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Abstract

A theorem of A.M.Pitts (1986) states that essential surjections of toposes bounded over a
base topos S are of effective lax descent. The symmetric monad M on the 2-category of
toposes bounded over S is a KZ-monad (Bunge-Carboni 1995) and the M -maps are precisely
the S -essential geometric morphisms (Bunge-Funk 2006). These last two results led me to
conjecture1 and then prove2 the general lax descent theorem that is the subject matter of this
paper. By a ‘Pitts KZ-monad’ on a 2-category K it is meant here a locally fully faithful
equivariant KZ-monad M on K that is required to satisfy an analogue of Pitts’ theorem on
bicomma squares along essential geometric morphisms. The main result of this paper states
that, for a Pitts KZ-monad M on a 2-category K (‘of spaces’), every surjective M -map is
of effective lax descent. There is a dual version of this theorem for a Pitts co-KZ-monad N .
These theorems have (known and new) consequences regarding (lax) descent for morphisms of
toposes and locales.
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1 Introduction

Let K be a 2-category. The notion of a KZ (short for ‘Kock-Zöberlein’)-monad [10] on K is a
special sort of pseudomonad M on K that is ‘property-like’ in the sense that, for its algebras,
structure is (a reflective) left adjoint to the unit so that, in particular, the so called structure may
instead be regarded as a property. There is a dual notion, to wit, that of a co-KZ-monad N on
K . For its algebras, structure is (a reflective) right adjoint to the unit.

The subject matter of this paper is a general lax descent theorem involving a notion of ‘Pitts
KZ-monad’ M , of which the symmetric monad M [4] is an instance, as well as a dual lax descent
theorem involving a ‘Pitts co-KZ-monad’ N .

The motivation for our main result came from two sources. First, it had been shown by A.M.Pitts
[17] that, for any bicomma square

F E
f

//

Y

F

q

��

Y X
p // X

E

g

��
+3
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2 M. Bunge

in the 2-category TopS of toposes bounded over a base topos S with a natural numbers object
[7], if f : F // E is S -essential then p : Y // X is locally connected (or X -essential [2]), and
the canonical 2-cell

p! · q∗ +3 g∗ · f!
is an isomorphism. Using it, it is proved in [17] that S -essential surjections of bounded S -toposes
are of effective lax descent. Second, a 1-cell f : F // E in a 2-category K with a KZ-monad
M defined on it is said to be an M -map [5] if the 1-cell M f : MF // ME has a right adjoint.
It is shown therein that, for M the symmetric monad on TopS , the M -maps coincide with the
S -essential geometric morphisms.

By a Pitts KZ-monad on a 2-category K we shall understand here an equivariant (in the sense
of [5]) KZ-monad M on K that satisfies an analogue of Pitts’ theorem for bicomma squares along
M -maps. Any Pitts KZ-monad M on K is in particular a locally faithful (stably) cocompletion
monad (in the sense of [5]). It follows from this that the M -algebras are precisely the (stably)
M -cocomplete objects, a notion that requires the existence and coherence of certain left Kan
extensions.

By a 2-category of abstract spaces we shall understand here any 2-category K with a pseudoter-
minal object, equipped with a representable contravariant 2-functor on K with values on Cat. The
representing object O is said to be its objects classifier. Examples of the latter are the 2-categories
TopS of toposes bounded over S and Loc(S ) of locales in S [9]. In the first case one takes O to
be the topos S Sfin and, in the second, the Sierpinski locale S.

The main result of this paper is the following general lax descent theorem. If M is any Pitts
KZ-monad on a 2-category K of abstract spaces for which its objects classifier is an M -algebra,
then every surjective M -map f : F // E in K is of effective lax descent. The proof we give
consists of two parts. The first is a lax version of the theorem of Bénabou and Roubaud [3]. The
second is a direct application of Beck’s Tripleability Theorem [7]. The proof that we give of the
lax descent theorem consists in putting together these two parts. There is a dual version of this
theorem for a Pitts co-KZ-monad N on a 2-category K of spaces whose objects classifier is an
N -algebra.

Consequences of the lax descent theorem (or of its dual) for toposes over S , include, in addi-
tion to the already mentioned result, due to A. M. Pitts [17], and which states that S -essential
surjections are of effective lax descent, also a proof of a conjecture of A. M. Pitts (op.cit.), proved
independently by M. Zawadowski [21], D. Ballard and W. Boshuck [1], and (twice) by I. Moerdijk
and J. J. C. Vermeulen [15, 14], and which states that coherent surjections of coherent toposes
are of effective lax descent. The Pitts monads intervening in these two cases are, respectively,
the symmetric monad [4] and the coherent monad, the latter introduced here specifically for this
purpose.

In the context of locales in S , we obtain two seemingly new lax descent results, namely, that
semiopen surjections and perfect surjections are of effective lax descent. In these cases, the Pitts
monads involved are respectively the lower and the upper powerlocale monads.

As consequences of the effective lax descent theorems obtained for morphisms of toposes and of
locales, we derive the (corresponding) effective descent theorems for locally connected surjections
of toposes ([8]), open surjections of locales (A. Joyal and M.Tierney [9]), and proper surjections of
locales (J.C.C. Vermeulen [18]). Whereas these last results are known, what is novel is the manner
in which they are here obtained, which can be summed up as “unification via monads”.
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2 Pitts Monads on 2-Categories

A KZ-doctrine [10] M on a 2-category K is a pseudomonad ⟨M , δ, µ⟩ that satisfies the conditions

M δB ⊣ µB ⊣ δMB (1)

for each object B in B.
In what follows, we shall employ the more common terminology ‘KZ-monad’ in lieu of ‘KZ-

doctrine’. In addition, and for concreteness, we shall state all definitions and results for the case
of a KZ-monad. The duals for co-KZ-monads will be stated without proof and used when they are
needed.

For M a KZ-monad on K , a 1-cell f : C // D of K is said to be an M -map [5] if M f :
MC // MD has a right adjoint, in which case the adjoint pair will be denoted by M f ⊣ ρf .

The left Kan extension Σf (φ) of φ along an M -map f (if it exists) is said to be pointwise if,
for any bicomma square

A
p //

q

��

B

⇒ g

��
Σp(φq)

��

C
f //

φ

⇒

  @
@@

@@
@@

@ D

Σf (φ)

��
Z

with f as its bottom 1-cell, the left Kan extension Σp(φq) exists, and the canonical 2-cell

Σp(φq) +3 Σf (φ)g

is an isomorphism.

Definition 2.1. Let M be a pseudomonad on a 2-category K .

• An object Z of K is said to be M -cocomplete [5] if Z admits pointwise left Kan extensions
of any map φ : C // Z along any M -map f : C // D.

