 0 such that

|f(t, u)− f(t, u0(t))| ≤ ku0
|u− u0(t)|, t ∈ [0, 1], u ∈ R.

In [18], the authors studied the existence and uniqueness of solutions of the following periodic
boundary value problem of the impulsive fractional differential equation with a single base point
t = 0 

Dα
0+u(t)− λu(t) = f(t, u(t)), t ∈ (0, 1], t 6= t1 ∈ (0, 1), 0 < α ≤ 1,

lim
t→0

t1−αu(t) = u(1),

lim
t→t+1

[t− t1]1−α[u(t)− u(t1)] = I(u(t1)),
(2)

where Dα
0+ is the Riemann-Liouville fractional derivative of order α, I : R → R is continuous,

f : [0, 1] × R → R is continuous, λ ∈ R is a constant. The existence and uniqueness of solutions
of BVP(1) are established under some assumptions by using Banach contraction principle. One of
the main assumptions in [18] is as follows:

(A). there exist positive numbers M and m such that

|f(t, x)| ≤M, |I(x)| ≤ m, t ∈ [0, 1], x ∈ R.

In recent paper [22], the following periodic boundary value problem of impulsive fractional
differential equation with multiple base points

Dα
t+i
u(t)− λu(t) = f(t, u(t)), t ∈ (ti, ti+1], i = 0, 1,

lim
t→0

t1−αu(t) = u(1),

lim
t→t+1

[t− t1]1−α[u(t)− u(t1)] = I1(u(t1)),
(3)

was discussed, where where α ∈ (0, 1) 0 = t0 < t1 < t2 = 1, Dα
0+ is the Riemann-Liouville fractional

derivative of order α, I1 ∈ C(R,R), f is s continuous at every point (t, u) ∈ (ti, ti+1] × R. The
existence and uniqueness of solutions of (3) were proved under the assumption (B).

In this paper, we discuss the boundary value problem of the impulsive singular fractional dif-
ferential system with multiple base points

Dα
∗ x(t)− λx(t) = p(t)f(t, x(t), y(t)), t ∈ (0, 1), t 6= t1

Dβ
∗ y(t)− µy(t) = q(t)g(t, x(t), y(t)), t ∈ (0, 1), t 6= t1,

x(1)− limt→0 t
1−αx(t) =

∫ 1

0
ϕ(s)G(s, x(s), y(s))ds,

y(1)− lim
t→0

t1−βy(t) =
∫ 1

0
ψ(s)H(s, x(s), y(s))ds,

lim
t→t+1

[t− t1]1−αx(t) = I(t1, x(t1), y(t1)),

lim
t→t+1

[t− t1]1−βy(t) = J(t1, x(t1), y(t1)).

(4)
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where
(•) 0 < α, β < 1, λ, µ ∈ R, Dα

∗ ( or Dβ
∗ ) is the Riemann-Liouville fractional derivative of order

α ( or β ) with the base point ∗,
(•) 0 = t0 < t1 < t2 = 1, I, J : (0, 1)×R2 → R are continuous functions,
(•) ϕ,ψ : (0, 1)→ R satisfy that

ϕ|(0,t1), ψ|(0,t1) ∈ L1(0, t1), ϕ|(t1,1), ψ|(t1,1) ∈ L1(t1, 1),

(•) p, q : (t0, t1)
⋃

(t1, t2) → R satisfy that there exist constants k1 > −1,−α < l1 ≤ 0 with
α+ k1 + l1 ≥ 0, k2 > −1,−β < l2 ≤ 0 with β + k2 + l2 ≥ 0 such that

|p(t)| ≤ (t− ti)k1(ti+1 − t)l1 , |q(t)| ≤ (t− ti)k2(ti+1 − t)l2 for t ∈ (ti, ti+1), i = 0, 1,

(•) f, g,G,H, I, J defined on (0, 1]×R×R are Caratheodory functions (see Definition 2.5), all
of which may be singular at the points t = 0, t1, 1.

A pair of functions (x, y) defined on (0, 1) is called a solution of BVP(4), if

x|(ti,ti+1] ∈ C0(0, t1], y|(ti,ti+1] ∈ C0(0, t1], i = 0, 1,

Dα
t+i
x|(ti,ti+1] ∈ L1(ti, ti+1], Dβ

t+i
y|(ti,ti+1] ∈ L1(ti, ti+1], i = 0, 1,

there exist the limits limt→t+i
(t− ti)1−αx(t), limt→t+i

(t− ti)1−βy(t), i = 0, 1,

and x, y satisfy all equations in (4).
We obtain the results on the existence of at least one solution of BVP(4). An example is given

to illustrate the efficiency of the main theorem. The results in this paper generalize those ones in
[1,18], i.e., assumptions (A) or (B) is replaced by the weaker ones (see (C) and (D) in Section 3).
Both p and q maybe singular at t = 0, t1, t2. The impulse functions in this paper are different from
those ones in known paper [18,22].

In the left and right fractional derivatives Dα
a+x and Dα

b−x, a is called a left base point and b
right base point. Both a and b are called base points of fractional derivatives. An FDE containing
more than one base point is called a multiple base points FDE. An FDE containing only one
base point is called a single base point FDE. It is easy to see that the fractional differential
equations in (1) contains only one base point t = 0. So the problem we are concerned is a new
one. In [1, 18, 22], the assumptions imposed on the nonlinearities are (A), (B) and (C). But in this
paper the assumptions imposed on f, g in (4) involving sup-multiplicative-like functions which do
not satisfy (A), (B) and (C) (see Definition 2.6). So our results are new.

The remainder of this paper is as follows: in Section 2, we present preliminary results. In Section
3, the main theorems and their proof are given. In Section 4, an example is given to illustrate the
main results.

2 Preliminary results

For the convenience of the readers, we firstly present the necessary definitions from the fractional
calculus theory. These definitions and results can be found in the literatures [8]. Let the Gamma
function B(p, q) and the beta functions Γ(α) and be defined by

Γ(α) =
∫ +∞

0
xα−1e−xdx, B(p, q) =

∫ 1

0
xp−1(1− x)q−1dx.
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The Mitag-Leffler function (see [8]) is defined by Eα,α(λ) =
∞∑
k=0

λk

Γ((k+1)α) . We note that Eα,α(x) > 0

for every x ∈ R and Eα,α(x) is strictly increasing in x [21], lim
x→0

Eα,α(x) = 1
Γ(α) . Then for x > 0 we

have that Eα,α(−x) < Eα,α(0) = 1
Γ(α) < Eα,α(x).

