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Abstract. It is shown that the cubic derivative nonlinear Schrédinger equation is
locally well-posed in Besov spaces B3 __(X), s > 1/2, where we treat the non-periodic
setting X = R and the periodic settiﬁg X = T simultaneously. The proof is based on
the strategy of Herr for initial data in H*(T), s > 1/2.
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1. Introduction and main result

We study the Cauchy problem for the following derivative nonlinear
Schrédinger equation:

i0yu + 02u = 0, (Jul?u) + Mu?*u  in X x (=T, T),

. (1)
u(0) = ug in X,
where A € R, k € No, T > 0, X = R (non-periodic setting) or X = T :=
R/27Z (periodic setting). We look for solutions w which satisfy the corre-
sponding integral equation

u(t) = Upug +/0 Up—p [0z ([uPu) () — iXu u(t)] dt', te (=T, T),

where (Uyug )Y (€) = e € 55(€) for ug € S(X).

In the non-periodic setting, Takaoka [18] showed local well-posedness for
initial data ug € H*(R) and s > 1/2 which improved the results of Hayashi
and Ozawa [12], [11], [13] for initial data in H!(R). The central tools have
been Fourier restriction methods, local smoothing, Strichartz estimates and
a gauge transformation which cancels out the unfavorable nonlinear term
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2i|ul? 0, u.

In the periodic setting, Herr [14] showed local well-posedness in H*(T),
s > 1/2, by using an adapted gauge transformation and a suitable version
of Bourgain’s L*-Strichartz estimate.

For s < 1/2, Biagoni and Linares [1] showed that the flow map ug — u
is no longer uniformly continuous. In this sense, H'/? is critical. However,
with respect to scaling, L? is critical: If u solves (1) with initial datum wuy,
then uy(v,t) := (1/0/?)u(z/0,t/0?), ¢ > 0, is a solution for initial data
up(+/o) and we have |lu,(t)||z2 = ||u(t/o?)||z2. In order to meet this gap
between L? and H'/?, Griinrock and Herr [7], [8] proved local well-posedness
in spaces I;T;S(X), where

£l = 177

for s >1/2and 1 <p <2, 1/p+ 1/p’ = 1. In the non-periodic setting,
S. Guo, Ren and Wang [9] recently generalized this result to modulation
spaces M3 , with

1/q
1l , = (ZW”H%1/2,k+1/21ﬂ|‘i2>

kEZ

for ¢ € [2,00) and s > 1/2. In the scaling sense, M217/q2 is subcritical for
2 < g < oo and critical for ¢ = oo.
We show local well-posedness for initial data in B5 (X), s > 1/2:

Theorem 1.1 Let s > 1/2 and k € Ny. For any r > 0, there exists
T =T(r) > 0 and a metric space M, such that for all uy € B, := {f €
BS . : I fllBg . <}, the equation (1) has a unique solution u € My —
C([-T, T],Bg;oo). The flow map

F: B, - C([-T,T),B5 ), uo+—u

1S continuous.

Therefore, we point out that the method of [14] is also applicable to
the non-periodic setting with some slight modifications. We extend this
method to the Besov space setting by using several frequency-localization
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arguments. Noticing that H/?(X) — Bé/; (X), we improve the results of
Takaoka [18] and Herr [14].

Global well-posedness was shown by Hayashi and Ozawa [12], [11], [13]
in the non-periodic setting for ug € H' with mass |Jug||3. < 2. For A =0,
Z. Guo and Wu [19], [10] generalized this result to ug € H'/? with mass
smaller than 47. Recently, Mosincat [17] proved the same result in the
periodic setting.

There are also results for global weak solutions in Sobolev spaces cor-
responding to H' concerning Dirichlet and generalized periodic boundary
conditions, compare for example [3], [16].

The remainder of this paper is organized as follows: We complete this
section with some general notation. In the second section, we briefly intro-
duce the Gauge transformation and the Gauge equivalent Cauchy problem.
In the third section, we establish the function spaces and basic estimates
for the linear and the Duhamel term. In the fourth section, we prove the
estimate for the trilinear derivative term u?9,w. The fifth section treats the
multilinear terms |u|**u and |u|*u. In the last section, we conclude local
well-posedness for the Gauge equivalent problem which implies the state-
ment of Theorem 1.1 by backward transformation.

Notation For a,b > 0, we denote a < b if a < ¢b for some ¢ > 0, a < b
if Ca < b for a sufficiently large C > 1 and a ~ b if C~1a < b < Ca for a
sufficiently large C' > 1. We write <, if the implicit constants depends on
a parameter a.

For measure spaces 21,5 and product-measurable mappings w: 2 x
Qy — C, (z,t) = u(zx,t) such that u(-,t) € X and u(z, -) € Y, we set

lullvix, = [t = llz = u(z, D)l |,

and shortly [|u|x, , = ||ul|x,x, if X =Y.

x

S(R™) denotes the space of all Schwartz functions on R, S(T x R) the
space of all functions u: R? — C such that

w(z 4 2m,t) = u(z,t), u(-,t) € C°(R), wu(z,-)e S(R)

and S(T) stands for the space of 2m-periodic C*°-functions on R.
For f € S(R), we define the Fourier transform f via
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~

'—i e f(2) da
f(rS)-—\/%/R f(z)dz, €eR.

For f € LY(T) and g € L'(Z), we denote

~

L e
f(€) ._\/%/11‘6 f(z)dz, €€Z.

For u € (X x R), we set

1 .
u(§, )=~ / / @ Em)y (g 1) da dt.
27 R JX
J* denotes the Bessel potential of order —s. This means
Jof=0)f fesX),
where (a) := (1 +a?)'/2, a € R.

H*(X) is the Sobolev space of order s on X, this means the completion
of §(X) with respect to the norm

1 llae = 17 F -
For u € S(X x R) and s € R, we write
Tou(z, t) == J* (u(t))(x),
TLu(E, ) = (r + £2)%(E, 7)

and shortly I' :=T".
We consider £ = (&1,...,§,) and Y§ == {§{ € Y" : Z?:l & = &},

Y € {R,Z}. The convolution of functions fi,..., f, on Y is written as
n—1
freeees Fal€) =/ T15E) fale—& = —&a ) d(Er, o €n )
n—1 j:l

= [ 1[5

¢ j=1
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with integration with respect to the counting measure if Y = Z.
Let x € C*(R,[0,1]) be radially decreasing such that y = 1 on [—1,1]
and x =0 on (—2,2)°. For T' > 0, we introduce

xr(§) = x <§) - X (i:é) o ox<r(§) = x (;) :

Hence suppxr C{£ € R: T/2 < |£| < 2T'}. In addition, let
D:={2":neZ}={N:N dyadic}, D;:={N>1:N €D}

For £ # 0, there are not more than two N € D such that yny(§) # 0. We

have D nepxnv(§) = 1 for all £ # 0 and x<1(§) + D yep xv(§) = 1 for all
£eR. For N € Dy, feSX)and u e S(R x X), we denote

~

_— for N > 1,
Bf(e) = {XN(f) Ef) >
x<1(§) f(€)(§) for N =1,
(z

)
Pyu(z,t) := Pn(u(t))(z).
This means ) yep, Pnf = f.
Finally, let x[0,1) € C*°(R) be a radially decreasing function satisfying

Xjo,1] = 1 on [0,1] and xjo,;j = 0 on (—1,2)°. For intervals [a,b], we denote
Xia.b (§) = X[0,11((§ —a)/(b—a)) and

Plaof(€) = X1ap(©)F(),  Plagul, 1) := Py (u(®))(x).
2. Gauge transformation

We work with the gauge transformation as introduced by Hayashi and
Ozawa [12] for the non-periodic setting and adapted by Herr [14] for the
periodic setting.