• An object Z of K is said to be stably M -cocomplete if it is M -cocomplete and satisfies the
following additional condition. For any diagram

A
p //

q

��

B

⇒ g

��
Σp(φq)

��

C
f //

φ

⇒

  @
@@

@@
@@

@ D

Σf (φ)

��
Z
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where f is an M -map and the square is a bicomma square, and any diagram

X
s //

t

��

Y

≃ h

��
Σs(ψt)

��

A
p //

ψ

⇒

  @
@@

@@
@@

@ B

Σp(ψ)

��
Z

where the square is a bipullback and
ψ = φq,

the left Kan extensions indicated below exist, and the canonical 2-cell

Σs(ψt) +3 Σp(ψ)h

is an isomorphism.

An algebra for a KZ-monad M = ⟨M , δ, µ⟩ on K is given by an object A of K for which the
unit δA : A // MA has a reflective left adjoint, i.e., θ ⊣ δA such that θ · δA = idA. A morphism
(A, θ) // (A′, θ′) of M -algebras (or an M -homomorphism) is any 1-cell c : A // A′ such that the
square

A A′
φ

//

MA

A

θ

��

MA MA′Mc // MA′

A′

θ′

��

commutes.
From now on we shall assume that K is a 2-category with bipullbacks and a pseudoterminal

object T . Let
K! ⊣ K∗

be the biadjoint pair where K∗ is taking the bipullback along K // T and K! is composition with
K // T .

Recall from [5] that a KZ-monad M in K is said to be equivariant if it is given by the following
data and conditions:

1. For each object K, a KZ-monad
(MK , δK , µK)

in K /K. (The case K = T gives a KZ-monad (M , δ, µ) in K .)

2. For any object X,
MK(K ×X) ≃ K × M (K)

in the precise form that is part of following assumption. For each object K, there is given a
pseudo-natural transformation

σK : K! · MK // M ·K!
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such that, for any object X of K , the diagram

X M (X)
δX

//

K ×X

X

π2

��

K ×X MK(K ×X)
δKK∗X // MK(K ×X)

M (X)

πX

��
T//

K
π1 // K

T
��

where the middle vertical 1-cell πX denotes the composite 1-cell

MK(K ×X)
σK

K∗X// M (K ×X)
M (π2)// M (X)

is such that the right hand square is a pullback and the left hand one commutes. The left
hand square is therefore a pullback.

In addition to commuting with the units δK and δ as above, the σ’s commute with the
multiplications µK and µ: for any object X // K of K /K, the diagram

MK(X) M (X)
σK

X

//

MK2
(K ×X)

MK(X)

(µK)X
��

MK2
(K ×X) M 2(X)

M (σK
K∗X)·σK

MK (K∗X) // M 2(X)

M (X)

µX

��

commutes in K .

3. If a 1-cell A
q // Y over K admits an MK-adjoint MK(q) ⊣ (ρK)q, then it admits an M -

adjoint M q ⊣ ρq in K , and the canonical 2-cell

(σK)A · (ρK)q +3 ρq · (σK)Y

is an isomorphism.

Definition 2.2. An equivariant KZ-monad M on a 2-category K is said to be locally full and
faithful [5] if the KZ-monad M is locally full and faithful, that is, if for any object X of K , the unit
δX : X // M (X) is full and faithful. Notice that from assumption (2) of equivariance, it follows
that, for any object K of K , the unit (δK)(K∗X) : (K ×X) // MK(K ×X) is fully faithful.

Definition 2.3. An equivariant locally full and faithful KZ-monad M on a 2-category K with
bipullbacks and a pseudoterminal object T will be said to be a Pitts monad if, for any object K and
an MK-map f : C // D in K /K, any bicomma square

C D
f

//

A

C

q

��

A B
p // B

D

g

��
+3
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exists, for such a bicomma square the 1-cell p is an MB-map and, regarding both p and f as
MK-maps, the canonical 2-cell

MK(q) · (ρK)p
+3 (ρK)f · MK(g)

is an isomorphism.

Proposition 2.4. Let K be a 2-category with bipullbacks and a pseudoterminal object and let
M a Pitts KZ-monad on K . Then, for each object K of K , MK is a locally full and faithful
stably cocompletion monad on K /K in the sense that, for any MK-map f : C // D in K /K,
any diagram of the form

A B
p

//

X

A

t

��

X Y
s // Y

B

h

��

C D
f

//

A

C

q

��

A B// B

D

g

��

∼=

+3

with the bottom square a bicomma and the top square a bipullback, exists and furthermore, in this
diagram, both p : A // B and s : X // Y are MK-maps and the canonical 2-cells

MK(q) · (ρK)p
+3 (ρK)f · M

K(g) (2)

and
MK(t) · (ρK)s

+3 (ρK)p · M
K(h) (3)

are isomorphisms.

Proof. The assertion about the bicomma square is precisely the condition of Definition 2.3. For
the assertion about the bipullback, notice that p : A // B is an MB-map in K /B and so, since
B is pseudoterminal in K /B, the bipullback on top of p is a bicomma square. This part too then
follows from Definition 2.3. 2

Proposition 2.5. Let M be a Pitts KZ-monad on a 2-category K . Then, for any object Z of
K /K, the following are equivalent:

1. Z is an MK-algebra.

2. Z is an MK-cocomplete object.

3. Z is a stably MK-cocomplete object.

Proof. Since MK is a locally full and faithful cocompletion KZ-monad, it follows fromTheorem
4.3.14 [5] that (1) and (2) are equivalent. Also, (3) implies (2). We need only show that (2) implies
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(3). Using that the composite of a bicomma square with a bipullback on top of it is a bicomma
square, as is the case of the diagram

A B
p

//

X

A

t

��

X Y
s // Y

B

h

��

C D
f

//

A

C

q

��

A B// B

D

g

��

∼=

+3

we derive first that, for a 1-cell φ : C // Z, all the left Kan extensions involved in Definition 2.1
exist and tthe canonical 2-cells

α : Σp(φq) +3 Σf (φ)g

and
β : Σs(φqt) +3 Σf (φ)gh

are isos. From these in turn we obtain that the canonical 2-cell

γ : Σs(φqt) +3 Σp(φq)h

is an iso since, by uniqueness, we have

γ = (α−1)h · β
2

The notion of a co-KZ-monad ⟨N , η, ν⟩ on K has the adjunctions (1) reversed, that is, it is
required that

ηN (B) ⊣ νB ⊣ N (ηB) (4)

We state, without proof, the analogues for co-KZ-monads of the results obtained so far for the
case of KZ-monads, omitting some obvious definitions. For N a co-KZ-monad on K , a 1-cell
f : C // D of K is said to be an N -map if N (f) has a left adjoint, in which case it will be
denoted by λf .