Definition 2.1[8]. Let a ≥ 0. The Riemann-Liouville fractional integral of order α > 0 of a
function g : (a,∞)→ R is given by

Iαa+g(t) =
1

Γ(α)

∫ t

a

(t− s)α−1g(s)ds,

provided that the right-hand side exists, a is called a base point.
Definition 2.2[8]. Let a ≥ 0. The Riemann-Liouville fractional derivative of order α > 0 of a

function g : (a,∞)→ R is given by

Dα
a+g(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

g(s)

(t− s)α−n+1
ds,

where n− 1 ≤ α < n, provided that the right-hand side exists, a is called a base point.
Definition 2.3. Let E and Z be Banach spaces. L : D(L) ⊂ E → Z is called a Fredholm

operator of index zero if ImL is closed in E and dim KerL = co dim ImL < +∞.
It is easy to see that if L is a Fredholm operator of index zero, then there exist the projectors

P : E → E, and Q : Z → Z such that

Im P = Ker L, Ker Q = Im L, E = Ker L⊕Ker P, Z = Im L⊕ Im Q.

If L : D(L) ⊂ E → Z is called a Fredholm operator of index zero, the inverse of

L|D(L)∩Ker P : D(L) ∩Ker P → Im L

is denoted by Kp.

Definition 2.4. Suppose that L : D(L) ⊂ E → Z is called a Fredholm operator of index zero.
The continuous map N : E → Z is called L−compact if QN(Ω) is bounded and Kp(I −Q)N(Ω)
is compact for each nonempty open subset Ω of X satisfying D(L) ∩ Ω 6= ∅.

To obtain the main results, we need the abstract existence theorem.
Lemma 2.1 [19] Leray-Schauder Nonlinear Alternative. Let E,Z be Banach spaces

and L : D(L)
⋂
E → Z a Fredholm operator of index zero with KerL = {0 ∈ E}, N : E → Z

L−compact. Suppose Ω is a nonempty open subset of X satisfying D(L) ∩ Ω 6= ∅. Then either
there exists x ∈ ∂Ω and θ ∈ (0, 1) such that Lx = θNx or there exists x ∈ Ω such that Lx = Nx.

Definition 2.5. We call F : (0, 1) × R2 → R an Caratheodory function if it satisfies the
followings:

(i) t→ F
(
t, (t− ti)α−1u, (t− ti)β−1v

)
(i = 0, 1) are measurable on (ti, ti+1](i = 0, 1) and there

exist the limits limt→t+i
F
(
t, (t− ti)α−1u, (t− ti)β−1v

)
, i = 0, 1
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(ii) (x, y)→ F
(
t, (t− ti)α−1x, (t− ti)β−1y

)
(i = 0, 1) are continuous on R2 for all t ∈ (0, 1],

(iii) for each r > 0 there exists Mr > 0 such that |F
(
t, (t− ti)α−1x, (t− ti)β−1y

)
| ≤ Mr for

all t ∈ (ti, ti+1] and |x|, |y| ≤ r(i=0,1).

Definition 2.6[20]. An odd homeomorphism Φ of the real line R onto itself is called a sup-
multiplicative-like function if there exists a homeomorphism ω of [0,+∞) onto itself which supports
Φ in the sense that for all v1, v2 ≥ 0 it holds

Φ(v1v2) ≥ ω(v1)Φ(v2). (5)

ω is called the supporting function of Φ.

Remark 2.1. Note that any sup-multiplicative function is sup-multiplicative-like function.
Also any function of the form

Φ(u) :=

k∑
j=0

cj |u|ju, u ∈ R

is sup-multiplicative-like, provided that cj ≥ 0. Here a supporting function is defined by ω(u) :=
min{uk+1, u}, u ≥ 0.

Remark 2.2. It is clear that a sup-multiplicative-like function Φ and any corresponding sup-
porting function ω are increasing functions vanishing at zero and moreover their inverses Φ−1 and
ν respectively are increasing and such that

Φ−1(w1w2) ≤ ν(w1)Φ−1(w2), (6)

for all w1, w2 ≥ 0 and ν is called the supporting function of Φ−1.

To apply Lemma 2.1, we need to define the Banach spaces E and Z. We use the Banach spaces

X =

x : (0, 1]→ R :

x|(0,t1] ∈ C0(0, t1], x|(t1,1] ∈ C0(t1, 1]
there exist the limits

limt→0+ t1−αx(t), limt→t+1
(t− t1)1−αx(t)


with the norm

||x|| = ||x||∞ = max

{
sup

t∈(0,t1]

t1−α|x(t)|, sup
t∈(t1,1]

(t− t1)1−α|x(t)|

}

Y =

y : (0, 1]→ R :

y|(0,t1] ∈ C0(0, t1], y|(t1,1] ∈ C0(t1, 1]
there exist the limits

limt→0+ t1−βy(t), limt→t+1
(t− t1)1−βy(t)


with the norm

||y|| = ||y||∞ = max

{
sup

t∈(0,t1]

t1−β |y(t)|, sup
t∈(t1,1]

(t− t1)1−β |y(t)|

}
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L1[0, 1] with the norm

||u||1 =

∫ 1

0

|u(s)|ds.

Choose E = X × Y with the norm

||(x, y)|| = max {||x||∞, ||y||∞} .

Choose Z = L1(0, 1)× L1(0, 1)×R4 with the norm∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣


u
v
c
d
c
d



T ∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
= ||(u, v, a, b, c, d)|| = max {||u||1, ||v||1, |a|, |b|, |c|, |d|} .

Define L to be the linear operator from D(L)
⋂
E to Z with

D(L) = {(x, y) ∈ E : Dα
t+i
x,Dβ

t+i
y ∈ L1(ti, ti+1]}

and

L(x, y)(t) =



Dα
t+i
x(t)− λx(t)

Dβ

t+i
y(t)− µy(t)

x(1)− lim
t→0

t1−αx(t)

y(1)− lim
t→0

t1−βy(t)

limt→t+1
[t− t1]1−αx(t)

limt→t+1
[t− t1]1−βy(t)



T

for (x, y) ∈ E. Define N : E → Z by

N(x, y)(t) =



p(t)f(t, x(t), y(t))
q(t)g(t, x(t), y(t))∫ 1

0
ϕ(s)G (t, x(t), y(t)) dt∫ 1

0
ψ(s)H (t, x(t), y(t)) dt
I (t1, x(t1), y(t1))
J (t1, x(t1), y(t1))



T

for (x, y) ∈ E.

Then BVP(4) can be written as

L(x, y) = N(x, y), (x, y) ∈ E
⋂
D(L).

Lemma 2.2. Suppose that f, g,G,H, I, J are Caratheodory functions. Then L is a Fred-
holm operator with index zero and N : X → X is L−compact.

Proof. To prove that L is a is a Fredholm operator with index zero, we should do the following
three steps.
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Step (i) Prove that KerL = {(0, 0) ∈ E}.
We know that (x, y) ∈ KerL if and only if

Dα
t+i
x(t)− λx(t) = 0,

Dβ

t+i
y(t)− µy(t) = 0,

x(1)− lim
t→0

t1−αx(t) = 0,

y(1)− lim
t→0

t1−βy(t) = 0,

lim
t→t1

[t− t1]1−αx(t) = 0,

lim
t→t+1

[t− t1]1−βy(t) = 0.

