# Homotopy classification theorem in algebraic geometry 

Dedicated to Professor Yoshie Katurada on her sixtieth birthday

By Toshiyuki Maebashi

Introduction. Let $X$ be a finite $C W$ complex. We denote by $K(X)$ the Grothendieck group of the classes of complex vector bundles over $X$. We further write $Z, B_{v}$ for the integers with the discrete topology, the classifying space of the infinite unitary group respectively. Then the $K$ theoretic version of the homotopy classification theorem is given by the statement of the existence of a natural bijection:

$$
K(X) \cong\left[X, B_{U} \times Z\right]
$$

where $\left[X, B_{V} \times Z\right.$ ] denotes the set of homotopy classes of maps of $X$ into $B_{\sigma} \times Z$.

The objective of this paper is to present an algebro-geometric analogue to the above-mentioned theorem. We consider a non-singular reduced affine $k$-scheme for an algebraically closed field $k$, instead of a finite $C W$ complex. Let $X$ be a $k$-scheme of this kind. We write $K(X)$ for the Grothendieck group of the classes of coherent $O_{X}$-Modules. Let $G_{n, n}$ be the Grassmannian $k$-scheme of $n$-planes in affine $2 n$-space $\boldsymbol{A}_{t}{ }^{2 n}$ where $n$ ranges over the positive integers. Then there are natural closed immersions: $G_{n, n} \longrightarrow G_{l, l}$ for $l>n$. We denote by $B_{k}$ the direct limit of $G_{n, n}$ in the category of geometrical $k$-spaces. Consider morphisms $f, g: X \longrightarrow B_{k} \times Z$. We define $f \sim g$ if and only if $f$ is connected with $g$ by a finite chain of rational homotopies. A class by the equivalence relation $\sim$ will be called a rational homotopy class. We write $\left[X, B_{k} \times Z\right]_{\mathrm{rat}}$ for the set of rational homotopy classes of $k$-morphisms: $X \longrightarrow B_{k} \times Z$. With these notations we have

Main Theorem. There is a natural bijection

$$
K(X) \cong\left[X, B_{k} \times Z\right]_{\mathrm{rat}} .
$$

Let $X$ be an irreducible algebraic prescheme over an algebraically closed field $k$. Let $\gamma_{n}^{m}$ be the universal scheme vector bundle over $G_{n, m}$, i. e. the Grassmannian $k$-scheme of $n$-planes in affine $(m-n)$-space. We denote by $p$ the natural projection: $\gamma_{n}^{n} \longrightarrow G_{n, n}$. We now state two theorems below which are used for the proof of the Main Theorem, because of their own interest.

Theorem A. Let $E$ be a quasi-coherent $O_{X}$-Module which is a direct summand of a free $O_{x^{-}}$Module of finite rank and $m$ a sufficiently large integer. Then we can find a morphism $G: X \longrightarrow G_{n, m}$ such that there is a pull-back diagram:

in other words

$$
V(\check{E})=X \times_{a_{n, m}} Y_{n}^{m}
$$

Theorem B. Suppose two morphisms having the pull-back diagram in Theorem A. Then they are rationally homotopic in $G_{n, m^{\prime}}$ for sufficiently large $m^{\prime}$.

1. Grassmannian schemes and universal scheme vector bundles. First we define the Grassmannian $k$-schemes for an arbitrary field $k$. Let $\Lambda$ be the set of subsets $\lambda$ of $\{1, \cdots, m\}$ with card. $\lambda=n$ where $m$ and $n$ are fixed positive integers. Let $U_{\lambda}$ be $m!/(n!\times(m-n)!)$ copies of affine $n(m-n)$-space $\mathbf{A}_{k}{ }^{m(n-n)}$ which are indexed by $\Lambda$. For convenience we introduce variables $X_{i j}{ }^{(2)}$ where $i$ (resp. $j$ ) runs through $1, \cdots, n$ (resp. $1, \cdots, m-n$ ). We write $R_{\lambda}$ for the polynomial ring $k\left[X_{i j}{ }^{(\lambda)}\right]$ in $n(m-n)$ variables $X_{i j}{ }^{(\lambda)}$ and consider $U_{\lambda}$ as Spec $R_{\lambda}$. We wish to glue together $U_{\lambda}(\lambda \in \Lambda)$ and construct a $k$-scheme. Let us explain how $U_{\lambda}$ and $U_{\mu}$ are glued for $\lambda, \mu \varepsilon \Lambda$. For that it suffices to take the example of $\lambda=\{1, \cdots, n\}$ and $\mu=\{1, \cdots, n-1, n+1\}$. Let:

$$
\begin{aligned}
& M=\left(\begin{array}{ccc} 
& & \\
& X_{11}{ }^{(\lambda)} \\
& 1_{n-1} & \vdots \\
0 & \cdots & X_{n 1}{ }^{(2)}
\end{array}\right) \\
& M^{\prime}=\left(\begin{array}{ccc} 
& & X_{11}{ }^{(\mu)} \\
& 1_{n-1} & \vdots \\
0 & \cdots & X_{n 1}{ }^{(\mu)}
\end{array}\right)
\end{aligned}
$$

where $1_{n-1}$ denotes the unit matrix of order $n-1$. We note that the coefficients of $M^{-1}$ (resp. $M^{\prime-1}$ ) belong to the ring $\left(R_{\lambda}\right)_{\operatorname{det} M}\left(\right.$ resp. $\left.\left(R_{\mu}\right)_{\operatorname{det} M^{\prime}}\right)$. Between the variables $X_{i j}{ }^{(\lambda)}, X_{i j}{ }^{(\mu)}$ we introduce the relation:

