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\S 1. Introduction. Recently, the first author and Kimura [1] have
studied a theory of quadratic first integrals in natural systems [2], in con-
nection with the symmetry problem of classical mechanics (e.g. , see refer-
ences in [3], [4] and [5] ). As a result, a necessary and sufficient condition
has been established for the existence of a quadratic first integral, and the
maximum number of linearly independent quadratic first integrals has been
found on the basis of this condition.

For the future development of the theory, it seems useful to study
quadratic first integrals of some simple dynamical systems. Along this line
of thought, Kimura [6] has examined the case of a multidimensional central
force, particular attention having been paid to the number of linarly inde-
pendent quadratic first integrals and to their connection with the linear
first integrals.

The present paper is devoted to a similar discussion of another of the
simplest systems, that is, the system in which the configuration space is an
N-dimensional Euclidean space and the equi-potential surfaces are hyperplanes
parallel to each other. This case is of much interest from a mathematical
point of view, because the maximum number of linearly independent linear
first integrals can be attained only in this case and the central potential
case, if the configuration space is taken to be Euclidean [7].

In \S \S 2 and 3 the general form of quadratic first integrals is obtained
in the system under consideration. In \S 4, the number of linearly inde-
pendent quadratic first integrals is found and the relation between the linear
and quadratic first integrals is made clear. Further, the Poisson brackets
between the first integrals are calculated with a view to their applications
in the symmetry problem. The final section is devoted to a discussion of
the results obtained.

\S 2. Basic equations. Let us assume that the configuration space
is an N-dimensional Euclidean space referred to Cartesian coordinates x^{i}

and that the potential function U depends on the final coordinate x^{N}
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alone.* This system is one of the simplest cases, and will give interesting
results concerning the first integrals.

In this paper, we consider quadratic first integrals of the from
(2. 1) Q= \frac{1}{2}\eta_{ji}(x)\dot{x}^{j}\dot{x}^{i}+\zeta(x),**

where \eta_{fi} and \zeta , functions of x^{i}, are a symmetric covariant tensor and a
scalar respectively. It is well known that (2. 1) is a fifirSt integral of the
motion if and only if

(2. 2) \partial_{k}\eta_{fi}+\partial_{f}\eta_{ik}+\partial_{i}\eta_{kj}=0 , \partial_{i}\zeta=\eta_{iN}U’ (U’=dU/dx^{N}) ,

where \partial_{i} stands for partial differentiation with respect to x^{i}[5] . These
equations will be the basis for the following discussions.

By transforming the first equation of (2. 2) suitably it can be seen that
all the third derivatives of \eta_{fi} vanish [1]. Therefore, we have

PROPOSITION 2. 1. The most gmeral solution of the fifirst equation of
(2. 2) is givm by

(2. 3) \eta_{fi}=a_{lkfi}x^{l}x^{k}+a_{kfi}x^{k}+a_{fij}

where a_{lkji} , a_{kfi} and a_{ji} are constants satisfying

(Z 4) J_{1}a_{lkfi}+a_{lfik}+’ a_{likf}=0a_{lkfi}=a_{klfirightarrow}a_{lkfi}=,a_{lkif}

,

(2. 5) a_{kfi}=a_{kij} , a_{kfi}-\vdash a_{fik}+a_{ikf}=0 ,

(2. 6) a_{fi}=a_{ij} .
In the case U’=0, the second equation of (2.2) reduces to \zeta=const .

Since this constant has nothing to do with the quadratic part of the first
integral (2. 1), we put it equal to zero. Thus quadratic first integrals in the
case U’=0 are given by (2. 1) with (2. 3) to (2. 6) and \zeta=0 . This is the
result already obtained by T. Y. Thomas [8] (see also [9]).

We assume U’\neq 0 throughout the following discussicns. Under. this
assumption, the final coordinate x^{N} has a particular meaning and we divide
the domain of indices into two parts, N and 1, 2, \cdots , N-1. Correspondingly,
we classify the components of a_{lkfi} , a_{kfi} and a_{fi} according to the number
of times N occurs among the indices, this number being called the type of
the component. Then the following two propositions are valid concerni,ng
the constraints on a_{lkfi} and a_{kji} .