(7)

From Lemma 2.1 in [3], Dα
t+0
x(t) − λx(t) = 0 implies that there exists c0 ∈ R such that x(t) =

c0Γ(α)tα−1Eα,α(λtα) on (t0, t1]. Now Dα
t+1
x(t)−λx(t) = 0 implies that there exists c1 ∈ R such that

x(t) = c1Γ(α)(t − t1)α−1Eα,α(λ(t − t1)α) on (t1, t2]. It follows from x(1) − lim
t→0

t1−αx(t) = 0 that

c1Γ(α)(1− t1)α−1Eα,α(λ(1− t1)α) = c0. lim
t→t1

[t− t1]1−αx(t) = 0 implies that c1 = 0. Hence we get

c0 = 0. Then x(t) = 0 on [0, 1]. Similarly we get y(t) = 0 on [0, 1]. Thus KerL = {(0, 0) ∈ E ∈ R}.
Step (ii) Prove that ImL = Z.
For (u, v, a, b, c, d) ∈ Z, we know that (u, v, a, b, c, d) ∈ ImL if and only if there exist (x, y) ∈

E
⋂
D(L) such that 

Dα
t+i
x(t)− λx(t) = u(t), t ∈ (ti, ti+1], i = 0, 1,

Dβ

t+i
y(t)− µy(t) = v(t), t ∈ (ti, ti+1], i = 0, 1,

x(1)− lim
t→0

t1−αx(t) = a, y(1)− lim
t→0

t1−βy(t) = b,

lim
t→t1

[t− t1]1−αx(t) = c, lim
t→t+1

[t− t1]1−βy(t) = d.

(8)

We write the general solution of Dα
t+i
x(t)− λx(t) = u(t) by

x(t) = ciΓ(α)(t− ti)α−1Eα,α(λ(t− ti)α)

+
∫ t
ti

(t− s)α−1Eα,α(λ(t− s)α)u(s)ds, t ∈ (ti, ti+1], i = 0, 1.

where lim
t→0+

t1−αx(t) = c0, limt→t+1
(t− t1)1−αx(t) = c1. Use x(1)− lim

t→0
t1−αx(t) = a, we get

c1Γ(α)(1− t1)α−1Eα,α(λ(1− t1)α) +
∫ 1

t1
(1− s)α−1Eα,α(λ(1− s)α)u(s)ds− c0 = a.



8 Y. Liu

Use lim
t→t1

[t− t1]1−αx(t) = c, we get c1 = c. Hence

x(t) =



cΓ(α)2(1− t1)α−1Eα,α(λ(1− t1)α)tα−1Eα,α(λtα)− aΓ(α)tα−1Eα,α(λtα)

+Γ(α)tα−1Eα,α(λtα)
∫ 1

t1
(1− s)α−1Eα,α(λ(1− s)α)u(s)ds

+
∫ t

0
(t− s)α−1Eα,α(λ(t− s)α)u(s)ds, t ∈ (0, t1],

cΓ(α)(t− t1)α−1Eα,α(λ(t− t1)α)

+
∫ t
t1

(t− s)α−1Eα,α(λ(t− s)α)u(s)ds, t ∈ (t1, 1].

(9)

Similarly we can get that

y(t) =



dΓ(β)2(1− t1)β−1Eβ,β(µ(1− t1)β)tβ−1Eβ,β(µtβ)− bΓ(β)tβ−1Eβ,β(µtβ)

+Γ(β)tβ−1Eβ,β(µtβ)
∫ 1

t1
(1− s)β−1Eβ,β(µ(1− s)β)v(s)ds

+
∫ t

0
(t− s)β−1Eβ,β(µ(t− s)β)v(s)ds, t ∈ (0, t1],

dΓ(β)(t− t1)β−1Eβ,β(µ(t− t1)β)

+
∫ t
t1

(t− s)β−1Eβ,β(µ(t− s)β)v(s)ds, t ∈ (t1, 1].

(10)

One can show that if (x, y) satisfies (9) and (10), then (x, y) is a solution of (8). Then (8) has aa
unique solution (x, y) defined by (9) and (10). It is easy to show that (x, y) ∈ E

⋂
D(L). Then

ImL = Z.
Step (iii) Prove that ImL is closed in X and dim KerL = co dim ImL < +∞..
From Step (ii) ImL = Z is closed in Z. It follows from KerL = {(0, 0) ∈ E} that dim KerL = 0.

Define the projector P : E → E by

P (x, y)(t) = (0, 0) for (x, y) ∈ E. (11)

It is easy to prove that
Im P = Ker L, E = KerL⊕KerP. (12)

Define the projector Q : Z → Z by

Q(u, v, a, b, c, d)(t) = (0, 0, 0, 0, 0, 0) (13)

for (u, v, a, b, c, d) ∈ Z.
It is easy to show that

ImL = KerQ, Z = ImQ⊕ ImL. (14)

From above discussion, we see that dim KerL = co dim ImL = 0 < +∞. So L is a Fredholm
operator of index zero.
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Now, we prove that N is L−compact. The proof is standard and is divided into three steps.
Step (i) We prove that N is continuous.
Let (xn, yn) ∈ E with (xn, yn)→ (x0, y0) as n→∞. We will show that N(xn, yn)→ N(x0, y0)

as n→∞.
In fact, there exists r > 0 such that ||(xn, yn)|| ≤ r for all n. By

N(xn, yn)(t) =



p(t)f(t, xn(t), yn(t))
q(t)g(t, xn(t), yn(t))∫ 1

0
ϕ(t)G (t, xn(t), yn(t)) dt∫ 1

0
ψ(t)H (t, xn(t), yn(t)) dt
I (t1, xn(t1), yn(t1))
J (t1, xn(t1), yn(t1))



T

for (x, y) ∈ E.

Since f, g,G,H, I, J are Caratheodory functions, we know that f
(
t, (t− ti)α−1u, (t− ti)β−1v

)
is

continuous on [ti, ti+1]×[−r, r]2(i = 0, 1) respectively, so f
(
t, (t− ti)α−1u, (t− ti)β−1v

)
is uniformly

continuous on [ti, ti+1]× [−r, r]2(i = 0, 1) respectively.
Similarly, g,G,H, I, J are uniformly continuous on [ti, ti+1]× [−r, r]2(i = 0, 1) respectively. For

any ε > 0, there exists δ > 0 such that∣∣f (t, (t− tk)α−1u1, (t− tk)β−1v1

)
− f

(
t, (t− tk)α−1u2, (t− tk)β−1v2

)∣∣ < ε,∣∣g (t, (t− tk)α−1u1, (t− tk)β−1v1

)
− g

(
t, (t− tk)α−1u2, (t− tk)β−1v2

)∣∣ < ε,∣∣G (t, (t− tk)α−1u1, (t− tk)β−1v1

)
−G

(
t, (t− tk)α−1u2, (t− tk)β−1v2

)∣∣ < ε,∣∣H (t, (t− tk)α−1u1, (t− tk)β−1v1

)
−H

(
t, (t− tk)α−1u2, (t− tk)β−1v2

)∣∣ < ε,

hold for all t ∈ (tk, tk+1](k = 0, 1) and∣∣I (t1, (1− t1)α−1u1, (1− t1)β−1v1

)
− I

(
t1, (1− t1)α−1u2, (1− t1)β−1v2

)∣∣ < ε,∣∣J (t1, (1− t1)α−1u1, (1− t1)β−1v1

)
− J

(
t1, (1− t1)α−1u2, (1− t1)β−1v2

)∣∣ < ε

for all k = 0, 1, |u1 − u2| < δ and |v1 − v2| < δ with u1, u2, v1, v2 ∈ [−, r, r].
From (xn, yn)→ (x0, y0), there exists N such that