Definition 2.1 (Gauge transformation) For

0@ = [ 15wk,

— 00
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T =5 [ [ 1P - nE) dwas, ) = 51 B

we define
G(f)(@) = e PO f(2), feL*(R),
G(f)(x) = e TD@ f(z), f e LA(T),
G(u)(x,t) == G(u(t))(x), u € C([-T,T], L*(R)),
G(u)(x,t) = G(u(t))(x — 2u(u)t), weC([—T,T],L*(T)),

where p(u) := p(u(0)) = p(u(t)) by L?-conservation (cp. Lemma 6.2).

As shown in [13] and [14], replacing v by v = G(u) and v = G(u)
respectively leads to the gauge equivalent problems

1
i0pv + 020 = —iv20,0 — §|v]4v + Av)?Pv in R x (=T,T),
v(0) = vg in R,

and respectively
1
10w + 020 = —iv?0,U — 5\@\41) + Moo + p(v)|v|*v — p(v)v

in T x (—T,T),
v(0) = v in T,

where 1 is defined as above and ¥ (v)(t) := (1/2n) f02ﬂ(21m(v6$§)(y,t) -
(1/2)|v|*(y,t)) dy + u(v)?. Denoting
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o)) = (o'~ 5 [ O ar)oto)

1 27 1 27
[P as(leop - 5 [ P ar)ot
in the periodic setting leads to the Cauchy problem

100 + 0% = —iT(v) — %Q(v) Aty in X x (=T, T),
v(0) = v in X.

(2)

In order to treat both settings simultaneously, the following characteriza-
tions of 7 and Q are helpful:

Lemma 2.2  We have T (v) = T (v,v,0) and Q(v) = Q(v,v,v,T,v), where

T(erva0) (€7 = 5- | /R G1(60,7) 5360, 72 )i 63, 7) AE 07,

Q(Ul,UQ,’l)g,’l}4,U5 7 27T /]Rli /1;3 HUJ 5‘7’7—] dde

¢ =1

in the non-periodic setting and
T(U1702,U3) &)

27T 3/2 /]RS Z (6177—1)6\2<£2,72)i£31%(€3,T3) d7

T §1+82+Es=
517527’55
1 - ~ o~
+ W ) 01(&,71)02(&, 72)i803(—€, 73) AT
RT

Q(v1, v2,v3, V4, Us)A(fa )

5
1 ~ —
R /R > [T m) a7
™ §1+&2+E3+E8a+85=¢€ Jj=1
&1+82+E3+84, §1+82, E3+84F#0

in the periodic setting.
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Proof. In the non-periodic case, this is a direct consequence of the ele-
mentary properties of the Fourier transformation. For the periodic setting,
compare [8, Lemma 6.4]. d

3. Spaces: Definition and basic properties

Definition 3.1 For s € R, p € (0,00], ¢ € (0,00], we define the Besov
space B, (X) as the completion of S(X) with respect to the norm

1/q
Pl + (3 NP Sl ) i <oc,
1fllss ) = N>1

| PLf e x) + sup N°||Pn fll e (x) if ¢ = oo,
N>1

where we take the supremum and the sum over dyadic numbers N.

Definition 3.2 Let s,b € R. We define X***(X), Y**(X), Z*(X),
X0+ (X), Y9(X), Z%(X) as the completions of S(X x R) with respect to
the norms

el e = €Y 2 €% D) 24y 2

lullye = [[4€)* (7 + €2)*u(€, 7) :
L2(Y)LL(R)
ull zo = llull xs1/2 + ullyso,
lullgenx = ||[Prul|xsb.x + sup |[[Pyu|| xsb.x,
N>1
||u Yop 1= |Prullyss + sup ||Pnullys.s,
N>1
[ull zo = [|[Prullzs + sup || Pnulz.
N>1

For T' > 0, we consider the space Z5(X) := {u|[7T U E Z5(X)} with
norm

HUHz; = inf {||v]| 5. u= v‘[_Tﬂ, ve Z5(X)}.

The following estimates for the linear term, the Duhamel term and
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for the behavior under multiplication with smooth cutoffs can be found
e.g. in [6], [14] for the case without frequency-localization. With trivial
modifications, they remain true in our setting:

Lemma 3.3 Let s > 0, up € B3 (X) and w € S(X x R) such that
suppw C X x [—2,2]. Then

Ix(H)Utuollz= < lluollss s

S ||w”xsﬂfl/2mys,—1 .
Zs

Jxt) [ vty ar

Forue S(XxR),seR,0<b; <by<1/2, NeD;y,6>0andT € (0,1],
we have

1Pn (X (t)u)|
1PN (xr ()l xonrs S T7° | Pyl xonsa,

1Px O (u) e e S T2 70 | Pyl oz

yso S| Pyullyso,

For T' > 0, the embedding 2} — C([-T,T], B3 ) holds true.
The following statements can be found again in [6], [14]:

Lemma 3.4 Letue S(X xR). Then

1
lullyem S llullxoss Vb2 > b1+ o, (3)
1 1 1 1
||u||Lng 5 HUHXva’i vpvq € [2700)7 b > 5 - ];a s 5 - 57 (4)
< 1 1
HUHXS,b,i ~ HuHLij vp € (172]7 b < 5 - [; (5)
Lemma 3.5 (Strichartz Estimates) Let u € S(X x R). We have
3
lull g, < llullxors Vo> o, (6)
3

< _Z
lullxons S llullae V<. ™
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ForX=R and b>1/2, p € (2,], q € [2,00] satisfying 2/p+1/q =1/2,
it also holds that

lullzprg S llullxor.=. (8)
Finally, for p with 1/p=9(1/6)+ (1 —19)(1/2), ¥ € (0,1), b > 1/2, we have

HuHLfI ,S HU”XO,%,i. (9)

Proof. Since
consider || - || xs.b.+. In the periodic setting, (6) and (7) have been shown in
[5, Lemma 2.1]. Since (p, q) is a Strichartz pair, we obtain (8), compare for
example [4, Lemma 2.3]. Estimate (9) can be concluded by interpolation
(compare for example [6, Lemma 1.4]) between (8) and the trivial statement

|||z e is invariant under complex conjugation, it suffices to
t xT

lullzz , = llullxoo.