* Unless stated otherwise, small Latin indices take the values 1, 2, \cdots , N, Greek ones
1, 2, \cdots , N-1 and the summation convention is used.

** \dot{x}^{i} denote the generalized velocities.
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PROPOSITION 2. 2. (2. 4) can be rewritten as

(2. 7 a) a_{NNNN}=0 .

(2. 7 b) a_{\kappa NNN}=a_{N\kappa NN}=a_{NN\kappa N}=a_{NNN\kappa}=0 ,

(2. 7 c) \{

a_{N\lambda N\kappa}=a_{\lambda NN\iota}=a_{N\lambda\kappa N}=a_{\lambda N\kappa N} ,
a_{\lambda\kappa NN}=a_{NN\lambda\kappa}=-2a_{\lambda N\kappa N} , a_{\kappa N\lambda N}=a_{\lambda N\kappa N} ,

(2. 7 d) \{

a_{\mu\lambda N\kappa}=a_{\mu\lambda\kappa N} , a_{rNl\kappa},=a_{N\mu\lambda\kappa}=-2a_{\mu(\lambda\kappa)N} ,

a_{\lambda\mu\kappa N}=a,li\kappa N , a_{\ell\lambda\kappa N},+a_{\lambda\kappa\prime\iota N}+a_{\kappa\mu\lambda N}=0 ,

\int a_{\nu\mu\lambda\kappa}=a_{\nu\mu\kappa\lambda} , a_{\nu\mu l\kappa}=a_{\mu\nu\lambda\kappa} ,
(2. 7 e)

|a_{\nu\mu\lambda\kappa}+a_{\nu\lambda\kappa\mu}+a_{\nu\kappa’\iota\lambda}=0 .
PROPOSITION 2. 3. (2. 5) can be rewritten as

(2. 8 a) a_{NNN}=0 ,

(2. 8b) a_{NN\kappa}=a_{N\kappa N} , a_{\kappa NN}=-2a_{N\kappa N} ,

(2. 8 c) a_{\lambda N\kappa}=a_{\lambda\kappa N} , a_{NJ\kappa}=-2a_{(\lambda\kappa)N} ,

(2. 8 d) a_{\mu\lambda\kappa}=a_{\mu\kappa\lambda} . a_{\ell\lambda\kappa},+a_{\lambda\kappa\mu}+a_{\kappa’ r\lambda}=0t

These expressions may be derived in the same manner as the corre-
sponding formulae for \eta_{lkji} and \eta_{kji} in [1], \S 4.

As a remark, we briefly refer to some features of (2. 7) and (2. 8) for
the sake of convenience. The surviving components of a_{lkfi} and a_{kfi} are
of type 2, 1 or 0. The components a_{lkfi} of type 2 can be expressed in
terms of the a_{N\kappa N}, which are symmetric with respect to \kappa and \lambda , and those
of type 1 in terms of the a_{\mu\lambda\kappa N} which satisfy the last two equations of (2. 7d).
The components a_{kji} of types 2 and 1 are expressible in terms of a_{N\kappa N} and
a_{\lambda\kappa N} respectively. Finally, a_{\nu’\ell\lambda\kappa} and a_{\lambda\kappa},, are subject to the conditions (2. 7e)

and (2. 8 d) respectively.

\S 3. General form of quadratic first integrals. In this section, we
derive the general form of the quadratic first integrals on the basis of the
foregoing results. For this purpose we have only to take account of the
second equation in (2. 2) and Propositions 2. 1 and 2. 2.