Definition 2.6. A Pitts co-KZ-monad on a 2-category K is a locally fully faithful equivariant
co-KZ-monad N on K , for which the dual conditions to those of Definition 2.3 hold.

The right Kan extension Πf (φ) of φ : C // Z along an N -map f (if it exists) is said to be
pointwise if for any bicomma square as above with f the right vertical 1-cell, the canonical 2-cell

Πf (φ)q +3 Πp(φg)

is an iso.
An object Z is said to be N -complete [5] if Z admits pointwise right Kan extensions of any

map φ : C // Z along any N -map f : C // D. We leave it to the reader to state the obvious
definition of a stably N -complete object and of the dual of Proposition 2.5 for a Pitts co-KZ-monad.
Notice, when writing down the definitions, that the bipullback condition is self-dual but that the
bicomma condition is not.
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3 The Lax Descent Theorem for an M -map

We begin with the definition of the lax kernel of a an arbitrary 1-cell in a 2-category K with the
necessary bicomma squares.

Definition 3.1. Let f : F // E be a 1-cell in K . The lax kernel of f is given by a diagram

F2

p01

&&p02 //

p12

88 F1

p0
%%

p1

:: F
f // // E

where

F E
f

//

F1

F

p0

��

F1 F
p1 // F

E

f

��
λ+3

and

F1 F
p1

//

F2

F1

p01

��

F2 F1
p12 // F1

F

p0

��
φ1+3

are both bicomma squares.
Denote by d the associated diagonal

d : F // F1.

There are given natural isomorphisms

δ0 : 1F ∼= p0d,

and
δ1 : 1F ∼= p1d,

such that
λd · fδ0 = fδ1,

and, for the projection
p02 : F2

// F1,

natural isomorphisms
φ0 : p0p02 ∼= p0p01,

and
φ2 : p1p02 ∼= p1p12,

such that
λp12 · λp01 :=: λp02,

where the symbol :=: indicates equality after inserting the appropriate isomorphisms φi, i = 0, 1, 2.
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Proposition 3.2. Let K be a 2-category with bipullbacks and a pseudoterminal object. Let M
be a Pitts KZ-monad on K and let f : F // E an M -map in K . Then, the lax kernel of f
reduces to the diagram

F2

p01

&&p02 //

p12

88 F1

p0
%%

p1

:: F
f // // E

where

F E
f

//

F1

F

p0

��

F1 F
p1 // F

E

f

��
λ+3

is a bicomma square, and

F1 F
p1

//

F2

F1

p01

��

F2 F1
p12 // F1

F

p0

��

φ1∼=

is a bipullback with all other data and conditions unchanged from Definition 3.1.

Proof. Since M is a Pitts KZ-monad on K , and so p1 : F1
// F is an M F -map, the bicomma

square

F1 F
p1

//

F2

F1

p01

��

F2 F1
p12 // F1

F

p0

��
φ1+3

of Definition 3.1 is a bipullback since F is a pseudoterminal object in K /F .
2

Remark 3.3. Proposition 3.2 may serve to explain the choice of the notion of lax kernel of a
geometric morphism in [17]. The lax descent theorem proved therein is about S -essential surjections
f : F // E in TopS . This, in turn, relies on the following theorem (referred to here as ‘Pitts’
theorem’): the top morphism p : Y // X in a bicomma square

F E
f

//

Y

F
��

Y X
p // X

E
��

+3
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in TopS (exists and) is locally connected, and so, by a theorem of Myles Tierney (unpublished), it is
stable under bipullbacks. Pitts’ theorem on the nature of any bicomma along an essential geometric
morphism is obtained as consequence of a general construction of bicomma squares in TopS via lex
sites, performed in detail therein.

Definition 3.4. A 2-category K with a pseudoterminal object will be called a 2-category of abstract
spaces if it is equipped with a representable contravariant 2-functor

HomK (−, O) : K
op // Cat

such that, for each 0-cell E of K (a ‘space’) the category | E |= HomK (E,O) (the ‘underlying
category’ of E) has finite limits and stable finite colimits and is such that, for each 1-cell f : F // E
in K (a ‘continuous map’), the functor

| E |
f#

// | F |,

notationally identified with

HomK (f,O) : HomK (E,O) // HomK (F,O),

preserves finite colimits. The object O of K is said to be an ‘objects classifier’.

Remark 3.5. The two main examples of 2-categories of abstract spaces that will be considered in
the applications are :

• K = TopS , the 2-category of toposes bounded over a base topos S with a natural numbers
object [7]. The pseudoterminal object is S . The objects classifier O is identified with the
topos S Sfin .

• K = Loc(S ), the 2-category of locales (called ‘spaces’ in [9]) in S . The pseudoterminal
object is the terminal locale 1. K becomes a 2-category of abstract spaces with O the Sierpinski
locale S, and with the functor HomK (−, O) : K

op // Cat having values in Posets.

Definition 3.6. Let K be a 2-category of abstract spaces with O its objects classifier. Let f :
F // E be a 1-cell of K .

1. The category LDes(f) of lax descent data has

• objects that are are pairs (Y, a) where F
Y // O is a 1-cell in K , and

a : Y p0 +3 Y p1

is a 2-cell between the pair (Y p0, Y p1) of 1-cells F1
// O in K , satisfying (“the unit

condition”)
ad :=: 1Y

where the symbol :=: means that isomorphisms δi (for i = 0, 1) should be inserted as
appropriate to render it into an equality, and (“the cocycle condition”)

(ap12) · (ap01) :=: (ap02)

where isomorphisms φi (for i = 0, 1, 2) should be inserted as appropriate to render it
into an equality.
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• and arrows b : (Y, a) // (Y ′, a′) given by 2-cells b : Y // Y ′ in K such that the square

Y ′p0 Y ′p1
a′

+3

Y p0

Y ′p0

bp0

��

Y p0 Y p1
a +3 Y p1

Y ′p1

bp1

��

commutes.

2. A comparison functor
κf : HomK (E,O) // LDes(f)

is defined as follows. For a 1-cell X : E // O of K ,

κf (X) = (Xf,Xλ : Xfp0 +3 Xfp1),

and with an obvious definition of κf on a morphism X
c // X ′ of HomK (E,O), that is, on

a 2-cell c : X +3 X ′ where X,X ′ : E // O.

3. A morphism f : F // E is said to be of effective lax descent if

κf : HomK (E,O) // LDes(f)

is an equivalence of categories.

Theorem 3.7. Let K be a 2-category of abstract spaces. Let M be a Pitts KZ-monad on K such
the objects classifier O is an M -algebra. Let f : F // E an M -map in K and let Tf be the
monad on HomK (F,O) induced by the adjoint pair

Σf ⊣ f# : HomK (E,O) // HomK (F,O),

where f# denotes ‘composition with f ’.
Under these assumptions, there exists an equivalence of categories

LDes(Cf )
Ψf // AlgTf

where AlgTf is the category of Tf -algebras, and the triangle

HomK (E,O)

AlgTf

F Tf
��?