(t− tk)1−α|xn(t)− x0(t)| < δ, t ∈ (tk, tk+1], k = 0, 1, n > N,

(t− tk)1−β |yn(t)− y0(t)| < δ, t ∈ (tk, tk+1], k = 0, 1, n > N.
(15)
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Hence, we get ∫ 1

0

|p(t)f (t, xn(t), yn(t))− p(t)f (t, x0(t), y0(t))| dt

=

1∑
k=0

∫ tk+1

tk

∣∣p(t)f (t, (t− tk)α−1(t− tk)1−αxn(t), (t− tk)β−1(t− tk)1−βyn(t)
)

−p(t)
(
t, (t− tk)α−1(t− tk)1−αx0(t), (t− tk)β−1(t− tk)1−βy0(t)

)∣∣ dt
<

1∑
k=0

∫ tk+1

tk

εp(t)dt = ε

∫ 1

0

p(t)dt, n > N.

It follows that, for all n > N , it holds that∣∣∣∣∫ 1

0

p(t)f (t, xn(t), yn(t)) dt−
∫ 1

0

p(t)f (t, x0(t), y0(t)) dt

∣∣∣∣ < ε

∫ 1

0

p(t)dt. (16)

Similarly for all n > N , we get∣∣∣∣∫ 1

0

q(t)g (t, xn(t), yn(t)) dt−
∫ 1

0

q(t)g (t, x0(t), y0(t)) dt

∣∣∣∣ < ε

∫ 1

0

q(t)dt, (17)

∣∣∣∣∫ 1

0

ϕ(t)G (t, xn(t), yn(t)) dt−
∫ 1

0

ϕ(t)G (t, x0(t), y0(t)) dt

∣∣∣∣ < ε

∫ 1

0

ϕ(t)dt, (18)∣∣∣∣∫ 1

0

ψ(t)H (t, xn(t), yn(t)) dt−
∫ 1

0

ψ(t)H (t, x0(t), y0(t)) dt

∣∣∣∣ < ε

∫ 1

0

ψ(t)dt, (19)

and
|I (t1, xn(t1), yn(t1))− I (t1, x0(t1), y0(t1))| < ε, (20)

|J (t1, xn(t1), yn(t1))− J (t1, x0(t1), y0(t1))| < ε. (21)

Then (16)-(21) imply that ||N(xn, yn)−N(x0, y0)|| → 0, n→∞. It follows that N is continuous.
Let P : X → X and Q : Y → Y be defined by (11) and (13). For (u, v, a, b, c, d) ∈ ImL = Z, let

KP (u, v, a, b, c, d)(t) = (x(t), y(t)) , (22)

where x(t) and y(t) are defined by (9) and (10) respectively.
One can sow that KP (u, v, a, b, c, d) ∈ D(L)

⋂
E and KP : Im L→ D(L) ∩KerP is the inverse

of L : D(L)
⋂

KerP → ImL. The isomorphism ∧ : KerL→ Y/ImL is given by

∧(0, 0) = (0, 0, 0, 0, 0, 0).

Furthermore, one has

QN(x, y)(t) = (0, 0, 0, 0, 0, · · · , 0, 0 · · · , 0), (23)

and
Kp(I −Q)N(x, y)(t) = KpN(x, y)(t) = (x1(t), y1(t)) ,
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where

x1(t) =



I(t1, x(t1), y(t1))Γ(α)2(1− t1)α−1Eα,α(λ(1− t1)α)tα−1Eα,α(λtα)

−Γ(α)tα−1Eα,α(λtα)
∫ 1

0
ϕ(s)G(s, x(s), y(s))ds

+Γ(α)tα−1Eα,α(λtα)
∫ 1

t1
(1− s)α−1Eα,α(λ(1− s)α)p(s)f(s, x(s), y(s))ds

+
∫ t

0
(t− s)α−1Eα,α(λ(t− s)α)p(s)f(s, x(s), y(s))ds, t ∈ (0, t1],

I(t1, x(t1), y(t1))Γ(α)(t− t1)α−1Eα,α(λ(t− t1)α)

+
∫ t
t1

(t− s)α−1Eα,α(λ(t− s)α)p(s)f(s, x(s), y(s))ds, t ∈ (t1, 1].

(24)

and

y1(t) =



J(t1, x(t1), y(t1))Γ(β)2(1− t1)β−1Eβ,β(µ(1− t1)β)tβ−1Eβ,β(µtβ)

−Γ(β)tβ−1Eβ,β(µtβ)
∫ 1

0
ϕ(s)H(s, x(s), y(s))ds

+Γ(β)tβ−1Eβ,β(µtβ)
∫ 1

t1
(1− s)β−1Eβ,β(µ(1− s)β)q(s)g(s, x(s), y(s))ds

+
∫ t

0
(t− s)β−1Eβ,β(µ(t− s)β)q(s)g(s, x(s), y(s))ds, t ∈ (0, t1],

J(t1, x(t1), y(t1))Γ(β)(t− t1)β−1Eβ,β(µ(t− t1)β)

+
∫ t
t1

(t− s)β−1Eβ,β(µ(t− s)β)q(s)g(s, x(s), y(s))ds, t ∈ (t1, 1].

(25)

Let Ω be a bounded open subset of E satisfying Ω
⋂
D(L) 6= ∅. We have ||(x, y)|| ≤ r < +∞

for all (x, y) ∈ Ω. Since f is a Caratheodory function, then f
(
t, (t− tk)α−1x, (t− tk)β−1y

)
is

continuous both on (tk, tk+1]× [−r, r]2(k = 0, 1) and there exist the limits

lim
t→0+

f
(
t, tα−1x, tβ−1y

)
, lim
t→t+1

f
(
t, (t− t1)α−1x, (t− t1)β−1y

)
for every (x, y) ∈ [−r, r]2. Then f

(
t, (t− t!)α−1x, (t− t1)β−1y

)
is bounded on [tk, tk+1]×[−r, r]2(k =

0, 1).
Similarly, f, g,G,H, I, J are Caratheodory functions, there exists a constant M > 0 such
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that

|f (t, x(t), y(t))| =
∣∣f (t, (t− tk)α−1(t− tk)1−αx(t), (t− tk)β−1(t− tk)1−βy(t)

)∣∣ ≤M,

|g (t, x(t), y(t))| ≤M,

|G (t, x(t), y(t))| ≤M,

and |H (t, x(t), y(t))| ≤M, hold for all t ∈ (0, 1)

|I (t1, x(t1), y(t1))| ≤M,

|J (t1, x(t1), y(t1))| ≤M.