From the second equation in (2. 2), the integrability condition for \zeta

becomes
(\partial_{j}\eta_{iN}-\partial_{i}\eta_{jN})U’+(\delta_{jN}\eta_{iN}-\delta_{iN}\eta_{fN})U’=0t

For (j, i)=(\lambda, \kappa) and (N, \kappa), this equation is reduced to

(3. 1) \partial_{\lambda}\eta_{\kappa N}-\partial_{\kappa}\eta_{N},\backslash =0’.
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(3. 2) (\partial_{N}\eta_{\kappa N}-\partial_{\kappa}\eta_{NN})U’+\eta_{\kappa N}U’=0

respective1y_{3} where U’\neq 0 is used in deriving (3. 1).
We now rewrite (3. 1) by making use of the expression (2. 3) of \eta_{fi} .

As a result we obtain

2 (a_{\mu\kappa N}-\dot{\lambda}a_{r\kappa\lambda N},)x^{\mu}+(a_{\lambda\iota N}-a_{\kappa\lambda N})=0.

,

where we have used the identity a_{zV\lambda\kappa N}=a_{N\kappa\lambda N} , which follows from (2. 7 c).
Since the above equation must hold identically, we have

(3. 3) a_{r\lambda\kappa N},=a_{\mu\kappa\lambda N} ,

(3. 4) a_{\lambda\kappa N}=a_{\kappa\lambda N} .
With the help of (3. 3) the following proposition may be obtained.
PROPOSITION 3. 1. All the componmts a_{lkfi} of type 1 vanish, i.e. ,

(3. 5) a_{N\mu\lambda\kappa}=a_{\mu N\lambda\kappa}=a_{\mu\lambda N\kappa}=a_{\ell\lambda\kappa N},=0 .
PROOF. If we use (3. 3) and the last two equations of (2. 7d), we have

a_{\mu\lambda\kappa N}=0 . Then the proposition can be proved by means of the first half of
(2. 7d).

(3. 2) may be treated in the same way as (3. 1). Namely, we substitute
(2. 3) in (3. 2) and make use of the identities in (2. 7 b), (2. 7 c), (2. 8 b) and
(3. 5). Then we have

(6a_{\lambda N\kappa N}x^{\lambda}+3a_{N\kappa N})U’+(2a_{\lambda N\kappa N}x^{\lambda}x^{N}+a_{\lambda\kappa N}x^{\lambda}+a_{N\kappa N}x^{N}+a_{\kappa N})U’=0 .
which may be rearranged as

\{6a_{\lambda N\kappa N}U’+(2a_{\lambda N\kappa N}x^{N}+a_{\lambda\kappa N})U’\}x^{\lambda}+3a_{N\kappa N}U’+(a_{N\kappa N}x^{N}+a_{\kappa N})U’=0 .

This equation must hold for arbitrary values of x^{\lambda} , so accordingly we obtain

(3. 6) \{

6a_{\lambda N\kappa N}U’+(2a_{\lambda N\kappa N}x^{N}+a_{\lambda\kappa N})U’=0 ,
3a_{N\kappa N}U’+(a_{V\kappa N}x^{N}+a_{\kappa N})1U’=0 .

We first consider the case U’\neq 0 . If we eliminate U’ and U’ from
(3. 6), we have

a_{N’\prime N}a_{\lambda\kappa N}-2a_{\lambda N\kappa N}a_{\mu N}=0 .

and accordingly

(3. 7) a_{\lambda\kappa N}=2ca_{\lambda N\kappa N} . a_{\kappa N}=ca_{N\kappa N} (c is a const.).

By substituting these equations into (3. 6) we have
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(3. 8) 2a_{\lambda N\kappa N}\{(x^{N}+c)U’+3U’\}=0 , a_{N\kappa N}\{(x^{N}+c)U’+3U’\}=0 .

In view of these expressions, the case U’\neq 0 is further classified into
two, according to whether (x^{N}+c)U\prime\prime+3U’ vanishes or not.

