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Introduction. Let X be a fifinite CW complex. We denote by K(X)
the Grothendieck group of the classes of complex vector bundles over X.
We further write Z, B_{U} for the integers with the discrete topology, the
classifying space of the infinite unitary group respectively. Then the K-
theoretic version of the homotopy classification theorem is given by the
statement of the existence of a natural bijection:

K(X)^{m}=[X, B_{U}\cross Z]

where [X, B_{U}\cross Z] denotes the set of homotopy classes of maps of X into
B_{\Gamma}\cross Z.

The objective of this paper is to present an algebr0-geometric analogue
to the above-mentioned theorem. We consider a non-singular reduced
affiffiffine k-schme for an algebraically closed fifield k , instead of a finite CW
complex. Let X be a k-scheme of this kind. We write K(X) for the
Grothendieck group of the classes of coherent O -Modules. Let G_{n,n} be
the Grassmannian k-scheme of n-planes in affine 2n-space A_{k}^{2n} where n

ranges over the positive integers. Then there are natural closed immersions:
G_{n,n}arrow G_{l,l} for l>n . We denote by B_{k} the direct limit of G_{n,n} in the
category of geometrical k-spaces. Consider morphisms f, g:Xarrow B_{k}\cross Z .
We define f\sim g if and only if f is connected with g by a finite chain of
rational homotopies. A class by the equivalence relation\sim will be called
a rational homotopy class. We write [X, B_{k}\cross Z]_{rat} for the set of rational
homotopy classes of k-morphisms: Xarrow B_{k}\cross Z. With these notations we
have

Main Theorem. There is a natural bijection
K(X)\approx’[=X, B_{k}\cross Z]_{rat}

Let X be an irreducible algebraic pres\dot{c}heme over an algebraically closed
field k. Let r_{n}^{m} be the universal scheme vector bundle over G_{n,m} , i.e. the
Grassmannian k-scheme of n-planes in affine (m–n)-space. We denote by
p the natural projection: Y_{n}^{m}arrow G_{n,m} . We now state two theorems below
which are used for the proof of the Main Theorem, because of their own
interest.
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THEOREM A. Let E be a quasi-coherent O -Module which is a direct
summand of a free O -Module of fifinite rank and m a suffiffifficiently large
integer. Then we can fifind a morphism G : X— G_{n,m} such that there is
a pull-back diagram :

V(\check{E})arrow r_{n}^{m}

\downarrow|

G
\downarrow|_{p}

X arrow G_{n,m}

in other words

V(\check{E})=X\cross G_{n,m}\Gamma_{7l}^{m} .

THEOREM B. Suppose two morphisms having the pull-back diagram
in Theorem A. Thm they are rationally homotopic in G_{n,m’} for suffiffifficimtly
large m’ .

1. Grassmannian schemes and universal scheme vector bundles.
First we define the Grassmannian k-schemes for an arbitrary field k. Let \Lambda be
the set of subsets \lambda of \{1, \cdots, m\} with card.\lambda=n where m and n are fixed
positive integers. Let U_{\lambda} be m!/(n!\cross(m-n)!) copies of affine n(m-n)-space
A_{k}^{m(n-n)} which are indexed by \Lambda . For convenience we introduce variables
X_{if}^{(\lambda)} where i (resp. j ) runs through 1, \cdots , n (resp. 1, \cdots , m-n). We write
R_{\lambda} for the polynomial ring k[X_{if}^{(\lambda)}] in n(m-n) variables X_{ij}^{(\lambda)} and consider

U_{\lambda} as Spec R, . We wish to glue together U_{\lambda}(\lambda\in\Lambda) and construct a k-scheme.
Let us explain how U_{\lambda} and U_{l^{\ell}} are glued for \lambda, \mu\epsilon\Lambda . For that it suffices
to take the example of \lambda=\{1, \cdots, n\} and \mu=\{1, \cdots, n-1, n+1\} . Let:

M=\{\backslash 0..1_{n-1}.\cdot..)X_{n1\prime}^{(J)}X_{11}^{(\lambda)^{\backslash }}

M’=(\begin{array}{llll} X_{11}^{(/\iota)} 1_{n-1} \vdots\backslash \backslash 0 \cdots X_{n1}^{(\mu)}\end{array})

where 1_{n-1} denotes the unit matrix of order n-1. We note that the coeffi-
cients of M^{-1} (resp. M^{\prime-1}) belong to the ring (R_{\lambda})_{\det M} (resp. (R_{a})_{\det M’} ). Be-
tween the variables X_{if}^{(\dot{x})} , X_{if}^{(\mu)} we introduce the relation:

X^{(\mu)}=M^{-1}X^{(\lambda)}

where
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X^{(\lambda)}=\{

/’

1_{n} X_{n1}^{(\lambda)}\ldots\ldots..\cdot\cdot..\cdots..X_{n,m-n}^{(\lambda)}X_{11}^{(\lambda)}\cdots X_{1,m-n}^{(\lambda)^{\backslash }}\ldots.)

X^{(/J})=\{

0
\ldots 1_{n-1}0

X_{n1}^{(t^{p})}X_{11}^{(\mu)}10X_{n2}^{(\mu)}\cdots X_{n,m-n}^{(\mu)}X_{12}^{(\mu)}\cdots X_{1,m-n}^{(\mu)},) .

From this it results that X_{i’j’}^{(.u)} (i’=1, \cdots, n;.j’=1, \cdots, m-- n) are rational
functions of X_{if}^{(\lambda)} . We denote these rational functions by r_{i’f’} . Then
r_{if},, \in(R_{j})_{\det M} . We clearly have M’=M^{-1} . Hence det M’=(\det M)^{-1} . There-
fore if we substitute r_{i’j’} for X_{v’j^{l}}^{(rJ^{1)}}. in (P\in(R_{\mu})_{\det M’}) , we have an element Q

of (R_{\lambda})_{\det M} . We define T_{\mu}, : (R_{\mu})_{\det M’}– (R_{\lambda})_{\det M} by setting T_{\lambda\mu}(P)=Q . This
is an isomorphism and induces a scheme isomorphism aT_{\lambda\mu} : Spec (R_{\lambda})_{\det M}arrow

Spec (R_{\mu})_{\det M’} . These isomorphisms satisfy the cocycle condition. Hence
we can define a prescheme which is locally isomorphic to A_{k}^{n(m-n)} . We
denote it by G_{n,m-n} . Let i_{\lambda} be the natural inclusion : kqR_{j} . Then i_{j}.
induces a morphism ai_{\lambda} : U_{\lambda}arrow Spec k. We can glue ai_{\lambda} into a morphism
i:G_{n,m-n}arrow Spec k. i is separated as easily seen. Hence G_{n,m-n} can be
considered as a k-scheme. We call this the Grassmannian k-scheme of n-
planes in affiffiffine space A_{k}^{m} .