$$
X^{(\mu)}=M^{-1} X^{(\lambda)}
$$

where

$$
\begin{aligned}
& X^{(\lambda)}=\left(\begin{array}{cccc} 
& X_{11}{ }^{(\lambda)} & \cdots & X_{1, m-n}{ }^{(\lambda)} \\
1_{n} & \cdots & \cdots & \cdots \\
& X_{n 1}{ }^{(\lambda)} & \cdots & X_{n, m-n}{ }^{(\lambda)}
\end{array}\right) \\
& X^{(\mu)}=\left(\begin{array}{rrrrrrr} 
& & & X_{11}{ }^{(\mu)} & 0 & X_{12}{ }^{(\mu)} & \cdots
\end{array} X_{1, m-n}{ }^{(\mu)}\right)
\end{aligned}
$$

From this it results that $X_{i^{\prime} j^{\prime}}{ }^{(\mu)}\left(i^{\prime}=1, \cdots, n ; j^{\prime}=1, \cdots, m-n\right)$ are rational functions of $X_{i j}{ }^{(\lambda)}$. We denote these rational functions by $r_{i^{\prime} j^{\prime}}$. Then $r_{i^{\prime} j^{\prime}} \in\left(R_{\lambda}\right)_{\operatorname{det} M}$. We clearly have $M^{\prime}=M^{-1}$. Hence $\operatorname{det} M^{\prime}=(\operatorname{det} M)^{-1}$. Therefore if we substitute $r_{i^{\prime} j^{\prime}}$ for $X_{i^{\prime} j^{\prime}}{ }^{\left({ }^{(i)}\right)}$ in $\left(P \in\left(R_{\mu}\right)_{\operatorname{det} M^{\prime}}\right)$, we have an element $Q$ of $\left(R_{\lambda}\right)_{\operatorname{det} M}$. We define $T_{\lambda_{\mu}}:\left(R_{\mu}\right)_{\operatorname{det} M^{\prime}} \longrightarrow\left(R_{\lambda}\right)_{\operatorname{det} M}$ by setting $T_{\lambda \mu}(P)=Q$. This is an isomorphism and induces a scheme isomorphism ${ }^{a} T_{\lambda \mu}: \operatorname{Spec}\left(R_{\lambda}\right)_{\operatorname{det} M} \longrightarrow$ Spec $\left(R_{\mu}\right)_{\text {det } M^{\prime}}$. These isomorphisms satisfy the cocycle condition. Hence we can define a prescheme which is locally isomorphic to $\mathbf{A}_{k}{ }^{n(m-n)}$. We denote it by $G_{n, m-n}$. Let $i_{\lambda}$ be the natural inclusion: $k \subsetneq R_{\lambda}$. Then $i_{\lambda}$ induces a morphism ${ }^{a} i_{\lambda}: U_{\lambda} \longrightarrow$ Spec $k$. We can glue ${ }^{a} i_{\lambda}$ into a morphism $i: G_{n, m-n} \longrightarrow$ Spec $k . \quad i$ is separated as easily seen. Hence $G_{n, m-n}$ can be considered as a $k$-scheme. We call this the Grassmannian $k$-scheme of $n$ planes in affine space $\mathbf{A}_{k}{ }^{m}$.

Next we construct the universal scheme vector bundle over $G_{n, m-n}$. Let $\widetilde{R}_{\lambda}$ be the polynomial rings which are obtained by adjunction of $n$ new variables $X_{h}{ }^{(\lambda)}(h=1, \cdots, n)$ to $R_{\lambda}$. Then for each $\lambda \in \Lambda$ there is a natural injection: $R_{\lambda} \subseteq \widetilde{R}_{\lambda}$. It induces a $k$-morphism: Spec $\widetilde{R}_{\lambda} \longrightarrow$ Spec $R_{i}$. We denote it by $p_{i}$. Between the variables let us introduce the relation:

$$
\left(X_{1}^{(\mu)}, \cdots, X_{n}^{(\mu)}\right)=\left(X_{1}^{(\lambda)}, \cdots, X_{n}^{(\lambda)}\right) M
$$

Then $X_{h}{ }^{(r)}\left(h^{\prime}=1, \cdots, n\right)$ turn out to be rational functions of $X_{h}{ }^{(\lambda)}$ which we denote by $r_{h^{\prime}}$. Since $r_{h^{\prime}} \in\left(\widetilde{R}_{\lambda}\right)$, we can assign to each $\widetilde{P} \in\left(\widetilde{\boldsymbol{R}}_{\mu}\right)_{\operatorname{det} M^{\prime}}$ an element $\widetilde{Q} \in\left(\widetilde{R}_{\lambda^{\prime}}\right)_{\operatorname{det} M}$ which is obtained by the substitution of $r_{i^{\prime} j^{\prime}}, r_{h^{\prime}}$ for $X_{i^{\prime} j^{\prime}}{ }^{(\mu)}$, $X_{h^{\prime}}{ }^{(\mu)}$. The isomorphism $\widetilde{T}_{\lambda, \mu}: \widehat{P} \mid \longrightarrow \widetilde{ }$ ) induces an isomorphism ${ }^{a} \breve{T}_{\lambda \mu}:$ Spec $\left(\widetilde{R}_{\lambda}\right)_{\operatorname{det} M} \longrightarrow \operatorname{Spec}\left(\tilde{R}_{\mu}\right)_{\operatorname{det} R^{\prime}}$. Since ${ }^{a} \widetilde{T}_{2 \mu}$ satisfy the cocycle condition, we get a prescheme $\Gamma_{n}^{m}$ by gluing Spec $\tilde{R}_{\lambda}(\lambda \in \Lambda)$. It is actually a $k$-scheme. Besides the $k$-morphisms $p_{\lambda}(\lambda \in \Lambda)$ can be glued into a $k$-morphism $p: \gamma_{n}^{m} \longrightarrow$ $G_{n, m-n}$. This can be easily seen from the commutative diagrams:


We call the $G_{n, m-n}$-prescheme $\gamma_{n}^{m}$ the universal scheme vector bundle because we have the following proposition.

Let $E$ be the sheaf of germs of section of $Y_{n}^{m}$. . Then $E$ can be viewed as a Module over the structure sheaf of $G_{n, m-n}$.

Proposition 1. $E$ is a quasi-coherent Module and the $G_{n, m-n}$-scheme $r_{n}^{m}$ is isomorphic to the scheme vector bundle $V(\check{E})$ associated to $E$.

Proof. Let us consider $\widetilde{R}_{2}$ as a $R_{\lambda}$-algebra by the natural injection: $R_{\lambda} G \widetilde{R}_{\lambda}$. Then there are natural isomorphisms:

$$
\begin{equation*}
\Gamma\left(U_{\lambda}, E\right) \cong \operatorname{Hom}_{\mathrm{Alg}}\left(\widetilde{R}_{\lambda}, R_{\lambda}\right)=\operatorname{Hom}_{\mathrm{Mod}}\left(R_{\lambda}^{n}, R_{\lambda}\right) \tag{1}
\end{equation*}
$$

where $R_{\lambda}{ }^{n}$ denotes the direct sum of $n$ copies of $R_{\lambda}$. For $f \in R_{\lambda}$ we also have a natural isomorphism: $\Gamma\left(\left(U_{\lambda}\right)_{f}, E\right) \cong \operatorname{Hom}_{\text {Mod }}\left(\left(R_{\lambda}\right)_{f}^{n},\left(R_{\lambda}\right)_{r}\right)$. Hence we see $\Gamma\left(U_{\lambda}, E\right)_{f}=\Gamma\left(\left(U_{\lambda}\right)_{f}, E\right)$. This shows that $E \mid U_{\lambda}$ is the sheaf associated to the $R$-module $\Gamma\left(U_{\lambda}, E\right)$. Hence $E$ is quasi-coherent. From (1) we have

$$
\Gamma\left(U_{\lambda}, \check{E}\right)=\operatorname{Hom}_{\text {Mod }}\left(\Gamma\left(U_{\lambda}, E\right), R_{\lambda}\right)=R_{\lambda}^{n}
$$

Therefore we obtain a natural isomorphism of the symmetric algebra of $\Gamma\left(U_{\lambda}, E\right)$ onto the polynomial ring $\widetilde{R}_{\lambda}$. This gives rise to a natural isomorphism $\tilde{i}: \operatorname{Spec} \widetilde{R}_{\lambda} \longrightarrow$ Spec $\Gamma\left(U_{\lambda}, S(E)\right.$ ), where $S(E)$ is the symmetric Algebra of Module $E$. Let $i_{\lambda}^{\prime}$ be the restriction of $\tilde{i}_{\lambda}$ on Spec $\left(\widetilde{R}_{\lambda}\right)_{\operatorname{det} \boldsymbol{M}}$. Then $i^{\prime} \lambda^{-1} i^{\prime}{ }^{\prime \prime}$ is equal to ${ }^{a} \widetilde{T}_{\mu \lambda}$. Hence we see that the isomorphism $\tilde{\tau}_{\lambda}(\lambda \in \Lambda)$ can be glued into a global isomorphism of $\Upsilon_{n}^{m}$ onto $V(E)$. This completes the proof.

Proposition 2. $G_{n, m-n}$ is isomorphic to $G_{m-n, n}$.
Proof. For $\lambda \in \Lambda$ we set $\bar{\lambda}=\{1, \cdots, m\}-\lambda$. Then $G_{m-n, n}$ is covered by the affine open sets $U_{\bar{\lambda}}$ which can be identified with Spec $R_{\bar{\lambda}}$ where $R_{\bar{\lambda}}=$ $k\left[X_{j i}{ }^{(\text {( })}\right] \quad(i=1, \cdots, n ; j=1, \cdots, m-n)$. We first construct an isomorphism: Spec $R_{\lambda} \longrightarrow$ Spec $R_{\bar{\lambda}}$ for each $\lambda \in \Lambda$ and then show that they can be glued together. We again take the example of $\lambda=\{1, \cdots, n\}$ and $\mu=\{1, \cdots, n-1$, $n+1\}$ for the convenience of writing. Let us denote by $Y$ the $(m-n)$-by- $m$ matrix with unknowns $Y_{j k}$ as the $(j, k)$-element respectively where $j=$ $1, \cdots, m-n$ and $k=1, \cdots, m$. Consider the matrix equation with the unknown $Y$ :

$$
X^{(\lambda) t} Y=0
$$

It has a unique solution $Y^{(\lambda)}$ if we impose the condition:

$$
\mathrm{Y}_{j, n-j^{\prime}}=\delta_{j j^{\prime}} \quad\left(j, j^{\prime}=1, \cdots, m-n\right)
$$

on $Y$. Actually we have $Y_{j i}=-X_{i j}{ }^{(\lambda)}$. Let $P \in R_{\bar{\lambda}}$. Substitutig $-X_{i j}{ }^{(\lambda)}\left(=Y_{j i}\right)$ for $X_{j i}{ }^{(\bar{\lambda})}$ in $P$, we get a polynomial in $R_{\lambda}$. This gives rise to an isomorphism of $R_{\bar{\lambda}}$ onto $R_{\lambda}$. It induces an isomorphism: Spec $R_{\lambda} \longrightarrow \operatorname{Spec} R_{\bar{\lambda}}$ which will be denoted by $\bar{i}_{i}$. We write

$$
\bar{M}=\left(\begin{array}{ccccc}
-X_{n 1}^{(\lambda)} & & 0 & \cdots & \\
& & 0 \\
\vdots & & & & 1_{n-1} \\
-X_{n, m-n}^{(\lambda)} & & &
\end{array}\right)
$$

Consider now the equation $X^{(\mu) t} Y=0$ and solve it on the condition :

$$
\begin{aligned}
& Y_{l n}=1, \quad Y_{j n}=0, \quad Y_{j^{\prime}, n+j}=\delta_{j^{\prime} j} \\
& j=2, \cdots, m-n, \quad j^{\prime}=1, \cdots, m-n
\end{aligned}
$$

We denote the solution by $\mathrm{Y}^{(\mu)}$. As for $\mu$, we have a natural isomorphism $\bar{i}_{\mu}:$ Spec $R_{\mu} \rightarrow \longrightarrow$ Spec $R_{\bar{j}}$. Since the solution is unique, $Y^{(\mu)}=\bar{M}^{-1} Y^{(\lambda)}$ up to $T_{\lambda \mu}$. Hence $\bar{i}_{\lambda}=\bar{i}_{\mu}$ in $U_{\lambda} \cap U_{\mu}$. We can therefore glue these isomorphisms and obtain a natural isomorphism

$$
\bar{\imath}: \quad G_{n, m-n} \longrightarrow G_{m-n, n} .
$$

This completes the proof.
2. Construction of the classifying morphism. Let $k$ be an arbitrary field. Let $X$ be a $k$-prescheme. Then a $k$-valued point of $X$ is a $k$-morphism $f:$ Spec $k \longrightarrow X$. Spec $k$ consists of a single point. We write $x$ for the image of Spec $k$ by $f . f$ gives rise to a $k$-homomorphism of $O_{X, x}$ into $k$. We denote it by the same letter $f$. Let $U$ be an affine open set in $X$ which contains $x$. Let $r_{J}$ be the restriction: $\Gamma\left(U, O_{X}\right) \longrightarrow O_{X, x}$. The kernel of $f \circ r_{v}: \Gamma(U, O) \longrightarrow k$ is denoted by $I$. We use the letter $A$ for $\Gamma\left(U, O_{x}\right)$ from now on. Then we have a $k$-vector space isomorphism

$$
A \cong k \oplus I .
$$

Now let $E$ be a quasi-coherent $O_{X}$-Module. Suppose there is an exact sequence:

$$
\begin{equation*}
O \longrightarrow E \longrightarrow O_{X}^{m} \longrightarrow O_{X}^{m} / E \longrightarrow O \tag{2}
\end{equation*}
$$

which splits locally, provided that $m$ is some positive integer. We write
$\Gamma(U, E)$ as $M$ and $\Gamma\left(U, O_{x}^{m} / E\right)$ as $N$. Let $U$ be so small that the exact sequence (2) splits on $U$. Then we have an $A$-module isomorphism

$$
g_{v}: \quad M \oplus N \cong A^{m} .
$$

$g_{v}$ induces an isomorphism : $I \cdot M \oplus I \cdot N \cong I^{m}$. We therefore have an isomorphism :

$$
M / I \cdot M \oplus N / I \cdot N \cong(A / I)^{n} .
$$

By restricting the coefficient ring to $k$, we get a $k$-vector space isomorphism. which gives rise to an injection

$$
j: \quad M \mid I \cdot M \hookrightarrow k^{m} .
$$

We denote by $M_{V}$ the subspace $j(M / I \cdot M)$ of $k^{m}$.
Lemma 1. For sufficiently small $U, M_{V}$ does not depend on the choice of $U$, but is determined uniquely by the $k$-valued point $f$.

Proof. Let $U^{\prime}$ be an affine open set such that $U^{\prime} \subset U$ and $x \in U^{\prime}$. Let $r($ resp. $\tilde{r})$ be the restriction homomorphism of $A($ resp. $M)$ on $A^{\prime}=\Gamma\left(U^{\prime}, O_{x}\right)$ (resp. $M^{\prime}=\Gamma\left(U^{\prime}, E\right)$ ). Then the diagrams:

are commutative where $r^{m}: A^{m} \longrightarrow A^{\prime m}$ is defined by

$$
r^{m}\left(a_{1}, \cdots, a_{m}\right)=\left(r\left(a_{1}\right), \cdots, r\left(a_{m}\right)\right) .
$$

The first diagram implies that $r$ sends $I$ in $I^{\prime}=\operatorname{Ker} f \circ r_{U^{\prime}}$. Hence we obtain the commutative diagram:

from the second diagram where the horizontal arrows are the inclusions. We therefore have $M_{v} \leftrightarrows M_{V^{\prime}}$. This inclusion can be replaced by the equality if $U$ is sufficiently small. This completes the proof.