CASE I. U’\neq 0 , (x^{N}+c)U’+3U’\neq 0 . In this case we have
THEOREM 3. 1. In case I the quadratic fifirst integral is givm by

(3. 9) Q_{1}=z(1a_{\nu\mu\lambda\kappa}x^{\nu}x^{\mu}+a_{\lambda\kappa},x^{\prime t}+a_{\lambda\kappa})|\dot{x}^{\lambda}\dot{x}^{\kappa}+a_{NN}\{1z(\dot{x}^{N})^{2}+U(x^{N})\} ,

where the constant a_{NN} is arbitrary and a_{\nu’\iota\lambda\kappa} , a_{\mu i\kappa} and a_{2\kappa} are subject to the
conditions (2. 7 e), (2. 8 d) and a_{\lambda\kappa}=a_{\kappa\lambda} , respectivdy.

PROOF. Since we obtain from (3. 7) and (3. 8),

a_{\lambda NtN}=a_{N\kappa N}=a,=a_{KN}=0\kappa N’.

all the a’s of type non-zero vanish except a_{NN} , as is seen from the remark
at the end of \S 2. Then (2.3) is reduced to

\eta_{\lambda\kappa}=a_{\nu\mu\lambda\kappa}x^{\nu}x^{\mu}+a_{\mu\lambda\kappa}x^{l\ell}\downarrow+a_{\lambda\kappa} ,

\eta_{\kappa N}=0
,\cdot \eta_{NN}=a_{NN} , \zeta=a_{NN}U ,

and from (2. 1) we readily obtain Q_{1} in the form given in (3. 9).

CASE II. U\prime\prime\neq 0 , (x^{N}+c)U’+3U’=0 . In this case, the equation for
U can easily be integrated, i.e. ,

(3. 10) U=a(x^{N}+c)^{-2}+b , a\neq 0 ,

a and b being integration constants. Further we obtain

THEOREM 3. 2. In Case II, the quadratic fifirst integral is composed of
Q_{1} in (3. 9) and Q_{2} defifined by

(3. 11) Q_{2}=-a_{\lambda N\kappa N}x^{N}(x^{N}+2c)\dot{x}^{\lambda}\dot{x}^{\kappa}+(2a_{\lambda N\kappa N}x^{\lambda}+a_{N\kappa N})(x^{N}+c)\dot{x}^{\kappa}\dot{x}^{N}

-(a_{\lambda N\kappa N}x^{\lambda}x^{\kappa}+a_{N\kappa N}x^{\kappa})(\dot{x}^{N}.)^{2}+(a_{iN\kappa N}x^{\lambda}x^{\kappa}+a_{N\kappa N}x^{\backslash })\kappa(x^{N}+c)U’

where a_{N\kappa N} are arbitrary and a_{N\kappa N},symmetr\dot{\tau}c with respect to \kappa and \lambda .
PROOF. (3. 6) is satisfied on account of (3. 7), and the constraints on

a_{lkfi} , a_{kfi} and a_{fi} are given by (2. 6), (2. 7), (2. 8), (3. 4) and (3. 7). Accord-
ingly, \eta_{fi} and \zeta take the form

\eta_{\lambda\kappa}=a_{\nu\mu\lambda\kappa}x^{\nu}x^{\mu}+a_{\mu’\kappa}x^{\mu}-2a_{\lambda N\kappa N}x^{N}(x^{N}+2c)+a_{\lambda\kappa} ,

\eta_{\kappa N}=(2a_{\lambda N\kappa N}x^{\lambda}+a_{N\kappa N})(x^{N}+c) ,

\eta_{NN}=-2a_{\lambda N\kappa N}x^{\lambda}x^{\kappa}-2a_{N\kappa N}x^{\kappa}+a_{NN} ,