??
??

??
??

?
HomK (E,O) LDes(f)

κf //LDes(f)

AlgTf

Ψf

����
��
��
��
��

commutes.
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Proof. Let
Ψf : LDes(f) // AlgTf

assign, to an object (Y, a) of LDes(f), the object (Y, θ) of AlgTf defined as follows. Recall that
Y : F // O is a 1-cell in K , together with a 2-cell a : Y p0 +3 Y p1, satisfying the unit and cocycle
conditions. Since O is an M -algebra and M is a Pitts KZ-monad, O is stably M -cocomplete by
Theorem 2.5. In particular, the left Kan extension of Y : F // O along the M -map f exists and
is pointwise so that, from the diagram

F1
p1 //

p0

��

F

⇒ f

��
Σp1 (Y p0)

��

F
f //

Y

⇒

  A
AA

AA
AA

A E

Σf (Y )

��
O

where the top 2-cell is the given λ, and the bottom 2-cell is the unit ηY of the adjointness Σf ⊣ f#,
we derive that the canonical 2-cell

α : Σp1(Y p0) +3 Σf (Y )f

is an isomorphism.
Consider now the diagram

F O
Y

//

F1

F

p0

��

F1 F
p1 // F

O

Y

��
a+3

which is part of the lax descent data (Y, a).
From the bicomma square

F E
f

//

F1

F

p0

��

F1 F
p1 // F

E

f

��
λ+3

and the universal property of Σp1(Y p0) follows the existence of a unique 2-cell

θ̄ : Σp1(Y p0) +3 Y

such that
(θ̄p1) · (α−1p1) · Σf (Y )λ · (ηY )p0 = a.

Define
θ = θ̄ · α−1 : Σf (Y )f // Y.
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It follows that
θp1 · Σf (Y )λ · (ηY )p0 = a

We claim that from the unit condition

ad :=: idY ,

explicitly expressed via the commutative square

Y p0d Y p1d
ad

+3

Y

Y p0d

Y δ0

��

Y Y
idY +3 Y

Y p1d

Y δ1

��

follows that
θ · ηY = idY ,

which is the first condition for the pair (Y, θ) to be an algebra for the monad induced by the adjoint
pair Σf ⊣ f#.

Indeed, consider the following commutative diagram

Y p1d Y p1d
id(Y p1d)

+3

Y p0d

Y p1d

ad

��

Y p0d Σf (Y )fp0d
(ηY p0d)

+3 Σf (Y )fp0d

Y p1d

Θ

��

Y

Σf (Y )fp0d

(Σf (Y )fδ0)·ηY

%-R
RRR

RRR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

RRR
RY

Y p0d

Y δ0

??????

�#
????

Y

Y p1d

Y δ1

��
--
--
--
--
--
--
--
--
-

--
--
--
--
--
--
--
--
-

where Θ is defined by the commutative triangle

Σf (Y )fp0d

Y p1d

Θ �#
??

??
??

?

??
??

??
?

Σf (Y )fp0d Σf (Y )fp1d
Σf (Y )λd+3 Σf (Y )fp1d

Y p1d

θp1d{� ��
��
��
�

��
��
��
�

.

Using, in addition, the data and condition

δ0 : 1F ∼= p0d,

δ1 : 1F ∼= p1d,

λd · fδ0 = fδ1,

we derive the identities
idY = Y δ1

−1 · Y δ1
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= Y δ1
−1 ·Θ · Σf (Y )fδ0 · ηY

= Y δ1
−1 · (θp1d) · Σf (Y )λd · Σf (Y )fδ0 · ηY

= θ · Σf (Y )fδ1
−1 · Σf (Y )λd · Σf (Y )fδ0 · ηY

= θ · ηY .

Consider now the cocycle condition for (Y, a), namely

(ap12) · (ap01) :=: (ap02),

explicitly given by the identity

(Y φ2)(ap12) · (Y φ1)(ap01) = (ap02)(Y φ0).

We now claim that from it, the given isos, and the assumption that O is an M -algebra ( hence
stably M -cocomplete), one can derive the second condition for the pair (Y, θ) to be an algebra for
the monad induced by the adjoint pair Σf) ⊣ f#, namely that the square

Σf (Y )f Y
θ

+3

Σf (Σf (Y )f))f

Σf (Y )f

µY

��

Σf (Σf (Y )f))f Σf (Y )f
Σf (θ)f +3 Σf (Y )f

Y

θ

��

commutes.
This is done in two steps. First, we claim that taking transposes of both sides of the cocycle

condition gives a commutative square

Σp1(Y p0) Y
θ̄

+3

Σp1(Σp1(Y p0)p0)

Σp1(Y p0)

(⋆)

��

Σp1(Σp1(Y p0)p0) Σp1(Y p0)
Σp1 (θ̄)p0+3 Σp1(Y p0)

Y

θ̄

��

where
(⋆) :=: Σp1(ε̄Y p0)

is an identity when inserting the iso 2-cells

β : Σp1(Σp1(Y p0)p0)
∼= Σp1(Σp12(Y p0p01))

and
φ0 : Σp1(Σp12(Y p0p01))

∼= Σp1(Σp02(Y p0p01)).

Let us first establish the following subclaim. Denoting by

â : Σp1(Y p0) +3 Y
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the transpose of
a : Y p0 +3 Y p1

under the adjointness Σp1 ⊣ (−)p1, the identity

â = θ̄

holds. To prove it we need to recall that θ̄ was defined as the unique 2-cell for which

θ̄p1 · α−1p1 · Σf (Y )λ · (ηY )p0 = a.

We then check that (also)
âp1 · α−1p1 · Σf (Y )λ · (ηY )p0 = a

holds. There is a string of easily justified identities:

ε̄(Y p1) · Σp1(a)p1 · α
−1p0 · Σf (Y )λ · (ηY )p0

= a · ε̄(Y p0) · α
−1p0 · Σf (Y )λ · (ηY )p0

= a · ε̄(Y p0) · αp0 · (ηY )p0
= a · ε̄(Y p0) · (η̄Y )p0 = a.

This ends the proof of the subclaim.
We show next that

âp02 :=: â · Σp1(ε̄(Y p0))

modulo φ0. We have each side of the claimed equation given in terms of the following strings of
identities:

1.
âp02 = ε̄Y · Σp1 ε̄(Y p1) · Σp1(Σp02(ap02))

and

2.
â · Σp1(ε̄(Y p0)) = ε̄Y · Σp1(a) · Σp1(ε̄(Y p0))

from which it follows that it is enough to check that the identity

ε̄(Y p1) · Σp02(ap02) = a · ε̄(Y p0)

holds. This is so by naturality of the counit ε̄ of the adjointness

Σp02 ⊣ (−)p02.