In the non-periodic setting, (6) is a direct consequence of (9) by plugging in
¥ = 3/4. Finally, estimate (7) follows from (6) and duality. O

4. Trilinear estimate

In this section, we handle the trilinear term 7 (u) which is essentially
u?0,u. The partial derivative on the third factor causes a factor 3 on the
Fourier side. If |£3| is significantly higher than the first two frequencies,
we can use the following resonance relation to control the derivative term:
For (&, T) S R2, (51;{2753)7 (7’1,7’2,7’3) € R3 such that & 4+E& + & =€ and
T 4+ T2 + 73 = 7, we have

dmax{|T + &, | + &I, |2 + &, |73 — &}
>r4+8—(n+&§+n+&+m-8)
= 2|1 + &3162 + &3l (10)
For |&3| > |€1],[&2], we can conclude max{|7 + &|,|m1 + &3], |72 + &3], |73 —
&1} 2 &.

In the sequel, we consider the multipliers of [14] with some slight modi-
fications:
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Definition 4.1 Let j € {1,2,3}, ¢ € Y, 7 € R, § € Y, 7; € R, £ =
(1,62,&3), T = (11,72, 73). Web set A(E, 7,6, 7) = {7+ &, |m + &I, |2 +
&1, | — &1},

Ao(&,7) = {(£7) € Y x R} : max A(, 7,6, 7) = [ + €7},
Ay, 7) = {(£7) € Y x R i max A(€,7,€,7) = |m1 + 2]},
As(&,7) = {(§7) € Y X RY i max A(, 7,6, 7) = |2 + &3},
Ag(&,7) = {(§7) € Y x R : max A(¢, 7,6, 7) = |m3 — 31}
and
MET.E7) = (&) i ,

(T + V2 + Y2y + E3)Y 2 (15 — 3)1/?
(&) V2 (&) 12 (€)1 /2

140 (E7)

(T + EDY/2 (o + E3)1/2 (13 — £3)1/2(&1) /2 (&) V2
L4, (e (6 7)

(T +ED)2(mg + E5)1/2 (13 — £3)1/2(&1) /2 (o) 1/
L 4, (e.r) (€, 7)

(T+E)V2(m + 1)1/ (13 — £3)1/2(&1) /2 (&) 1/ 2

]]-Ag(g,‘r) (é: 7__')
(T+EDV2(m + E1)1/2 (1o + £3)1/2(&1) /2 () Y/

MO (gv T, 57 7?) =

Ml (57 T, 57 7?) =

Mo (€,7,6,7) =

M3 (ga T, 57 7?) =

L 1
Mu(€, 7,6, 7) = (1 + E2)7/16 {1y + £2)7/16 (7 + £2)7/16 (75 — £2)7/16°
~ g M s 1y _"7_"
M(£77—7£77?) = <T(§_;—2>€1/72)7
L (e (€ 7)

o) = TSy ) — GG

(&) 2 (&) 2 ()1 /230
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Mj (57 7, g? 7?)

Mj(f,T,éF) = W’

j G {17 27 3? 4}7

where we will choose a § € (0,1/6).

Lemma 4.2 Let u; € S(XxR) such that suppu; C Xx[-T,T], T

€ (0,1],

j € {1,2,3}, and fi(&,7) = (7 + )V 2us(&, ) for j € {1,2} and

fa(€,7) == (17 — EVVUEY2u3(¢, 7). We have

4
|M’ rSZMJa
7=0
~ 4 ~
(M| S j

<.
Il
o

and

/R . Mo(&, 7,6 7) f1(61, 71) fa (€2, 2) f3 (€3, ) AE AT

S lullxssssrslluallxsssssllusll xi/2.0/2.-,

/RS . My (&, 7,6, 7) f1(&1,71) fa(E2, T2) f3 (€3, 73) AE AT

S lullxsssasz lluallxs/ssslusll xi20/2.-,

/R . Mo(€,7, € 7) f1(E1, 71) fa(E2, 72) 3 (€3, 73) dE 7

Sl llxssssssluallxsssase lusllxiz2a/2.-,

/R . Ms(€,7, € 7) f1(Ex, 71) fa(E2, 72) 3 (€3, 73) dE 7

S llullxssssslluallxsssssllusll xi/20/2.-,

/R3 g My(&,7,6,7) f1(&1,71) fo (&2, 72) f3(€3, 73) AE AT

S Hu1HX1/2,15/32 HUQHX1/2,15/32 ||U3||X1/2,15/32,_.

(1)

(12)

(14)

(16)
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Proof. In the periodic setting, these statements have already been shown
n [14, Lemma 4.1, Lemma 4.2, Theorem 4.1]. In that case, for (11) and
(12), we only had to consider 5 € Z3. But in the non-periodic setting we
need to consider { € R3. This means, we have to modify the proof of [14]
slightly. For the sake of completeness, we will show all these statements
simultaneously for the periodic and non-periodic setting.

Let (&,7) e Y xR, £ € Y and 7 € R?. Since 7+ &% — (11 + &7 + 72 +
€3 + 13— E£2) = 2(€ — &) (€ — &), an application of the triangle inequality
shows that

(€ = &)(€ - &)N?
< 4(1/'10(5,7')(577?) <T+§2> +]]'A1(£ T) 57 <Tl +§1

+1A2(§,7)(5F)<72+€§> +]1A3(s,f)(§f)<73—§§>1/2)- (18)

>1/2

We consider the following four cases:

(i) |€] > 2|& | and [¢] > 2|&|: Here, €3] S |¢] and ((6—&1)(E—&2)) 2 (€)°
Hence, by (18),

3
IM(& 767 S M6, m.6 7).
7=0

(ii) |€] < 2|&1| and [€]| < 2|&2]: In this case, we have |£3] < max{[&], |&2|}
and [¢| < 2min{|&], [€2|}. This means

| (5,7’ 55 )| N M4(£7T ga )
(if) €] > 216,| and [¢] < 26l Since [¢] < |¢ — & + (1/2)], we have
€] < 2| — & ] and therefore 2((§ — &1)(§ —&2)) > €] - |€ — &2|. Furthermore,

()2 < 1+¢1Y? and |&5]Y/2 < [€— &|V2 +|&1|Y/2. Using (&) > 1 and (18)
provides

4
IM(&,7,67) S D M6, 7,89
7=0

(iv) €] < 2|&1| and |€] > 2|&2|: By symmetry, this is a direct consequence
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of (iii).
From estimate (11), we obtain

4
IM(E, 7,67 S T+ )2 Mo (6,7, 6, 7) + Y M;(&,7.€,7).

Jj=1

This means, estimate (12) follows from (7 + £2)"1/2My(¢,7,€,7) <

~

Mg({ )T, E, 7). Therefore, we consider again the four cases from above:

(i) 6] > 2l&| and [¢] > 2[&|: Here, |&| < [¢]. For (€,7) € Ao(€,7),
resonance relation (10) implies |7 + £2| = |€] - |€3]. Hence

(T+ V2 2 (r + &) (ra + &) (15 — £3)°() /2730 (&5) /2730

and consequently (7 + £2)~V/2My(€,7,€,7) < Mo(€, 7, &, 7).