Next we construct the universal scheme vector bundle over G_{n,m-n} .
Let \tilde{R}_{\lambda} be the polynomial rings which are obtained by adjunction of n new
variables X_{h}^{(\lambda)}(h=1, \cdots, n) to R_{j} . Then for each \lambda\in\Lambda there is a natural
injection: R_{\lambda}carrow\tilde{R}_{\lambda} . It induces a k-morphism: Spec \tilde{R}_{\lambda}arrow Spec R_{i} . We
denote it by p_{\lambda} . Between the variables let us introduce the relation:

(X_{1}^{(\mu)}, \cdots, X_{?l}^{(,\iota)})=(X_{1}^{(\lambda)}, \cdots, X_{n}^{(\lambda)})Ml

Then X_{h’}^{(,\ell)}(h’=1, \cdots, n) turn out to be rational functions of X_{h}^{(\lambda)} which we
denote by r_{h’} . Since r_{h’}\in(\tilde{R}_{\lambda}) , we can assign to each \tilde{P}\in(\tilde{R}_{\mu})_{\det M^{J}} an element
\overline{(2}\in(\tilde{R}_{\lambda})_{\det M} which is obtained by the substitution of r_{i’f}, , r_{h’} for X_{i’f},(\mu) ,
X_{h’}^{(\mu)} . The isomorphism \tilde{T}_{\lambda\mu} : \hat{P}|arrow’\vee)

\vee
induces an isomorphism a\check{T}_{\lambda’\ell} : Spec

(\tilde{R}_{\lambda})_{\det M}arrow Spec(\tilde{R}_{I},)_{\det M’} . Since a\tilde{T}_{\lambda,p} satisfy the cocycle condition, we get
a prescheme r_{n}^{m} by gluing Spec \tilde{R}_{\lambda}(\lambda\in\Lambda) . It is actually a k-scheme. Be-
sides the k-morphisms p_{\lambda}(\lambda\in\Lambda) . can be glued into a k-morphism p:r_{n}^{m}arrow

G_{n,m-n} . This can be easily seen from the commutative diagrams:
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a\tilde{T}_{\lambda\mu}

Spec (\tilde{R}_{\lambda})_{\det M} – Spec (\overline{R}_{t},)_{\det M^{l}}

|p_{\lambda} |_{p_{\mu}}

Spec
(R_{\lambda})_{\det M}\downarrowarrow a\tilde{T}_{\lambda_{l^{\ell}}}

Spec
(R_{\mu})_{\det M’}\downarrow

We call the G_{n,m-n}-prescheme r_{n}^{m} the universal schme vector bundle be-
cause we have the following proposition.

Let E be the sheaf of germs of section of r_{n}^{m} Then E can be viewed
as a Module over the structure sheaf of G_{n,m-n} .

PROPOSITION 1. E is a quasi-cohermt Module and the G_{n,m-n}-scheme
r_{n}^{m} is isomorphic to the scheme vector bundle V(\check{E\sqrt}) associated to E.

PROOF. Let us consider \tilde{R}_{j} as a R_{\lambda}-algebra by the natural injection:
R_{\lambda}G\tilde{R}_{j} . Then there are natural isomorphisms:

(1 ) \Gamma(U_{\lambda}, E)=arrow Hom_{A}(\tilde{R},, R_{j})=Hom_{Mod}(R_{\lambda}^{n}, R_{\lambda})

where R_{\lambda}^{n} denotes the direct sum of n copies of R_{\lambda} . For f\in R_{\lambda} we also
have a natural isomorphism: \Gamma((U_{\lambda})_{f}, E)=arrow Hom_{Mod}((R_{\lambda})_{f}^{n}, (R_{\lambda})_{\gamma}) . Hence we
see \Gamma(U_{j}, E)_{f}=\Gamma((U_{\lambda})_{f}, E) . This shows that E|U_{J} is the sheaf associated
to the R-module \Gamma(U_{\lambda}, E) . Hence E is quasi-coherent. From (1) we have

\Gamma(U_{\lambda}, E)=Hom_{Mod}(\Gamma(U_{\lambda},E), R_{\lambda})=R^{n},

Therefore we obtain a natural isomorphism of the symmetric algebra of
\Gamma(U_{\lambda}, E) onto the polynomial ring \tilde{R}_{\lambda} . This gives rise to a natural isomor-
phism \tilde{\iota} : Spec \tilde{R}_{\lambda}arrow Spec \Gamma(U_{\lambda}, S(E)) , where S(E) is the symmetric Al-
gebra of Module E. Let i_{\lambda}’ be the restriction of \tilde{\iota}_{\lambda} on Spec (\tilde{R}_{\lambda})_{\det M} . Then
i_{\lambda}^{\prime-1}i_{p}’, is equal to a\tilde{T}_{\mu\lambda} . Hence we see that the isomorphism \tilde{\iota}_{\lambda}(\lambda\in\Lambda) can
be glued into a global isomorphism of Y_{n}^{m} onto V(E). This completes the
proof.

PROPOSITION 2. G_{n,m-n} is isomorphic to G_{m-n,n} .
PROOF. For \lambda\in\Lambda we set \overline{\lambda}=\{1, \cdots, m\}-\lambda . Then G_{m-n,n} is covered by\sim

the affine open sets U- which can be identified with Spec R_{\overline{J}}. where R_{\overline{\lambda}}=

k[X_{fi}^{(\overline{\lambda})}] (i=1, \cdots, n;j=1, \cdots, m-- n) . We first construct an isomorphism:
Spec R_{\lambda}– Spec R- for each \lambda\in\Lambda and then show that they can be glued
together. We again take the example of \lambda=\{1, \cdots, n\} and \mu=\{1 , \cdots , n –1,
n+1\} for the convenience of writing. Let us denote by Y the (m-n)- by- m
matrix with unknowns Y_{fk} as the (j, k)-element respectively where j=
1 , \cdots , m–n and k=1, \cdots , m. Consider the matrix equation with the unknown
Y :
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X^{(\lambda)t}Y=0

It has a unique solution Y^{(\lambda)} if we impose the condition:

Y_{f,n-j’}=\delta_{jf^{J}} (j,j’=1, \cdots, m-n)

on Y. Actually we have Y_{ji}=-X_{ij}^{(\lambda)} . Let P\in R_{\overline{\lambda}} . Substitutig -X_{if}^{(\lambda)}(=Y_{fi})

for X_{fi}^{(\overline{\lambda})} in P, we get a polynomial in R_{\lambda} . This gives rise to an isomor-
phism of R- onto R_{\lambda} . It induces an isomorphism: Spec R_{\lambda}arrow Spec R-

which will be denoted by \overline{l}_{\lambda} . We write

\overline{M}=\{\backslash -X_{7\iota,m-n}^{(\lambda)}-X_{n1}^{(\grave{x})}..\cdot 0\ldots 1_{n-1}0\backslash _{1,)}

,

Consider now the equation X^{(\mu)t}Y=0 and solve it on the condition:

Y_{ln}=1 . Y_{fn}=0 , Y_{f’,n+f}=\delta_{j^{J}f}

j=2, \cdots , m-n , j’=1, \cdots , m-n
We denote the solution by Y^{(\mu)} . As for \mu , we have a natural isomorphism
\overline{\iota}_{\mu} : Spec R_{\mu}-arrow Spec R,, . Since the solution is unique, Y^{(\mu)}=\overline{M}^{-1}Y^{(\lambda)} up
to T_{\lambda\mu} . Hence \overline{t}_{\lambda}=\overline{\iota},t in U_{\lambda}\cap U_{f^{\ell}} . We can therefore glue these isomorphisms
and obtain a natural isomorphism

\overline{\iota} : G_{n,m-n}arrow G_{m-n,n} .
This completes the proof.

2. Construction of the classifying morphism. Let k be an arbitrary
field. Let X be a k-prescheme. Then a k-valuedpoint of X is a k-morphism

f: Spec karrow X. Spec k consists of a single point. We write x for the
image of Spec k by f. f gives rise to a k-homomorphism of O_{X,x} into k.
We denote it by the same letter f. Let U be an affine open set in X which
contains x. Let r_{U} be the restriction: \Gamma(U, O_{X})arrow O_{X,x} . The kernel of

f\circ r_{U} : \Gamma(U, O)-arrow k is denoted by I. We use the letter A for \Gamma(U, O_{X})

from now on. Then we have a k-vector space isomorphism

A=rightarrow k\oplus I

Now let E be a quasi-coherent O_{X}-Module. Suppose there is an exact
sequence :

(2) Oarrow Earrow O_{x^{m}}arrow O_{x^{m}}/Earrow O

which splits locally, provided that m is some positive integer. We write
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\Gamma(U, E) as M and \Gamma(U, O_{x^{m}}/E) as N. Let U be so small that the exact
sequence (2) splits on U. Then we have an A-module isomorphism

g_{U} : M\oplus N_{=^{\eta}}\wedge A^{m}

g_{U} induces an isomorphism: I\cdot M\oplus I\cdot N_{=}^{\approx}I^{m} . We therefore have an isomor-
phism:

M/I\cdot M\oplus N/I\cdot N_{=}^{\sim}(A/I)^{m}

By restricting the coefficient ring to k, we get a k-vector space isomorphism.
which gives rise to an injection

j : M/I\cdot M5k^{m}

We denote by M_{U} the subspace j(M/I\cdot M) of k^{m} .
LEMMA 1. For suffiffifficimtly small U, M_{U} does not d\psi md on the choice

of U, but is determined uniquely by the k-valued point f.
PROOF. Let U’ be an affine open set such that U’\subset U and x\in U’ . Let

r (resp. \tilde{r} ) be the restriction homomorphism of A (resp. M) on A’=\Gamma(U’, O_{X})

(resp. M’=\Gamma (U, E)). Then the diagrams:

r g_{U}

A arrow A’ M arrow A^{m}

\backslash \backslash \backslash r_{U\}}|\backslash \searrow O_{X,\alpha}\downarrow r_{U’}
M’arrow\downarrow g_{U’}|\tilde{r}A^{\prime m}\downarrow|r^{m}

are commutative where r^{m} : A^{m}arrow A^{\prime m} is defined by

r^{m}(a_{1}, \cdots, a_{m})=(r(a_{1}), \cdots , r(a_{m})) .

The first diagram implies that r sends I in I’=Kerf\circ r_{U’} . Hence we obtain
the commutative diagram:

M_{U} arrow k^{m}

\downarrow| \downarrow|_{i_{d}}

M^{U’} arrow k^{m}

from the second diagram where the horizontal arrows are the inclusions.
We therefore have M_{\sigma 5}M_{U’} . This inclusion can be replaced by the equality
if U is sufficiently small. This completes the proof.

Let us denote by X(k) the set of k-valued points of k-prescheme X.
By the injection: f|arrow x, we can identify X(k) with a subset of X. Hence
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we can induce a topology on X(k) from that of X. From now on we
consider X(k) as a topological space equipped with this induced topology.

Let q_{M} be the projection of M\oplus N on the first factor M. We define
q\in End_{A}A^{m} by q=g_{U}\circ q_{M}\circ g_{U}^{-1} . With respect to the canonical base of A^{m}

there corresponds a matrix \alpha to q. We set

\alpha=\{

’

a_{ll}\ldots\ldots\cdot.\cdot.\cdot\ldots.a_{lm}a_{ml}\cdots a_{mm}\ldots)

Let f_{U} be the natural projection of A on A/Li.e. , f\circ r_{U} . Then the vectors
(f_{U}(a_{ll}), \cdots,f_{U}(a_{ml})) , \cdots , (f_{U}(a_{lm}), \cdots,f_{U}(a_{mm})) span the vector subspace M_{U} in k^{m} .
Suppose U is sufficiently small. Then this subspace is uniquely determined
by f, which is guaranteed by Lemma 1. We use the symbol G_{X}(f) instead
of M_{U} . dim G_{X}(f) equals the maximum order of square submatrix \beta of \alpha

such that f_{U}(\det\beta)\neq 0 , or equivalently det \beta\in I. We write b for det \beta . For
fixed \beta the set of g\in U\cap X(k) with g_{U}(b)\neq 0 is just Spec A_{b}\cap X(k) . Hence
the set of g\in X(k) such that

dim G_{X}(f)\leqq\dim G_{X}(g)

contains an open neighborhood of x in X(k). Similarly the set of g’\in X(k)

such that

m-dim G_{X}(f)\leqq\dim N/Kerg_{\acute{U}}\cdot N

contains an open neighborhood of x in X(k). Since.

dim M/Kerg_{U}\cdot M+\dim N/Kerg_{U}\cdot N=m

holds at any point g\in U\cap X(k) , we can conclude from the above facts that
dim G_{X}(f) is locally con_{\veestant} in X(k) .