Next, we show that
̂ap12 · ap01 :=: â · Σp1(â)p0,

is an identity modulo the isomorphism

Σp1(β) : Σp1(Σp12(Y p0p01))
∼= Σp1Σp1(Y p0)p0
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as well as φ1 and φ2.
To prove it, apply Σp1 to the string of identities:

ε̄(Y p1) · Σp12(ap12) · Σp12(Y φ1) · Σp12(ap01) =

a · âε̄(Y p0) · Σp12(Y φ1) · Σp12(ap01)) =

a · âp0 · β.

where we also use that
â = ε̄Y · Σp1(a).

To conclude the argument we resort to the following commutative cube:

Σp1(Y p0) Y
θ̄

+3

Σp1(Σp1(Y p0)p0)

Σp1(Y p0)

(⋆)

��

Σp1(Σp1(Y p0)p0) Σp1(Y p0)
Σp1

(θ̄)p0 +3 Σp1(Y p0)

Y

θ̄

��

Σf (Y )f Y
θ

+3

Σf (Σf (Y )f))f

Σf (Y )f

(εΣf (Y ))f

��

Σf (Σf (Y )f))f Σf (Y )f
Σf (θ)f +3 Σf (Y )f

Y

θ

��

Σp1(Y p0)

Σf (Y )f

α

�#
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
Σp1(Σp1(Y p0)p0)

Σf (Σf (Y )f))f

α·α

�#
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??

Σp1(Y p0)

Σf (Y )f

α

�#
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
Y

Y

idY

�#
??

??
??

??
??

??
??

??
??

?

??
??

??
??

??
??

??
??

??
?

.

Since the back and front faces are connected by iso 2-cells, to have the front face commutative it
is enough to have the back face commutative. The latter has already been shown. This ends the
proof of the cocycle versus second algebra condition.

That the assignment
Ψf : (Y, a) 7→ (Y, θ)

is functorial, an equivalence of categories, and compatible with the comparison maps, are all easily
established facts and left to the reader. 2
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Definition 3.8. Let K be any 2-category. A 1-cell f : F // E in K is said to be surjective (or
a surjection) if given any 2-cell α : g +3 h : E // E′ in K , such that the 2-cell αf : gf +3 hf ,
obtained by composing α with f , is an iso 2-cell, then α is an iso 2-cell.

Theorem 3.9. (Beck’s Theorem) Let K be a 2-category of abstract spaces and let M be a Pitts
KZ-monad on K . Assume that the objects classifier O in K is an M -algebra. Then, for any
surjective M -map f : F // E, the adjoint pair

Σf ⊣ f#

is monadic.

Proof. Since O is an M -algebra, it is M -cocomplete by Proposition 2.5. In particular, since f is
an M -map, the left Kan extension Σf exists. Since, by assumption,

| E |
f#

// | F |

preserves finite (limits and finite) colimits, and reflects isomorphisms, the result now follows from
an application of Beck’s ‘Weak Tripleability Theorem’ [13] (Exercise VI 7.2). 2

Lemma 3.10. Let M be a Pitts monad on a 2-category K of abstract spaces with O as its objects
classifier. Then, for every K in K ,

1. MK is a stably cocompletion monad on K /K.

2. K /K is a 2-category of spaces with (K ×O)
π1 // K as its objects classifier.

3. If (Z, θ) is an M -algebra in K , then (K × Z,K × θ) is an MK algebra in K /K.

Proof.

1. The first assertion is the contents of Proposition 2.4.

2. The contravariant functor

HomK /K(−,K ×O) : K /K
op

// Cat

is such that, for each 0-cell E of K /K the category

| E |= HomK /K(E,K ×O)

has finite limits and stable finite colimits and is such that, for each 1-cell f : F // E in
K /K, the functor

| E |
f#

// | F |,

notationally identified with

HomK /K(f,K ×O) : HomK /K(E,K ×O) // HomK /K(F,K ×O),

preserves the finite colimits that exist since they are stable.
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3. Since O is an M -algebra, there is a left adjoint θ ⊣ δO such that θ · δO = idO. We claim
that K ×O is an MK-algebra in K /K. This follows from condition (2) in the notion of an
equivariant KZ-monad M on K applied to O, letting

θK = (K ×O) · (σKK∗O).

First, the adjointness θ ⊣ δO implies the adjointness (K × θ) ⊣ (K × δO). Second, in the
commutative diagram

O M (O)
δO

//

K ×O

O

π2

��

K ×O MK(K ×O)
δKK∗O // MK(K ×O)

M (O)

πO

��
O

θ
//

K ×O
θK // K ×O

O

π2

��

where the middle vertical 1-cell πO is the composite

MK(K ×O)
σK

K∗O// M (K ×O)
M (π2)// M (O) ,

the left square is commutative (actually a bipullback) by equivariance, and the right square
is commutative. Therefore, since the bottom composite is the identity on O and since the
diagram where the vertical arrows are the projections π! is also commutative (as it simply
expresses that the top composite is a 1-cell in K /K), the top composite is the identity on
K ×O . This concludes the verification.

2

Theorem 3.11. Let K be a 2-category of abstract spaces. Let M be a Pitts KZ-monad on K .
Assume that the objects classifier O is an M -algebra. Then, the following hold:

1. For any object K of K , any surjective MK-map f : F // E in K /K is of effective lax
descent.

2. For any object K of K , any surjective MK-map f : F // K in K /K is of effective descent.

Proof.

1. Theorem 3.7 and Theorem 3.9 hold for any stably cocompletion monad such as MK for any
object K. Furthermore, the assumptions made in those theorems are stable under localization
by Lemma 3.10.

2. For an MK-map f : F // K, the lax kernel of f reduces (by Proposition 3.2) to a diagram

F2

p01

&&p02 //

p12

88 F1

p0
%%

p1

:: F
f // // E
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where

F E
f

//

F1

F

p0

��

F1 F
p1 // F

E

f

��
λ+3

is a bipullback and

F1 F
p1

//

F2

F1

p01

��

F2 F1
p12 // F1

F

p0

��
φ1+3

is a bicomma. Furthermore, since K is pseudoterminal in K /K, also the second bicomma is
a bipullback. Hence lax descent reduces to descent in this case.

2

Remark 3.12. For K a 2-category of abstract spaces we may consider a Pitts co-KZ-monad N
on K . Theorem 3.7 admits a dual version with virtually no changes except that the characterization
of the N -algebras (as stable N -complete objects) now involves pointwise right Kan extensions Πf ,
Πp1 and Πp12 . As for Theorem 3.9, it is its dual version for coalgebras of the comonad induced by
the adjoint pair f# ⊣ Πf that is needed. Using both we derive the following Theorem 3.13.