Let us denote by $X(k)$ the set of $k$-valued points of $k$-prescheme $X$. By the injection: $f \mid \longrightarrow x$, we can identify $X(k)$ with a subset of $X$. Hence
we can induce a topology on $X(k)$ from that of $X$. From now on we consider $X(k)$ as a topological space equipped with this induced topology.

Let $q_{M}$ be the projection of $M \oplus N$ on the first factor $M$. We define $q \in \operatorname{End}_{A} A^{m}$ by $q=g_{V} \circ q_{M^{\circ}} \circ g_{V}{ }^{-1}$. With respect to the canonical base of $A^{m}$ there corresponds a matrix $\alpha$ to $q$. We set

$$
\alpha=\left(\begin{array}{ccc}
a_{l l} & \cdots & a_{l m} \\
\cdots & \cdots & \cdots \\
a_{m l} & \cdots & a_{m m}
\end{array}\right)
$$

Let $f_{v}$ be the natural projection of $A$ on $A / I$, i. e., $f_{\circ} r_{\sigma}$. Then the vectors $\left(f_{V}\left(a_{l l}\right), \cdots, f_{V}\left(a_{m l}\right)\right), \cdots,\left(f_{v}\left(a_{l m}\right), \cdots, f_{v}\left(a_{m m}\right)\right)$ span the vector subspace $M_{v}$ in $k^{m}$. Suppose $U$ is sufficiently small. Then this subspace is uniquely determined by $f$, which is guaranteed by Lemma 1. We use the symbol $G_{x}(f)$ instead of $M_{U} . \operatorname{dim} G_{X}(f)$ equals the maximum order of square submatrix $\beta$ of $\alpha$ such that $f_{v}(\operatorname{det} \beta) \neq 0$, or equivalently $\operatorname{det} \beta \notin I$. We write $b$ for $\operatorname{det} \beta$. For fixed $\beta$ the set of $g \in U \cap X(k)$ with $g_{v}(b) \neq 0$ is just Spec $A_{b} \cap X(k)$. Hence the set of $g \in X(k)$ such that

$$
\operatorname{dim} G_{X}(f) \leqq \operatorname{dim} G_{X}(g)
$$

contains an open neighborhood of $x$ in $X(k)$. Similarly the set of $g^{\prime} \in X(k)$ such that

$$
m-\operatorname{dim} G_{x}(f) \leqq \operatorname{dim} N / \operatorname{Ker} g_{\sigma}^{\prime} \cdot N
$$

contains an open neighborhood of $x$ in $X(k)$. Since.

$$
\operatorname{dim} M / \operatorname{Ker} g_{\sigma} \cdot M+\operatorname{dim} N / \operatorname{Ker} g_{V} \cdot N=m
$$

holds at any point $g \in U \cap X(k)$, we can conclude from the above facts that $\operatorname{dim} G_{X}(f)$ is locally constant in $X(k)$.

Suppose now $X$ is an irreducible algebraic $k$-prescheme with $k$ algebraically closed. Then $X(k)$ coincides with the set of closed points of $X$. It is a connected and dense subset of $X$. Hence $\operatorname{dim} G_{X}(f)$ is a constant on $X$. We denote it by $n$. Then $G_{X}: f \mid \longrightarrow G_{X}(f)$ can be viewed as a map of $X(k)$ into $G_{n, m-n}$ since there corresponds a closed point in $G_{n, m-n}$ to each $n$-plane in $k^{m}$ naturally. Let $\beta$ be an $n$-by $-n$ submatrix of $\alpha$ with $b=\operatorname{det} \beta_{女} R(A)$ where $R(A)$ is the radical of $A$. Then we have Spec $A=$ $\cup \operatorname{Spec} A_{b}$ where the union ranges over the submatrices of the above nature ; for $U$ Spec $A_{z}$ is an open subset containing all the closed points of Spec $A$. For brevity's sake we assume $\beta=\left(a_{i i^{\prime}}\right)_{i, i^{\prime}=1, \cdots, n}$. We define $c_{i j} \in A_{b}$ ( $i=1, \cdots, n ; j=1, \cdots, m-n$ ) by

$$
\beta^{-1}\left(\begin{array}{ccc}
a_{l l} & \cdots \cdots & a_{l m} \\
\cdots \cdots & \cdots \cdots & \cdots \\
a_{n l} & \cdots \cdots & a_{n m}
\end{array}\right)=\left(\begin{array}{r}
c_{l l} \\
c_{n l}
\end{array} \cdots \cdots \begin{array}{c}
c_{l, m-n} \\
1_{n} \\
\cdots \cdots \cdots \cdots \cdots \\
c_{n l} \\
\cdots \cdots
\end{array}\right)
$$