Suppose now X is an irreducible algebraic k-prescheme with k algebrai-
cally closed. Then X(k) coincides with the set of closed points of X. It
is aconnected and dense subset of X. Hence dim G_{X}(f) is a constant on
X. We denote it by n. Then G_{X} : f|arrow G_{X}(f) can be viewed as a map

of X(k) into G_{n,m-n} since there corresponds a closed point in G_{n,m-n} to

each n-plane in k^{m} naturally. Let \beta be an n-by-n submatrix of \alpha with
b=\det\beta_{\not\subset}R(A) where R(A) is the radical of A. Then we have Spec A=
\cup SpecA_{b} where the union ranges over the submatrices of the above
nature; for \cup Spec A_{b} is an open subset containing all the closed points of
Spec A. For brevity’s sake we assume \beta=(a_{ii’})_{i,i’=1} , \cdot,n

. We define c_{iJ}\in A_{b}

(i=1, \cdots, n;j=1, \cdots, m-n) by
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\beta^{-1}\{
a_{\iota l}.,\cdots..\cdot..\cdot\cdot.\cdot..\cdots a_{nm}a_{ll}\cdots\cdots a_{lm}\ldots)=(

1_{n}c_{ll}\ldots.\cdot.\cdot.\cdot.\cdot.\cdot.\cdot\ldots c_{l,m-n}c_{nl}\cdots\cdots c_{7\iota m-n}..,\cdots
. )

Recall that G_{n,m-n} is covered by the affine open sets U_{\lambda}(\lambda\in\Lambda) each of
which is identifiable with affine space Spec k[X_{if}^{(\lambda)}]_{i=1,\cdots,n;f=1,\cdots,m- n} . For Q\in

k[X_{if}^{(\lambda)}] we define

H(Q)=Q(c_{ij}) .
Then H is a homomorphism of k[X_{if}^{(\lambda)}] into A_{b} . H induces a morphism
aH : Spec A_{b}arrow Speck[X_{if}^{(\lambda)}]=U_{j} . We want to show that we can glue
aH and get a morphism of X into G_{n,m-n} . For that it suffices to prove

(3) G_{X}(f)=Ha(f)

for any k-valued point f\in U_{b}=Spec A_{b} . We write f_{U_{b}} as f_{b} . Then we have

aH(f)=H^{-1} (Ker f_{b}) =\{Q\in k[X_{if}^{(\lambda)}]|Q(c_{if})\in Kerf_{b}\}

=\{Q\in k[X_{if^{(\lambda)}}]|Q(f_{b}(c_{if}))=0\}=G_{X}(f)1

Hence we get (3).
The morphism obtained in this way is nothing but the extension of

G_{X} to X (by continuity). We use the same symbol G_{X} for it. We say
that G_{X} is the classifying morphism of E (corresponding to the exact se-
quence (2)).

3. Construction of the isomorphism in Theorem A. Let X be
an irreducible algebraic prescheme over an algebraically closed field k and
E a quasi-coherent O_{X}-Module. Suppose there is an exact sequence (2)
which splits locally. Then we can construct the classifying morphism G_{X} :
X— G_{n,m-n} for E as shown in \S 2. Let 6^{o} be the sheaf of germs of
G_{n,m-n}-sections of r_{n}^{m} . \mathcal{E} actually is a Module over G_{n,m-n} . The inverse
image of Module \mathcal{E} by G_{X} is defined by

G_{X}^{*}(\epsilon)=O_{X}\cross G_{X}^{-1}(O_{G_{n,m-n}})^{G_{x^{-1}}(\mathcal{E})}\tau

We first construct an isomorphism:

(4) G_{X}^{*}(\mathcal{E})=\approx E .
We follow the notations in the preceding sections, provided that the symbols
relative to U_{b} are replaced by the corresponding ones relative to U with
a prime. For example, we write U’. A’, M’ for U_{b} , A_{b} , M_{b} and so on. In
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addition, a_{if} in this section, strictly speaking, should be written as r(a_{if})

with the restriction homomorphism r:Aarrow A’. The isomorphism (4) is
a collection of isomorphisms: \Gamma(U’, G_{X}^{*}(\mathcal{E}))arrow M’ . We construct the is0-
morphism (4) on U’ in the following, assuming \beta=(a_{ii’})_{i,i’=1,\cdots,n} for the con-
venience of notations. The rest are treated in exactly the same manner.
Let \sigma’\in M’ . Then \sigma’ is a linear combination of the line vectors \alpha_{i}(i=1, \cdots, n)

with coefficients in A’, where \alpha_{i}=(a_{il}, \cdots, a_{im}) . Let \beta_{i}=(0, \cdots , 0, 1, 0, \cdots , 0,
c_{il} , \ldots , c_{i,m-n}) where i=1, \cdots , n . Then \alpha_{i} with 1\leqq i\leqq n can be written as
linear combinations of \beta_{i’} . We further have

LEMMA 2. For k=n+1, \cdots , m also, \alpha_{k} are linear combinations of \beta_{i} .
PROOF. Let M_{0} be the submodule of M’ generated by \alpha_{1} , \cdots , \alpha_{n} . For

any k-valued point f we have
f^{m}(\alpha_{k})=f(a_{kl})f^{m}(\beta_{1})+\cdots+f(a_{kn})f^{m}(\beta_{n})

where f^{m} is defined as r^{m} in \S 2. Hence

\alpha_{k}-a_{kl}\beta_{l}-\cdots-a_{kn}\beta_{n}\in R(A’)^{m}

Since M’ is a direct summand of A^{\prime m} , R(A’)^{m}\cap M’ equals R(A’)M’. Hence
we have

M_{0}\oplus R(A’)M’=M’

We therefore obtain M’=M_{0} from the lemma of Nakayama. This com-
pletes the proof.