Theorem 3.13. Let K be a 2-category of abstract spaces. Let N be a Pitts co-KZ-monad on
K . Assume that the objects classifier O is an N -algebra. Then, the following hold:

1. For any object K of K , any surjective N K-map f : F // E in K /K is of effective lax
descent.

2. For any object K of K , any surjective N K-map f : F // K is of effective descent.

4 The Symmetric Monad

The first example is that of the symmetric monad M on the 2-category TopS of bounded S -
toposes, geometric morphisms, and 2-cells [7]. We refer the reader to [4, 5] for the construction and
basic properties of M .

Theorem 4.1. The symmetric monad M on TopS is a Pitts KZ-monad.

Proof. Let K = TopS . The symmetric monad M on K is a locally fully faithful equivariant
KZ-monad [5]. Moreover, a geometric morphism f is an M -map if and only if it is S -essential [5]
That in a bicomma square with bottom map an essential geometric morphism the opposite map is
locally connected and that the BCC holds, is a theorem due to A. M. Pitts [17]. These imply that
M is a Pitts KZ-monad. 2
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Theorem 4.2. [17] If f : F // E is an S -essential surjection in TopS , then f is of effective lax
descent.

Proof. By construction, for M the symmetric monad on K = TopS ,MS = S Sfin is the objects
classifier. It is an M -algebra –in fact, the free M -algebra on the pseudoterminal object S . The
conclusion now follows from Theorem 3.11(1). 2

Theorem 4.3. [7] If f : F // E is a locally connected morphism in TopS , then f is of effective
descent.

Proof. The symmetric monad M on TopS is a Pitts KZ-monad. The result now follows from
Theorem 3.11(2) applied to the M E -map F // E in TopE . 2

5 The Lower Powerlocale Monad

Related to the symmetric monad on toposes is the lower powerlocale monad L on the 2-category
Loc(S ). Whereas the symmetric topos ME classifies distributions (S -cocontinuous functors) on
an S -bounded topos E , the lower powerlocale LX classifies distributions (sup-preserving maps)
on a locale X.

Remark 5.1. The power locales are best known in the context of theoretical computer science
[19, 6] and are usually defined in terms of generators and relations. One of the novelties introduced
in [4] is the characterization of (frames of) locales as the algebras for a KZ-monad on the posetal
2-category sl of suplattices, a characterization which, unlike the one used in [9] for proving that
open surjections of locales are of effective descent, does not make use of the tensor product. We
recall it in what follows.

It is well-known [9] that the free frame on a poset Z is given by the set D(Z) of downward
closed subsets of Z, with union the supremum, and down-segment

Z
↓ // D(Z)

the universal map. Let X be a locale in S . Denote its corresponding frame as O(X). Any frame
O(X), regarded as a suplattice, is canonically presented as a coinverter

D(Q) D(O(X))��
d1

//

d0 //
O(X)// //

in sl, where Q is the poset whose elements are pairs (R, u) such that R ⊆↓ u, u ∈ O(X), and∨
R = u. The maps d0 and d1 are induced by the assignments (R, u) 7→ R and (R, u) 7→ (↓ u),

respectively, where +3 is the unique 2-cell from d0 to d1, i.e., d0 ≤ d1 .
One now defines the locale LX via its symmetric frame Σ(O(X)), that is, so that

O(LX) = Σ(O(X)).

The finite inf-completion Q• of a poset Q can be given as the collection of equivalence classes
[S], where S is a (Kuratowski) finite subset of Q, and where [S] = [S′] if and only if S and S′
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generate the same upper set in Q. As a poset, Q• has the partial order given by [S] ≤ [T ] if and
only if T is contained in the upper set generated by S.

Consider the coinverter diagram

D(Q•) D(O(X)•)��
(d1)

•
//

(d0)
•

//
Σ(O(X))// //

in Fr where the parallel arrows d0
•, d1

• are induced from the canonical suplattice presentation of
O(X) via finite inf-completions at the level of the posets.

That the Σ construction is part of a co-KZ-monad L on the posetal 2-category sl of suplattices
is shown in the same way as in the proof that the symmetric topos (also called Σ) construction
is a co-KZ-monad on the 2-category A of locally presentable categories [4]. In the former, it was
used that the finite limits completion is a co-KZ-monad at the level of categories, whereas in the
latter, this refers to the finite inf-completion on posets. By turning around Σ ⊣ U and taking
opposites, one gets a KZ-monad L on Loc(S ). In order to apply the lax descent theorem, we
first need to identify the L -maps, that is, those morphisms f : X // Y of locales such that
L (f) : L (X) // L (Y ) has a right adjoint.

Definition 5.2. A morphism f : X // Y of locales is said to be semiopen if f− : O(Y ) // O(X)
has a left adjoint ∃f : O(X) // O(Y ). It is said to be open [9] if it is semiopen and Frobenius
Reciprocity holds, in the sense that for all y ∈ O(Y ), x ∈ O(X),

∃f (f−(y) ∧ x) = y ∧ ∃f (x).

It is well known that open maps of locales are pullback stable and that the BCC holds [9]. For
arbitrary semiopen maps we have the following result.

Theorem 5.3. Let

B
p //

q

��

Z

≤ g

��
X

f // Y

be a bicomma square in Loc(S ), where f is semiopen. Then p is open and the BCC holds, that is,
the inequality

∃q · p− ≤ g− · ∃f
is an equality.

Proof. The proof is entirely similar to that of [17] for the case of S -essential geometric morphisms,
but in the posetal case. 2

Theorem 5.4. L is a Pitts KZ-monad on Loc(S ).

Proof. L is a locally full and faithful equivariant KZ-monad [5]. That in a bicomma square with
bottom map semiopen the opposite map is open and the BCC holds, is the content of Theorem 5.3.
It says that L is a Pitts KZ-monad. 2
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Proposition 5.5. A morphism of locales is an L -map if and only if it is semiopen.

Proof. Let f : X // Y be a morphism of locales in S . Assume that f is semiopen, that is,
that f− : O(Y ) // O(X) has a left adjoint ∃f : O(X) // O(Y ). In terms of distributions, L f
corresponds to composition with f−, so that the right adjoint ρf corresponds to composition with
∃f . Conversely, assume that f : X // Y admits a right L -adjoint ρf , that is,

(ρf )
− ⊣ (L f)−.

Then,
(ρf )

− · ∃(δX) ⊣ (δX)
− · (L f)−.