\zeta=(a_{\lambda N\kappa N}x^{\lambda}x^{\kappa}+a_{N\kappa N}x^{\kappa})(x^{N}+c)U’+a_{NN}U,\cdot
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from which we can obtain the required result.
Finally, we consider the case U’=0.
CASE III. U\prime\prime=0(U’\neq 0) , i.e. , U=ax^{N}+b(a\neq 0) . We have
THEOREM 3. 3. In Case III, the quadratic fifirst integral is composed

of Q_{1} and Q_{3} defifined by

(3. 12) Q_{3}=-a_{\lambda\kappa N}x^{N}\dot{x}^{\lambda}\dot{x}^{\kappa}+(a_{\lambda\kappa N}x^{\lambda}+a_{\kappa N})\dot{x}^{\kappa}\dot{x}^{N}+(_{Z}^{1}a_{\lambda\kappa N}x^{\dot{4}}x^{\kappa}+a_{\kappa N}x^{\iota’})U’ ,

where a_{\kappa N} are arbitrary and a_{\kappa N}, symmetric with respect to \kappa and \lambda .
PROOF. From (3. 6) we obtain a_{\lambda N\kappa N}=a_{N\kappa N}=0 , and the a_{lkfi} and a_{kfi} of

type 2 vanish (cf. the remark at the end of \S 2). Thus \eta_{fi} and \zeta are re-
duced to

\eta_{i\kappa}=a_{\nu\mu\lambda\kappa}x^{\nu}x^{u}+a_{\mu\lambda\kappa}x^{\mu}-2a_{\lambda\kappa N}x^{N}+a_{\kappa}, ,

\eta_{\kappa N}=a_{\kappa N},x^{1}+a_{\kappa N} , \eta_{NN}=a_{NN} ,

\zeta=(\frac{1}{2}a_{\lambda\kappa N}x’x^{\kappa}+a_{\kappa N}x^{\kappa})U’+a_{NN}U\tau

This completes the proof.
REMARK. When the integrability condition of (2.2) is satisfied, \zeta can

be determined to within an arbitrary constant. For the same reason as in
the case U’=0 (cf. \S 2), this constant has been put equal to zero in the
above three theorems.

\S 4. Properties of the first integrals. In this section, we begin with
the study of the number of arbitrary constants which are contained in the
quadratic first integrals of the last section.

THEOREM 4. 1. The number of linearly indepmdent quadratic fifirst
integrals (with constant coefficimts) is given by (N^{4}-N^{2}+12)/12 in Case I
and N(N+1)(N^{2}-N+6)/12 in Cases II and III.

PROOF. Of the coefficients of Q_{1} in (3. 9), a_{d\mu\lambda\kappa}. , a_{\mu\lambda\kappa} and a_{\kappa}, are subject
to the conditions (2. 7e), (2. 8d) and a_{\kappa},=a_{\kappa\lambda} , respectively. Thus the number
of independent coefficients is N(N-1)^{2}(N-2)/12 for a_{\nu\mu\lambda\kappa} , N(N-1)(N-2)/3
for a_{u\lambda\kappa} , N(N-1)/2 for a_{\lambda\kappa} and 1 for a_{NN} . Summing these, we obtain
(N^{4}-N^{2}+12)/12 as the number of linearly independent quadratic fifirst inte-
grals in Case I. Next, the number of a_{N\kappa N} and of symmetric a_{\lambda N\kappa N} in Q_{2}

are N-1 and N(N-1)/2 respectively. Thus the number of independent
quadratic first integrals in Case II is

(N^{4}-N^{2}+12)/12+(N-1)+N(N-1)/2=N(N+1)(N^{2}-N+6)/12 .
A similar reasoning is applicable to Q_{3} , and the result in Case III is found
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to be the same as in Case II.
REMARK. The above result in Cases II and III coincides with the

maximum number of independent quadratic first integrals which are admitted
by a classical natural system with N degrees of freedom [1].

We next discuss the relation between the linear and quadratic first
integrals. In the system under consideration, a linear first integral is linearly
expressible in terms of the linear and angular momenta,

(4. 1) p_{\kappa}=\dot{\chi}_{\backslash }^{\kappa} L_{\lambda\kappa}=x^{\lambda}\dot{x}^{\kappa}-x^{\kappa}\dot{x}^{\lambda}=\delta_{y1}^{\lambda\kappa},x^{\nu}\dot{x}^{\mu} ,

where \delta_{\nu\mu}^{\lambda\kappa}=\delta_{\nu}^{\lambda}\delta_{\mu}^{\kappa}-\delta_{\mu}^{\lambda}\delta_{\nu}^{\kappa} . It is obvious that any quadratic form in p_{\kappa} and L_{\lambda\kappa}

is a first integral. In this connection we have
THEOREM 4. 2. The fifirst integral Q_{1} can be expressed as a linear

combination of the total energy and a quadratic form in p_{\kappa} and L_{\kappa}, . More
specififically, Q_{1} can be writtm as