(26)

Step (ii) Prove that QN(Ω) is bounded.
It follows from (23) that QN(Ω) is bounded.
Step (iii) Prove that KP (I − Q)N : Ω → E is compact, i.e., prove that KP (I − Q)N(Ω) is

relatively compact. This is divided into three sub-steps:
Sub-step (iii1) Prove that KP (I −Q)N(Ω) is uniformly bounded.
Using (26). We have for t ∈ (0, t1] that

t1−α|x1(t)| ≤ |I(t1, x(t1, y(t1))|Γ(α)2(1− t1)α−1Eα,α(λ(1− t1)α)Eα,α(λtα)

+Γ(α)Eα,α(λtα)
∫ 1

0
|ϕ(s)G(s, x(s), y(s))|ds

+Γ(α)Eα,α(λtα)
∫ 1

t1
(1− s)α−1Eα,α(λ(1− s)α)|p(s)f(s, x(s), y(s))|ds

+t1−α
∫ t

0
(t− s)α−1Eα,α(λ(t− s)α)|p(s)f(s, x(s), y(s))|ds

≤MΓ(α)2(1− t1)α−1Eα,α(λ(1− t1)α)Eα,α(|λ|) +MΓ(α)Eα,α(|λ|)||ϕ||1

+MΓ(α)Eα,α(|λ|)
∫ 1

t1
(1− s)α−1Eα,α(λ(1− s)α)(s− t1)k1(1− s)l1ds

+Mt1−α
∫ t

0
(t− s)α−1Eα,α(λ(t− s)α)sk1(t1 − s)l1ds

≤MΓ(α)2(1− t1)α−1Eα,α(λ(1− t1)α)Eα,α(|λ|) +MΓ(α)Eα,α(|λ|)||ϕ||1

+MΓ(α)Eα,α(|λ|)
+∞∑
j=0

∫ 1

t1
(1− s)α+l1−1 λ

j(1−s)αj
Γ((j+1)α) (s− t1)k1ds

+Mt1−α
+∞∑
j=0

∫ t
0
(t− s)α−1 λ

j(t−s)αj
Γ((j+1)α)s

k1(t− s)l1ds
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≤MΓ(α)2(1− t1)α−1Eα,α(λ(1− t1)α)Eα,α(|λ|) +MΓ(α)Eα,α(|λ|)||ϕ||1

+MΓ(α)Eα,α(|λ|)
+∞∑
j=0

λj

Γ((j+1)α)

∫ 1

t1
(1− s)α+αj+l1−1(s− t1)k1ds

+Mt1−α
+∞∑
j=0

λj

Γ((j+1)α)

∫ t
0
(t− s)α+αj+l1−1sk1ds

= MΓ(α)2(1− t1)α−1Eα,α(λ(1− t1)α)Eα,α(|λ|) +MΓ(α)Eα,α(|λ|)||ϕ||1

+MΓ(α)Eα,α(|λ|)
+∞∑
j=0

λjtα+αj+k1+l1

Γ((j+1)α) B(α+ αj + l1, k1 + 1)

+M
+∞∑
j=0

λjt1+αj+l1+k1

Γ((j+1)α) B(α+ αj + l1, k1 + 1)

≤MΓ(α)2(1− t1)α−1Eα,α(λ(1− t1)α)Eα,α(|λ|) +MΓ(α)Eα,α(|λ|)||ϕ||1

+MΓ(α)Eα,α(|λ|)
+∞∑
j=0

λjtαj

Γ((j+1)α)B(α+ l1, k1 + 1) +M
+∞∑
j=0

λjtαj

Γ((j+1)α)B(α+ l1, k1 + 1)

≤MΓ(α)2(1− t1)α−1Eα,α(λ(1− t1)α)Eα,α(|λ|) +MΓ(α)Eα,α(|λ|)||ϕ||1

+MΓ(α)Eα,α(|λ|)Eα,α(|λ|)B(α+ l1, k1 + 1) +MEα,α(|λ|)B(α+ l1, k1 + 1) < +∞.

For t ∈ (t1, 1], we have

(t− t1)1−α|x1(t)| ≤ |I(t1, x(t1, y(t1))|Γ(α)Eα,α(λ(t− t1)α)

+(t− t1)1−α ∫ t
t1

(t− s)α−1Eα,α(λ(t− s)α)|p(s)f(s, x(s), y(s))|ds

≤MΓ(α)Eα,α(|λ|) +M(t− t1)1−α ∫ t
t1

(t− s)α−1Eα,α(λ(t− s)α)(s− t1)k1(1− s)l1ds

= MΓ(α)Eα,α(|λ|) +M(t− t1)1−α
∞∑
j=0

λj

Γ(α(j+1))

∫ t
t1

(t− s)α+αj+l1−1(s− t1)k1ds

≤MΓ(α)Eα,α(|λ|) +M
∞∑
j=0

λj(t−t1)1+αj+k1+l1

Γ(α(j+1)) B(α+ αj + l1, k1 + 1)

≤MΓ(α)Eα,α(|λ|) +M
∞∑
j=0

λj(t−t1)αj

Γ(α(j+1)) B(α+ l1, k1 + 1)

= MΓ(α)Eα,α(|λ|) +MEα,α(|λ|)B(α+ l1, k1 + 1) < +∞.

From above discussion, there exists M1 > 0 such that ||x1||∞ ≤M1 < +∞. Similarly, we can show
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that there existM2 > 0 such that ||y1||∞ ≤M2 < +∞.HenceKP (I−Q)N(Ω) is uniformly bounded.

Sub-step (iii2) Prove that KP (I −Q)N(Ω) is equi-continuous on each subinterval [e, f ] both
⊆ (0, t1] and (t1, 1], respectively.

Note (KP (I −Q)N(x, y) = (x1, y1), x1, y1 are defined by (24) and (25). Define

(t− ti)1−αx1(t) =

{
(t− ti)1−αxt(t), t ∈ (ti, ti+1],
lim
t→t+i

(t− ti)1−αx1(t), t = ti.

Then (t − ti)
1−αx1(t) is continuous on [ti, ti+1]. So {t → (t − ti)

1−αx1(t) : (x, y) ∈ Ω} is
equi-continuous on [ti, ti+1]. Hence {t → (t − ti)

1−αx1(t) : (x, y) ∈ Ω} is equi-continuous on
(ti, ti+1](i = 0, 1). Similarly we can show that {t→ (t− ti)1−βy1(t) : (x, y) ∈ Ω} is equi-continuous
on (ti, ti+1](i = 0, 1). So KP (I−Q)N(Ω) is relatively compact. Then N is L−compact. The proofs
are completed.