By naturality,

Y X
f−

//

L Y

Y

(δY )−

��

L Y LX
(L f)− // LX

X

(δX)−

��

commutes. Therefore f− · (δY )− has a left adjoint. Since δY is an inclusion, it follows that f− has
a left adjoint. Thus, f is semiopen. 2

It is well known that the algebras for the lower powerlocale monad are characterized as the
injectives with respect to semiopen embeddings [6]. The following proposition is a related fact and
a consequence of Theorem 5.4.

Proposition 5.6. Let X be a locale. Then the following are equivalent:

1. X is an L -algebra.

2. X is injective with respect to semiopen embeddings.

3. X is a stably L -cocomplete object.

The following theorem seems to be new.

Theorem 5.7. Semiopen surjections of locales are of effective lax descent.

Proof. Let K = Loc(S ). Let L be the lower powerlocale monad on K . By Proposition 5.5, a
morphism f : Y // X of locales in S has a (right) L -adjoint iff it is semiopen. The pseudoterminal
object in K is the terminal locale 1

¯
. By construction, L 1

¯
= S, the Sierpinski locale, which classifies

open sublocales of locales, the latter identifiable with objects of a locale frame O(X). It is a L -
algebra, in fact a free one. The conclusion now follows from Theorem 3.11(1). 2

Theorem 5.8. [9] Any open surjection f : Y // X of locales is of effective descent.

Proof. The lower power locale monad L on LocS is a Pitts KZ-monad. The result now follows
from Theorem 3.11(2) applied to the LX -map f : Y // X in Loc(S )/X ∼= Loc(ShS (X)). 2
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Remark 5.9. The KZ-monads considered in this and in the previous section are classifiers of Law-
vere distributions – the symmetric monad M for distributions on toposes, and the lower powerlocale
monad L for distributions on locales. The theory developed in [5] explains why in these cases the
object classifiers are given respectively by the free algebras M (S ) and L (1). Indeed, the objects of
a space X (meaning here either a topos or a locale) correspond to the ‘discrete opfibrations’ over
X, and such are classified by the free algebra on the terminal object. However, for the purposes of
the general lax descent theorem, all that is needed is that the objects classifier be an algebra for the
Pitts KZ-monad/co-KZ-monad in question. This remark is an important consideration in the next
two sections.

6 The Upper Powerlocale Monad

The posetal 2-category Frm of frames of locales is monadic over the posetal 2-category PrFrm of
preframes, by means of an adjoint pair F ⊣ G where

G : Frm // PrFrm

is the forgetful, with F described in [6]. This adjoint pair induces a comonad on Frm, hence a
monad U on Loc(S ), the upper powerlocale monad.

Power locales have been investigated extensively by Steve Vickers [19, 20] and Mart́ın Escardó
[6], among others that they mention in their work. This section relies largely on their results, as
well as on those of Jaapie Vermeulen [18] and of M. Korostenski and C.C.A. Labuschagne [11], as
indicated in what follows.

Theorem 6.1. The upper powerlocale monad U is an equivariant co-KZ-monad on Loc(S ).

Proof. That the upper power locale monad U is a co-KZ-monad U is shown in [19] and [6]. The
equivariance is covered by geometricity [20] (Section 7.2). 2

Recall that a continuous map f : X // Y of locales is called perfect if the right adjoint f⋆ of
the frame homomorphism f−1 : O(Y ) // O(X) preserves directed joins.

Theorem 6.2. [6] A continuous map of locales is perfect if and only if it is a U -map.

Remark 6.3. Notice that the perfect maps are the continuous maps satisfying half of the definition
of a proper map of locales [18] where the missing half is Frobenius Reciprocity. Indeed, a map
f : X // Y of locales is proper if it is perfect and the condition

f⋆(f
−u ∨ v) = u ∨ f⋆(v)

holds for all u ∈ O(X), v ∈ O(Y ).

Theorem 6.4. [11] Consider a bicomma square

B
k //

h

��

Z

≤ f

��
X

g // Y
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in Loc(S ), where f is perfect. Then h is proper and the canonical inequality

U k · lh ≤ lf · U g

is an equality.

Theorem 6.5. [18] In a bipullback square

X Y
g

//

B

X

h

��

B Z
k // Z

Y

f

��
τ∼=

if f is proper then h is proper and the canonical inequality

U k · lh ≤ lf · U g

is an equality.

Theorem 6.6. The upper powerlocale monad U on Loc(S ) is a Pitts co-KZ-monad.

Proof. In addition to Theorems 6.1, 6.2, 6.4 and 6.5, we need to know that U is locally fully
faithful. This is indeed the case by construction [6]. 2

It is shown in [6] that the U -algebras are the injectives over perfect embeddings. As a conse-
quence of Theorem 6.6, we can now add to this characterization as follows.

Proposition 6.7. Let X be a locale. Then the following are equivalent:

1. X is a U -algebra.

2. X is injective with respect to perfect embeddings.

3. X is a stably U -complete object.

Remark 6.8. An example of a locally fully faithful co-KZ-monad that is not a completion monad
(hence not a Pitts monad) is due to M. H. Escardó and included as Remark 4.2.15 in [5]. Let F
be the filter monad on the category of topological spaces (and analogously on that of locales). The
F -algebras are the injective spaces (every continuous map is an F -map) but the injective spaces do
not coincide with the F -complete objects. More precisely, the Sierpinski space (or locale, depending
where this monad is considered) is injective, therefore an F -algebra, but it is not F -complete.

The foliowing theorem seems to be new.

Theorem 6.9. Perfect surjections of locales are of effective lax descent.

Proof. The Sierpinski locale S is an object classifier for Loc(S ) [9]. In order to apply Theo-
rem 3.13(1), we need to show that S is a U -algebra. That this is the case follows from the fact
that S is an algebra of the filter monad F on Loc(S ) (using that all maps are F -maps), and the
fact that U is a submonad of F , so that all F -algebras are U -algebras. 2

Theorem 6.10. [18] Proper surjections of locales are of effective descent.

Proof. The upper powerlocale monad U on Loc(S ) is a Pitts co-KZ-monad. The result now
follows from Theorem 3.11(2) applied to the U X -map f : Y // X in Loc(S )/X ∼= Loc(ShS (X)).

2
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7 The Coherent Monad

A lax descent theorem, originally conjectured by A.M. Pitts [17] and proved independently by M.
Zawadowski [21], D. Ballard and W. Boshuck [1], and (twice) by I. Moerdijk and J.J.C. Vermeulen
[15, 14], states that coherent surjections of coherent toposes are of lax effective descent. This
theorem will be shown to be a corollary of Theorem 3.13.