(i) [€] < 2[&1] and [§] < 2[&[: In this case, we have [§3] S max{[& [, €]}
and [¢| < 2min{|&1], |€2|} which implies |M| < My.

(iii) €] > 2|&] and [¢] < 2|&|: First, let || < 1. Then |&] < 1/2
and |&2 + &3] < 3/2. This means |&3] < 3/2 + |&| and (&3) < (€2). Since
€] < 1,]&1] < 1/2, we obtain

’M(gvTvg;Fﬂ 5 M4(£7T7€7?)‘

Secondly, let |£3] < 1. Then (£3) ~ 1 and from [£| < 2|&], (&1) > 1, we
obtain

M (¢, 7,€,7)| S Mu(€,7,€,7).

Thirdly, assume that |£1] > [£ — &2]. Then |€3] < |€ — &of + (61| < 2]&1]| and
|€] < 2|¢2| which implies

M (&, 7,67 S Mu(€,7,€,7).

Finally, we have to consider the case ||, [£3] > 1 and |&;| < |€ — &|. Here,
(€) ~|&], (€3) ~ |&3] and the triangle inequality provides

€3] < [€ — &af + [&1] < 2[€ — &2
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Furthermore, we have

1€ <216 =&l €] - [€ — &af <2((§ —&1)(€ —&2))
and as a consequence (€)(&3) < ((€ — &)(€ — &)). For (§,7) € Ag(€,7),

resonance relation (10) implies
(r+ )2 2 (€ - )€ —&)* T (n + )+ ) (- €3)°
2OV P - €) (ra 4 €5) (s - €)°,

so that (7 +€°) "1/ Mo (&,7,€,7) S Mo(€, 7, €, 7).
(iv) €] < 2|&| and €] > 2|&2]: This is again a consequence of case (iii).
Now, we prove (13)-(17): By definition of M, Holder’s inequality and
estimates (4), (6), we obtain

3
H/ V(6.9 [[ 56 a€ar
R3 Jy? =1 L2
< JJur - ug - I3 Pus| 2
S Nl xsrssss|luzl xsrs.a/sllusl| x 172,172,
For M, we denote
3
H/ M6 &) [11(60m) aéar
RS Jy3 i L2,

< HFl/zul “Ug - le/2U3HXo,_1/2.
Applying (5), Holder’s inequality, (4) and (6) provides
T 20y s - T3 P o, srs S T 20 - un - 3 Pusl om0
< 02 Ir2rs lluallps ||J;/2U3”L;{w

S llutll xsrsasz|luzl xs/sas|lusl x 1212~
(19)
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Since || - || xo.-1/2 < || - || x0.-3/s, we obtain the estimate for Mj.
Because of symmetry, the estimate for My can be shown analogously.
By definition of M3,

|

3

A [, 6 m €0 [ (65 7) a€r

2
= L&‘r

< Hu1 U - Ji/2ri/2U3”X0,—1/z.
Using (7), Holder’s inequality and (4) provides
1/2 1/2
||u1 U9 - J;/QF_/ U3||Xo,77/16 5 ||U1 U9 - JI1/2F_/ U3||L;1/3

5 ||U1||X3/s,3/8 HUQHX3/8,3/8 ||U3||X1/2,1/2,7 .
(20)

Since || - || xo0.-172 < || - || x0,~7/16, we obtain the conclusion for Ms.
For My, we have

|

3

A [, e m €0 T 165 7) €

2
L&J—

< HJ;L/zrl/wu1 . J;/2F1/16u2 ) Ji/zfl_/wu?)HXo,_?/w-

The dual Strichartz estimate (7), Holder’s inequality and Strichartz estimate
(6) imply

S 2T uy - LT Oy - T g | s
S HU1 ||X1/2,15/32 ||U2HX1/2,15/32 HU3HX1/2’15/32’* (21)

which proves the estimate for My. Il

Remark Similar estimates for ]\;Ij will be shown in the proof of Theorem
4.6.
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To prove the trilinear estimate, we follow the ideas of [14, Theorem
4.1 and Theorem 4.2] for the H*®-case. In order to localize frequencies, we
write u; = ZNjeDl Py,uj. We need to eliminate the sums over N; € D,
Therefore, the following elementary estimates are useful:

Lemma 4.4 Letu e S(XxR), 0 >0 and s,b € R. Then

S N Pyullxens S lullxens, (22)
NeD;y
S 1 Pwullxen S lullgesss: (23)
NeD,
For N € Dy, we have
> IPvullxess S lluflgens (24)

Di>Ni~N

with an implicit constant which does not depend on N.
For k > 1, we have

Y IPvullxers Sk llul

D13N<Lk

XS,b,i. (25)

Proof. Estimate (22) is a direct consequence of the convergence of the
geometric series Yy .p, N7°. Estimate (23) follows from (22).

Let C > 1 the implicit constant corresponding to ~. There are
2|log, C'| 4+ 1 dyadic Ny with N; ~ N which implies (24).

Finally, for k£ > 1, there are [log, k| dyadic NV such that 1 < N < k and
we obtain (25). O

Remark One can show the same estimates for Y5 and Y*°®-norms. But
because of (3), we need these statements only for X*? and X*?.

Theorem 4.5 (Trilinear estimate for X'/%71/2)  Let T € (0,1], u; €
S(X x R) with suppu; € X x (=T,T), j € {1,2,3}. There ezists an ¢ > 0
such that

HT(’U,l, uz, U3)‘|x1/2,71/2 5 T€Hu1 "%1/2»1/2 HU2Hx1/2,1/2 ||U3||x1/2,1/2,7 . (26)



224 C. C. Cloos

Proof. By applying the triangle inequality, we may assume P/NE >0 and
Py,u; = x7(t)Pn,u;. Take ¢ € (0,1/32). We need to show the estimates
[PLT (w1, ug, ug)l xr/2.-1/2 S TFJur || xarzaselluzl xirzasellus| xirzase.-,

ISVU_p HPNT(Ul,u2au3)||X1/2,71/2 5 T€||U1||x1/2,1/2||UQ||x1/2,1/2HUg”x1/2,1/2,7.
>1

Let
PNy (6,7) = (T 4+ V2OV Py wy (€, 7), 5 € {1,2},
FNgus (6,7) = (7 — €V V2 P ug (€, 7).
We define
O =R} ifX=R,
Qe =
QuQ ifX=T,
where

U:={fcZt 6648, W={{cll:a=6=¢8=-¢)
for X = T with integration with respect to the counting measure. Then

”PlT(ulalle? u3)”X1/2,—1/2

and the same for Py 7T (u1, ug, ug) with dyadic N > 1 by replacing x<; with

XN-
On O, we will only get a positive term if Ni,N2,N3 < 1 and

3
@ 3 [ &[] e adar
: =

N1,N2,N3€D;

2
L&n’

~

Ny, Ny, N3 ~ N respectively. For N > 1, we use estimates (11), (13)—(17)
and (24) to conclude