3 Main Results

Now, we prove that main theorem in this paper. We need the following assumptions:
(C) Φ is a sup-multiplicative-like function with its supporting function w, the inverse function

of Φ is Φ−1 with supporting function ν.
(D) f, g,H,G, I, J are Caratheodory functions and satisfy that there exist nonnegative

constants ci, bi, ai(i = 1, 2), Ci, Bi, Ai(i = 1, 2) and Ci, Bi, Ai(i = 1, 2) such that

|f(t, (t− tk)α−1x, (t− tk)β−1y)| ≤ c1 + b1|x|+ a1Φ−1(|y|), t ∈ (tk, tk+1], k = 0, 1,

|g(t, (t− tk)α−1x, (t− tk)β−1y)| ≤ c2 + b2Φ(|x|) + a2|y|, t ∈ (tk, tk+1], k = 0, 1,

|G(t, (t− tk)α−1x, (t− tk)β−1y)| ≤ C1 +B1|x|+A1Φ−1(|y|), t ∈ (tk, tk+1], k = 0, 1,

|H(t, (t− tk)α−1x, (t− tk)β−1y)| ≤ C2 +B2Φ(|x|) +A2|y|, t ∈ (tk, tk+1], k = 0, 1,

|I(t1, (1− t1)α−1x, (1− t1)β−1y)| ≤ C1 +B1|x|+A1Φ−1(|y|),

|J(t1, (1− t1)α−1x, (1− t1)β−1y)| ≤ C2 +B2Φ(|x|) +A2|y|

Denote

µ1 =: max
{

Γ(α)2Eα,α(|λ|)2C1 + Γ(α)Eα,α(|λ|)||ϕ||1C1

+ Γ(α)Eα,α(|λ|)2B(α+ l1, k1 + 1)c1 + Eα,α(|λ|)B(α+ l1, k1 + 1)c1,

Γ(α)Eα,α(|λ|)C1 + Eα,α(|λ|)B(α+ l1, k1 + 1)c1
}
,
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σ1 =: max
{

Γ(α)2Eα,α(|λ|)2B1 + Γ(α)Eα,α(|λ|)||ϕ||1B1

+ Γ(α)Eα,α(|λ|)2B(α+ l1, k1 + 1)b1 + Eα,α(|λ|)B(α+ l1, k1 + 1)b1,

Γ(α)Eα,α(|λ|)B1 + Eα,α(|λ|)B(α+ l1, k1 + 1)b1
}
,

δ1 =: max
{

Γ(α)2Eα,α(|λ|)2A1 + Γ(α)Eα,α(|λ|)||ϕ||1A1

+ Γ(α)Eα,α(|λ|)2B(α+ l1, k1 + 1)a1 + Eα,α(|λ|)B(α+ l1, k1 + 1)a1,

Γ(α)Eα,α(|λ|)A1 + Eα,α(|λ|)B(α+ l1, k1 + 1)a1

}
,

and
µ2 =: max

{
Γ(β)2Eβ,β(|µ|)2C2 + Γ(β)Eβ,β(|µ|)||ψ||1C2

+ Γ(β)Eβ,β(|µ|)2B(β + l2, k2 + 1)c2 + Eβ,β(|µ|)B(β + l2, k2 + 1)c2,

Γ(β)Eβ,β(|µ|)C2 + Eβ,β(|µ|)B(β + l2, k2 + 1)c2
}
,

σ2 =: max
{

Γ(β)2Eβ,β(|µ|)2B2 + Γ(β)Eβ,β(|µ|)||ψ||1B2

+ Γ(β)Eβ,β(|µ|)2B(β + l2, k2 + 1)b2 + Eβ,β(|µ|)B(β + l2, k2 + 1)b2,

Γ(β)Eβ,β(|µ|)B2 + Eβ,β(|µ|)B(β + l2, k2 + 1)b2
}
,

δ2 =: max
{

Γ(β)2Eβ,β(|µ|)2A2 + Γ(β)Eβ,β(|µ|)||ψ||1A2

+ Γ(β)Eβ,β(|µ|)2B(β + l2, k2 + 1)a2 + Eβ,β(|µ|)B(β + l2, k2 + 1)a2,

Γ(β)Eβ,β(|µ|)A2 + Eβ,β(|µ|)B(β + l2, k2 + 1)a2

}
.

Theorem 3.1. Suppose that (C) and (D) hold. Then BVP(4) has at least one solution if

σ1 < 1, σ2

w((1−δ1)/(2δ1)) + δ2 < 1

or

δ2 < 1, σ1 + δ1ν
(

2σ2

1−δ2

)
< 1.

(27)

Proof: To apply Lemma 2.1, we should define an open bounded subset Ω of E centered at zero
such that assumptions in Lemma 2.1 hold. To obtain Ω.

Let Ω1 = {(x, y) ∈ E ∩D(L) \KerL, L(x, y) = θN(x, y) for some θ ∈ (0, 1)}. We prove that Ω1

is bounded.
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For (x, y) ∈ Ω1, we get L(x, y) = θN(x, y) and N(x, y) ∈ ImL. Then

Dα
t+k
x(t)− λx(t) = θp(t)f(t, x(t), y(t)), t ∈ (tk, tk+1], k = 0, 1,

Dβ

t+k
y(t)− µy(t) = θq(t)g(t, x(t), y(t)), t ∈ (tk, tk+1], k = 0, 1,

x(1)− lim
t→0

t1−αx(t) = θ
∫ 1

0
ϕ(s)G(s, x(s), y(s))ds,

y(1)− lim
t→0

t1−βy(t) = θ
∫ 1

0
ψ(s)H(s, x(s), y(s))ds,

lim
t→t+1

[t− t1]1−αx(t) = θI(t1, x(t1), y(t1)),

lim
t→t+1

[t− t1]1−βy(t) = θJ(t1, u(t1), Dα
0+u(t1)).

(28)

So

x(t) =



θ
[
I(t1, x(t1), y(t1))Γ(α)2(1− t1)α−1Eα,α(λ(1− t1)α)tα−1Eα,α(λtα)

−Γ(α)tα−1Eα,α(λtα)
∫ 1

0
ϕ(s)G(s, x(s), y(s))ds

+Γ(α)tα−1Eα,α(λtα)
∫ 1

t1
(1− s)α−1Eα,α(λ(1− s)α)p(s)f(s, x(s), y(s))ds

+
∫ t

0
(t− s)α−1Eα,α(λ(t− s)α)p(s)f(s, x(s), y(s))ds

]
, t ∈ (0, t1],

θ
[
I(t1, x(t1), y(t1))Γ(α)(t− t1)α−1Eα,α(λ(t− t1)α)

+
∫ t
t1

(t− s)α−1Eα,α(λ(t− s)α)p(s)f(s, x(s), y(s))ds
]
, t ∈ (t1, 1].