(4. 2) Q_{1}=a_{NN}E+ \frac{1}{12}a_{\nu\mu\lambda\kappa}(L_{\nu\lambda}L_{\mu\kappa}+L_{\nu\kappa}L_{\mu\lambda})

+ \frac{1}{6}a_{\mu\lambda\kappa}(L_{\mu\lambda}p_{\kappa}+L_{\mu\kappa}p_{\lambda})+\frac{1}{2}(a_{\lambda\kappa}-\delta_{\lambda\kappa}a_{NN})p_{\lambda}p_{\kappa} ,

where E is the total mergy,

(4. 3) E= z_{i=1}\sum^{N}1(.\dot{x}^{i})^{2}+Ut

PROOF, If a_{\nu\mu\lambda\kappa} and a_{\ell\lambda\kappa}, satisfy (2. 7 e) and (2. 8 d) respectively, the fol-
lowing identities are valid.

a_{\nu\ell\lambda\kappa},= \frac{1}{6}(\delta_{\nu\lambda}^{\delta\beta}\delta_{\mu\kappa}^{\gamma\alpha}+\delta_{\nu\kappa}^{\delta\beta}\delta_{\mu\lambda}^{\gamma\alpha})a_{\delta\gamma\beta\alpha} ,

a_{\mu\lambda\kappa}=- \frac{1}{3}(\delta_{\mu\lambda}^{\gamma\beta}\delta_{\kappa}^{\alpha}+\delta_{\mu\kappa}^{\gamma\alpha}\delta_{\lambda}^{\beta})a_{\gamma\beta a} .
From this we have

a_{\nu\mu\lambda\kappa}x^{\nu}x^{\mu} \dot{x}^{\lambda},\dot{x}^{\kappa}=\frac{1}{6}a_{\nu\mu\lambda\kappa}(L_{\nu\lambda}L_{\mu\kappa}+L_{\nu\kappa}L_{\mu\lambda}) ,

a_{\mu\lambda\kappa}x^{\mu} \dot{x}^{\lambda}\dot{x}^{\kappa}=\frac{1}{3}a_{\mu\lambda\kappa}(L_{\mu\lambda}p_{\kappa}+L_{\mu\kappa}p_{\lambda}) ,

which proves the required result (4. 2).

THEOREM 4. 3. No fifirst integral of type Q_{2} or Q_{3} can be expressed in
terms of the total mergy and linear fifirst integrals.

PROOF. Let a quadratic first integral be expressed in terms of E, p_{\kappa}

and L_{\lambda\kappa} . Then it must be an integral common to all Cases I, II and III,
and accordingly is of type Q_{1} .

These two theorems show that the integrals Q_{2} and Q_{3} are more in-
teresting than Q_{1} , since the former are independent of linear first integrals.

Finally, we consider the Poisson brackets between the first integrals
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previously discussed, excluding those of type Q_{1} .
CASE II. It is readily seen that any first integral of type Q_{2} can be

expressed linearly in terms of the integrals

(4. 4)

’
Q_{2|\kappa}=(x^{N}+c).\dot{x^{\kappa},}.\dot{x}^{N}-x^{\kappa}(.\dot{x}^{N})^{2}+x^{\kappa}(x^{N}+c)U’r

,

Q_{2|\lambda\kappa}=-x^{N}(x^{N}+2c)\dot{x}^{\lambda}\dot{x}^{\kappa}+(x^{N}+c)(x^{\lambda}\dot{x}^{\kappa}+x^{\kappa}\dot{x}^{\lambda}).\dot{\tau_{d}}^{N}

-x^{\lambda}x^{\kappa}(\dot{x}^{N})^{2}+x^{i}x^{\kappa}(x^{N}+c)U’ :

which themselves are linearly independent. It is easy to calculate the Poisson
brackets concerning p_{\kappa} , L_{\lambda\kappa} , Q_{2|\kappa} and Q_{2|\lambda\kappa} . The results are as follows.