3
HXN@) . /R QNM(g,r,éﬁHlfNj,u,.(gj,mdédf
T 3 j=

N1,N2,N3€D1 L?,T
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STE Z ”PNlul||X1/2»1/2||PNQU2||X1/2«1/2HPN3u3”X1/2,1/2ﬁ
N1,N2,N3~N

rg TEH'LLl”xl/z,l/z HUQHX1/2,1/2 HU3H:{1/2,1/2,—

with a constant which does not depend on IN. For the small frequencies, we
obtain from estimates (11), (13)—(17) and (25) that

wo > [ [ MEn ) Hf 0y (6o7y) dE a7

N1,N2,N3€D;

e

ST Y Pxawllxzasel|Pyyuslixiszase | Payuslliyz, e, -
NI,N27N3§1

5 T€||U1||3€1/2,1/2 HUQ||3€1/2,1/2 HU3H3€1/2,1/2,_ .

We still need to consider the set Qé The conclusion follows from

HX<1 Z /Rfi Q’ M 5,7— 57 HfNJ,u] g]aT])dng

L2
N1,N2,N3 Lt »

S TEHul ”3{1/2,1/2 HUQHxl/zl/z |’7113Hx1/2,1/2,—7 (27)

sup
N>1

Z /]R3 Q,MS,T& HfNJ’uJ £J’Tj)d£d7_

L2
N1,N3,N3 Lt~

,S TsHul Hx1/2,1/2 HU2Hx1/2,1/2 ||U3Hx1/2,1/2,7 . (28)

Estimate (27) can be shown by similar arguments as (28) just by replacing
X~ with x<; and “~ N” with “< 17. Hence we will only prove (28).

Let N > 1 be dyadic. By symmetry, we may assume that N; < Ny. We
distinguish between the cases N3 > Na, N3 ~ Ny and N3 < N> (taking an
implicit constant greater than 8). We write

3
H > m(&)/w Q/M(&méf)HfNj,uj@j,Tj)dEdf

N1,N2,Ns 7 I j=1 LE,

ST+ I+ 10
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. 3 g
taking the sum over HXN fle fQ, &, f, )szl SN (§5575) d€ dTHLg
with the restrictions

I:N{ <Ny <N3, II :N;i <Ny~ N3, III:Ni <Ny No>Njs.

Case I: N1 < Ny < N3. In order to obtain a positive contribution, we may
assume that N3 ~ N. Then resonance relation (10) provides

max{|T + &[, |71 + & |, |72 + &3], |73 — &3]} 2 NNs.

Since N, N3 > 1, we have N N3 ~ (£)(&3) which implies

1/2/¢ \1/2
M E7)| < S

(T 4+ )12 (11 + &1)1 /2 (12 + €3)1 /2 (75 — €5)1/2(60) /2 (€2) 12
3
SZMj(gvTvg’a?)
§=0
By (13)-(16), we obtain

I S TE Z Z "PN1U1|’)(3/8,1/2||PN2U2||X3/8,1/2HPN3U3HX1/2,1/2,7
Ni,No N3g~N

5 T8Hu1|’3€1/2,1/2 Hu2Hx1/2,1/2HU/3H%1/271/2,—.
Case II: N1 < Ny ~ N3. We distinguish between

Ila : Ny ~ No, IIb: Ny < Ns.

Case Ila: N1 ~ No ~ N3. For a positive contribution, we need Ny, No, N3 2
N. So we consider the cases

IIa12N~N1~N2~N3, IICLQZN<<N1NN2NN3.

Case Ila;: N ~ N1 ~ Ny ~ N3. Here, the desired estimate is a direct
consequence of (13)—(17).

Case Ilag: N < Ny ~ N3 ~ N3. The resonance relation (10) provides
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max{|7 + &%, |ry + &3], 2 + &3], 173 — &1} 2 1€ — &I§ — &| 2 N2

Since No N7 2 N N3, we obtain

w

’M(gaTvé;Fﬂ 5 ZM]'(£77_7577?)

§=0
and (13)—(16) lead to the desired estimate.
Case IIb: N1 < Ny ~ N3. We consider the cases

Ilbl ' N S Nl, IIb2 N> Nl.

Case IIby: N < N1 < Ny ~ N3. Here

1

e @ A @ g )

M(&7,67)] S

We subdivide 0 = Q¢ , UQ; _, where Q , = {€e Qe |€=&] > N?:l/g}
and Q’&_ = Q’5 ~ Q"g’+. Then we can split 1Ib; into IIb; + and I1b;,_ with

by y:= > Hm(&) / M(¢, 7,8, 7)
N17N2,N3 RE Q’E,i
N§N1<<N2NN3

3
T #5065 75) d€d7

. 2
Jj=1 L -

Case IIby : N < Ni < Ny ~ N3 and [§ — &| > Ngl/Q. Due to resonance
relation (10), we may assume that

max{|7 + €2|,|m1 + €2], |m + €3], |13 — €3} 2 N2 2 NN
By (29), we obtain
IM(&,7,67)] S Ny VONT Y My (7 6 7) (30)

and the conclusion follows from (17).
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Case IIb; _: N S N1y < Ny ~ N3 and [§ — &1| < Ng_l/Q. In the periodic
setting, we have £, &, € Z and N3_1/2 < 1 implies £ = &;. Hence ggé 0 and
_=0.
For the non-periodic setting, we introduce

,ON3,§ = 1(6—N51/2,£+N3_1/2)’

= (kN; %, (k+ DN ).

Estimate (29) implies

HXN /R o Mg 7,67 HfN (& my) A€ a7

Jj=1 L »

3
<T+§2>—1/2/6 prs.e (&) [T (€)Y * P,y (&5, 77) d(€.7)
j=1

=D )l (LR ALY IETACA AN
I€Z ke Re -
3
H 2Py uj(g,m5) A(EF) (31)

2
L&m’

For a positive contribution, we need & € Iy, and |£&2+ &3] = [€—&| < N_l/2

Hence
Gae[—&—Ny V2 =&+ NP C [ = (k+2)Ny V% —(k — )Ny /7]

and dividing the integration region into (15 + £3) < (13 — &£3), (12 + £3) >
(13 — £2) provides

3
H () 1/2PN Wi (E5,75) - (o + €2) V16 (7, — €2)1/16 d(€,7)

Lz
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i

T+€2 —1/2 /R6 11k(€2) 17 (k+l)(£3)

&7

&)Y Pr,us(&,75) - (ma + €)1/ (ms — €3)7H/10A(E, 7)

H:w Q

L
= A(Nl, NQ,Ng) + B(Nl, NQ, Ng)

An application of estimate (7) and the inequalities of Hoélder and Cauchy-
Schwarz leads to

2 1/2
A(Ny, Na, N3) < HJ;/QPNlulHLfm > (Z | Py, (J;/er/lfiPNguz)H;w)
T =0 “keZ '
) 1/2
A D NPr o (ST Py ug) [, ) (32)
(k+1) Lt,I

kEZ

Bernstein’s inequality, || = N5 1/ 2, suppu C R x [-T,T] and Strichartz
estimate (8) provide

1o (S22 Py s ||

5 N3—1/2(1/2—1/4) HPIk (JI1/2F—1/16PNQUZ) HL4L2

< T1/4N3—1/8HPIk (J;/QF—1/16PN2u2) HL°°L2
t x

< T1/4N;1/8HP119 (Ji/zrfwprqu)

