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Abstract

In a previous paper (“Hexagonal Logic of the Field F8 as a Boolean Logic with Three Involutive
Modalities”, in The road to Universal Logic), we proved that elements of P(8), i.e. functions of
all finite arities on the Galois field F8, are compositions of logical functions of a given Boolean
structure, plus three geometrical cross product operations. Here we prove that P(8) admits
a purely logical presentation, as a Boolean manifold, generated by a diagram of 4 Boolean
systems of logical operations on F8. In order to obtain this result we provide various systems
of parameters of the set of unordered bases on F3

2, and consequently parametrical polynomial
expressions for the corresponding conjunctions, which in fact are enough to characterize these
unordered bases (and the corresponding Boolean structures).
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1 Introduction
Informally this paper could be understood as a ‘functional’ reflexion on the cube, i.e. in fact on
{0, 1}3 = 23 = 8, as an attempt to construct all the internal functions of any arities on 8 from
ordinary Boolean logical functions combined in a geometrical way; this will exhibit 23 = 8 as a so
called Boolean manifold. The point is to make this perspective completely rigorous.

1.1 Preamble: Notions of Boolean manifold and of Boolean shape of q-logics
In this first introductive sub-section, we precise the conducting ideas of Boolean manifold and of
Boolean shape of a theory, at the root of developments expressed in the second sub-section 1.2.

We begin with explaining the notion of a Boolean atlas for a q-logic and of the Boolean shape
of q understood as the shape of such an atlas (if it exists) for the canonical q-logic on q. Then the
problem is specified in the case of q = 2n, indeed in the case q = 4.

1.1.1 q-logic
Definition 1.1. 1 — Given a set Q, we define the logical theory generated by Q, as being the full
subcategory G(Q) of the category Set of sets and functions generated by Q and its finite powers
Qk; as a case of a Lawvere theory, this category equipped with its cartesian product is denoted by
G(Q).
2 — An algebra in Set of this theory G(Q), i.e. a functor

M : G(Q) → Set
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preserving the powers, i.e. such that for every k, M(Qk) = M(Q)k, is named a Q-logic. Roughly
it is a set E = M(Q) equipped with an ‘action’ of G(Q).
3 — The ‘fundamental example’ of a Q-logic corresponds to the canonical inclusion

JQ : G(Q) ↪→ Set,

and it is the ‘canonical’ Q-logic on the set Q.
4 — A Q-logic could also be introduced as a P(Q)-module, i.e. a set E with an ‘action’ of the
Post-Malcev iterative algebra P(Q) = ∪k∈NQ

(Qk), i.e., with M(Q) = E, and P(E) = ∪k∈NE
(Ek), a

morphism of Post-Malcev algebras
µM : P(Q) → P(E).

Especially for the canonical Q-logic on Q we have

µJQ
= IdP(Q) : P(Q) → P(Q).

5 — Given an integer q and a set Q = q = {0, 1, 2, . . . , n− 1} with q elements, then G(Q) = G(q)
is simply denoted by G(q), and P(q) by P(q), and a Q-logic is named a q-logic.

1.1.2 Boolean chart, Boolean manifold, Boolean shape: case q = 2n

Proposition 1.2. The different axiomatics of a Boolean algebra are just different generators sys-
tems of G(2) — or equivalently of P(2) — and so a 2-logic is exactly a Boolean algebra.

Proposition 1.3. Each morphism of theories

K : G(2) → G(q),

with K(2k) = qk — or the associated µK : P(2) → P(q) — determines a Boolean structure MK on
any set E equipped with a q-logic M ; this MK is given by MK as well as by µMµK . So MK is
seen as a Boolean chart on E.

The next Definition 1.4 is almost the same but a little different from the notion of a Logical
manifold introduced in [1].

Definition 1.4. A q-logic M on a set E — given by a map µM : G(q) → G(E) — is a Boolean
manifold if there exists a family

(
Ki : G(2) → G(q)

)
i∈I

of morphisms such that from the family
(MKi)i∈I of Boolean structures, we can recover M itself, i.e.

ImµM = Comp
(
∪i∈I ImµMKi

)
,

in other terms each function of P(E) of the form µM (f), with f in P(q), is a composition of “Boolean”
functions of the form µMJi(b), with b ∈ P(2).
If µM is surjective — as it is the case for the ‘canonical’ q-logic on the set q — the family of
morphisms µMµKi : P(2) → P(E) is said composition surjective, and is named a Boolean atlas on
M .

Basic Question : Given an integer q, is it true that the canonical q-logic on q is a Boolean
manifold, i.e. admits a Boolean atlas

(
µKi : P(2) → P(q)

)
i∈I

? Furthermore, if this is true, what
is the minimal cardinal of such a Boolean atlas, how is its geometry, what are its symmetries ? To
speak roughly, what is the Boolean shape of q ?
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Remark 1.5. In fact the categorical setting of shape theory would give a formal definition of the
Boolean shape of a q-logic, or of G(q), or even of any Lawvere theory T as follows. The Boolean
shape of a theory T is the category with objects the morphisms K : G(2) → T, and with morphisms
from K to K ′ an endomorphism θ of G(2) such that T ′θ = T . Then the ‘Boolean component’
of T is TBoole = limθ G(2), and T is a Boolean manifold if the canonical map TBoole → T is an
epimorphism.

Proposition 1.6. If q = 2n, then the canonical q-logic on the set 2n is a Boolean manifold, i.e.
P(2n) is generated by the union of copies of P(2). Moreover if n is even (resp. odd) we can find a
Boolean atlas with 3 (resp. 4) elements.

Proof. See [2, Theorem 1, Theorem 7]. The crucial point is that 2n is a finite field of characteristic
2, and is equipped with a Frobenius map x 7→ x2. q.e.d.

Remark 1.7. Two Boolean structures µK , µK′ : P(2) → P(2n) are dual if µK′ = µK(−)op, where
(−)op : P(2) → P(2) is the duality induced by the negation ν : {0, 1} → {0, 1} : 0 7→ 1, 1 7→ 0. We
have to notice that in this case the images of µK and µK′ are the same Post-Malcev sub-algebra
of P(E). So the number of sub-algebras of P(2n) obtained by copying P(2) is half the number of
Boolean structures on 2n.

Proposition 1.8. If q = 22 = 4, then the canonical 4-logic on the set 2n is a Boolean manifold,
i.e. P(4) is generated by composition of 3 copies of P(2).

Proof. It is a special case of 1.6; but an explicit and detailed description of this union, as a ‘Bor-
romean object’ in the category of Post-Malcev algebras, is given in [4, Proposition 9.5.]: 3 copies
of P(2) are enough, and could be chosen in a ‘symmetrical position’. q.e.d.

Remark 1.9. We know that on a set 2n there is exactly one structure of field, up to isomorphisms,
and, similarly one structure of Boolean algebra, up to isomorphisms; hence the question of the
relation between these fields and these Boolean algebras. Clearly, if we start with a field 2n, and if
we choose a basis over F2, then a component-wise calculus provides a Boolean structure. Conversely
of course if we start with a Boolean algebra 2n, we cannot recover the multiplication of the field 2n

by compositions of its logical functions; but if we consider the simultaneous data of several Boolean
structures (isomorphic but different), then we can recover the field multiplication — this is what
Proposition 1.6 says. Whence a justification of the notion of a Boolean manifold.

1.2 Purpose and results in the case q = 8

Now, in this second introductive sub-section, we explain the results obtained here when q = 8.
The purpose of this paper is to discribe precisely what is the Boolean shape of the 8-valued logic

[for this notion of Boolean shape see section 1.1], how it is generated, what kind of symmetries it
has, what natural parameters can exhibit these symmetries.

In fact 8 is very special, it is 23, the smallest 3-dim space, and there we have a very rich system
of interactions between arithmetic (finite field), geometry (cross product, mixed product, linear
maps), logic (Boolean structures). On the way toward the explanation of the Boolean shape of the
Boolean manifold 8 we have to use these interactions, and to show how each one of these 3 domains
could be expressed with respect to the 2 others.

In section 2 we recall notations and objects related to F8 and P(8), and especially the field
structure on F8, the special description of the linear group GL3(F2) given in [3], and the result of
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[5]: the Post-Malcev full iterative algebra P(8) of all functions of all finite arities on a set 8 with 8
elements, e.g. on the Galois field F8, is generated in a logico-geometrical way, by a Boolean logic
plus three cross product operations.

One essential tool is the description of the 168 bases of F8 as permutations of 28 bases which
are “multiples” of the 4 auto-dual bases (Proposition 3.11), adapted from [3] and [5], according to
the results on GL2(F2) recalled in section 2. We give two tables, in Propositions 3.13 and 3.20.

In concrete terms the work is realized by introducing convenient parameters for unordered bases
and for conjunctions. Actually our method is to try to obtain better and better parametrizations
of bases, and ultimately an easy parametric formula for conjunctions; then such a formula will
permit to produce tables and combinations of various conjunctions, and so to try to generate any
function, and especially to generate the law of the field.

In the case of F4, each basis is characterized by its ‘true’ t; but now in the case of F8 this data
t is not enough, and we have to determine supplementary parameters, if possible with a logical
meaning. it will be the case with our parameters a and c.

In sections 3 and 4 we construct several parametrizations of the set of Boolean logics on 8, or
more precisely of the Boolean logics for which false is 0 and the symmetrical difference is +; or,
equivalently of the set of the 28 unordered bases of F8 over F2.

Mainly we introduce two special systems of parameters for a basis ε: one is the system of
independent parameters (t, a) consisting of the ‘true’ t and the ‘association’ a (Proposition 3.12);
another is the system (t, c) of two dependent parameters ‘true’ t and ‘co-true’ c — which is the
‘true’ of the basis ε∗ which is dual of ε — (Proposition 3.18). These parameters determine ε except
for the order of its terms.

Furthermore, given a basis ε, the corresponding conjunction is a polynomial, with polynomial
coefficients ε6, ε5, ε3, as in Propositions 4.4 and 4.5, and we obtain the relations between these
coefficients (Proposition 4.13), and their expression with respect to t and a, or to t and c (Proposition
4.11); in fact these coefficients could be replaced by coefficients d6 = ε6 + 1, d5 = ε5, d3 = ε3 +
1 (Definition 4.19), which are named differential coefficients because they furnish the difference
between the conjunction ∧ε associated to ε and the canonical conjunction ∧ = ∧κ associated to the
canonical basis κ (Proposition 4.20). We compute these differentials with respect to t and a, and
with respect to t and c. These differentials are also directly related to some canonical parameters
ρ, σ, ι (Definition 4.14).

So explicit parametric formulas are possible for conjunctions (Propositions 4.10, 4.11, 5.5), as,
with u× v =

(
uv(u+ v)

)2:
u ∧ε v = u ∧ v + (c5 + 1)(u× v) + (c5t+ t3)(u× v)2 + (c5t3 + 1)(u× v)4,

and complete tables are furnished (Propositions 5.2 and 5.3).
Then combinations of the logical functions of the Boolean logics on 8 become easy to do, and

the description of a Boolean atlas is deduced (Proposition 6.8), with 5 functions — namely the
2 functions ∧ = ∧κ,¬ = ¬κ, and a circularly symmetrical set of 3 functions ∧r,∧s,∧i. Rather
than r, s, i we can use other systems, as ∧A,∧B ,∧C or ∧A∗ ,∧B∗ ,∧C∗ . So, in several ways, P(8) is
generated by composition of 4 copies of P(2): it is a Boolean manifold.
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2 The field F8, the Boolean algebra F3
2, the simple group GL3(F2), and

the Post-Malcev algebra P(8)
We recall notations and results from previous papers [2], [3], [4] and [5]; thus we explain our starting
point, the geometrico-logical construction of P(8).