Let us now define R_{\lambda}-homomorphisms e_{h}^{(\lambda)} : \tilde{R}_{\lambda}arrow R_{\lambda} by

e_{h}^{(\lambda)}(X_{k}^{(\lambda)})=\delta_{hk}

For each h=1, \cdots , ne_{h}^{(\lambda)} corresponds to an element of \Gamma(U_{J}, Y_{n}^{m}), denoted
by e_{h}^{(\lambda)} again, by means of the isomorphism (1). Then e_{1}^{(\lambda)} , \cdots , e_{n}^{(\lambda)} con-
stitute an R_{\lambda}-base for \Gamma(U, Y_{n}^{m}) . It may be called the “canonical” base.
We take \lambda=\{1, \cdots, n\} , which is actually decided by the way of choosing \beta .
Then G_{X}(U’)\subset U_{\lambda} . We write \tilde{e}_{h}^{(\lambda)} for e_{h}^{(\lambda)}\circ G_{X}|U’ where G_{X}|U’ is the re-
striction of G_{X}onU’ . Then \tilde{e}_{h}^{(\lambda)}\in\Gamma(U’, G_{x^{-1}}(\mathcal{E})) . Using Lemma 2, we can
find d_{1} , \cdots , d_{n}\in A’ such that

\sigma’=d_{1}\beta_{1}+\cdots+d_{n}\beta_{n}

We define
j_{U’}(\sigma’)=d_{1}\otimes\tilde{e}_{1}^{(\lambda)}+\cdots+d_{n}\otimes\tilde{e}_{n}^{(\lambda)}

Then we have j_{U},(\sigma’)\in\Gamma(U’, G_{X}^{*}(\mathcal{E})) .
Let us go back to U and define j_{U}(\sigma) for \sigma\in M by gluing j_{U’}(r’(\sigma)) where
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r’ is the restriction homomorphism Marrow M’ . To do so, take \grave{\beta}=

(a_{ii’})_{i=1,\cdots,n;i’=1,\cdot\cdot,n-1,n+1} , since the rest are treated in the same way. Suppose
\hat{b}=\det\hat{\beta}\not\in R(A) . We write \mu=\{1, \cdots, n -- 1, n+1\} as before. Let r_{\lambda} (resp. r_{\mu} )
be the restriction homomorphism: \Gamma(U_{\lambda}, \gamma_{n}^{m}) (resp. \Gamma ( U_{\mu} , \gamma_{n}^{m})) arrow\Gamma(U_{\lambda}\cap U_{\mu} ,
\gamma_{n}^{m}) . Let \epsilon_{h}^{(\lambda)} (resp, \epsilon_{k}^{(\mu)} ) be the image of e_{h}^{(\lambda)} (resp. e_{k}^{(\mu)} ) by r_{\lambda} (resp. r_{\mu}).
Then we have
(5) (\epsilon_{1}^{(\lambda)}, \cdots, \epsilon_{n}^{(\lambda)})=(\epsilon_{1}^{(_{1})}" \cdots, \epsilon_{n}^{(\mu)})^{t}M

We write

N=\{
0\cdot\cdot 1_{n-1}

.
c_{n,n+1}c_{1,n+1}.\cdot.)\backslash

Let U\prime\prime=U’\cap Spec A_{\hat{b}} and \tilde{\epsilon}_{h}^{(\lambda)}=\epsilon_{h}^{(\lambda)}\circ G_{X}|U \prime\prime , \tilde{\epsilon}_{k}^{(\mu)}=\epsilon_{k}^{(\mu)}\circ G_{X}|U \prime\prime . Then it
follows from (5) that

(6) (\tilde{\epsilon}_{1}^{(\lambda)}, \cdots,\tilde{\epsilon}_{n}^{(\lambda)})=(\tilde{\epsilon}_{1}^{(\mu)}, \cdots,\tilde{\epsilon}_{n}^{(\mu)})^{t}N\cap

Let \sigma\in M. Let \sigma’ be the restriction of \sigma on U’ and \sigma’ that on Spec A_{\delta} .
We denote by \hat{\beta}_{i} the line vectors of the matrix \hat{\beta}^{-1}(a_{if})_{i=1,\cdot\cdot,n;f=1,\cdots,m} . Define
\tilde{d}_{i} by

\sigma’=\hat{d}_{1}\hat{6}_{1}+\cdots+\hat{d}_{n}\hat{\Theta}_{n} .
Then up to the restriction homomorphism, we have
(7) (\hat{d}_{1}, \cdots,\hat{d}_{n})=(d_{1}, \cdots, d_{n})N .

From (6), (7) we obtain
(8) d_{1}\otimes\tilde{\epsilon}_{1}^{(\lambda)}+\cdots+d_{n}\otimes\tilde{\epsilon}_{n}^{(\lambda)}=\hat{d}_{1}\otimes\tilde{\epsilon}_{1}^{(\mu)}+\cdots+\hat{d}_{n}\otimes\tilde{\epsilon}_{n}^{(\mu)}

Note that \tilde{\epsilon}_{h}^{()}‘=\overline{\overline{e}}_{h}^{(_{t})}|U’ for \iota=\lambda , \mu . Then it follows from (8) that we can
get an element of \Gamma(U, G_{x^{*}}(\mathcal{E})) by gluing the pieces together. We write
it as j_{U}(\sigma) . Then
(9) j_{U} : Marrow\Gamma(U, G_{X}^{*}(\mathcal{E}))

is an A-module isomorphism.
By the same reasoning as above we have the following lemma.
LEMMA 3. j_{U} does not depend on the choice of a splitting.
LEMMA 4. These isomorphisms j_{U} satisfy the condition of compatibility

with the restriction homomorphisms.
PROOF. Let U’ be any open subset of U. We write A’, M’ for

\Gamma(U’, O_{X}) , \Gamma(U’E) respectively. A local splitting of (2) over U gives rise
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to isomorphisms
g_{U} : M\oplus N\cong A^{m}

g_{U’} : M’\oplus N’\cong A^{\prime m}

We can define b’ . \beta_{U}’i for g_{U’} in the same way as b, \beta_{i} for g_{U} respectively.
Let r be the restriction homomorphism: \Gamma(U_{b}, O_{X})arrow\Gamma(U_{b }’,, O_{X}) . Then
\beta_{i}’=r^{m}(\beta_{i}) . Hence d_{h}’=r(d_{h}) where d_{h}’ are defined for g_{U’} as d_{h} for g_{U} .
We can therefore conclude that j_{U’}(\sigma’) is the image by the restriction hom0-
morphism of j_{0}(\sigma) where \sigma’ is that of \sigma .