(4. 5)

’

\{p_{\lambda}, p_{\kappa}\}=0 ,
\{p_{\mu}, L_{\kappa},\}=\delta_{\mu\kappa}p_{\lambda}-\delta_{\mu},p_{\kappa} ,

-

\{L_{\nu\mu}, L_{\lambda\kappa}\}=\delta_{\nu l}L_{\mu\kappa}-\delta_{\nu\kappa}L_{\mu\lambda}-\delta_{\mu\lambda}L_{\nu\kappa}+\delta_{\mu\kappa}L_{\nu\lambda} ,

(4. 6 a)

’

\{Q_{2|\lambda}, p_{\kappa}\}=-\delta_{\lambda\kappa}(2E-\sum_{\alpha=1}^{N-1}p_{\alpha}^{2}) ,

\{Q_{2|\mu\lambda}, p_{\kappa}\}=\delta_{\mu\kappa}Q_{2|\lambda}+\delta_{\lambda\kappa}Q_{2|u} ,
\{Q_{2|z},, L_{\lambda\kappa}\}=\delta_{\nu\kappa}Q_{2|\lambda}-\delta_{\mu\lambda}Q_{2|\kappa}’.

. \{Q_{2|\nu\mu}, L_{\lambda\kappa}\}=\delta_{\nu\kappa}Q_{2|\mu\lambda}+\delta_{\mu\kappa}Q_{2|\nu\lambda}-\delta_{\nu\lambda}Q_{2|,\ell\kappa}-\delta_{\mu\lambda}Q_{2|\nu\kappa} .

(4.^{6b}) \int_{1}\{Q_{2|\nu\mu},Q_{2|J\kappa}\}=-2(,L_{\mu}\delta_{\nu\kappa_{2}}L_{r\lambda},\cdot+\delta_{\mu\lambda}.L_{\nu\kappa}+\delta_{\mu\kappa}L_{\nu\lambda})(c^{2}E\{Q_{2|\mu\lambda},Q_{2|\kappa}\}=2(\delta_{\mu\kappa_{\delta_{\nu l}}}p_{\lambda}\{Q_{2|\lambda},Q_{2|\kappa}\}=2L_{\lambda f}(2E-\sum_{+\delta_{\lambda\kappa}}^{-}p_{\mu p_{\nu}p_{\lambda})}^{2}\alpha)+2p_{\mu}Q_{2|\lambda\kappa_{K}}-a_{l}+L_{\ell_{\lambda}}+L_{\mu p_{\nu}p_{\kappa}+L}-_{z^{c^{2}\sum^{+}p_{\alpha}}}^{1}Q2|\nu\kappa n-1a=1N1+2p_{\mu\kappa}\lambda Q_{2|\mu\kappa}-2p_{\kappa}Q_{2|\mu\lambda}2c^{2}p_{\mu}p_{\lambda}p_{\kappa}a=1+Lp_{\mu})(c^{2}E-a-_{Z}^{1}c^{2}\sum_{-}^{N-1}p_{\alpha}^{2})\kappa)-(L_{\nu\lambda}Q_{2|\mu\kappa}+L_{\nu\kappa}Q_{2|\mu\lambda}Q_{2|\nu\lambda})+c^{2}(L_{\nu\lambda}p_{\mu}p_{\kappa}+L_{\nu\kappa}p_{1},p_{\lambda}’\alpha=1

,

CASE III. A quadratic first integral of type Q_{3} can be expressed in
terms of the linearly independent integrals

(4. 7) \{

Q_{3|\kappa}=\dot{x}^{\kappa}.\dot{x}^{N}+x^{\kappa}U’ ,
Q_{3|\lambda\iota}=-2x^{N}\dot{x}^{\lambda}\dot{x}^{\kappa}+(x^{\lambda}\dot{x}^{\kappa}+x^{\kappa}\dot{x}^{\lambda})\dot{x}^{N}+x^{\lambda}x^{\kappa}U’

The Poisson brackets for p_{\kappa} , L_{\lambda\kappa} , Q_{3|\kappa} and Q_{3|’\kappa} are given by (4.5) and the
following.