Recall that $G_{n, m-n}$ is covered by the affine open sets $U_{\lambda}(\lambda \in \Lambda)$ each of which is identifiable with affine space $\operatorname{Spec} k\left[X_{i j}{ }^{(\lambda)}\right]_{i=1, \cdots, n ; j=1, \ldots, m-n}$. For $Q \in$ $k\left[X_{i j}{ }^{(i)}\right]$ we define

$$
H(Q)=Q\left(c_{i j}\right)
$$

Then $H$ is a homomorphism of $k\left[X_{i j}{ }^{(\lambda)}\right]$ into $A_{b}$. $H$ induces a morphism ${ }^{a} H:$ Spec $A_{b} \longrightarrow$ Spec $k\left[X_{i j}{ }^{(\lambda)}\right]=U_{2}$. We want to show that we can glue ${ }^{a} H$ and get a morphism of $X$ into $G_{n, m-n}$. For that it suffices to prove

$$
\begin{equation*}
G_{X}(f)={ }^{a} H(f) \tag{3}
\end{equation*}
$$

for any $k$-valued point $f \in U_{b}=\operatorname{Spec} A_{b}$. We write $f_{V_{b}}$ as $f_{b}$. Then we have

$$
\begin{aligned}
{ }^{a} H(f) & =H^{-1}\left(\operatorname{Ker} f_{b}\right)=\left\{Q \in k\left[X_{i j}{ }^{(\lambda)}\right] \mid Q\left(c_{i j}\right) \in \operatorname{Ker} f_{v}\right\} \\
& =\left\{Q \in k\left[X_{i j}{ }^{(\lambda)}\right] \mid Q\left(f_{b}\left(c_{i j}\right)\right)=0\right\}=G_{X}(f) .
\end{aligned}
$$

Hence we get (3).
The morphism obtained in this way is nothing but the extension of $G_{X}$ to $X$ (by continuity). We use the same symbol $G_{X}$ for it. We say that $G_{x}$ is the classifying morphism of $E$ (corresponding to the exact sequence (2)).
3. Construction of the isomorphism in Theorem A. Let $X$ be an irreducible algebraic prescheme over an algebraically closed field $k$ and $E$ a quasi-coherent $O_{X}$-Module. Suppose there is an exact sequence (2) which splits locally. Then we can construct the classifying morphism $G_{x}$ : $X \longrightarrow G_{n, m-n}$ for $E$ as shown in $\S 2$. Let $\mathcal{E}$ be the sheaf of germs of $G_{n, m-n}$-sections of $Y_{n}^{m}$. $\mathcal{E}$ actually is a Module over $G_{n, m-n}$. The inverse image of Module $\mathcal{E}$ by $G_{X}$ is defined by

$$
G_{X}^{*}(\mathcal{E})=O_{X} \times G_{X}^{-1}\left(O_{\theta_{n, m-n}}\right) G_{X}^{-1}(\mathcal{E})
$$

We first construct an isomorphism:

$$
\begin{equation*}
G_{X}^{*}(\mathcal{E}) \cong E \tag{4}
\end{equation*}
$$

We follow the notations in the preceding sections, provided that the symbols relative to $U_{b}$ are replaced by the corresponding ones relative to $U$ with a prime. For example, we write $U^{\prime}, A^{\prime}, M^{\prime}$ for $U_{b}, A_{b}, M_{b}$ and so on. In
addition, $a_{i j}$ in this section, strictly speaking, should be written as $r\left(a_{i j}\right)$ with the restriction homomorphism $r: A \longrightarrow A^{\prime}$. The isomorphism (4) is a collection of isomorphisms: $\Gamma\left(U^{\prime}, G_{X}{ }^{*}(\mathcal{E})\right) \longrightarrow M^{\prime}$. We construct the isomorphism (4) on $U^{\prime}$ in the following, assuming $\beta=\left(a_{i i^{\prime}}\right)_{i, i^{\prime}=1, \cdots, n}$ for the convenience of notations. The rest are treated in exactly the same manner. Let $\sigma^{\prime} \in M^{\prime}$. Then $\sigma^{\prime}$ is a linear combination of the line vectors $\alpha_{i}(i=1, \cdots, n)$ with coefficients in $A^{\prime}$, where $\alpha_{i}=\left(a_{i l}, \cdots, a_{i n}\right)$. Let $\beta_{i}=(0, \cdots, 0,1,0, \cdots, 0$, $\left.c_{i l}, \cdots, c_{i, m-n}\right)$ where $i=1, \cdots, n$. Then $\alpha_{i}$ with $1 \leqq i \leqq n$ can be written as linear combinations of $\beta_{i^{\prime}}$. We further have

Lemma 2. For $k=n+1, \cdots, m$ also, $\alpha_{k}$ are linear combinations of $\beta_{i}$.
Proof. Let $M_{0}$ be the submodule of $M^{\prime}$ generated by $\alpha_{1}, \cdots, \alpha_{n}$. For any $k$-valued point $f$ we have

$$
f^{m}\left(\alpha_{k}\right)=f\left(a_{k l}\right) f^{m}\left(\beta_{1}\right)+\cdots+f\left(a_{k n}\right) f^{m}\left(\beta_{n}\right)
$$

where $f^{m}$ is defined as $r^{m}$ in $\S 2$. Hence

$$
\alpha_{k}-a_{k l} \beta_{l}-\cdots-a_{k n} \beta_{n} \in R\left(A^{\prime}\right)^{n} .
$$

Since $M^{\prime}$ is a direct summand of $A^{\prime m} ; R\left(A^{\prime}\right)^{m} \cap M^{\prime}$ equals $R\left(A^{\prime}\right) M^{\prime}$. Hence we have

$$
M_{0} \oplus R\left(A^{\prime}\right) M^{\prime}=M^{\prime} .
$$

We therefore obtain $M^{\prime}=M_{0}$ from the lemma of Nakayama. This completes the proof.