2.1 The Galois field F8 and the Boolean algebra F3
2

Definition 2.1. Let F2 = {0, 1} be the field with two elements. The field F8 with 8 elements is
the set {0, 1, R, S, I, R′, S′, I ′} equipped with the two operations . and + given by the tables

. R S I R′ S′ I′

R S I′ S′ 1 R′ I

S I′ I R′ R 1 S′

I S′ R′ R I′ S 1

R′ 1 R I′ S′ I S

S′ R′ 1 S I I′ R

I′ I S′ 1 S R R′

+ R S I R′ S′ I′ 1

R 0 R′ I′ S R′ I S′

S R′ 0 S′ R I 1 I′

I I′ S′ 0 1 S R R′

R′ S R 1 0 I′ S′ I

S′ R′ I S I′ 0 R′ R

I′ I 1 R S′ R′ 0 S

1 S′ I′ R′ I R S 0

The elements R,S, I are the roots of X3 +X2 + 1 = 0, with inverses given by

R−1 = R′, S−1 = S′, I−1 = I ′,

which are the roots of X3 +X + 1 = 0, and so

F8 ≃ F2[X]/(X3 +X2 + 1) ≃ F2[X]/(X3 +X + 1).

Remark 2.2. For litteral computations we use the following formulas:

R′ = R−1 = I + 1 = SI = R+ S;

S′ = S−1 = R+ 1 = IR = S + I;

I ′ = I−1 = S + 1 = RS = I +R.

R = R,R2 = S,R3 = I ′, R4 = I,R5 = S′, R6 = R′;

S = S, S2 = I, S3 = R′, S4 = R,S5 = I ′, S6 = S′;

I = I, I2 = R, I3 = S′, I4 = S, I5 = R′, I6 = I ′.

Also we use the facts that for all u, u + u = 0, u8 = u, and if u ̸= 0 then u7 = 1, and u−1 = u6.
For any u and v, uv = vu, u+ v = v + u, and u = v2 is equivalent to v = u4, u = v3 is equivalent
to v = u5, u = v6 is equivalent to v = u6.

Definition 2.3. The field F8 is a F2-linear space, isomorphic to F3
2, with a canonical basis given

by κ = (R,S, I) (the only strictly auto-normal basis).
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Furthermore we need two F2-linear maps, the Frobenius squaring (−)2, and the trace tr, defined
by

R2 = S, S2 = I, I2 = R; tr(R) = tr(S) = tr(I) = 1;

So we have
tr(w) = w + w2 + w4.

Definition 2.4. The canonical Boolean logic (∧,¬) on F8 is associated to the basis κ:
if u = xR+ yS + zI and u′ = x′R+ y′S + z′I, then we define ∧κ := ∧,¬κ := ¬, with

u ∧ u′ = (xx′)R+ (yy′)S + (zz′)I, ¬u = (x+ 1)R+ (y + 1)S + (z + 1)I.

In particular
¬R = S′, ¬S = I ′, ¬I = R′,

We draw F8\{0} as a hexagon of ‘inclusions’:
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We recover
u+ u′ = (u ∧ ¬u′) ∨ (¬u ∧ u′).

2.2 The Klein group G168

Definition 2.5. The group GL3(F2) is the group of bijective F2-linear maps F8 → F8; it is the
only simple group G168 with cardinal 168. This G168 is also realizable as PSL2(F7).
We describe GL3(F2) by matrices relative to the canonical basis κ = (R,S, I).

If u ∈ F8, u = xR+yS+ zI, with x, y, z ∈ F2, then Coordκ(u) :=

 x
y
z

 is also denoted [u]κ. Each

M ∈ GL3(F2) is determined by the basis ε = (e1, e2, e3) such that

M = [Coordκ(e1)|Coordκ(e2)|Coordκ(e3)],

i.e. the columns of M are the coordinates of e1, e2, e3 relative to κ. Also we write M =
Matκ(e1, e2, e3) = Matκ(ε) = [Mε]κ = Mε.
By abuse of notations, ε will be assimilated to M , briefly we write ε = M . For example we write
(R′, I ′, 1) = r.

As usual the identity is denoted by I3 (different from I above and in notations below). We have

I3 =

 1 0 0
0 1 0
0 0 1

 , (−)2 =

 0 0 1
1 0 0
0 1 0

 , (−)4 =

 0 1 0
0 0 1
1 0 0

 ,
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tr(−) := I3 + (−)2 + (−)4 =

 1 1 1
1 1 1
1 1 1

 .

Notations — We introduce the following elements of GL3(F2):

r =

 1 1 1
1 0 1
0 1 1

 , s =

 1 0 1
1 1 1
1 1 0

 , i =

 0 1 1
1 1 0
1 1 1

 ,

r−1 =

 1 0 1
1 1 0
1 1 1

 , s−1 =

 1 1 1
1 1 0
0 1 1

 , i−1 =

 1 0 1
1 1 1
0 1 1

 ,

A =

 1 0 0
1 1 0
0 0 1

 , B =

 1 0 0
0 1 0
0 1 1

 , C =

 1 0 1
0 1 0
0 0 1

 ,

R =

 0 1 0
1 0 1
0 1 1

 , S =

 1 0 1
0 0 1
1 1 0

 , I =

 0 1 1
1 1 0
1 0 0

 ,

R−1 =

 1 1 1
1 0 0
1 0 1

 , S−1 =

 1 1 0
1 1 1
0 1 0

 , I−1 =

 0 0 1
0 1 1
1 1 1

 .

Proposition 2.6. The group GL3(F2) is generated by r, s, i, as well as by r−1, s−1, i−1, as well as by
A,B,C; and of course also by the systems of transposes rT, sT, iT, r−1T, s−1T, i−1T or AT, BT, CT.
The center of GL3(F2) is {I3, R, S, I, R−1, S−1, I−1}.

Proof. It is a result from [2] and [3]. In particular we use the fact that the transpositions of r, s, i
are given in GL3(F2) by:

rT = rir−1, sT = srs−1, iT = isi−1.

We recover the elements R,S, I of the field F8 in the group GL3(F2) by

R = ir2, S = rs2, I = si2,

Also we can exchange r, s, i and A,B,C by:

r = ACB, s = BAC, i = CBA,

AT = ir, BT = rs, CT = si,

with AT, BT, CT the transposed matrices of A,B,C, or

A = rir−1isi−1, B = srs−1rir−1, C = isi−1srs−1.

q.e.d.
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2.3 Matrices and canonical logical connectors as polynomials
In order to compute with F2-linear maps and non-linear maps inside the Post-Malcev algebra, we
need the polynomial representation of matrices with coefficients in F2 or representations of F2-
linear maps, and their inverses; we need also the calculus with matrices with coefficients in F8, as
in Proposition 2.7.

Proposition 2.7. 1 — Each F2-linear map f = F8 → F8, determined by f(R) = e1, f(S) =
e2, f(I) = e3, and so given by the matrix with coefficients in F2

Mε = [Coordκ(e1)|Coordκ(e2)|Coordκ(e3)],

is also given by a unique expression

f(u) = au4 + bu2 + cu,

with (using matrices with coefficients in F8): c
b
a

 =

 R S I
S I R
I R S

 e1
e2
e3

 .

The matrix CRSI =

 R S I
S I R
I R S

 will be used frequently in this paper. It will be named the

canonical circular involution. We have C2
RSI = I3.

2 — The map f is invertible if and only if

∆(f) := a7 + b7 + c7 + abc(a3b+ b3c+ c3a) ̸= 0,

and then f−1(v) = lv4 +mv2 + nv, with

l =
b3 + c2a

∆(f)
; m =

a5 + bc4

∆(f)
; n =

c6 + a4b2

∆(f)
.

Proof. See [5, Prop. 3.10-12] q.e.d.

If we want to mix F2-linear maps and logic, we have just to express everything as polynomials.
For that we have, concerning the canonical logic (associated to the canonical basis κ):

Proposition 2.8.

u ∧ u′ = u4u′4 + u4u′2 + u2u′4 + u2u′ + uu′2, ¬u = u+ 1

u ∨ u′ = u4u′4 + u4u′2 + u2u′4 + u2u′ + uu′2 + u+ u′,

u ⇒ u′ = u4u′4 + u4u′2 + u2u′4 + u2u′ + uu′2 + u′ + 1.

Proof. See [5, Prop. 4.8] q.e.d.
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Convention on notations — As F8 is a finite field, an arbitrary function f : F8 → F8 could
be represented by a polynomial P with coefficients in F8, and in particular it is true for linear
functions. But a F2-linear f is also representable by matrices M relative to the canonical basis κ
(cf. 2.3), with coefficients in F2, i.e. elements of M3(F2). If M is a matrix of f and P a polynomial
of the same f , we introduce Pf = P = M, Mf = M = P̂ , in such a way that NM is the
product of polynomial QP , whereas Q̂P̂ is the composition of matrices NM . For example we have
r(u) = R−1u4 + u2 + I−1u, A(u) = R−1u4 + Iu2 + Su, or (cf. 2.10) R×(u) = Su4 + Iu2.
Use of M3(F8) —We mention that not only we compute in M3(F2), but we also use notations
and computations in M3(F8), considering F2 ⊂ F8, F3

2 ⊂ F3
8, M3(F2) ⊂ M3(F8). It is the case in

Proposition 2.7, Definition 3.4, Proposition 3.7, Definition 4.1, Propositions 4.6, 4.7, 4.15, 4.16,
4.18, Definition 4.19, Propositions 6.6, 6.7. In such computations a u ∈ F8 could be represented by
its “Squaring vector” [u]sq ∈ F3

8 (see Definition 3.4), as well as by its coordinates [u]ε with respect
to a basis ε. A basis ε = (e1, e2, e3) of F8 over F2 could be represented by a matrix Mε (Definition
2.5), or by a vector ε⃗ (in the proof of Proposition 3.13) or by a diagonal matrix ∆ε (Definition 4.1).

2.4 The Post-Malcev composition algebra
Definition 2.9. P(8), the Post-Malcev full iterative algebra ([9], [6]) of all functions f : Fk

8 → F8

of all arities k on F8 is

P(8) = P(F8) = ∪k∈NHomSet(F8
k,F8) = ∪k∈NF8

(F8
k).

Proposition 2.10. The algebra P(8) is generated by the canonical logic, i.e. ∧ and ¬ (and conse-
quently +), plus the squaring (−)2 in the field F8, plus r, s, i.
It is also generated by the canonical logic, i.e. ∧ and ¬, plus A,B,C.
And finally it is generated by the canonical logic, i.e. ∧ and ¬, plus the linear non-invertible maps

R× =

 0 0 0
0 0 1
0 1 0

 , S× =

 0 0 0
0 0 1
1 0 0

 , I× =

 0 1 0
1 0 0
0 0 0

 .

Proof. It is a result from [5]. q.e.d.