Thus j:Uarrow j_{U} is the required sheaf isomorphism.
In conclusion we can state the
THEOREM. Let X be an irreducible algebraic prescheme over an alge-

braically closed fifield k. Let E be a quasi-coherent O_{X}-Module fiaving an
exact sequence (2) which splits locally. Then there are a morphism G_{X} :
Xarrow G_{n,m-n} and an isomorphism: G_{X}^{*}(6^{2})_{=}^{r}E for some positive integer n
where \mathcal{E} is the sheaf of germs of\backslash G_{n,m-n}-sections of \gamma_{n}^{n\iota}

(Hence E turns out to be locally free.)
Now let us prove Theorem A. It is the same in essence as the \dot{t}heorem

stated just above. There is only need of giving attention to some facts.
First we note that

G_{X}^{\check{*}}(\mathcal{E})=G_{X}^{*}(\dot{\mathcal{E}}^{\sqrt}) .
since \mathcal{E}, is locally free and of finite rank. The isomorphism: G_{X}^{*}(\mathcal{E})\sim E=^{V}

induces the one: V(\check{6^{\supset}})^{r}=V(G_{X}^{*}(\mathcal{E}))\vee . Secondly we have
V(G_{x}^{*}(\check{\mathcal{E}}))=V(\check{\mathcal{E}})^{\backslash }\nearrow_{\backslash }G_{n,m}Xl

Hence we can obtain Theorem A.
4. Rational homotopy. We make the definition of rational homotopy

in the first half of this section and construct the rational homotopy in
Theorem B in the second one.

Let X, Y be k-preschemes where k is an arbitrary field. Let k[T]
be the polynomial algebra over k in one variable T and t a k-valued point
of the k-scheme Spec k[T]. Then t induces an algebra homomorphism
t^{*}: k [T]arrow k. On the other hand k is included in \Gamma(X, O_{r},) in the natural
way. The product of t^{*} with this inclusion is a homomorphism: k [T]arrow
\Gamma(X, O_{X}) . This homomorphism induces a morphism \tilde{t} : X— Spec k[T]
in the natural way. Now we write

Z=X\cross_{s_{p}eck} Spec k[T]
Then there is a unique morphism t’ : Xarrow Z such that the diagram
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X Spec k

is commutative. Let t_{1} (resp. t_{2} be the k-valued point of Spec k[T] which
corresponds to the natural projection:

k[T]arrow k[T]/(T)^{r}=k

(resp. k[T] –arrow k[T]/(1-T)\cong k)

As stated above, these k-valued points give rise to morphisms t_{1} , t:Xarrow Z
respectively. We can now define the rational homotopy as follows. Let us
consider morphisms f_{1} , f_{2} : X– Y. Then a rational homotopy from f_{1} to

f_{2} is by definition a morphism h:Zarrow Y such that f_{i}=h\circ t_{i}’ for i=1,2.
We also say that f_{1} is rationally homotopic to f_{2} .

Let us turn to the problem of constructing the rational homotopy in
Theorem B. Let E be a quasi-coherent O_{X}-Module. E is supposed to be
a direct summand of a free O -Module of finite rank. Hence for some
positive integer m there are a quasi-coherent O_{X}-Module E_{1} and an is0-
morphism

(10) g_{1} : E\oplus E_{1}^{A}=O_{x^{m}}

Let us consider another decomposition
(11) g_{2} : E\oplus E_{2}=\approx O_{x^{m}}

where E_{2} is an O -Module. Suppose X is an irreducible algebraic prescheme
with k algebraically closed. From the decompositions (10), (11) we obtain
the corresponding classifying morphisms G_{1} , G_{2} : X—–arrow G_{n,m-n} for some
integer n. Let q_{X} be the projection of Z=X\cross Speck[T] on the first factor
X. We set E_{Z}=q_{x^{*}}(E) . Let U be an affine open set in X. We write
A, M, W for \Gamma(U, O_{X}) , \Gamma(U, E), q_{x^{-1}}(U) respectively. Then W can be
identified with Spec (A\otimes k[T]) and, moreover, q_{X}|W corresponds to the
inclusion: A\subset A\otimes k[T] given by a|arrow a\otimes 1 for a\in A . Hence there is
a natural isomorphism:

q_{x^{*}}(E)|W(=(q_{X}|W)^{*}(E))=\approx(k[T]\otimes M)^{\sim}
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where (k[T]\otimes M)^{\sim} is the O_{W}-Module associated to A\otimes k[T]-module
k[T]\otimes M. We write the module k[T]\otimes M by M_{Z} below. The decomposi-
tions (10), (11) give rise to those of the A-module A^{m} :

(12) M\oplus N_{i^{A}}=A^{m} (i=1,2)

respectively. We further have the A\otimes k[T] -module decompositions

(13) M_{z\prime}\oplus k[T]\otimes N_{i}\nearrow\triangleleft(=A\otimes k[T])^{m} (i=1,2)

from (12). (13) gives the inclusions: M_{Z}G (A\otimes k[T])^{m} . We denote them
by g_{1}(W), g_{2}(W) respectively. We define (1– T) g_{1}(W) , (T) g_{2}(W) by
(1-T) g_{1}(W)\sigma=(1\otimes(1-T))g_{1}(W)(\sigma), (T) g_{2}(W)(\sigma)=(1\otimes(T))g_{2}(W)(\sigma) for \sigma\in

M_{Z} . We set:

(14) g_{W}=(1-T)g_{1}(W)\oplus(T)g_{2}(W) .

g_{W} induces a morphism \prime\prime g_{W} : E_{Z}|W- O_{Z}^{2m} . Since the affine ope nsets
W cover Z, we finally obtain a morphism g^{*}: E_{Z}arrow O_{z^{2m}} . The image of
g_{W} is a direct summand of (A\otimes k[T])^{2m} , as easily seen. Hence we can con-
struct a classifying morphism G_{Z} : Zarrow G_{n,2m}

- n by means of g^{*} .
Let U_{\lambda} be an affine open set defined in \S 1. Hence U_{\lambda} is.
We denote by R, R’ polynomial rings k[X_{if}]_{i=1} , \cdot,n;f=1,\cdots,m-n’ k[Y_{ik}]_{i=1,\cdots,n;}

k=1 , \cdot,2m-n respectively. Consider the epimorphisms s_{1} , s_{2} : R’-arrow R that are
defined by

s_{l}(Y_{ik})=X_{\dot{t}k} if 1\leqq k\leqq m-n,\cdot otherwise s_{1}(Y_{ik})=0

s_{2}(Y_{ik})=X_{i,k- m} if m+1\leqq k\leqq 2m-n , otherwise s_{2}(Y_{ik})=0 .