~

(33)

HXO,Q/lG'

Applying estimate (33) to the second factor of (32) and (6) to the other
factors yields

2

1/2
A(Ny, Nou N3) S TYVANT Y Py oo 2 j(} j||P1kPN2u2|r§<1/z,l/2>
=0 “keZ

1/2
: (Z HPI(;C+Z)PN3u3H§(1/2,1/2,)

kEZ
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—1/16 n7—1/16
STVANTYION Y
. HPNlul”X1/2’1/2||PN2U2||X1/2’1/2HPN3u3HX1/2’1/2’*7

where we used almost orthogonality and N7 < Ns.
For B(Ny, N3, N3), we obtain the same upper bound by switching be-
tween uz and ug and applying Bernstein’s inequality on || Pr_, , Pn;usl| i -
Overall, we have shown that

Iy, < > > (AN, Na, N3) + B(Ny, Ny, N3))
N1,N3 Na~N3
ST M |us |2 ugll g2z |[usll g1z .-

Case IIbQI Nl < N and N1 < N2 ~ Ng. We have |§1 +§3| ~ Ng, ‘f2+f3| =
|€ — &1 | ~ N and by resonance relation (10), we can suppose that

max{|r + €|, |1 + &7, 2 + &), 73 — &1} 2 NaN.

Since N3 ~ Nj, the desired estimate can be concluded by the same argu-
ments as in case I.

Case III: N1 < N5 and No > N3. We further distinguish between
IHa1 :Nl >>N3, N1 <<N2,
Illas : Ny > N3, Nj ~ Na,
IIIb : Ny ~ N3, Illc: Ni < Njs.
Case Illa;: No > N7 > N3. We will only obtain positive terms, if No ~ N

and, by resonance relation (10), we have max{|r + €|, |y + &, 72 + &1,
|73 — 532)’} 2 N1 Ns. This means

1
(T + 2+ )V ma + )2 (ms — €5)1/?

< NV NGV (6,7, € ). (34)

M7, &7 S

Since Ny 1/16 S Ny Y "% we obtain the conclusion with arguments similar
to case IIby .
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Case Illay: N1 ~ No > N3. For a positive contribution, we need Ny 2 N
and

max{|T + &|,|m1 + &, |2 + &, |75 — &1} Z NiNa ~ Nj 2 NN,

by resonance relation (10). Hence |M(¢,7,6,7) < Z;’:l Mj(f,T,g,%').

Since N;l/B < N;1/16N§1/16, we get the desired estimate by similar argu-
ments as in [I.

Case IIIb: Ny > N7 ~ N3. We can assume that No ~ N and
1/2
max{|7 + €|, |r1 + &3], 72 + €31, |73 — 31} 2 Nalé — & > N2,

if |€ —&] > N{1/2 — otherwise we use similar arguments to case IIb; _. We
obtain

1
(T + )2 m + &)/ 2 (ra + )12 (r3 — £)1/2

<Ny YEM (T, E P

M (&, &) S

which implies the conclusion by arguing as in case I1bq 4.

Case Illc: Ny > N3 > N;. Here Ny ~ N and
max{|7 + &, |71 + &F|, |72 + &3], |73 — &3]} 2 N2 Ns.

Hence |M(¢,7,€,7)] < Z?Zl M; (&,7,€,7) and we obtain the desired esti-
mate as argumented in case I. O

Theorem 4.6 (Trilinear estimate for Y*/%71)  Let T € (0,1], u; € S(X x
R) and suppu; C X x [-T,T], j € {1,2,3}. There is an € > 0 such that

||T(’LL1, uz, U3)||y1/2,71 5 T6HU1 ”31/2,1/2 HU2H1{1/2,1/2 ||U3||x1/2,1/2,7 . (35)

Proof. By an application of the triangle inequality, we may assume that
m > 0 and Py,u; = x7(t)Pn,uj. As in the main part of the previous
proof, we will omit the case of small frequencies and focus on |£| of order
N > 1. We have
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||PNT(U1, U2, U3)||y1/2,71

<y

N1,N2,N3

3
(©) /R . M(gmf,T)jHlfNj,uj@j,Tj)dde »
(36)

We subdivide M into Mg, Ml, Mz, Mg, M4 and adapt the ideas of [14,
Theorem 4.2] to our setting: For v >0, { € Y and w: Y x R — C such that
w(, ) € L?(R), Hélder’s inequality and substitution of variables lead to

H(Tif > 1/2- ’Yw €7 HLl ~Y Hw 57 HLZ (37)

By definition of My and Young’s convolution inequality, we get

HXN(O/RS v Mo (&, 7,6, 7) HfN uy (&5, 77) dEdF

LILY
fN U fjvT])
S YS )1/2 7-]—|—§2>5/2
ng u3(§3,73) g
. d d . 38
H<€3>1/23‘5<73—§§>5/2 ¢ L2 %)

L2,
Let
9Ny (67) o= (T + )P v,y (67), G €{1,2},
INg s (6 7) 1= (T = €702 iy s (€,7).

In the sequel, we choose 6 = 1/24. Then, by Young’s and Holder’s inequality,

(38) S

9 3
)LD 2 &) T s 5o mi)ll o
j=1 =1 J

< N3/ N-3/16 —1/16HHg i (855 75) HL2 B
Jj=1 "
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2
= N1_3/16N2_3/16N3_1/16 H HPNjujHXuz,zs/st ' HPN3u3HX1/2,23/48,— .
j=1

Hence

HXN(é-) 43 Y3 MO §’Ta§7 HfN]ﬂJJ §]>T])d§d7

211
L2LL

S T€||PN1U1||X5/16,1/2 ||PN2UQ||X5/16,1/2 ||U3||X7/16,1/2,7 . (39)

By definition of M; and estimate (37), we have

HXN@)/RB [ e nén HfN (€, y) A€

271
L3LL

3
< HXN@) / i / [+ P EN [ 617 07

< HF1/2PN1U1 - Pnyug - Jx1/2PN3u3HXO,—3/8'

Applying (19) leads to

HXN(S)\/]R3 YS Ml 577— 57 HfN UG éj)Tj)dng

L2LL
S TP\ Pryuall xsrsae | Payual xsssae | Payusl xiza-. (40)
By changing the first two factors, one can show analogously
HXN(@/ T &) T Fyo (65077) dE 7
RS JYE j=1 L2LL
S TP Py, unllxassase | Py sl xarsare || Pryusl xi/zaz - (41)

For Ms, we conclude by (37) that
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HXN(&) /RB Y3 M3 577— ga HfNj,uJ g]uT])dng

L2L:
H/ [ ey s — g [ Py .7 o
R?’ Ys =1 Lg,ﬂ'
S HPN1UI : PNzu2 : Jalt/er—/szauBHXO,fwm
and (20) implies
HXN(E)/ M3 577_757 Hf iU §]7T] dng
R? JY3 L2L!
< TEHPNlul HX3/8,1/2 ||PN2u2||X3/s,1/2 ||PN3U3||X1/2,1/2,— . (42)
By definition of M and estimate (37), we have
HXN(&)/ M4 gvT 57 HfNJ,u] gjuTJ)dde
R3 Y?’ L2L1
H/ [ rrermenés H Iy (5, 75) AE A7
RS JY3 L3LL

< HJ;/21—\1/16PN1,UJ1 . le/zrl/mPNqu ) Ji/zrl_/mPNsugonﬂ/m.