Remark 2.11. The logico-geometrical structure of F8 is to be understood as an analysis of P(F8) =
P(8). So P(8) appears as an algebra generated, over F8, by crossing two ‘pure’ aspects: classic
logic and vector geometry, both associated to the basis κ = (R,S, I), which together are enough to
generate any function in P(8).
From now on, our objective will be to replace the linear geometrical operations given by G168 =
GL3(F2) — and especially the three operations R×, S×, I× used in Proposition 2.10 — by Boolean
operations, associated to κ and to other different bases.

3 Duality, coordinates, parameters for unordered bases in F8

Let us notice that if ε = (e1, e2, e3) is a basis (actually an ordered basis), the corresponding
unordered basis — or the basis except for the order of its terms — is {e1, e2, e3}. By abuse of
notation this unorderd basis is again denoted by ε. There are 168 bases, and 28 unordered bases.

We introduce computations with dual bases and coordinates, in relation with polynomial calcu-
lus, using matrices thanks to the order of terms in an ordered basis. We describe two independent
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parameters t and a named ‘true’ and ‘association’, for the presentation of any unordered basis ε.
Furthermore we do present 28 bases, representing the 28 unordered bases, by their parametrization
with ‘true’ t and ‘co-true’ c. With these parameters the duality at the level of unordered bases is
simply the exchange of t and c.

The reader is invited to observe the very active part played in our computations and derivations
of our parameters by two tools which are on the one hand the field operation and the Frobenius
map, and on the other hand the trace (arithmetic), the scalar product and the cross product, the
duality (geometry): roughly speaking we can say that we produce the logic from a combination of
arithmetic and geometry.

3.1 Bases, dual bases, and calculus of coordinates
Definition 3.1. Given u = xR+ yS + zI and u′ = x′R+ y′S + z′I, with x, y, z, x′, y′, z′ ∈ F2, the
cross product is ×κ := × with

u× u′ = (yz′ + zy′)R+ (zx′ + xz′)S + (xy′ + yx′)I,

and the scalar product is < , >κ=< , > with

< u, u′ >= xx′ + yy′ + zz′.

Proposition 3.2. With the operations of the field F8 we have:

u× u′ = (uu′(u+ u′))2, < u, u′ >= uu′ + (uu′)2 + (uu′)4 = tr(uu′) = tr(u ∧ u′);

the mixed product [u, u′, u′′] :=< u× u′, u′′ >=< u, u′ × u′′ > is given by

[u, u′, u′′] =

∣∣∣∣∣∣
x x′ x′′

y y′ y′′

z z′ z′′

∣∣∣∣∣∣ =
∣∣∣∣∣∣

u u′ u′′

u2 u′2 u′′2

u4 u′4 u′′4

∣∣∣∣∣∣ ∈ {0, 1}.

Furthermore we have the double cross product formula:

u× (u′ × u′′) =< u, u′′ > u′+ < u, u′ > u′′.

Proof. The three formulas come from [5, Propositions 4.3, 4.10, 4.4]). In fact the first formula is
true because u × u′ and (uu′(u + u′))2 are bilinear, and are equal when u and u′ take the values
R,S, I.
For the mixed product we have

[u, u′, u′′] =< u, u′ × u′′ >= tr(u(u′ × u′′)) = tr(u(u′u′′(u′ + u′′))2),

and this is the value of the second determinant. But also we know that [u, u′, u′′] is the first
determinant, and consequently in F2.
The double cross product formula could be verified directly, with Definition 3.1. q.e.d.

Proposition 3.3. A data ε = (e1, e2, e3) is a basis of F8 over F2 if and only if

e1e2e3(e1 + e2)(e2 + e3)(e3 + e1)(e1 + e2 + e3) = 1.
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Proof. It is in [5, Propositions 4.1 et 4.3-4]. Here it results from Proposition 3.2, computing
[e1, e2, e3], which is equal to the first member of the proposed identity, and so its value is in F2. If
the first member is not 0 then we have a basis, because then no linear combination of e1, e2 and e3
is 0; then it must be 1, because it is the mixed product, which is always 0 or 1. q.e.d.

Definition 3.4. Given a basis ε = (e1, e2, e3), if u = u1e1 +u2e2 +u3e3, with u1, u2, u3 ∈ F2, then
we define the vector of coordinates with respect to ε, and the Squaring vector (a vector in F3

8):

Coordε(u) = [u]ε =

 u1

u2

u3

 , [u]sq =

 u
u2

u4

 .

Definition 3.5. Two bases ε = (e1, e2, e3) and ε∗ = (e∗1, e
∗
2, e

∗
3) are dual if tr(e∗i ej) =< e∗i , ej >=

δi,j , where δi,j is the Kronecker symbol (with value 1 if i = j, and 0 if i ̸= j). This exactly means
that MT

ε∗Mε = I3, i.e.
M−1

ε = MT
ε∗ .

A basis ε = (e1, e2, e3) is said to be strictly auto-dual if tr(eiej) = δi,j , and auto-dual if, for a
permutation σ on {1, 2, 3}, ε and εσ = (eσ1, eσ2, eσ3) are dual, i.e. such that tr(eie∗j ) = δi,j , with
e∗j = eσ(j).

Proposition 3.6. If ε = (e1, e2, e3) is a basis of F8 over F2, the unique dual basis is given by
ε∗ = (e∗1, e

∗
2, e

∗
3) with:

e∗1 = e2 × e3, e∗2 = e3 × e1, e∗3 = e1 × e2,

we have (ε∗)∗ = ε i.e.

e1 = e2
∗ × e3

∗, e2 = e3
∗ × e1

∗, e3 = e1
∗ × e2

∗.

The coordinates of u = u1e1 + u2e2 + u3e3 are:

u1 = tr(ue∗1), u2 = tr(ue∗2), u3 = tr(ue∗3).

In particular we have:

e∗i =
∑

j=1,2,3

< e∗i , e
∗
j > ej , ei =

∑
j=1,2,3

< ei, ej > e∗j .

Proposition 3.7. 1 — Given a basis ε = (e1, e2, e3), we introduce

Cε = Ce1e2e3 =

 e42e
2
3 + e22e

4
3 e2e

4
3 + e42e3 e22e3 + e2e

2
3

e43e
2
1 + e23e

4
1 e3e

4
1 + e43e1 e23e1 + e3e

2
1

e41e
2
2 + e21e

4
2 e1e

4
2 + e41e2 e21e2 + e1e

2
2

 .

For any u = u1e1 + u2e2 + u3e3, with u1, u2, u3 ∈ {0, 1},

Coordε(u) =

 u1

u2

u3

 = Ce1e2e3

 u
u2

u4

 ,
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or briefly:
[u]ε = Cε[u]sq.

2 — In particular, for the canonical basis κ = (R,S, I), if u = xR+ yS + zI, with x, y, z ∈ {0, 1},

Coordκ(u) =

 x
y
z

 = CRSI

 u
u2

u4

 ,=

 R S I
S I R
I R S

 u
u2

u4

 .

with the notation from Proposition 2.7 for the circular involution CRSI , or briefly:

[u]κ = CRSI [u]sq.

3 — With Mε = [Coordκ(e1)|Coordκ(e2)|Coordκ(e3)] we have

Coordκ(u) = MεCoordε(u),

or
[u]κ = Mε[u]ε.

Hence
Ce1e2e3 = Mε

−1
CRSI = M∗

ε
T
CRSI

Proof. From Proposition 3.2 and Definition 3.1 we get u1 =< u, e2 × e3 >= tr(u(e2 × e3)) =
tr(u(e2e3(e2 + e3))

2), and we conclude with the value tr(w) = w + w2 + w4 from Definition 2.3:

u1 = u(e42e
2
3 + e22e

4
3) + u2(e2e

4
3 + e42e3) + u4(e22e3 + e2e

2
3).

In fact (see [5, Proposition 6.1]) (−)1 is the indicator or characteristic function of the subset
{e1, e1 + e2, e1+ e3, e1 + e2 + e3}, and it could be computed using this. For x, y, z in the case of the
canonical basis, a direct checking is easy. With the exchange of coordinates given by Coordκ(u) =

MεCoordε(u), and

 u
u2

u4

 = CRSICoordκ(u) we obtain Mε
−1 = Ce1e2e3CRSI .

q.e.d.

3.2 Characteristic linear relations between a basis in F8 and its dual
A basis and its dual are related by bilinear conditions; but these conditions could be expressed as
follows by a system of linear conditions (a linear system).

Proposition 3.8. Given a basis ε = (e1, e2, e3) ans its dual ε∗ = (e∗1, e
∗
2, e

∗
3) we have

e∗1e1 + e∗2e2 + e∗3e3 = 1,

e∗1
2e1 + e∗2

2e2 + e∗3
2e3 = 0,

e∗1
4e1 + e∗2

4e2 + e∗3
4e3 = 0.

These conditions determine ε for a given ε∗.
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Proof. The first proposed sum is (e2×e3)e1+· · · = e22e
2
3(e

2
2+e23)e1+· · · = e1e2e3(e

3
2e3+e2e

3
3)+· · · =

e1e3e3(e2 + e3)(e3 + e1)(e1 + e3)(e1 + e2 + e3) = 1 (see Propositions 3.2 and 3.3). The third sum
is (e2 × e3)

4e1 + · · · = e2e3(e2 + e3)e1 + · · · = e1e2e3(e2 + e3) + · · · = 0. If in the third formula
we exchange the ei and the e∗i , and if we put it at the power 2, then we get the second formula.
Finally we remark that the Cramer’s formulas furnish e1 = e∗2

2e∗3
2(e∗2

2 + e∗2
2), hence e1 = e∗2 × e∗3,

etc. q.e.d.

Proposition 3.9. Given a basis ε = (e1, e2, e3) and its dual ε∗ = (e∗1, e
∗
2, e

∗
3), then ε(2) = (e21, e

2
2, e

2
3)

and ε(4) = (e41, e
4
2, e

4
3) are bases, with dual the bases ε∗(2) = (e∗1

2, e∗2
2, e∗3

2) and ε∗(4) = (e∗1
4, e∗2

4, e∗3
4).

Proof. If ε = (e1, e2, e3) is a basis, so is ε(2) = (e21, e
2
2, e

2
3), because (−)2 is linear invertible. In

Proposition 3.8 we can take the power 2 of each equation, to obtain the characterization of ε(2)

from ε∗(2). q.e.d.

3.3 Parametrization (t, p) for unordered bases in F8

Proposition 3.10. A data ε = (e1, e2, e3) is a basis if and only if e1, e2, e3 are the 3 roots in F8 of
an equation with coefficients in F8

X3 + tX2 + qX + p = 0,

with

p, t ̸= 0, q =
p2t+ 1

pt2
.

The 2 parameters t and p are not independent if they correspond to an equation coming from a
basis. Their precise relation is given in Proposition 3.15.

Proof. If Pε(X) := (X − e1)(X − e2)(X − e3) ≡ X3 + tX2 + qX + p with

t = e1 + e2 + e3, p = e1e2e3, q = e1e2 + e2e3 + e3e1,

the condition in Proposition 3.3 means

ptPε(t) = 1,

i.e. pt(qt+p) = 1, i.e. q = p2t+1
pt2 . Conversely, if X3+tX2+qX+p = 0 as 3 roots in F8, e1, e2 and e3,

with the given conditions on t, p, q, then we recover e1e2e3(e1+e2)(e2+e3)(e3+e1)(e1+e2+e3) = 1,
and so (e1, e2, e3) is a basis, and in particular these roots are not equal. q.e.d.