(29)

and

y(t) =



θ
[
J(t1, x(t1), y(t1))Γ(β)2(1− t1)β−1Eβ,β(µ(1− t1)β)tβ−1Eβ,β(µtβ)

−Γ(β)tβ−1Eβ,β(µtβ)
∫ 1

0
ϕ(s)H(s, x(s), y(s))ds

+Γ(β)tβ−1Eβ,β(µtβ)
∫ 1

t1
(1− s)β−1Eβ,β(µ(1− s)β)q(s)g(s, x(s), y(s))ds

+
∫ t

0
(t− s)β−1Eβ,β(µ(t− s)β)q(s)g(s, x(s), y(s))ds

]
, t ∈ (0, t1],

θ
[
J(t1, x(t1, y(t1))Γ(β)(t− t1)β−1Eβ,β(µ(t− t1)β)

+
∫ t
t1

(t− s)β−1Eβ,β(µ(t− s)β)q(s)g(s, x(s), y(s))ds
]
, t ∈ (t1, 1].

(30)
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Use (D), we get

|f(t, x(t), y(t))| = f
(
t, tα−1t1−αx(t), tβ−1t1−βy(t))

∣∣
≤ c1 + b1t

1−α|x(t)|+ a1Φ−1(t1−β |y(t)|) ≤ c1 + b1||x||+ a1Φ−1(||y||),

|G(t, x(t), y(t))| ≤ C1 +B1||x||+A1Φ−1(||y||),

|I(t1, x(t1), y(t1))| ≤ C1 +B1||x||+A1Φ−1(||y||).

Then, for t ∈ (0, t1], similarly to Sub-step (iii1), we have

t1−α|x(t)| ≤ |I(t1, x(t1), y(t1))|Γ(α)2(1− t1)α−1Eα,α(λ(1− t1)α)Eα,α(λtα)

+Γ(α)Eα,α(λtα)
∫ 1

0
|ϕ(s)G(s, x(s), y(s))|ds

+Γ(α)Eα,α(λtα)
∫ 1

t1
(1− s)α−1Eα,α(λ(1− s)α)|p(s)f(s, x(s), y(s))|ds

+t1−α
∫ t

0
(t− s)α−1Eα,α(λ(t− s)α)|p(s)f(s, x(s), y(s))|ds

≤ [C1 +B1||x||+A1Φ−1(||y||)]Γ(α)2(1− t1)α−1Eα,α(λ(1− t1)α)Eα,α(|λ|)

+Γ(α)Eα,α(|λ|)||ϕ||1[C1 +B1||x||+A1Φ−1(||y||)]

+Γ(α)Eα,α(λtα)
∫ 1

t1
(1− s)α−1Eα,α(λ(1− s)α)(s− t1)k1(1− s)l1ds[c1 + b1||x||+ a1Φ−1(||y||)]

+t1−α
∫ t

0
(t− s)α−1Eα,α(λ(t− s)α)sk1(t1 − s)l1ds[c1 + b1||x||+ a1Φ−1(||y||)]

≤ Γ(α)2Eα,α(|λ|)2C1 + Γ(α)Eα,α(|λ|)||ϕ||1C1

+Γ(α)Eα,α(|λ|)2B(α+ l1, k1 + 1)c1 + Eα,α(|λ|)B(α+ l1, k1 + 1)c1

+
[
Γ(α)2Eα,α(|λ|)2B1 + Γ(α)Eα,α(|λ|)||ϕ||1B1

+Γ(α)Eα,α(|λ|)2B(α+ l1, k1 + 1)b1 + Eα,α(|λ|)B(α+ l1, k1 + 1)b1
]
||x||

+
[
Γ(α)2Eα,α(|λ|)2A1 + Γ(α)Eα,α(|λ|)||ϕ||1A1

+Γ(α)Eα,α(|λ|)2B(α+ l1, k1 + 1)a1 + Eα,α(|λ|)B(α+ l1, k1 + 1)a1

]
Φ−1(||y||).

For t ∈ (t1, 1], we have

(t− t1)1−α|x(t)| ≤ |I(t1, x(t1), y(t1))|Γ(α)Eα,α(λ(t− t1)α)

+(t− t1)1−α ∫ t
t1

(t− s)α−1Eα,α(λ(t− s)α)|p(s)f(s, x(s), y(s))|ds
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≤ [C1 +B1||x||+A1Φ−1(||y||)]Γ(α)Eα,α(|λ|)

+(t− t1)1−α ∫ t
t1

(t− s)α−1Eα,α(λ(t− s)α)(s− t1)k1(1− s)l1ds[c1 + b1||x||+ a1Φ−1(||y||)]

≤ [C1 +B1||x||+A1Φ−1(||y||)]Γ(α)Eα,α(|λ|)

+(t− t1)1−α ∫ t
t1

(t− s)α−1
∑∞
k=0

λk(t−s)αk
α(k+1)) (s− t1)k1(t− s)l1ds[c1 + b1||x||+ a1Φ−1(||y||)]

≤ Γ(α)Eα,α(|λ|)C1 + Eα,α(|λ|)B(α+ l1, k1 + 1)c1

+
[
Γ(α)Eα,α(|λ|)B1 + Eα,α(|λ|)B(α+ l1, k1 + 1)b1

]
||x||

+
[
Γ(α)Eα,α(|λ|)A1 + Eα,α(|λ|)B(α+ l1, k1 + 1)a1

]
Φ−1(||y||)].

Then
||x|| ≤ µ1 + σ1||x||+ δ1Φ−1(||y||). (31)

Similar to above discussion, we can prove that

||y|| ≤ µ2 + σ2Φ(||x||) + δ2||y||. (32)

Case 1. σ1 < 1, σ2

w((1−δ1)/(2δ1)) + δ2 < 1.

From (31) we have Then (27) implies that ||x|| ≤ µ1

1−σ1
+ δ1

1−σ1
Φ−1(||y||). Without loss of gen-

erality, suppose that ||y|| > Φ(µ1/δ1). Use (5), we get

||y|| ≤ µ2 + σ2Φ
(

µ1

1−σ1
+ δ1

1−σ1
Φ−1(||y||)

)
+ δ2||y||

≤ µ2 + σ2Φ
(

2δ1
1−σ1

Φ−1(||y||)
)

+ δ2||y||

≤ µ2 + σ2
Φ(Φ−1(||y||))
w((1−δ1)/(2δ1)) + δ2||y||

= µ2 + σ2
||y||

w((1−δ1)/(2δ1)) + δ2||y||.

Form (27), there exists a constant M1 > Φ(µ1/δ1) such that ||y|| ≤ M1. Hence ||x|| ≤ µ1

1−σ1
+

δ1
1−σ1

Φ−1(M1). It follows that Ω1 is bounded.

Case 2. δ2 < 1, σ1 + δ1ν
(

2σ2

1−δ2

)
< 1.

From (32) we have ||y|| ≤ µ2

1−δ2 + σ2

1−δ2 Φ(||x||). Without loss of generality, suppose that ||x|| >
Φ−1(µ2/σ2). Use (6), we get

||x|| ≤ µ1 + σ1||x||+ δ1Φ−1
(

µ2

1−δ2 + σ2

1−δ2 Φ(||x||)
)

≤ µ1 + σ1||x||+ δ1Φ−1
(

2σ2

1−δ2 Φ(||x||)
)

≤ µ1 + σ1||x||+ δ1ν
(

2σ2

1−δ2

)
||x||.
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Form (27), there exists a constant M1 > Φ−1(µ2/σ2) such that ||x|| ≤ M1. Hence ||y|| ≤ µ2

1−δ2 +
σ2

1−δ2 Φ(M1). It follows that Ω1 is bounded.