From (21), we conclude

HXN(E)\/R?’ Y3 M4 57757 HfN U £J7TJ)d€dT

L2t
< T‘EHPN1 u1HX1/2,1/2 HPN2U2”X1/271/2 HPNSU3HX1/2,1/2,_. (43)

Now, we show estimate (36). As in the proof of Theorem 4.5, it suffices to
consider Q’5 instead of Yg’. We denote

2.

N1,N2,N3

3
o (©) /R ., M(s,r,éﬂjr:[l I3 (6, 77) dE A7

271
L3LL
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ST+ Ha+ ITby 4 + ITby — + IIby + I1lay + Illay + 111b + Illc,

where I, ..., Illc refer to the same cases as in the proof of Theorem 4.5.

Case I: N1 < Ny <« N3. We have N ~ N3 and
max{|7 + &, |71 + &7, |12 + &, [m3 — &3]} ~ NN

Since M(¢,7,6,7) = (1 + €2)"2M (&, 7, €, 7), it follows from the same ar-
guments as in the proof of Theorem 4.5 that

3
M (&,7,87)| S(r+6)72> My, E7)

j=0
3
= (T + )T VAMy (&, 7, £, ) + D My(€,7,6.7)
j=1
3
S M7 ER), (44)

=0

where we used resonance relation (10) in the last step as follows: For (£,7) €
Ao(&, 1), we have

(T+€%) 2 NNz ~ (£)(&3).

Hence, for any ¢ € (0,1/6), it holds

(T +E2 2 (V230230 + ) + €3) (13 — €3)°. (45)

Finally, by (39)-(42), we obtain
I S T¢ Z Z ||PN1U1||X3/8,1/2 HPN2u2||X3/3,1/2||PN3U3||X1/2,1/2,—
Ni,No N3~N

5 T€HU1 "%1/2»1/2 HU2Hx1/2,1/2 ||U3||xl/2,1/2,7 .

Case Ila;: N ~ Ny ~ Ny ~ N3. This follows directly from (39)-(43).

Case Ilay: N < Ny ~ Ny ~ Ns. For (€,7) € Ag(€,7), the resonance relation
(10) yields
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(T + &%) 2 NaNy > NNs.

Calculations as in (44) and (45) lead to

Mw

| 537—67 | JE’Té-?

§=0
and our estimate follows from (39)—(42).
Case IIby +: N ~ N; < Ny ~ Nj. Since IM (€, T, g, F)| = (1 + £2)1/2
M€, 7, €, 7)|, estimate (29) implies

1
(T 4+ &) (1 + &)/ (2 + 63) /2 (73 — £5) /2

M6, 7,6 7)] S

First, consider £ € Q¢ which means [§ — &1| > N3—1/2' As in (30), we have
M7, &7 S NUVHNT Y T 4 )T MU(E T 6. (46)

An application of (37) and Strichartz estimates (7), (6) together with
Hoélder’s inequality provides

HXN /R/ (4 VM m & 7) T[ e (6275) dEQ7

j=1

L2LL
< ‘}J;/2F1/16PNIU1 . J;/2F1/16PNQU2 . {];/2111_/16‘PN3ugon’ilg/32

S I Py [T P T Py
S TPy ual| xa/2072 (| Py sl x 172002 | Py us || x1/2./2.-

and we obtain the desired estimate by (46), (22) and (24).
Now, let £ € Q¢ _ which means [§ —&| < N?:l/z. Estimate (37) implies

3
Hmf) /R o M(fm,éf)lelfN,.,uj (&, ;) d€ a7

211
L3LL
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3
S%M@Ahﬁ (r+ €)M, E7) [ vy (€5, 75) dEAT
T e - Jj=1

L3LL

‘hN tés/, (7 + €)M, 7.€,7) IIf , (&277) A€ AT

2
LE,T

Finally, we can argue as done in the proof of Theorem 4.5: Note that es-
timate (7) used in (32) is also valid for b = —7/16 instead of b = —1/2.
Hence, we can ignore the extra term (1 + £2)1/16 here.

Case Ilby: N1 < N and N1 < Ny ~ N3. We may assume that

max{|7 + &2, [ + &F], |72 + &3, |75 — €3]} 2 NN
which provides the conclusion by arguing as in case I.
Case Illa;: Ny > N1 > N3. We have Ny ~ N and

max{|7 + €|, |m + 7], |12 + &3, 73 — &3]} 2 NaN1.
This means

M(E, 7, E7)| = (1 +&) 72 IM(E 7,67)
S+ &) AN ON M (6,7, E7)

by (34) and we get the desired estimate using N;l/lﬁ < N;l/m

IIby ;.

as in case

Case Illay: N1 ~ Ny > N3. We need Ny 2 N and
max{|7' +£2‘7 ‘7—1 +§%|7 |7—2 +§§’7 ’7—3 - 6‘3%‘} Z ‘]\722

Hence |M(&,m.€7)] < Z?:o Mj(§77757?) by (44).  Since N;l/g <
N;1/16N§1/16, the conclusion follows from (39)-(42).

Case IIIb: No > Ny ~ N3. Here, N ~ N and

max{|7 + €2|, |m + €2|, |ma + €3], |73 — €31} 2 N, %,
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if |€ — & > N2_1/2 — otherwise we use the ideas of IIb; _. Hence

IML(&,7,E,7)| S Ny V32 + €272 My (€, 7,€,7)

which implies the desired estimate as in case I1bq ;.

Case Illc: Ny > N3 > N;. We may assume Ny ~ N and
max{|7 + &, |r + & |, |72 + &3], |73 — &3]} 2 N2 Ns.

Therefore
3
M (&,7,6,7)| S (7 + &) My(&,7,6,7) + > M;(&,7,6,7)
j=1

M;(€,7,6,7)

Mw

J=0

where the last step can be seen by using (7 + £2) = NyN3 ~ NNj3 for
(&,7) € Ap(&,7) and a calculation as in (45). We obtain the conclusion by

arguments similar to case I using N;l/g < N;1/16N§1/16. O

Corollary 4.7 (Trilinear estimate for s > 1/2) Let s > 1/2, § > 0,

€ (0,1], u; € S(X x R) such that suppu; C X x [-T,T], j € {1,2,3}.
Then, for some ¢ > 0,

3 3
Ul,’LLQ,uig xs,—1/2Aps,—1 Uk || xs.1/2 Ujllx1/2,1/2-
17 )| yor ST |lurl LT w1
k=1 j=1
i#k

Proof.  As argumented before, we focus on frequencies [¢| of order N > 1.
Since (£)571/2 < Zi:1(§k>5_1/2, we have

HPNT(Ulyu%Ui?»)HXSv*l/? 5 HPNT(J;_I/QulaUQaTS) HXl/Q’*l/Z
+ HPNT(ub J£71/2u2au73) HX1/27*1/2

+ HPNT(ub U2, J;71/2u73) HX1/27*1/2'
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Estimate (26) and ||l xs.0.— = ||u|| xs» imply
3 3
T (g, w2, 3) | xem1re STEY  Nugllzeare [T lusllzrzare.
k=1 j=1
i#k

Replacing (26) by (35) provides the same upper bound for
|7 (ur, ug, @3) || ys.—1 -

5. Multilinear Estimate

In this section, we consider the polynomial terms Q(v) and |v|?*v, k €
Np. The absence of derivatives in these terms leads to a less technical proof.