Let \lambda be a subset with card. \lambda=n of \{1, \cdots, m\} . Add m to each element
of \lambda. Then we have a subset of \{1, \cdots, 2m\} . We write it as \lambda+m . The
meaning of s_{1}^{(\lambda)} , s_{2}^{(\lambda)} is evident. These epimorphisms induce morphisms:
U_{\lambda}arrow U_{\lambda}’ , U_{\lambda}– U_{\lambda+m}’ respectively where U_{\lambda} , U_{\lambda}’ are the affine open sets
in G_{n,m-n} , G_{n,2m-n} defined in \S 1 respectively. Gluing these morphisms, we
obtain two closed immersions G_{n,m-n}gG_{n,2m-n} . We denote them by s_{1} , s_{2}

again.
LEMMA 5. s_{1} . s_{2} are rationally homotopic to each other.

PROOF. Beginning with the epimorphism s:R’rightarrow R\otimes k[T] that is
defined by s(Y_{ik})=X_{ik}\otimes T if 1\leqq k\leqq m-n , s(Y_{ik})=X_{i,k- m}\otimes(1-T) if m+
1\leqq k\leqq 2m-n , we can construct a morphism: X\cross spec k Spec k[T]arrow Y
exactly as above. This morphism is the required rational homotopy.

LEMMA 6. The diagram :
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has the commutative upper and lower triangles.
PROOF. Let f be a k-valued point of X. Then t_{i}’\circ f are k-valued points

of Z where i=1,2. We write x, z_{i} for the closed points corresponding to

f, t_{i}’\circ f respectively. We follow the notations in the earlier part of this
section. Suppose x\in U. Then z_{i}\in W. To t_{i}’\circ f there correspond k-hom0-
morphisms: A\otimes k[T]arrow k , which are denoted by \tilde{f}_{i} respectively. Take
arbitrary \sigma\in M and P\in k[T] . Then from (14) we obtain

\tilde{f}_{1}^{2m}(g_{W}(\sigma\otimes P(T)))=(f_{U}^{m}(g_{1}(W)(\sigma))(P(0), \cdots, 0)

\tilde{f}_{2}^{2m}(g_{W}(\sigma\otimes P(T)))=(0, \cdots,f_{U}^{m}(g_{2}( W)(\sigma))P(1))

where f_{\sigma} is f\circ r_{U} in \S 2. We therefore have

(15) G_{Z}\circ t_{i}’(x)=s_{i}\circ G_{i}(x)

with x ranging over the closed points of X. Since the set of closed points
is dense, (15) holds for any point x of X. This completes the proof.

It is seen from the above two lemmas that s_{1}\circ G_{1} and s_{2}\circ G_{2} are rationally
homotopic. Hence we get Theorem B.

5. B_{k} and B_{k}^{s} . In this section we construct the direct limit of Gras-
smannian k-schemes G_{n,n}(n=1,2, \cdots) in the category of k-schemes and then
define the classifying k-space B_{k} . We shall further prove a proposition.

Consider the polynomial ring k[X_{1}, \cdots,X_{n}] in n variables. We use the
notation A_{n} for it. Substituting the zero for X_{n+1} , we get a homomorphism
i_{n,n+1} : A_{n+1}– A_{n} . It induces a closed immersion j_{n,n+1} : Spec A_{n}arrow

Spec A_{n+1} . We further put i_{n,m}=i_{m-1,m}\cdots\cdot\cdot i_{n,n-1} , j_{n,m}=j_{m-1,m}\cdots\cdot\cdot j_{n,n-1} for
integers m with n<m . Thus we get an inverse system (A_{n}, i_{n,m}) of rings
and a direct system (Spec A_{n} , j_{n,m} ) of affine schemes. The direct limit of
the latter in the category of schemes is equal to Spec lim inv. A_{n} .

Consider the Grassmannian k-scheme G_{n,n} . Take arbitrary \lambda\in\Lambda and
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set U_{1}=U,. We write \Lambda_{n} for \Lambda from now on. We define an element
\mu\in\Lambda_{m} by \mu=\lambda\cup\{2n+1, \cdots, 2m-1\} . Instead of U_{\mu} we write U_{m} . Then
\Gamma(U_{m}, G_{m,m}) can be viewed as A_{m}^{2} . Hence the system U_{m} with the natural
immersions can be identified with a cofinal subsystem of (Spec A_{n} , j_{n,m}).
We denote the direct limit by V_{n}, ’. Then we have the natural closed im-
mersions j_{m} : U_{m}arrow V_{n,\lambda} . We want to glue V_{n,\lambda} where n ranges over
the positive integers and \lambda over \Lambda_{n} . Let \lambda, \mu\in\Lambda_{n} . We put d=\det M and
d’=\det M’ (see \S 1 for M and M’). If we begin with U_{\mu} , then we have
another direct system: U_{1}’arrow U_{2}’arrow U_{m}’arrow\cdots . It is readily checked
that U_{m}\cap U_{m}’=(U_{m})_{l},=U(_{m}’)_{l’}, and that lim dir. (U_{m})_{l},=(V_{n,\lambda})_{l}, , lim dir. (U_{m}’)_{d’}

=(V_{n,\mu})_{l’}, . The morphism of the direct systems:

(U_{1})_{l}_{1}’-arrow(U_{2,1},)_{d}|-arrow

|1||III||||| |||

(U_{1}’)_{d’}-arrow\downarrow(U_{2}’)_{l’}-arrow\downarrow

, \cdot ..

gives rise to an isomorphism: (V_{n,l})_{d}arrow(V_{n,,\ell})_{el’} . These isomorphisms
satisfy the condition of compatibility. Thus we can obtain a k-prescheme
V_{n} . In addition V_{n} is contained in V_{m} as an open sub-prescheme for

m>n . We define B_{k}^{s}=\cup V_{n} . Then B^{s_{k}} can be viewed as a k-scheme.
n=1

We can further consider G_{n,n} as a sub-scheme of B_{k}^{s} in the natural way,
so that we have a sequence of sub-schemes: \ldots\subset G_{n,n}\subset G_{n- 1,n-1}\subset\cdots\subset B_{k}^{s} .
We define B_{k} to be the union of G_{n,n}(n=1,2, \cdots) . Then there is a natural
injection \pi:B_{k}arrow B_{k}^{s} . Using \pi, we introduce the structure of a ge0-

metrical k-space into B_{k} . In other words the structure sheaf of B_{k} is
defined to be the inverse image by \pi of that of B^{s_{k}} . \pi turns out to be a
morphism.