Let us now define $R_{\lambda}$-homomorphisms $e_{h}^{(\lambda)}: \widetilde{R}_{R} \longrightarrow R_{2}$ by

$$
e_{k}^{(\lambda)}\left(X_{k}^{(\lambda)}\right)=\delta_{k k} .
$$

For each $h=1, \cdots, n e_{h}{ }^{(2)}$ corresponds to an element of $\Gamma\left(U_{\lambda}, Y_{n}^{m}\right)$, denoted by $e_{h}{ }^{(2)}$ again, by means of the isomorphism (1). Then $e_{1}{ }^{(2)}, \cdots, e_{n}{ }^{(2)}$ constitute an $R_{\lambda}$-base for $\Gamma\left(U, Y_{n}^{n}\right)$. It may be called the "canonical" base. We take $\lambda=\{1, \cdots, n\}$, which is actually decided by the way of choosing $\beta$. Then $G_{X}\left(U^{\prime}\right) \subset U_{\lambda}$. We write $\tilde{e}_{h}^{(\lambda)}$ for $e_{h}^{(\lambda)}{ }^{(2)} G_{x} \mid U^{\prime}$ where $G_{x} \mid U^{\prime}$ is the restriction of $G_{X}$ on $U^{\prime}$. Then $\tilde{e}_{h}^{(\lambda)} \in \Gamma\left(U^{\prime}, G_{X}^{-1}(\mathcal{E})\right)$. Using Lemma 2, we can find $d_{1}, \cdots, d_{n} \in A^{\prime}$ such that

$$
\sigma^{\prime}=d_{1} \beta_{1}+\cdots+d_{n} \beta_{n} .
$$

We define

$$
j_{v^{\prime}}\left(\sigma^{\prime}\right)=d_{1} \otimes \tilde{e}_{1}{ }^{(\lambda)}+\cdots+d_{n} \otimes \tilde{e}_{n}{ }^{(\lambda)} .
$$

Then we have $j^{0},\left(\sigma^{\prime}\right) \in \Gamma\left(U^{\prime}, G_{x}{ }^{*}(\mathcal{E})\right)$.
Let us go back to $U$ and define $j_{v}(\boldsymbol{\sigma})$ for $\sigma \in M$ by gluing $j_{v^{\prime}}\left(r^{\prime}(\boldsymbol{\sigma})\right)$ where
$r^{\prime}$ is the restriction homomorphism $M \longrightarrow M^{\prime}$. To do so, take $\dot{\beta}=$ $\left(a_{i i^{\prime}}\right)_{i=1, \ldots, \cdots ; i^{\prime}=1, \ldots, n-1, n+1}$, since the rest are treated in the same way. Suppose $\hat{b}=\operatorname{det} \hat{\beta} \notin R(A)$. We write $\mu=\{1, \cdots, n-1, n+1\}$ as before. Let $r_{\lambda}$ (resp. $r_{\mu}$ ) be the restriction homomorphism: $\Gamma\left(U_{\lambda}, \gamma_{n}^{m}\right)\left(\right.$ resp. $\left.\Gamma\left(U_{\mu}, \gamma_{n}^{m}\right)\right) \longrightarrow \Gamma\left(U_{\lambda} \cap U_{\mu}\right.$, $r_{n}^{n}$ ). Let $\varepsilon_{h}^{(\lambda)}$ (resp, $\left.\varepsilon_{k}^{(\mu)}\right)$ be the image of $e_{h}^{(\lambda)}$ (resp. $\left.e_{k}^{(\mu)}\right)$ by $r_{\lambda}$ (resp. $r_{\mu}$ ). Then we have

$$
\begin{equation*}
\left(\varepsilon_{1}^{(\lambda)}, \cdots, \varepsilon_{n}^{(\lambda)}\right)=\left(\varepsilon_{1}^{(\mu)}, \cdots, \varepsilon_{n}^{(\mu)}\right)^{t} M . \tag{5}
\end{equation*}
$$

We write

$$
N=\left(\begin{array}{cc} 
& c_{1, n+1} \\
1_{n-1} & \vdots \\
0 \cdots & c_{n, n+1}
\end{array}\right)
$$

 follows from (5) that

$$
\begin{equation*}
\left(\tilde{\varepsilon}_{1}^{(\lambda)}, \cdots, \tilde{\varepsilon}_{n}{ }^{(\lambda)}\right)=\left(\tilde{\varepsilon}_{1}^{(\mu)}, \cdots, \tilde{\varepsilon}_{n}^{(\mu)}\right)^{t} N . \tag{6}
\end{equation*}
$$

Let $\sigma \in M$. Let $\sigma^{\prime}$ be the restriction of $\sigma$ on $U^{\prime}$ and $\sigma^{\prime \prime}$ that on Spec $A_{6}$. We denote by $\hat{\beta}_{i}$ the line vectors of the matrix $\hat{\beta}^{-1}\left(a_{i j}\right)_{i=1, \cdots, \cdots ; j=1, \cdots, m}$. Define $\hat{d}_{i}$ by

$$
\sigma^{\prime \prime}=\hat{d}_{1} \hat{\beta}_{1}+\cdots+\hat{d}_{n} \hat{\beta}_{n} .
$$

Then up to the restriction homomorphism, we have

$$
\begin{equation*}
\left(\hat{d}_{1}, \cdots, \hat{d}_{n}\right)=\left(d_{1}, \cdots, d_{n}\right) N \tag{7}
\end{equation*}
$$