3.4 The 28 unordered bases and the 4 auto-dual bases in F8

An element u is said to be normal over F2 if (u, u2, u4) is a basis, which is called a normal basis.
If furthermore u is primitive, i.e. if the powers of u generate F8\{0}, then the basis is said to be
normal primitive. See [7], [8].

Proposition 3.11. There are 28 unordered bases of F8, or 168 when the order of terms is specified.
These bases correspond to elements of GL3(F2), i.e. 3 × 3 invertible matrices with coefficients in
F2.
1 — Up to a circular permutation, there is only one normal basis:

κ = (R,S, I) = κ∗,
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which is even a normal primitive basis. Up to a circular permutation, this κ is also the only strictly
auto-dual basis.
2 — There are 3 other auto-dual bases (not strict), which are:

r = (R′, I ′, 1), s = (1, S′, R′) i = (S′, 1, I ′),

associated to the matrices r, s, i in Definition 2.5 and Proposition 2.6; each one being its own dual,
but with another order of terms:

r∗ = (I ′, R′, 1), s∗ = (1, R′, S′), i∗ = (I ′, 1, S′).

3 — Up to the order of terms, each basis φ = (f1, f2, f3) is of the form

φ = mβ := (me1,me2,me3),

with β = (e1, e2, e3) one of the four auto-dual bases κ, r, s or i, and m ̸= 0.
4 — For any basis ε = (e1, e2, e3) we introduce tε := e1 + e2 + e3. We have tκ = 1, tr = R, ts =
S, ti = I, and the 4 bases ε with tε = 1 are t−1

β β, with β ∈ {κ, r, s, i}, i.e.

κ = (R,S, I), R′r = (S′, S,R′), S′s = (S′, I ′, I), I ′i = (R, I ′, R′).

5 — If ε = (e1, e2, e3) is a basis, and if φ = λε, with λ ̸= 0, then φ∗ = λ−1ε∗. If φ = mβ as in the
point 3, then tφ∗ = m−2tφ, and φ is auto-dual if and only if tφ∗ = tφ.

Proof. For the parts 1 to 3, see [3] and [5, Proposition 6.2]. The part 4 is easy to check. For
5, as e∗1 = e2 × e3, we have f∗

1 = λe2 × λe3 = (λe2λe3)
2(λ2e22 + λ2e23) = λ6((e2e3)

2(e22 + e23)) =
λ6e∗1 = λ−1e∗1. Then from φ = mβ we deduce φ∗ = m−1β∗ = m−1β (as unordered bases), hence
tφ∗ = m−1tβ . As from φ = mβ we deduce tφ = mtβ , we conclude tφ∗ = m−2tφ.
Nota bene: The part 3 will be completed in Proposition 3.14, with respect to the parameters t and
a introduced in Section 3.5. q.e.d.

3.5 True and Association for a basis, the independent parameters (t, a)

In this sub-section we show how unordered bases could be parametrized by two independent pa-
rameters, t and a, and we use that to organize a table of values for the 28 unordered bases.

Proposition 3.12. Let a ∈ {0, R, S, I} and t ̸= 0, i.e. a and t such that

a4 + a3 + a = 0, t7 = 1.

We introduce
q = at2, p = (a2 + 1)t3;

Then for each of the 28 basis ε = (e1, e2, e3), the set {e1, e2, e3} is the set of solutions of exactly
one of the 28 equations

X3 + tX2 + at2X + (a2 + 1)t3 = 0,

with in fact

t = e1 + e2 + e3, , q = e1e2 + e2e3 + e3e1, p = e1e2e3, a =
e1e2 + e2e3 + e3e1
(e1 + e2 + e3)2

.



The field F8 as a Boolean manifold 45

We notice that
q = t2 + p4t4.

The unique a = q
t2 corresponding to a given basis ε is named the association parameter of ε, denoted

by a = aε. The parameter t = tε is the true. These parameters are independent.

Proof. At first we see that if t ̸= 0, ε = (e1, e2, e3), λε = (λe1, λe2, λe3), and if we adopt the
notations t = tε, q = qε, p = pε in Proposition 3.10, we have Pλε(X) = X3+λtεX

2+λ2qεX,+λ3pε,
hence

tλε = λtε, qλε = λ2qε, pλε = λ3pε.

Then, by Proposition 3.11 we have the 4 bases with t = 1, the t−1
β β, namely κ = (R,S, I),

R′r = (S′, S,R′), S′s = (S′, I ′, I), and I ′i = (R, I ′, R′), of which the associated polynomials Pκ,
PR′r, PS′s, PI′i are:

X3 +X2 + 1, X3 +X2 + SX +R′, X3 +X2 + IX + S′, X3 +X2 +RX + I ′.

We remark that
02 + 1 = 1, S2 + 1 = R′, I2 + 1 = S′, R2 + 1 = I ′.

So according to Proposition 3.11, each basis φ is multiple by a λ of one of the auto-dual bases, but
also it is a multiple, by another λ (which in fact is tφ), of one of the 4 bases for which t = 1 (which
in fact is t−1

φ φ) and then the corresponding polynomial is an element of one of the 4 families (with
λ ̸= 0):

X3 + λX2 + λ3, X3 + λX2 + λ2SX + λ3R′,

X3 + λX2 + λ2IX + λ3S′, X3 + λX2 + λ2RX + λ3I ′.

Finally we observe that in each family written as X3 + tX2 + qX + p we have( q
t2
,
p

t3
)
∈ {(0, 1), (S,R′), (I, S′), (R, I ′)},

and so (
q

t2

)2

+ 1 =
p

t3
,

or equivalently
q = t2 + p4t4.

So if we define a by a = q
t2 , we have p = (a2+1)t3. Then pt(qt+p) = (a2+1)t4(at3+(a2+1)t3) =

(a2 + 1)(a2 + a+ 1). So we recover the property q = p2t+1
pt2 of Proposition 3.10, i.e. pt(qt+ p) = 1,

exactly if a4 + a3 + a = 0. Thus this Proposition 3.12 refines Proposition 3.10.
These parameters are independent, because t takes 7 values, a takes 4 values, and 28 = 7× 4 is the
number of bases. q.e.d.

Proposition 3.13. The 168 bases of F8 over F2 are permutations of 28 bases which are the 4
auto-dual bases κ, r, s, i, and their multiples, distributed as follows, according to Proposition 3.11,
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with respect to the two independent parameters t and a from Proposition 3.12:

a = 0 a = R a = S a = I
t = 1 κ = R,S, I I ′i = R, I ′, R′ R′r = S′, S,R′ S′s = S′, I ′, I
t = R Rκ = S, I ′, S′ Ii = S, I, 1 r = R′, I′,1 R′s = R′, I, S′

t = S Sκ = I ′, I, R′ S′i = I ′, S′, R Rr = 1, I, R s = 1,S′,R′

t = I Iκ = S′, R′, R i = S′,1, I′ I ′r = S,R′, I ′ Ss = S, 1, R
t = R′ R′κ = 1, R, I ′ Si = 1, S, S′ S′r = I,R, S′ Is = I, S, I ′

t = S′ S′κ = R′, 1, S Ri = R′, R, I Ir = I ′, 1, I I ′s = I ′, R, S
t = I ′ I ′κ = I, S′, 1 R′i = I,R′, S Sr = R,S′, S Rs = R,R′, 1

Proof. If φ = λε, we have aφ =
qφ
tφ2 = λ2qε

(λtε)2
= aε. For the 4 bases with t = 1 we have

aκ = 0, aR′r = S, aS′s = I, aI′i = R.

We check this table with the multiplication table of F8 given in Definition 2.1. If we consider an

ordered basis ε = (e1, e2, e3) as a vector ε⃗ =

 e1
e2
e3

 of F3
8, it is a part of the table of multiplication

by scalars in F3
8. q.e.d.

3.6 Resolution of φ = mβ, parameters (m,Q), dependence for (t, p)

Using the parameters t and a we solve φ = mβ and we analyze the exact dependance between t
and p introduced in Proposition 3.10.

Proposition 3.14. Given a basis φ, with parameters t and a, the unique auto-dual basis β and
unique coefficient m such that φ = mβ are given by

tβ = a2 + a+ 1, aβ = a, m = t(a2 + 1).

If we introduce the parameter Qφ = tq
p then Qφ = Qβ := Q, and (m,Q) is another parametrization

for bases φ, with independent parameters, related to the parametrization with (t, a) by:

m = t(a+ 1)2, Q = a5, t = m(Q+ 1)4, a = Q3.

The constraint for a,
a4 + a3 + a = 0,

is now equivalent to the constraint for Q:

tr(Q) := Q4 +Q2 +Q = 0.

Proof. Let β ∈ {κ, r, s, i} be an auto-dual basis, tβ the associated value of t, and X3 + tβX
2 +

qβX + pβ = 0 the corresponding equation. If λ ̸= 0 and φ = λβ, the associated equation is
X3 + tφX

2 + qφX + pφ = 0, with tφ = λtβ , qφ = λ2qβ , pφ = λ3pβ , and

Qφ :=
tφqφ
pφ

=
tβqβ
pβ

= Qβ := Q; aφ =
qφ
t2φ

=
qβ
t2β

= aβ := a.
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From a4 = a3 + a, we deduce a6 = a2 + a, (a2 + 1)6 = a6 + 1, and then, as a = q
t2 , q = at2,

p = (a2 + 1)t3, we have Q = tq
p = a

a2+1 = a(a2 + 1)6, Q = a3 + a2 + a, Q = a5. Furthermore
Q4 +Q2 +Q = 0.
We verify that, for any auto-dual basis β, we have Qβ = t2β + 1 and tβ = Q4

β + 1 = Q4 + 1,
tβ = (a3 + a2 + a)4 + 1 = a2 + a+ 1. Then we obtain t−1

β = a2 + 1. If φ = mβ we have tφ = mtβ ,
m = tφt

−1
β , m = t(a2 + 1).

Q = a5 is equivalent to a = Q3. To obtain t = tφ, starting with tφ = mtβ = m(a2 + a + 1), as
a2 + a+ 1 = Q6 +Q3 + 1 = Q4 + 1 = (Q+ 1)4, we obtain t = m(Q+ 1)4. q.e.d.

Proposition 3.15. Given a basis φ = (e1, e2, e3) determined — as an unordered basis — as the
solution of X3 + tX2 + qX + p as in Proposition 3.10, then, with the notations of Proposition 3.14,
we have

Q =
tq

p
=

1

p2t
+ 1.

Not only q is determined by t and p, but t and p themselves are not independent, they have exactly
to satisfy to

p2t ∈ {1, R′, S′, I ′}, or equivalently pt4 + p6t3 + p4t2 = 1.

Other equivalent equations are

p5t6 + pt4 + p2t = 1, as well as p3t5 + p4t2 + p2t = 1.

And we have the equivalent condition

< p3t5, p3t5 >= 1, or equivalently p3t5 ∈ {1, R, S, I}.

Proof. If Q = tq
p , from q = 1+p2t

pt2 we obtain Q = 1
p2t + 1.