Let us first recall some notions (see for instance [7]). A bounded S -topos is coherent if it is
equivalent to a category of sheaves on a finitary site, that is, on a site whose underlying category
has finite limits, and where the covering families are finite. For any coherent topos E , there is a
canonical such site, to wit, the full subcategory Ecoh of coherent objects with the topology of finite
coverings. The latter category is a pretopos. Any pretopos is the category of coherent objects in
a coherent topos. Coherent toposes are the classifiers of finitary geometric (or coherent) logic. A
geometric morphism f : F // E of coherent toposes is said to be a coherent morphism if f∗ restricts
to the full subcategories of coherent objects. For such morphisms, f∗ preserves (or commutes with)
filtered colimits.

Denote by B the full sub 2-category of A (locally presentable categories) whose objects are
those categories B which are small generated and small presented by categories with finite limits.
In other words, B denotes the 2-category of locally finitely presentable categories.

Equivalently, the objects of B are those categories B that appear as coinverters in A of the
form

P (D) PCσ��
d1

//

d0 //
B// //

where C and D are categories in S with finite limits and where

a : PC // B

as well as d0, d1 are S -cocontinuous and finite limits preserving.
Denote by CohTop the 2-category whose objects are the coherent toposes, whose morphisms

are the coherent morphisms, and whose 2-cells are those of TopS . Let CohFrm be the opposite
(for 1-cells) of CohTop. There is a forgetful 2-functor

U : CohFrm // B

which assigns to the frame of a coherent topos E its canonical presentation as a category of sheaves
on a (finitary) site.

Let Lex denote the 2-category of small categories with finite limits, finite limit preserving func-
tors, and all natural transformations. The pretopos (co)completion of a small category C with finite
limits is a small pretopos C• together with a finite limits preserving functor

u : C // C•

with the property that every finite limits preserving functor from C to a pretopos D extends uniquely
(up to isomorphism) to a pretopos morphism from C• to D. One way to obtain it is to define, for
C a small category with finite limits, the (small) category C• as the full subcategory of coherent
objects of the (coherent) topos PC.
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The pretopos (co)completion of a small category with finite limits extends to a left 2-adjoint

(−)• : Lex // Pretop

to the forgetful 2-functor
U : Pretop // Lex.

The 2-adjoint pair (−)• ⊣ U induces a KZ-monad on Lex.

Theorem 7.1. The left 2-adjoint
Θ : B // CohFrm

to the forgetful
U : CohFrm // B

exists and induces a KZ-monad on B.

Proof. Consider the following double coinverter diagram in B

P (D) P (C)σ ��
d1

//

d0 //
B

a // //

P (D•) P (C•)(σ)• ��
(d1)•

//

(d1)• //
ΘB .

b // //

j!

��
i!

��
ηB

��

where B is an object of B with its given presentation as a coinverter in a diagram where all
functors depicted are S -cocontinuous and finite limit preserving, and where the parallel arrows
d0•, d1• and the 2-cell σ• are induced via pretopos completions and left Kan extensions along the
inclusions i : C // (C)• and j : D // (D)•. Since i and j are finite limits preserving, so are the
corresponding left Kan extensions i! and j!. They are also S -cocontinuous.

By construction, σ• is the unique 2-cell for which

σ• · j! = i! · σ

so that
b · i! · σ = b · σ• · j!.

Therefore b · i! · σ is invertible since b · σ• is invertible. From the universal property of the top
coinverter, it follows now that there exists a unique arrow ηB such that

ηB · a = b · i!.

In the diagram above, the (−)• construction (which is part of a KZ-monad on Lex is lifted inside
the presentation of B, hence giving rise (as argued more generally in [4]) to a KZ-monad Θ on B.

We claim that ΘB is a coherent (topos) frame and so that b is the inverse image part of a
coherent morphism between coherent toposes. In [4] (§3) we recalled (quoting [16] (Theorem 2.3))
that finite 2-colimits in Frm (exist and) are finite 2-colimits in A (locally presentable categories)
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so that, in particular, coinverters in Frm (exist and) are coinverters in A. This explicit argument
given in [16] (Theorem 2.3) can easily be adapted to deduce that coinverters in CohFrm (exist and)
are coinverters in B (locally finitely presentable categories). .

For any frame of a coherent topos E , and any object B of B, there are equivalences of categories

CohFrm(ΘB,E ) ∼= CohFrmσ•(P (C•),E ) ∼= Bσ(PC, UE ) ∼= B(B, UE )

where the subindexes σ• and σ are to be interpreted as restrictions of the functors in the Hom
categories to those that take the 2-cell in question into an iso. These equivalences show that
ηB : B // U ΘB has the universal property that translates into the adjointness Θ ⊣ U . In
particular, the construction is independent of the presentation. 2

As in [5], we now turn to the “geometric point of view”, which amounts to regarding

U op ⊣ Θop

as inducing a co-KZ-monad C on CohTop. Let us call this monad C the coherent monad.

Proposition 7.2. 1. For a coherent topos E , the topos C E classifies pretopos morphisms
Ecoh

// S .

2. Any coherent morphism between coherent toposes is a C -map.

Proof.

1. For a coherent topos E , C E is the coherent topos of sheaves on the site consisting of the small
category Ecoh with finite epimorphic coverings. The conclusion follows from an identification
of this site in terms of any given finitary site of presentation for E .

2. For the second statement, suppose that f : F // E is a coherent morphism between coherent
toposes. Then,

C f : C F // C E

is ‘composition with f⋆ restricted to the full subcategories of coherent objects, from which it
follows that it always has a left adjoint, to wit

λf ⊣ C f,

with λf being ‘composition with f⋆ (similarly restricted). In other words, any coherent
morphism between coherent toposes is a C -map.

2

Theorem 7.3. The co-KZ-monad C on the 2-category K = CohTop is a Pitts co-KZ-monad.

Proof. The required condition about bicomma objects is shown to be satisfied in [14] (Theorem
2). In addition, the unit of the monad is locally fully faithful, as was already shown. 2

Theorem 7.4. [21, 1, 15, 14] Coherent surjections between coherent toposes are of lax effective
descent.
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Proof. A coherent surjection between coherent toposes is a surjective C -map. The objects classifier
S [U ] = S Sfin is a coherent topos and it is trivially a C -algebra. Apply Theorem 3.13. 2

Remark 7.5. As remarked in [15, 1], the lax descent property of a coherent surjection f : F // E
restricts to an equivalence of pretoposes, from the category Ecoh to the category of objects in Fcoh

with lax descent data. The latter statement was proved originally in [21] and interpreted as a
general definability theorem for coherent theories. It was precisely this connection with ‘geometric
logic’ that motivated A. M. Pitts [17] in his work on lax descent, including the theorem about
essential surjections, proved therein as part of a possible route towards a proof of his conjecture.

Remark 7.6. In [15] it is shown that relatively tidy surjections of toposes are of lax effective
descent and that tidy surjections of toposes are of effective descent. An open question is that of the
existence of a Pitts monad on TopS that accounts for these facts.
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