(4. 8 a)
\{

\{Q_{3|\lambda}, p_{\kappa}\}=\delta_{\lambda\kappa}U’ ,
\{Q_{3|\mu\lambda}, p_{\kappa}\}=\delta_{\mu\kappa}Q_{3|\lambda}+\delta_{\lambda\kappa}Q_{3|\mu} ,
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|\{Q_{3_{1}^{1},t}, L_{\lambda\kappa}\}=\delta_{l\kappa},Q_{3_{1}\lambda}-\delta_{\mu\lambda}Q_{3|\Lambda} ,
(\{Q_{3|\nu\mu}, L_{\lambda\kappa}\}=\delta_{d\kappa}.Q_{3|\rho\lambda}+\delta_{tk},Q_{3\cdot\lambda}.-\delta_{\nu\lambda}Q_{3\mu\kappa}-\delta_{4\lambda},Q_{3\{\nu\kappa} ,

(4. 8b)

’

\{Q_{3|J}, Q_{3|\kappa}\}=0 .

\{Q_{3|\mu\lambda}, Q_{3|\kappa}\}=(\delta_{\mu\kappa}p_{\lambda}+\delta_{\lambda\kappa}p,\ell)(2E-\sum_{\alpha=1}^{N-1}p_{\alpha}^{2})-2p_{\mu}p,p_{\iota} .

\{Q_{3|\nu’\ell}, Q_{3|2\kappa}\}=(\delta_{\nu\lambda}L_{\mu\kappa}+\delta_{\nu\kappa}L_{\mu\lambda}+\delta_{\mu\lambda}L_{\nu\kappa}+\delta,\prime e\kappa L_{\nu\lambda})(2E-\sum_{\alpha=1}^{N-1}p_{a}^{2})

+p_{\nu}p_{i}L_{\mu\kappa}+p_{d}.p_{\kappa}L_{\mu l}+p_{\mu}p_{\lambda}L_{\nu\kappa}+p_{\mu}p_{\kappa}L_{\nu} , .

We here remark that, in all Cases I, II and III, a new first integral
cannot be produced by calculating the Poisson brackets concerning the linear
and quadratic first integrals.

\S 5. Further outlook. In the above, the general form of the quadratic
first integrals has been obtained for the system in which the configuration
space is Euclidean and the potential U depends only on the final Cartesian
coordinate x^{v}A. We are much interested in the case where U is given by

U=a(x^{N}+c)^{-2}+b or ax^{N}+b ,

a(\neq 0) , b and c being arbitrary constants. In both cases, there is a quadratic
first integral independent of the total energy and the linear first integrals,
and the number of linearly independent quadratic first integrals is equal to
N(N+1)(N^{2}-N+6)/12 . We have already found that this is the maximum
number which is attained in a classical natural system with N degrees of
freedom [1]. Furthermore, we shall prove in a forthcoming paper [10] that
only the above two systems and the isotropic harmonic oscillator admit the
maximum number of quadratic first integrals, if the configuration space is
Euclidean.

It is to be noted that, in the system studied in this paper, the Poisson
brackets involving the linear and quadratic first integrals cannot be expressed
linearly in terms of the integrals themselves. Therefore, these integrals do
not form a Lie algebra, in contrast to the case of the hydrogen atom or
the harmonic oscillator. A further investigation will be needed concerning
the problem of the dynamical symmetry group of the system under con-
sideration.
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Note added in proof. In calculating the Poisson brackets (4. 6) and
(4. 8), we omitted the additive constant b of the total energy E.
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