Of course each of these equations implies that t, p ̸= 0. The first equation is the same as (p2t)4 +
(p2t)3+(p2t)2 = 1, which expresses that p2t is a solution of X4+X3+X2 = 1, i.e. of (X+1)(X3+
X + 1) = 0, i.e. an element of {1, R′, S′, I ′}, and this means that 1

p2t ∈ {1, R, S, I}, that is to say
1

p2t + 1 = Q ∈ {0, R′, S′, I ′}; but this is proved by tr(Q) = 0.
To obtain the second proposed equation we equalize the two expressions for q from Proposition 3.10
and Proposition 3.12: q = 1+p2t

pt2 and q = t2 + p4t4. To obtain the third equation we equalize the
two expressions for pt4 which appear in the two first equations. And for the final equation, we add
the three first equations, this gives p3t5 + p5t6 + p6t3 = 1, i.e. tr(p3t5) = 1, i.e. < p3t5, p3t5 >= 1.
This last point can be deduced from (p2t)−1 = (p3t5)4. q.e.d.

3.7 Parameters (t, k), dual parameters (t, c), geometrical duality in logics
Proposition 3.16. With the notations of Proposition 3.14 and m = k−1, a basis φ — except for
the order of its terms — is associated to a unique pair (t, k) ∈

(
F8\{0}

)2 of parameters such that

< t, k >= 1.

There are 7 × 4 = 28 such (t, k). Furthermore if φ is represented by (t, k) then its dual φ∗ is
represented by (t, k)∗ := (c, l), with c = k2t, l = k−1:

(t, k)∗ = (k2t, k−1).
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Proof. From t = m(Q+ 1)4 in Proposition 3.14, we deduce
(

t
m

)2
+ 1 = Q, and < t, k >= tr

(
t
m

)
=

tr(Q)+1 = 0+1 = 1. Given (t, k) we recover β by tβ = tk, and a or Q by a = 1
(tk)4 +1, Q = (tk)2+1.

For the duality, if φ = mβ as in Proposition 3.14, we know by Proposition 3.11 that φ∗ = m−1β∗ =
m−1β (up to an order among the vectors in the basis), and mφ∗ = mφ

−1 = m−1, i.e. l = k−1, and
tφ∗ = mφ

−2tφ = m−2t = k2t, i.e. c = k2t. q.e.d.

Definition 3.17. Given a basis φ with dual φ∗, then the true tφ∗ is also named the co-true of φ
and denoted by cφ = tφ∗ . The couple (tφ, cφ) is named the couple of dual parameters.

Proposition 3.18. 1 — If φ — as an unordered basis — is parametrized by t, q, p, it could be
parametrized by (tφ, cφ), with tφ = e1 + e2 + e3 and cφ = tφ∗ = e∗1 + e∗2 + e∗3, as in Definition 3.17,
with in fact

cφ = p5t5,

and then < tφ, cφ >= 1.
2 — Conversely, given (t, c) ∈

(
F8\{0}

)2, a couple of of parameters such that

< t, c >= 1,

there is exactly one unordered basis φ, denoted by φ = (t, c), with tφ = t, cφ = c, which is
determined by

t = t, a = c5t5 + 1.

Then φ∗ is represented by (c, t), i.e.
(t, c)∗ = (c, t).

The other parameters, for φ and φ∗, are

m = c3t4, Q = c2t2 + c4t4, q = c5 + t2, p = c3t6.

t∗ = c, c∗ = t, a∗ = c5t5 + 1 = a,

m∗ = c4t3, Q∗ = c2t2 + c4t4, q∗ = c2 + t5, p∗ = c6t3.

3 — Starting from (t, q, p) for φ, we obtain (t∗, q∗, p∗) for φ∗, with

t∗ = p5t5, q∗ = p3t3 + t5, p∗ = p2t5.

Proof. With the notations of Proposition 3.16 let φ be a basis, its various parameters being
t, c, q, p, a,Q,m, k, and let φ∗ its dual, with parameters denoted by t∗(= c), c∗(= t), q∗, p∗, a∗,
Q∗, m∗, k∗. We have cφ∗ = tφ, as (φ∗)∗ = φ.
Starting with the data φ and the associated t, q, p, we compute c. We have φ∗ = (e2×e3, e3×1, e1×
e2), tφ∗ = e2 × e3 + e3 × e1 + e1 × e2 = e22e

2
3(e2 + e3)

2 + · · · = (e2e3(e2 + e3) + . . . )2, hence
the value of cφ = tφ∗ is given by cφ

4 = tφ∗4 = e2e3(e2 + e3) + · · · = e22e3 + e2e
2
3 . . . . Comput-

ing tφqφ + pφ = (e1 + . . . )(e2e3 + . . . ) + e1e2e3 we obtain exactly this e22e3 + e2e
2
3 . . . , and so:

cφ
4 = tφqφ + pφ. But we know that tq + p = (pt)−1 = (pt)6, cφ4 = (pφtφ)

6, and cφ = (pφtφ)
5, or

briefly c = (tq+p)2 = (pt)5 . Hence we have tc = t6p5 = (t5p3)4, and in Proposition 3.15 we proved
that the trace of that expression is 1, i.e. < t, c >= 1.
All the parameters of φ and φ∗ could be expressed with t = tφ and c = cφ = t∗, as follows. From
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Proposition 3.16 we know that k∗ = k−1, c = t∗ = k2t. From c = k2t we obtain m2 = k−2 = tc−1,
m = c3t4; but also by Proposition 3.14 we have m = t(a2+1), m2 = t2(a4+1), and a4+1 = (tc)−1,
a = (tc)−2 + 1 = (tc)5 + 1.
We have a2 +1 = (tc)−4, Q = a

a2+1 = (tc)2 + (tc)4. From q = at2 we obtain q = c−2 + t2 = c5 + t2,
and from p = (a2 + 1)t3 we obtain p = (tc)−4t3 = t−1c−4 = c3t6.
We have t∗ = c = p5t5. By duality, exchanging φ and φ∗, we have also, with pφ∗ = p∗, t = (p∗c)5,
p∗5 = tc2, p∗ = (tc2)3 = t3c6 = t3(p5t5)6, p∗ = p2t5. And finally we have q∗ = c2 + t5 =
(p5t5)2 + t5 = p3t3 + t5. q.e.d.

Proposition 3.19. For any of the 28 bases of F8 as given in the table of Proposition 3.13, the only
relation between its true t and its co-true c, and its association parameter a, is given by

a = (ct)5 + 1 ∈ {0, R, S, I}, or ct = (a+ 1)3 = a4 + a2 + 1 ∈ {1, R, S, I},

and the table of values of c = c(t, a) = (a+1)3

t is

c(t, a) a = 0 a = R a = S a = I
t = 1 cκ = 1 cI′i = R cR′r = S cS′s = I
t = R cRκ = R′ cIi = 1 cr = R cR′s = I′

t = S cSκ = S′ cS′i = R′ cRr = 1 cs = S
t = I cIκ = I′ ci = I cI′r = S′ cSs = 1
t = R′ cR′κ = R cSi = S cS′r = I′ cIs = S′

t = S′ cS′κ = S cRi = I′ cIr = I cI′s = R′

t = I′ cI′κ = I cR′i = S′ cSr = R′ cRs = R

Proof. Clearly the 2 conditions are equivalent. We know that ct = p5t6 (in the proof of Proposition
3.18), and p = (a2 +1)t3 (Proposition 3.12), and so ct = ((a2 +1)t3)5t6 = (a2 +1)5 = (a2 +1)−2 =
(a + 1)−4 = (a + 1)3; and this is a4 + a2 + 1 because a4 + a3 + a = 0. Then the condition
ct ∈ {1, R, S, I} comes from a ∈ {0, R, S, I}, and is equivalent to < c, t >= 1 or tr(ct) = 1, given in
Proposition 3.18. As a corollary we obtain the next Proposition 3.20. q.e.d.

Proposition 3.20. The table of the 28 bases with given values for (t, c) is

c = 1 c = R c = S c = I c = R′ c = S′ c = I′

t = 1 κ I′i R′r S′s
t = R Ii r Rκ R′s
t = S Rr s S′i Sκ
t = I Ss′ i I′r Iκ
t = R′ R′κ Si C∗ : Is B : S′r
t = S′ S′κ Ir C : I′s A∗ : Ri
t = I′ Rs I′κ B∗ : Sr A : R′i

In this table we emphasize positions of the bases A,B,C and the dual bases A∗ = AT, B∗ =
BT, C∗ = CT. By A : R′i we mean that as an unordered basis A is R′i, etc.

4 Logics on F8 and parametrizations of conjunctions
A basis is described by three parameters e1, e2, e3, which have to be linearly independent and which
are considered as unordered. But, for calculus with matrices, a basis is given as an ordered data
ε = (e1, e2, e3). In the previous section we introduced parameters which in fact are associated
to unordered bases, the two independent t and a, and the two t and c with the only dependence
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< t, c >= 1. Starting from (t, c) we recover a = (ct)5 + 1 and ct = a4 + a2 + 1.
This presentation has to be completed. In order to give explicit algebraic formulas for an arbitrary
conjunction associated to an arbitrary basis, we need parameters directly related to the polynomial
functions associated to conjunctions, the ε6, ε5, ε3 introduced in Proposition 4.4; then we need to
express these parameters with respect to (t, a) or to (t, c).
Slightly modified the ε6, ε5, ε3 generate the canonical parameters ρ, σ, ι and the differential param-
eters d6, d5, d3, emphasizing differences ∧ε − ∧.

4.1 Logic associated to an arbitrary basis, associated polynomial coordinates
Definition 4.1. To each basis ε = (e1, e2, e3) of F8 is associated a Boolean structure (∧ε,¬ε) on
F8 given as follows:
If u = u1e1 + u2e2 + u3e3 and v = v1e1 + v2e2 + v3e3, then

u ∧ε v = u1v1e1 + u2v2e2 + u3v3e3, ¬εu = (u1 + 1)e1 + (u2 + 1)e2 + (u3 + 1)e3.

With ∆ε =

 e1 0 0
0 e2 0
0 0 e3

 and tε = e1 + e2 + e3 = tr(∆ε), we have

u ∧ε v = Coordε(u)T∆εCoordε(v), ¬εu = u+ tε.

Nota bene : The logic associated to the basis ε is in fact associated only to the unordered basis
{e1, e2, e3}, hence we can hope to express it with t, a or with t, c.

Proposition 4.2. The logic associated to a basis ε = (e1, e2, e3) determines this basis, except for
the order of its terms, because e1, e2 and e3 are the atoms; for this logic the truth values are
the ‘false’ f = 0, the ‘true’ tε = e1 + e2 + e3, briefly denoted by t, and ¬εu = u + t, and, with
u ∨ε v = ¬ε(¬εu ∧ε ¬εv), the sum u+ v is the ‘symmetrical difference’

u+ v = (¬εu ∧ε v) ∨ε (u ∧ε ¬εv).

Hence we obtain effectively 28 such logics.