PROPOSITION 3. B_{k} is isomorphic to the direct limit of G_{n,n} in the
category of geometrical k-spaces.

PROOF. We denote by B the direct limit of G_{n,n} . Then there is a
morphism.\tilde{j}:Barrow B_{k} . Let x\in B_{k} . Then x\in G_{n,n} for some n. To x there
corresponds a prime ideal I_{x} in A_{n^{2}} . We write I for the inverse image of
I_{x} by the natural morphism: lim inv. A_{n}arrow A_{n^{2}} . Then the proposition
follows from the fact: O_{B_{k},x} is isomorphic to (lim inv. A_{n})_{I}= \lim inv . O_{G_{m’ n\iota},x} .

PROPOSITION 4. Let X be a quasi-compact reduced k-prescheme and
G_{X} a k-morphism : X— B_{k} . Thm G_{X} decomposes into Xarrow G_{n,n}5B_{k}

for some n.
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PROOF. It suffices to prove G_{X}(X(k))\subset G_{n,n} for some n. (See I, 5. 2. 2,
[1] ) . Suppose the contrary. Then there are closed points x_{n}(n=1,2, \cdots)

of X such that x_{n}’\in G_{n+1,n+1}-G_{n,n} , where x_{n}’‘=G_{X}(x_{n}) . We set S=\{x_{n}’|n=

1,2, \cdots\} . Since x_{\acute{n}} are closed in B_{k}^{s} , they are so in B_{k} too. Let S’ be any
subset of S. Then S’\cap G_{m,m} are closed in G_{m,m} for any m. Hence S is a
closed discrete subset in a quasi-compact set G_{X}(X) . Therefore it is finite.
This contradiction proves the proposition.

6. Proof of the main theorem. Let X be an irreducible noetherian
scheme over an algebraically closed field k. A coherent O -Module will be
call.ed projective if it is a direct summand of a free O_{X}-Module of finite
rank. Hence a projective O -Module is locally free (see \S 3). Let KP(X)
be the Grothendieck group of classes of projective O_{X}-Modules. Then each
\xi\in KP(X) can be written in the form: [E]-l where [E] is the class of a
projective O_{X}-Module E and l a positive integer. For E there is a coherent
O_{X}-Module F such that E\oplus F_{=}^{\wedge 7}O_{x^{m}} for some positive integer m. Hence
we can construct a classifying morphism G_{X} : Xarrow G_{n,m-n} by the use of
this direct sum decomposition, where n is the rank of E. We restrict
ourselves to the case where 2n =m from now on. We view G_{X} as a mor-
phism: Xarrow G_{n,n}\cross_{\backslash } (l– n) , and further as one: Xarrow B_{k}\cross(l-n) . We
define \varphi(\xi) to be the rational homotopy class \in[X, B_{k}\cross Z]_{rat} containing G_{X} .

LEMMA 7. \varphi(\xi) is uniquely determined by \xi.
PROOF. First we replace E, F, m by E\oplus O_{X}^{k} , F\oplus O_{X}^{k} , m+2k respec-

tively. Hence l must be replaced by l+k. In this case we easily see that
G_{X} does not change as a morphism: Xarrow B_{k} . Consequently \varphi(\xi) also
does so.

Secondly suppose we have E\oplus F’=rightarrow O_{x^{m}} also for some coherent F’.
Using this decomposition, we construct a classifying morphism G_{X}’ . Then
G_{x’} is rationally homotopic to G_{X} by means of Theorem B. Hence \varphi(\xi)

does not change.
Finally let [E’]-l’ be any other form of expressing \xi . Then E\oplus O_{X}^{k}=

E’\oplus O_{X}^{k’} for some positive integers k, k_{r}’ Suppose E’\oplus F’=O_{x^{m’}} for some
coherent F’ and some positive integer m’. Let G_{X}’ be the classifying mor-
phism obtained from this decomposition. By the above first and second
steps we see that G_{X}’ is rationally homotopic to G_{X} . Hence \varphi(\xi) does not
change, even though we start by \xi=[E’]-l’ . This completes the proof of
Lemma 7.

LEMMA 8. \varphi:KP(X)-[X, B_{k}\cross Z]_{rat} is surjective.
PROOF. Let [f] be the rational homotopy class\in[X, B_{k}\cross Z]_{rat} containing
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a morphism f:Xarrow B_{k}\cross l where l\in Z. Then f(X)\subset G_{n,n} for some positive
integer n.

\varphi sends f^{*}(E)-(l-n) to [f] . This completes the proof of the subjec-
tivity of \varphi .

From now on suppose further X is non-singular quasi-projective. Then
we have the following lemma.

LEMMA 9. Let Y be a k-scheme of the same kind as X. Let f, g be mor-
phisms: Xarrow Y which are rationdly homotopic. Then f’, g’ : K(Y)arrow

K(X) coincide.
PROOF. Let h:X\cross Speck[T]arrow Y be a rational homotopy from f to

g. Then we have f=h\circ t_{1}’ and g=h\circ t_{2}’ (for t_{1}’ , t_{2}’ see \S 4). Let p be the
projection: X Spec k[T]arrow X. Then p\circ t_{1}’ , p\circ t_{2}’ are the identity. On the
other hand p’ : K(X)arrow K(X\cross Speck[T]) is also an isomorphism. For
this fact see [2]. Hence (t_{1}’)=(t_{2}’) . We therefore have

f’=(t_{1}’)’\circ h’=(t_{2}’)’\circ h’=g ’

This completes the proof.
Let [f]\in[X, B_{k}\cross Z]_{rat} be an arbitrary class with f(X)\subset G_{n,n}\cross l for some

n, l. Let E be the universal bundle over G_{n,n} . Then it is easily seen from
the above lemma that

f’(\gamma_{X}(E))-(l-n)

is uniquely determined by the class [f] . We write \psi([f]) for it. Then \psi

can be viewed as a map of [X, B_{k}\cross Z] into K(X).
Let \iota be the natural homomorphism : KP(X)arrow K(X), i.e. the one

sending [E] to \gamma_{X}(E) for a projective O_{X}rightarrow-Module E. Then we have the
commutative triangle:

as will be easily checked. Hence we have obtained the main theorem.
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