Theorem 5.1 Lets >1/2, 5 >0, ke Ny, T € (0,1], u; € S(X xR)
satisfying suppu; C€ X x [=T,T], j € N<gy1. There is an € > 0 such that

k+1 k+1 k+1
H ’LL]' 5 T6 Z Hul| xs,1/2,+ H Hu] H:{1/2,1/2¢ (47)
j=1 x‘s,73/87<§r~|ys,71 =1 j=1

Jj#l

and in particular

H Q(”la%? usz, Uyg, U5)} X —3/8=85ys,—1

5 5
ST uillgeare [T lwsllzrzare. (48)
1=1 j=1

il

Proof. By triangle inequality, we may assume P/N]\u] > 0 and Py,u; =
x7(t)Pn;uj. Hence, estimate (48) is a direct consequence of (47). According
to (3), we have X*73/8=% < y=1 for § € (0,1/8). Therefore, it suffices to
handle the X%~3/8=%_norm.

For k = 0, we can conclude estimate (47) from X1/2 < X=3/8=0 for
§>0and X*73/879 < Y~ for § € (0,1/8), compare (3).

Now, let £ > 1. As before, we focus on N > 1. Applying (£)° <

f;l( )¢ leads to
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k+1 k+1 k+1
0V B > L C)1 20 R
j=1 Xs,—3/8=9 =1 j=1 X0,-3/8-3

3L

Let ¢ € (0,1/2), I € Negyq and By := {(Ny,...,Ny11) € DiT N, <
N; Vj #1} (with an implicit constant greater than 4k). We decompose

k+1
[ (o )|
X0,-3/8-6

Jj=1
3L

>

(N1,...,Nx11)EB;

LD

(N1,...,Nk41)EBY

k+1
]mgxr L) (PM Jou [ P, uj)lf, -

j=1
e

Le.

k+1
(@) + €7 Ptz [ Py (6.7

j=1
J#l

=1+ 1.

Case I: We need N; ~ N for a positive contribution. From Strichartz
estimate (7), Holder’s inequality and estimate (4), we conclude

k+1
EPID ) 20 £
Ni~N Nj, j#l = L/}
];ﬁl
k+1
g Z HPNlulHXs,O,iHZHPNjujHXl/Z—l/ékk,l/2,j:
Ni~N j=1 N;
J#l
k+1
S TNl eesee [ [ lujllzcnsza e
j=1
J#l

Case II: For (Ny,...,Niy1) € Bf, there is a j; € N<piq \ {l} such that
Ni S Nj». This means
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k+1
<Y ¥ HPNLJjulHPNjuj
4/3
Nj#l N SN« =1 L
J#l
k+1
S Z Z HPN]-l*ujl*HX1/271/8k,1/2,iHPNlulHXsfl/sk,o,:t H ||u]'||.’{1/271/27i
Nj,J#L N SN j=1
J#LIT
k+1
S TEHUZ‘ xs,1/2,+ H HUijl/ll/Q,i
j=1
J#l

using the dual Strichartz estimate (7) in the first step, Holder’s inequality
and estimate (4) in the second step. O

6. Local well-posedness

By the standard contraction mapping principle (cp. Bourgain [2]), we
obtain the following local well-posedness result for the gauge equivalent
problem:

Theorem 6.1 Let s > 1/2, k € No, 7 > 0 and B, := {vy € B; (X) :
[vollBs _(x) <7} For any vg € B, there is a T = T(r) > 0 such that the
Cauchy problem (2) has a unique solution v € Z5.. The flow map

F: B, — C([-T,T], B3 (X)), worrv

is Lipschitz continuous.

We can conclude local well-posedness for equation (1) (i.e. prove Theo-
rem 1.1) by the same strategy as in Herr [14]: The Gauge transformation is a
locally bilipschitz homeomorphism on C([-T,T], B3 ,,) which can be shown
by an application of Sobolev’s multiplication theorem for Besov spaces:

Ififolls . S I B (49)

s Il

for fi € By, fo € B52_, s >0, s1,82 > 8, 81 + 82 —s > 1/2. A proof

2,007 2,00

for H* instead of B3 ., can be found for example in [15, Corollary 1.1.12].
With trivial modifications, one can show (49) in a similar way by localizing
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frequencies on N1, Ny and considering the cases N; ~ Ny, N7 < Ny. We
obtain the statement of Theorem 1.1 by establishing M 7 := G~'(Z%) in
the non-periodic setting and My 7 := G~!(Z%) in the periodic setting.
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Appendix: L2-conservation

Lemma 6.2 Ifu e C([-T,T], B;/OQO(X)) is a solution for (1) or the gauge

equivalent problem, then
lw(®)llL2xy = luollz(x) for all t € [-T,T.

Proof. In H*(X), s > 1/2, this conservation law has already been shown
in [13] and [14]. Using density of H'/?(X) in 321/020 (X) with respect to the
H'/2(X)-norm, this result remains true in our setting:

Let u € C([~T,T), By/2
equation with respect to ug € B;/OQO(X) Consider € > 0. By Theorem 6.1,
/2

,O0

(X)) be the solution for the gauge transformed

there is a 0 > 0 such that for any vy € B; (X) with [Jug — vol| g1/2 x <
2,00

5, we have ||u(t) — v(t)|]] < e, where v(t) is the solution corresponding to

vg. Now take vy € H'/2(X) such that ||ug — vo|| < d and let v(t) be the

solution for vy which means in particular [[v(t)|[z2x) = [Jvollz2x). The
1/2

embeddings H'/?(X) — B,/ (X) — L*(X) provide [lug — vol| 51/2 ) <0
) 2,00

and |lu(t) — v(t)||r2(x) < € which implies

[u®)llL2cx) < llu(t) — v(®)llz2e) + llvoll e < 2e + [luollr2x)
and

luollz2(xy < [luo — vollz2(x) + [[v() — u(®) |2 x) + lu(®) |l L2 x)

< 2e + [[u®)]| L2 (x)-

This means, |[|u(t)|lr2¢0) — l|uollz2n| < 2. Since € > 0 was arbitrary,

we have shown L2-conservation for solutions of the gauge equivalent prob-



Local well-posedness for the dnls in Besov spaces 243

lem. Finally, applying Theorem 1.1 provides L2-conservation for the original

equation (1) by similar argumentation. O
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