Proposition 4.3. The logic associated to a basis ε = (e1, e2, e3) as in Definition 4.1 and Proposition
4.2 is determined by its associated order

u ≤ε v ⇔ u ∧ε v = u,

and this order is a cube

e1 + e2

((PP
PPP

PPP
e2oo

$$II
III

II

e1 + e2 + e3 e2 + e3oo

e1

((PP
PPP

PPP
PP

OO

0oo

OO
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e3 + e1

OO

e3oo
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Proposition 4.4. Given a basis ε = (e1, e2, e3) and its dual ε∗ = (e∗1, e
∗
2, e

∗
3), the associated

conjunction ∧ε is given by

u ∧ε v = ε8u
4v4 + ε6(u

2v4 + u4v2) + ε5(uv
4 + u4v) + ε4u

2v2 + ε3(uv
2 + u2v) + ε2uv,

with, for k ∈ {2, 3, 4, 5, 6, 8}:
εk =

∑
1≤i≤3

(e∗i )
kei.

Also we have

u ∧ε v = ε8u
4v4 + ε4u

2v2 + ε2uv + ε6(u× v) + ε5(u× v)2 + ε3(u× v)4.

These coefficients — named polynomial coordinates of ε — will be precised in Proposition 4.5.

Proof. As u1 is tr(ue∗1) = ue∗1 + (ue∗1)
2 + (ue∗1)4, the component (u ∧ε v)1 of u ∧ε v on e1 is

(ue∗1+(ue∗1)
2+(ue∗1)

4)(ve∗1+(ve∗1)
2+(ve∗1)

4). By expansion, product with e1, and summation with
its analogous for the second and the third components, we obtain εk =

∑
1≤i≤3(e

∗
i )

kei. The second
formula is immediate from the formula u× v = u2v2(u2 + v2) from Proposition 3.2. q.e.d.

Proposition 4.5. The conjunction u∧ε v is bilinear and symmetrical, and then it is characterized
by the following conditions:

e1 ∧ε e1 = e1, e2 ∧ε e2 = e2, e3 ∧ε e3 = e3,

e1 ∧ε e2 = e2 ∧ε e3 = e3 ∧ε e1 = 0.

So the coefficients εk are given by
ε8 = 1, ε4 = 0, ε2 = 0

and the unique solution (e6, ε5, ε3) of the system

ε6e
∗
1 + ε5(e

∗
1)

2 + ε3(e
∗
1)

4 = (e2e3)
4,

ε6e
∗
2 + ε5(e

∗
2)

2 + ε3(e
∗
2)

4 = (e3e1)
4,

ε6e
∗
3 + ε5(e

∗
3)

2 + ε3(e
∗
3)

4 = (e1e2)
4,

that is to say
ε6 = (e2e3)

4e1 + (e3e1)
4e2 + (e1e2)

4e3,

ε5 = (e2e3)
4e21 + (e3e1)

4e22 + (e1e2)
4e23,

ε3 = (e2e3)
4e41 + (e3e1)

4e42 + (e1e2)
4e43.

With these values we have:

u ∧ε v = u4v4 + ε6(u× v) + ε5(u× v)2 + ε3(u× v)4.

The relations between these coefficients will be given in Proposition 4.13.
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Proof. In fact immediately we have ε8 = 1, ε4 = 0, ε2 = 0, because of Proposition 3.8. Then the
second formula in Proposition 4.4 becomes u ∧ε v = u4v4 + ε6(u × v) + ε5(u × v)2 + ε3(u × v)4,
and the 3 first conditions are satisfied; with e2 × e3 = e∗1, etc., the 3 next conditions mean exactly
the proposed system. This system has a unique solution, because its determinant is 1, according to
Proposition 3.2 in the case u = e1, u

′ = e2, u
′′ = e3: in this case we have a basis, and so the value

is 1 (see again [5, Propositions 4.1 et 4.3-4]). We compute the solution by Cramer formulas: ε6, ε5
and ε3 are:
(e2e3)

4(e∗2
2e∗3

4 + e∗3
2e∗2

4) + (e3e1)
4(e∗3

2e∗1
4 + e∗1

2e∗3
4) + (e1e2)

4(e∗1
2e∗2

4 + e∗2
2e∗1

4),
(e2e3)

4(e∗2e
∗
3
4+e∗3e

∗
2
4)+(e3e1)

4(e∗3e
∗
1
4+e∗1e

∗
3
4)+(e1e2)

4(e∗1e
∗
2
4+e∗2e

∗
1
4), and (e2e3)

4(e∗2e
∗
3
2+e∗3e

∗
2
2)+

(e3e1)
4(e∗3e

∗
1
2+e∗1e

∗
3
2)+(e1e2)

4(e∗1e
∗
2
2+e∗2e

∗
1
2). We conclude with (e2

∗e3
∗)2(e2

∗+e3
∗)2 = e2

∗×e3
∗ =

e1 etc. q.e.d.

Proposition 4.6. 1 — With the notations of Proposition 4.5 we have

u ∧ε v =
[
u u2 u4

]  0 ε3 ε5
ε3 0 ε6
ε5 ε6 1

 v
v2

v4

 ,

and so the matrix Lε :=

 0 ε3 ε5
ε3 0 ε6
ε5 ε6 1

 is a representation of the F2-bilinear map

∧ε : F8 × F8 → F8 : (u, v) 7→ u ∧ε v.

We notice that Lκ =

 0 1 0
1 0 1
0 1 1

.

Proof. Using Propositions 4.4 and 4.5 we expand the conjunction u ∧ε v as u4(v4 + ε6v
2 + ε5v) +

u2(ε6v
4 + ε3v) + u(ε5v

4 + ε3v
2). For Lκ, Proposition 2.8 gives κ6 = κ3 = 1, κ5 = 0. q.e.d.

Proposition 4.7. Given a basis ε we consider ∆ε, Kε, Lε defined by

u ∧ε v = [u]Tε ∆ε[v]ε = [u]TκKε[v]κ = [u]TsqLε[v]sq,

with ∆ε as in Definition 4.1 and Lε as in Proposition 4.6, with notations of Definition 3.4 and
Proposition 3.7. The third coefficient Kε is named the canonical matrix of ∧ε, and we have:

Lε = CRSIKεCRSI , Kε = M−1
ε

T
∆εM

−1
ε , Lε = CT

ε ∆εCε.

We notice that Kκ =

 R 0 0
0 S 0
0 0 I

.

Kε will be considered again in Proposition 4.15.

Proof. We have seen that [u]κ = CRSI [u]sq, [u]ε = Cε[u]sq, [u]κ = Mε[u]ε. From Proposition 4.6 we
have u∧ε v = [u]TsqLε[v]sq = [u]TκCRSILεCRSI [v]κ, and CRSILεCRSI = Kε. From Definition 4.1 we
have u ∧ε v = [u]ε

T∆ε[v]ε = [u]κ
TM−1

ε
T
∆εM

−1
ε [v]κ, and M−1

ε
T
∆εM

−1
ε = Kε. Using Proposition

3.7 we have Cε = M−1
ε CRSI , and Lε = CRSIM

−1
ε

T
∆εM

−1
ε CRSI = CT

ε ∆εCε. q.e.d.
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Proposition 4.8. If ε = (e1, e2, e3) is a basis, and λ ̸= 0, then the conjunctions associated to ε
and to λε are related by (λε)i = λ1−iεi, for i = 6, 5, 3, i.e.:

u ∧ε v = u4v4 + ε6(u× v) + ε5(u× v)2 + ε3(u× v)4,

u ∧λε v = u4v4 + λ2ε6(u× v) + λ3ε5(u× v)2 + λ5ε3(u× v)4.

Proof. With Proposition 3.11, if φ = λε = (λe1, λe2, λe3) = (f1, f2, f3), then φ∗ = λ−1ε∗, f∗
1 =

λ−1e∗1, f∗
1
6 = λ−6e∗1

6, φ6 = f∗
1
6f1 + · · · = λ−6λe∗1

6e1 + · · · = λ−5ε6 = λ2ε6. Also φ5 = λ−4λε4 =
λ3ε5, φ3 = λ−2λε4 = λ5ε5. q.e.d.

Proposition 4.9. The coefficients of the conjunction u ∧ε v associated to a basis ε = (e1, e2, e3),
are given by

ε6 = p4t4, ε5 = p2q2, ε3 = p4.

Proof. From the values given in Proposition 4.5, with ε6 = (e2e3)
4e1 + . . . we obtain ε26 = e2e3e

2
1 +

· · · = e1e2e3(e1 + e2 + e3) = pt. We have ε5 = (e2e3)
4e21 + (e3e1)

4e22 + (e1e2)
4e23 = (e1e2e3)

2(e22e
2
3 +

e23e
2
1 + e21e

2
2) = p2q2. Of course e3 = (e1e2e3)

4 = p4. q.e.d.

Proposition 4.10. The conjunction u ∧ε v associated to a basis ε = (e1, e2, e3) is given by

u ∧ε v = u4v4 + (a+ 1)t2(u2v4 + u4v2) + at3(uv4 + u4v) + (a+ 1)t5(uv2 + u2v),

u ∧ε v = u4v4 + (a+ 1)t2(u× v) + at3(u× v)2 + (a+ 1)t5(u× v)4.

Proof. Using Proposition 4.9 and the values of p and q from 3.12, which are q = at2, p = (a2+1)t3,
we obtain, thanks to a4 = a3 + a and consequently a6 = a2 + a:
ε6 = p4t4 = ((a2 + 1)t3)4t4 = (a+ 1)t2;
ε5 = p2q2 = (a2 + 1)2t6a2t4 = (a4 + 1)a2t3 = at3;
ε3 = p4 = (a2 + 1)4t12 = (a+ 1)t5. q.e.d.

Proposition 4.11. Given a basis ε, parametrized by its t, q, p or its t and a, or its ‘true’ t and its
‘co-true’ c, we have

ε6 = p4t4 = (a+ 1)t2 = c5,

ε5 = p2q2 = at3 = c5t+ t3,

ε3 = p4 = (a+ 1)t5 = c5t3.

So the conjunctions associated to ε and to ε∗ are given by:

u ∧ε v = u4v4 + c5(u× v) + (c5t+ t3)(u× v)2 + c5t3(u× v)4,

u ∧ε∗ v = u4v4 + t5(u× v) + (t5t+ c3)(u× v)2 + t5c3(u× v)4.

Proof. We have ε6 = (a+ 1)t2 = (c5t5)t2 = c5; ε5 = at3 = (c5t5 + 1)t3 = c5t+ t3; ε3 = (a+ 1)t5 =
(c5t5)t5 = c5t3. q.e.d.
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Remark 4.12. The formulas to express parameters are not necessarily unique, because of depen-
dences among parameters. For instance, we find ε5 = c5t+ t3, but also we can obtain

ε5 = c2t5 + c6t2,

if we replace in ε5 = p2q2, p and q by c3t6 and c5 + t2; but in fact we have effectively c2t5 + c6t2 =
c5t + t3, which is equivalent to (1+ < c, t >)c5t = 0. So the dependence < c, t >= 1 implies the
equivalence of the two formulas for ε5.

Proposition 4.13. 1 — The coefficients ε6, ε5, ε3 in Proposition 4.11 and Proposition 4.5 are
submitted to the following relations:

tr
(
(ε3ε6)

5
)
= 1.

ε5 = ε53ε
3
6 + ε3ε

6
6.

2 — Conversely, given 2 parameters µ and ν, with (µ, ν) ∈
(
F8

)2\{0}, with

< µ5, ν5 >= 1, or equivalently µν ∈ {1, R′, S′, I ′},

then a unique unordered basis ε is determined by (µ, ν), via its conjunction ∧ε by

ε6 = µ, ε3 = ν, ε5 = ν5µ3 + νµ6,

or equivalently by
t = µ2ν5, c = µ3.