To apply Lemma 2.1, let Ω be a non-empty open bounded subset of E such that Ω ⊃ Ω1 centered
at zero.

It is easy to see from Lemma 2.2 that L is a Fredholm operator of index zero and N is L−compact
on Ω. One can see that

L (x, y) 6= θN (x, y) for all (x, y) ∈ E ∩ ∂Ω and θ ∈ (0, 1).

Thus, from Lemma 2.1,
L (x, y) = N (x, y)

has at least one solution (x, y) ∈ E ∩ Ω. So (x, y) is a solution of BVP(4). The proof of Theorem
3.1 is complete.

4 An example

Now, we present an example, which can not be covered by known results, to illustrate Theorem
2.1.

Example 4.1. Consider the boundary value problem for fractional differential equation

D
2
3
∗ x(t)− x(t) = t−

1
4 f(t, x(t), y(t)), t ∈ (0, 1), t 6= 1

2 ,

D
1
2
∗ y(t)− y(t) = t−

1
4 g(t, x(t), y(t)), t ∈ (0, 1), t 6= 1

2 ,

limt→1 t
1
3x(t)− limt→0 t

1
3x(t) = 1

2

∫ 1

0
s−

1
2G(s, x(s), y(s))ds,

limt→1 t
1
2 y(t)− limt→0 t

1
2 y(t) = 1

2

∫ 1

0
s−

1
2H(s, x(s), y(s))ds,

limt→ 1
2
+ [t− 1/2]

1
3x(t) = 1,

limt→ 1
2
+ [t− 1/2]

1
2 y(t) = 1.

(33)

where

f(t, x, y) =

{
c1 + b1t

1
3x+ a1t

1
6 y

1
3 , t ∈ (0, 1/2],

c1 + b1(t− 1/2)
1
3x+ a1(t− 1/2)

1
6 y

1
3 , t ∈ (1/2, 1],

g(t, x, y) =

{
c2 + b2tx

3 + a2t
1
2 y, t ∈ (0, 1/2],

c2 + b2(t− 1/2)x3 + a2(t− 1/2)
1
2 y, t ∈ (1/2, 1],

G(t, x, y) =

{
C1 +B1t

1
3x+A1t

1
6 y

1
3 , t ∈ (0, 1/2],

C1 +B1(t− 1/2)
1
3x+A1(t− 1/2)

1
6 y

1
3 , t ∈ (1/2, 1],

H(t, x, y) =

{
C2 +B2tx

3 +A2t
1
2 y, t ∈ (0, 1/2],

C2 +B2(t− 1/2)x3 +A2(t− 1/2)
1
2 y, t ∈ (1/2, 1],
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with ci, bi, ai, Ci, Bi, Ai(i = 1, 2) being nonnegative numbers.

Proof. Corresponding to BVP(3), α = 2
3 , β = 1

2 , λ = µ = 1, t1 = 1
2 , p(t) = q(t) = t−

1
4 ,

ϕ(t)ψ(t) = 1
2 t
− 1

2 , Φ(x) = x3 with Φ−1(x) = x
1
3 , the supporting function of Φ is ω(x) = x3 and the

supporting function of Φ−1 is ν(x) = x
1
3 , I(t, x, y) = J(t, x, y) = 1.

It is easy to see that ρ(t) = t−kν(tβ−1)
L with L = 1, and k = 0, and

f
(
t, (t− tk)−

1
3x, (t− tk)−

1
2 y
)

= c1 + b1x+ a1Φ−1(y),

g
(
t, (t− tk)−

1
3x, (t− tk)−

1
2 y
)

= c2 + b2Φ(x) + a1y,

G
(
t, (t− tk)−

1
3x, (t− tk)−

1
2 y
)

= C1 +B1x+A1Φ−1(y),

H
(
t, (t− tk)−

1
3x, (t− tk)−

1
2 y
)

= C2 +B2Φ(x) +A2y.

It is easy to see that C1 = C2 = 1 and B1 = B2 = A1 = A2 = 0 with

|I(1/2, (1/2)−
1
3x, (1/2)−

1
2 y)| ≤ C1 +B1|x|+A1Φ−1(|y|),

|J(1/2, (1/2)−
1
3x, (1/2)−

1
2 y)| ≤ C2 +B2Φ(|x|) +A2|y|.

One sees that (C) and (D) hold. By computation, we get

σ1 =: max
{

Γ(2/3)E2/3,2/3(1)B1 + [Γ(2/3)E2/3,2/3(1)2B(2/3, 3/4)
+E2/3,2/3(1)B(2/3, 3/4)]b1, E2/3,2/3(1)B(2/3, 3/4)b1

}
,

δ1 =: max
{

Γ(2/3)E2/3,2/3(1)A1 + [Γ(2/3)E2/3,2/3(1)2B(2/3, 3/4)

+E2/3,2/3(1)B(2/3, 3/4)]a1, E2/3,2/3(1)B(2/3, 3/4)a1

}
,

σ2 =: max
{

Γ(1/2)E1/2,1/2(1)B2 + [Γ(1/2)E1/2,1/2(1)2B(1/2, 3/4)

+E1/2,1/2(1)B(1/2, 3/4)]b2, E1/2,1/2(1)B(1/2, 3/4)b2
}
,

δ2 =: max
{

Γ(1/2)E1/2,1/2(1)A2 + [Γ(1/2)E1/2,1/2(1)2B(1/2, 3/4)

+E1/2,1/2(1)B(1/2, 3/4)]a2, E1/2,1/2(1)B(1/2, 3/4)a2

}
.

Then Theorem 3.1 implies that BVP(41) has at least one solution if

σ1 < 1, 8
δ3
1σ2

(1− δ1)3
+ δ2 < 1. (34)

Remark 4.1. It is easy to see that BVP(33) has at least one solution for sufficiently small
bi, ai, Bi, Ai(i = 1, 2) and any ci, Ci(i = 1, 2).
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5 Conclusions

In this paper, we discussed the existences of solution for two classes of initial value problems of non-
linear impulsive fractional differential models on half lines involving Riemann-Liouville fractional
derivatives. The investigation shows that these results and methods are helpful for study in the
nonlinear area and the numerical simulation, especially for study in the the numerical solution of a
fractional differential equation with multiple base points with or without impulse effects.

The most important part of this study is to develop the idea of impulsive fractional models,
which is a first of its kind.

Another important part is to demonstrate the application of the powerful mathematical tool
(fixed point theorems in Banach spaces) for solving nonlinear fractional differential models.

Some problems considered in this paper can be improved under weaker conditions on the func-
tions f and I, J . Further studies are also located on seeking the numerical simulation of these
models.

This paper contributes within the domain of impulsive fractional differential equations. The
author strongly believes that the article will highly be appreciated by the researchers working in
the field of fractional calculus and on fractional differential models.
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