Proof. From Proposition 4.11 we have ε3ε6 = c5(c5t3) = c3t3 = (ct)3 i.e.

ct = (ε3ε6)
5;

and the condition tr(ct) = 1 from Proposition 3.18 gives tr
(
(ε3ε6)

5
)
= 1.

For ε5 we have ε3
ε6

= t3, t =
(
ε3
ε6

)5. We have ε5 = at3 = (a+1)t3+t3 = (a+1)t2t+t3 = ε6
(
ε3
ε6

)5
+ ε3

ε6
,

ε5 = ε53ε
3
6 + ε3ε

6
6.

In the other direction from µ and ν we obtain of course ε6 and ε3, and then c = µ3, ct = (µν)5,
and then t = µ2ν5. q.e.d.

4.2 The canonical parameters ρ, σ, ι, the differential parameters d6, d5, d3

Here we introduce (ρ, σ, ι) and (d6, d5, d3), two other parameters for a basis which are defined
explicitly from the associated conjunction, and we express them with respect to the independent
parameters (t, a) or the dual parameters (t, c). This will help us to provide explicit parametrizations
of the conjunctions by (t, a) or (t, c). In the next sections, we will use the differential parameters
d6, d5, d3 as natural linear representations of conjunctions, to observe linear combinations of these
operators. In fact by the intermediary of the parameters ρ, σ, ι the d6, d5, d3 are directly accessible,
and we can determine immediately the ε6, ε5, ε3, from the data of the function (u, v) 7→ u ∧ε v.

Definition 4.14. Given a basis ε and the associated conjunction ∧ε, we define its κ-parameters or
canonical parameters as being

ρ = S ∧ε I, σ = I ∧ε R, ι = R ∧ε S.
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Proposition 4.15. The canonical matrix Kε from Proposition 4.7 is

Kε =

 R ι σ
ι S ρ
σ ρ I

 .

Proposition 4.16. Let ε be a basis, given by its matrix Mε = (mi,j), and the dual basis ε∗ given
by Mε∗ =: (m∗

i,j). Then the canonical parameters are given by ρ
σ
ι

 =

 m∗
2,1m

∗
3,1 m∗

2,2m
∗
3,2 m∗

2,3m
∗
3,3

m∗
3,1m

∗
1,1 m∗

3,2m
∗
1,2 m∗

3,3m
∗
1,3

m∗
1,1m

∗
2,1 m∗

1,2m
∗
2,2 m∗

1,3m
∗
2,3

 e1
e2
e3


Proof. The identity MT

ε∗Mε = I3 is given in Definition 3.5. For any u we have Coordε(u) =
M−1

ε Coordκ(u), and in particular Coordε(R), Coordε(S) and Coordε(I) are the columns of M−1
ε

(i.e. the rows of Mε∗). Hence we have

S ∧ε I = (m∗
2,1m

∗
3,1)e1 + (m∗

2,2m
∗
3,2)e2 + (m∗

2,3m
∗
3,3)e3.

q.e.d.

Proposition 4.17. For a basis ε, if (−)i is the ith component with respect to κ = (R,S, I), and
with the canonical parameters given in Definition 4.14 and Proposition 4.16, we have

u ∧ε u
′ = u ∧ u′ + (u× u′)1ρ+ (u× u′)2σ + (u× u′)3ι.

Proof. For u = xR+yS+zI and u′ = x′R+y′S+z′I, we expand u∧εu
′ = xx′R∧εR+xy′R∧εS+· · · =

xx′R + xy′ι + · · · = xx′R + yy′S + zz′I + (xy′ + x′y)ι + (yz′ + y′z)ρ + (zx′ + z′x)σ, and as
xy′ + x′y = (u× u′)3, etc., we arrive to the given formula. q.e.d.

Proposition 4.18. With the notations of Definition 4.14 we have

W :=

 ρ
σ
ι

 =

 R S I
S I R
I R S

 ε6
ε5
ε3

+

 I ′

R′

S′

 .

E :=

 ε6
ε5
ε3

 =

 R S I
S I R
I R S

 ρ
σ
ι

+

 1
0
1

 .

Proof. The first formula is a simple application of Proposition 4.5: we have S ∧ε I = S4I4+ ε6(S×

I)+ ε5(S× I)2+ ε3(S× I)4 = I ′+ ε6R+ ε5S+ ε3I, etc. In fact the matrix CRSI =

 R S I
S I R
I R S

,

already present in Propositions 3.7 and 4.7, is its own inverse, C2
RSI = I3, hence the second formula.

Another proof can be performed with Lε = CRSIKεCRSI from Proposition 4.7. q.e.d.
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Definition 4.19. For a given basis ε with polynomial parameters ε6, ε5 and ε3 we define its
polynomial differential parameters or briefly differential parameters:

d6 = ε6 + 1, d5 = ε5, d3 = ε3 + 1,

and

Dε =

 0 d3 d5
d3 0 d6
d5 d6 0

 .

These parameters are named ‘differential’ because they appear in the difference ∧ − ∧ε as follows.

Proposition 4.20. With the notations of Definition 4.19 we have d6
d5
d3

 =

 R S I
S I R
I R S

 ρ
σ
ι

 = CRSIW.

Furthermore u ∧ε v is given by

u ∧ε v = u ∧ v + d6(u× v) + d5(u× v)2 + d3(u× v)4.

Proof. The first formula is clear. For the second formula, we have two proofs. On the one hand,
it is a trivial application of the definition of the d6, d5, d3 with the formula in Proposition 4.5 for
u ∧ε v and the formula in Proposition 2.8 for u ∧ v. On the other hand we can use Proposition
4.17. As (u × u′)1 = tr((u × u′)R) = (u × u′)R + (u × u′)2S + (u × u′)4I, we find u ∧ε u′ =
u ∧ u′ + (Rρ+ Sσ + Iι)(u× u′) + · · · = u ∧ u′ + d6(u× u′) + . . . q.e.d.

Proposition 4.21. For the 4 auto-dual bases, the canonical parameters, the differential parameters
and the polynomial parameters are:

ε κ r s i
ρ 0 1 I S
σ 0 I 1 R
ι 0 S R 1
d6 0 R S I
d5 0 S′ I′ R′

d3 0 S′ I′ R′

ε6 0 S′ I′ R′

ε5 0 S′ I′ R′

ε3 0 R S I

Proof. We do a direct verification. For example for r = (R′, I ′, 1) we have S = I ′ + 1, R =
R′ + I ′ + 1, I = R′ + 1, hence ρ = S ∧r I = 1, σ = I ∧r R = R′ + 1 = I, ι = R ∧r S = I ′ + 1 = S.
Then we obtain d6 = Rρ+ Sσ + Iι = R, d5 = Sρ+ Iσ +Rι = S′, d3 = Iρ+Rσ + Sι = S′. An we
finish with ε6 = d6 + 1 = R+ 1 = S′, ε5 = d5 = S′, ε3 = d3 + 1 = S′ + 1 = R. q.e.d.

4.3 Differential parameters in terms of true and co-true
Proposition 4.22. The differential parameters d6, d5, d3 introduced in 4.19 are given, with respect
to t and c by:

d6 = c5 + 1, d5 = c5t+ t3, d3 = c5t3 + 1.

Proof. It results from the expression of ε6, ε5, ε3 given in Proposition 4.11. q.e.d.
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5 The 28 logics given by their conjunctions
Now, with the help of the previous parametrizations, we are ready to produce tables and formulas
for the 28 conjunctions present in the situation.

5.1 Description by polynomial parameters ε6, ε5, ε3

Proposition 5.1. The 4 logics associated to κ, r, s and i are given by the negations

¬κu = u+ 1, ¬ru = u+R, ¬su = u+ S, ¬iu = u+ I,

and the conjunctions:

u ∧κ v = u4v4 + 1(u2v4 + u4v2) + 0(uv4 + u4v) + 1(uv2 + u2v),

u ∧r v = u4v4 + S′(u2v4 + u4v2) + S′(uv4 + u4v) +R(uv2 + u2v),

u ∧s v = u4v4 + I ′(u2v4 + u4v2) + I ′(uv4 + u4v) + S(uv2 + u2v).

u ∧i v = u4v4 +R′(u2v4 + u4v2) +R′(uv4 + u4v) + I(uv2 + u2v).

Proof. For a basis ε = (e1, e2, e3), the corresponding (t, a) as in Proposition 3.12 are denoted by tε
and aε. With tε = e1 + e2 + e3, we have

tκ = 1, tr = R, ts = S, ti = I;

with qε = e1e2 + e2e3 + e3e1, we have qκ = 0, qr = I, qs = R, qi = S, and, with aε =
qε
tε2 , we obtain

aκ = 0, ar = S, as = I, ai = R;

then, by Proposition 4.10, we obtain the announced values for the coefficients. We can also use
directly Proposition 4.5. We can also use Proposition 4.21. q.e.d.

Proposition 5.2. In parallel with the table of the 28 bases in Proposition 3.13, we have the
following table for the values of polynomial coordinates of the 28 conjunctions ∧ε associated to the
28 = 7× 4 values of (t, a), as defined in Proposition 4.4, and given by Proposition 4.10:(

ε6, ε5, ε3) = ((a+ 1)t2, at3, (a+ 1)t5
)
:

a = 0 a = R a = S a = I
t = 1 ∧κ = (1,0,1) ∧I′i = (S′, R, S′) ∧R′r = (I′, S, I′) ∧S′s = (R′, I, R′)
t = R ∧Rκ = (S, 0, S′) ∧Ii = (1, I, I′) ∧r = (S′,S′,R) ∧R′s = (R, 1, I)
t = S ∧Sκ = (I, 0, I′) ∧S′i = (S, 1, R) ∧Rr = (1, R,R′) ∧s = (I′, I′,S)
t = I ∧Iκ = (R, 0, R′) ∧i = (R′,R′, I) ∧I′r = (I, 1, S) ∧Ss = (1, S, S′)
t = R′ ∧R′κ = (S′, 0, S) ∧Si = (I′, S′, 1) ∧S′r = (R,R′, S′) ∧Is = (I, R,R)
t = S′ ∧S′κ = (I′, 0, I) ∧Ri = (R,S, S) ∧Ir = (R′, I′, 1) ∧I′s = (S, S′, I′)
t = I′ ∧I′κ = (R′, 0, R) ∧R′i = (I, I′, R′) ∧Sr = (S, I, I) ∧Rs = (S′, R′, 1)

The logic associated to a basis ε is determined by its conjunction ∧ε.
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Proof. To obtain the table, we apply Proposition 4.10. Then we have to prove that so the logic is
determined, and the unordered basis is determined too.
It is known that the set of logical functions associated to the Boolean algebraic structure given by
ε could be obtained by compositions of its NANDε function which is NANDε(u, v) = ¬ε(u ∧ε v).
As ¬εu = u + tε, the question is to determine tε = t from (ε6, ε5, ε3). As a ∈ {0, R, S, I}, a ̸= 1,
and ε6 ̸= 0, and t3 = ε3

ε6
and t =

(
ε3
ε6

)5
= ε53ε

2
6. Another proof is to realize that ε is constituted by

the 3 atoms e1, e2, e3 which determine the logic, and these are the roots of X3 + tX2 + qX + p = 0,
and t, q and p are determined by (ε6, ε5, ε3); we find t = ε53ε

2
6, a = ε5t

4 = ε63ε5ε6, q = ε23ε5ε
5
6,

p = ε63ε
2
5ε6 + ε3ε

6
6.

So in order to determine tε and then the basis ε we just have to determine the coefficients ε6, ε5 and
ε3, as given in the table. Starting with u∧ε v, we have ι = R∧εS, ρ = S∧ε I, σ = I∧εR, and ε6, ε5,
ε3 are given by Proposition 4.18. By a simple inspection we verify that µν ∈ {1, R′, S′, I ′}. q.e.d.

5.2 Description by differential parameters d6, d5, d3
Proposition 5.3. The table of the 28 conjunctions according to the values of the differential
parameters (d6, d5, d3) = (ε6 + 1, ε5, ε3 + 1) is:

a = 0 a = R a = S a = I
t = 1 ∧κ = (0,0,0) ∧I′i = (R,R,R) ∧R′r = (S, S, S) ∧S′s = (I, I, I)
t = R ∧Rκ = (I′, 0, R) ∧Ii = (0, I, S) ∧r = (R,S′,S′) ∧R′s = (S′, 1, R′)
t = S ∧Sκ = (R′, 0, S) ∧S′i = (I′, 1, S′) ∧Rr = (0, R, I) ∧s = (S, I′, I′)
t = I ∧Iκ = (S′, 0, I) ∧i = (I,R′,R′) ∧I′r = (R′, 1, I′) ∧Ss = (0, S,R)
t = R′ ∧R′κ = (R, 0, I′) ∧Si = (S, S′, 0) ∧S′r = (S′, R′, R) ∧Is = (R′, R, S′)
t = S′ ∧S′κ = (S, 0, R′) ∧Ri = (S′, S, I′) ∧Ir = (I, I′, 0) ∧I′s = (I′, S′, S)
t = I′ ∧I′κ = (I, 0, S′) ∧R′i = (R′, I′, I) ∧Sr = (I′, I, R′) ∧Rs = (R,R′, 0)

Remark 5.4. We let the reader write the corresponding table with respect to (ρ, σ, ι), which is
linearly dependent of (d6, d5, d3), according to W = CD.

Proposition 5.5. Given a basis ε, with differential parameters d6, d5, d3 we have, with u × v =(
uv(u+ v)

)2,
u ∧ε v = u ∧ v + d6(u× v) + d5(u× v)2 + d3(u× v)4,

u ∧ε v = u ∧ v + (c5 + 1)(u× v) + (c5t+ t3)(u× v)2 + (c5t3 + 1)(u× v)4.

Proof. It is immediate, using the formulas for ∧ (Proposition 2.8), for ∧ε (Proposition 4.5), the
definition of d6, d5, d3 (Definition 4.19) and Proposition 4.22. q.e.d.

Remark 5.6. 1 — Looking to the formula for ∧ε in Proposition 5.5, we notice the ‘symmetry’,
denoted by (−)∗, which is the exchange of t and c, and this transforms ∧ε into ∧ε∗ .
2 — The parameters d6, d5, d3 are dependent, the relations between them being the immediate
transcription of the dependences between the ε6, ε5, ε3, as in Proposition 4.13.

6 Multilogical construction of P(8), as a Boolean manifold
Now, with our parametric formulas and tables, we are ready to explore the space of Boolean
conjunctions on F8.
As a simple example, by immediate inspection of the tables, we find linear relations:
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Proposition 6.1. Among the differential parameters we have:

∧R′κ + ∧S′κ + ∧I′κ = ∧r + ∧s + ∧i = ∧Ir + ∧Rs + ∧Si = (1, 0, 0);

∧Sr + ∧Is + ∧Ri = ∧I′r + ∧R′s + ∧S′i = (0, 1, 0);

∧Rκ + ∧Sκ + ∧Iκ = ∧S′r + ∧I′s + ∧R′i = (0, 0, 1),

∧R′r + ∧S′s + ∧I′i = (1, 1, 1),

∧Rr + ∧Ss + ∧Ii = (0, 1, 1).

Now we have to prove that, by compositions, 4 of the conjunctions generate completely P(8).

Proposition 6.2. We have the following identities:

uv = (u ∧ v)2 + (u× v) + (u× v)2,

u× v = u ∧κ v + u ∧r v + u ∧s v + u ∧i v,

u2 = R× (S × u) + S × (I × u) + I × (R× u).

Proof. We know that u∧ v = u4v4+(u× v)+ (u× v)4, we derive (u∧ v)2 = uv+(u× v)2+(u× v),
the announced formula. So we only need formulas for u × v and u2. For u × v we add the last 4
lines in Proposition 5.1. And for u2 we have the following calculus. By the double cross product
formula given in Proposition 3.2 which is u × (u′ × u′′) =< u, u′′ > u′+ < u, u′ > u′′, we deduce
R× (S×u) =< R, u > S, S× (I ×u) =< S, u > I, I × (R×u) =< I, u > R, and so the announced
formula, by summing the three terms. q.e.d.

Remark 6.3. Of course the formulas are not at all unique. For example the formula given for u× v
could be modified with the help of Proposition 6.1.

Proposition 6.4. 1 — If A,B,C are the generators of GL3(F2) presented in Proposition 2.6, we
have

∧A = ∧R′i, ∧B = ∧S′r, ∧C = ∧I′s; ∧A∗ = ∧Ri, ∧B∗ = ∧Sr, ∧C∗ = ∧Is.

2 — Furthermore we have

(u× v)2 = u ∧κ v + u ∧A∗ v + u ∧B∗ +u ∧C∗ v,

(u× v)4 = u ∧κ v + u ∧A v + u ∧B +u ∧C v.

Proof. Except for the order of terms, A is R′i, B is S′r, C is I ′s, and the dual bases are A∗ which
is Ri, B∗ which is Sr, C∗ which is Is. We conclude with Proposition 6.1. q.e.d.

Other formulas are possible for u2, u4, tr(u). In the next Proposition 6.5 we see how to obtain
(−)2 from the linear generators. But after that we will have to obtain a description of (−)2 from
the unique data of logical operators (Propositions 6.6 and 6.7).



60 R. Guitart

Proposition 6.5. Using A,B,C the generators of GL3(F2) given in Proposition 2.6 we have:

A(u) = R× (S × u) + u, B(u) = S × (I × u) + u, C(u) = I × (R× u) + u,

u2 = A(u) +B(u) + C(u) + u.

Using r = ACB, s = BAC, i = CBA, the three other generators given in Proposition 2.6, we have

u2 = r(u) + s(u) + i(u).

Proof. For the generators A,B,C in Proposition 6.2 we have computed R× (S×u) =< R, u > S =
(Ru+ R2u2 + R4u4)S = R′u4 + Iu2 + I ′u, and we have A(u) = R′u4 + Iu2 + Su (see example in
‘Convention’ in section 2.3). For the formula with r, s, i we have (see ‘Convention’, in section 2.3)
r(u) = R′u4 + u2 + I ′u. q.e.d.

Proposition 6.6. We have
u = u ∧r R+ u ∧s S + u ∧i I,

u2 = u ∧r I + u ∧s R+ u ∧i S,

u4 = u ∧r S + u ∧s I + u ∧i R,

tr(u) = u ∧r 1 = u ∧s 1 = u ∧i 1.

Proof. As u ∧r v = [u]sq
TLr[v]sq, u ∧s v = [u]sq

TLs[v]sq, u ∧i v = [u]sq
TLi[v]sq, with the definition

of Lε from Proposition 4.6, and

Lr =

[
0 R S′

R 0 S′

S′ S′ 1

]
, Ls =

[
0 S I ′

S 0 I ′

I ′ I ′ 1

]
, Li =

[
0 I R′

I 0 R′

R′ R′ 1

]
,

we obtain:

u ∧r R = u, u ∧r S = Iu4 + S′u2 + I ′u, u ∧r I = R′u4 +Ru2 + I ′u.

u ∧s R = S′u4 + Su2 +R′u, u ∧s S = u, u ∧s I = Ru4 + I ′u2 +R′u,

u ∧i R = Su4 +R′u2 + S′u, , u ∧i S = I ′u4 + Iu2 + S′u, u ∧i I = u.

q.e.d.

Proposition 6.7. We have
u2 = u ∧A 1 + u ∧B 1 + u ∧C 1,

u4 = u ∧A∗ 1 + u ∧B∗ 1 + u ∧C∗ 1.

Proof. We know that u ∧A v = [u]sq
TLA[v]sq, u ∧B v = [u]sq

TLB [v]sq, and that u ∧C v =

[u]sq
TLC [v]sq, where, according to Proposition 6.4, we have, with the table in Proposition 5.2,

LA =

[
0 R′ I ′

R′ 0 I
I ′ I 1

]
, LB =

[
0 S′ R′

S′ 0 R
R′ R 1

]
, LC =

[
0 I ′ S′

I ′ 0 S
S′ S 1

]
.
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Then we obtain:

u ∧A 1 = S′u4 + u2 + S′u, u ∧B 1 = I ′u4 + u2 + I ′u, u ∧C 1 = R′u4 + u2 +R′u.

Similarly with

LA∗ =

[
0 S S
S 0 R
S R 1

]
, LB∗ =

[
0 I I
I 0 S
I S 1

]
, LC∗ =

[
0 R R
R 0 I
R I 1

]
,

we obtain

u ∧A∗ 1 = Iu4 +R′u2, u ∧B∗ 1 = Ru4 + S′u2, u ∧A∗ 1 = Su4 + I ′u2.

q.e.d.

In [5] we proved that a construction is possible for the Post-Malcev algebra P(8) (cf. Definition
2.9) with ∧, ¬ and the cross products R×, S×, I×. Now we have the following construction which
is a logical counterpart of the structure of GL3(F2). It depends on the generators r, s, i or A,B,C
of GL3(F2), and the ternary symmetry between them.

Proposition 6.8. 1 — The Post-Malcev algebra P(8) could be generated by compositions of the
functions

¬,∧,∧r,∧s,∧i,

and the constant functions with values R, S and I.
So P(8) is generated by the union in P(8) of 4 subalgebras isomorphic to P2, namely (P(8))κ, (P(8))r,
(P(8))s, (P(8))i, respectively generated by {¬κ,∧κ}, {¬r,∧r}, {¬s,∧s}, {¬i,∧i}.
2 — To generate P(8), rather than the ∧r,∧s,∧i we can use the ∧A,∧B ,∧B , or the ∧A∗ ,∧B∗ ,∧B∗ .

Proof. The Post-Malcev algebra P(8) (cf. Definition 2.9) is constructible with polynomials over F8,
because F8 is a finite field, and so we have to obtain the functions u+ v and uv. For u+ v we have

u+ v = ¬
((

¬(¬u ∧ v)
)
∧
(
¬(u ∧ ¬v)

))
.

For uv we have the formula in Proposition 6.2, expressed with u2 and u× v, and the formulas for
u2 and u× v. For u2 we can use also Proposition 6.6.
For the second point we use Proposition 6.7 to generate (−)2 or (−)4, and then Proposition 6.4 to
obtain u× v, and finally Proposition 6.2 to obtain uv. q.e.d.
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