From (6), (7) we obtain

$$
\begin{equation*}
d_{1} \otimes \tilde{\varepsilon}_{1}^{(\lambda)}+\cdots+d_{n} \otimes \tilde{\varepsilon}_{n}{ }^{(\lambda)}=\hat{d}_{1} \otimes \tilde{\varepsilon}_{1}^{(\mu)}+\cdots+\hat{d}_{n} \otimes \tilde{\varepsilon}_{n}^{(\mu)} . \tag{8}
\end{equation*}
$$

Note that $\tilde{\varepsilon}_{h}{ }^{(\iota)}=\overline{\bar{e}}_{h}{ }^{(t)} \mid U^{\prime \prime}$ for $\iota=\lambda, \mu$. Then it follows from (8) that we can get an element of $\Gamma\left(U, G_{X}{ }^{*}(\mathcal{E})\right)$ by gluing the pieces together. We write it as $j_{v}(\sigma)$. Then

$$
\begin{equation*}
j_{v}: \quad M \longrightarrow \Gamma\left(U, G_{x}^{*}(\mathcal{E})\right) \tag{9}
\end{equation*}
$$

is an $A$-module isomorphism.
By the same reasoning as above we have the following lemma.
Lemma 3. $j_{v}$ does not depend on the choice of a splitting.
Lemma 4. These isomorphisms $j_{v}$ satisfy the condition of compatibility with the restriction homomorphisms.

Proof. Let $U^{\prime}$ be any open subset of $U$. We write $A^{\prime}, M^{\prime}$ for $\Gamma\left(U^{\prime}, O_{X}\right), \Gamma\left(U^{\prime} E\right)$ respectively. A local splitting of (2) over $U$ gives rise
to isomorphisms

$$
\begin{array}{ll}
g_{V}: & M \oplus N \cong A^{m} \\
g_{\nabla^{\prime}}: & M^{\prime} \oplus N^{\prime} \cong A^{\prime m}
\end{array}
$$

We can define $b^{\prime}, \beta_{i}^{\prime}$ for $g_{V^{\prime}}$ in the same way as $b, \beta_{i}$ for $g_{V}$ respectively. Let $r$ be the restriction homomorphism: $\Gamma\left(U_{b}, O_{x}\right) \longrightarrow \Gamma\left(U_{b^{\prime}}^{\prime}, O_{x}\right)$. Then $\beta_{i}^{\prime}=r^{m}\left(\beta_{i}\right)$. Hence $d_{h}^{\prime}=r\left(d_{h}\right)$ where $d_{h}^{\prime}$ are defined for $g_{V^{\prime}}$ as $d_{h}$ for $g_{\sigma}$. We can therefore conclude that $j_{\sigma^{\prime}}\left(\sigma^{\prime}\right)$ is the image by the restriction homomorphism of $j_{0}(\sigma)$ where $\sigma^{\prime}$ is that of $\sigma$.

Thus $j: U \longrightarrow j_{v}$ is the required sheaf isomorphism.
In conclusion we can state the
Theorem. Let $X$ be an irreducible algebraic prescheme over an algebraically closed field $k$. Let $E$ be a quasi-coherent $O_{X}$-Module having an exact sequence (2) which splits locally. Then there are a morphism $G_{x}$ : $X \longrightarrow G_{n, m-n}$ and an isomorphism : $G_{X}{ }^{*}(\mathcal{E}) \cong E$ for some positive integer $n$ where $\mathcal{E}$ is the sheaf of germs of $G_{n, m-n}$-sections of $\gamma_{n}^{m}$.
(Hence $E$ turns out to be locally free.)
Now let us prove Theorem $A$. It is the same in essence as the theorem stated just above. There is only need of giving attention to some facts. First we note that

$$
\widetilde{G_{X}^{*}}(\mathcal{E})=G_{X}^{*}(\widetilde{\mathcal{E}}),
$$

since $\mathcal{E}$ is locally free and of finite rank. The isomorphism: $G_{x}{ }^{*}(\mathcal{E}) \fallingdotseq E$ induces the one: $V(\breve{\mathcal{E}}) \cong V\left(G_{X}{ }^{*}(\mathcal{E})\right)$. Secondly we have

$$
V\left(G_{X}^{*}(\check{\mathcal{E}})\right)=V(\check{\mathcal{E}}) \times{G_{n, m}} X
$$

Hence we can obtain Theorem $A$.
4. Rational homotopy. We make the definition of rational homotopy in the first half of this section and construct the rational homotopy in Theorem $B$ in the second one.

Let $X, Y$ be $k$-preschemes where $k$ is an arbitrary field. Let $k[T]$ be the polynomial algebra over $k$ in one variable $T$ and $t$ a $k$-valued point of the $k$-scheme Spec $k[T]$. Then $t$ induces an algebra homomorphism $t^{*}: k[T] \longrightarrow k$. On the other hand $k$ is included in $\Gamma\left(X, O_{x}\right)$ in the natural way. The product of $t^{*}$ with this inclusion is a homomorphism: $k[T] \longrightarrow$ $\Gamma\left(X, O_{X}\right)$. This homomorphism induces a morphism $\tilde{t}: X \longrightarrow$ Spec $k[T]$ in the natural way. Now we write

$$
Z=X \times_{\text {spec } k} \operatorname{Spec} k[T] .
$$

Then there is a unique morphism $t^{\prime}: X \rightarrow Z$ such that the diagram

is commutative. Let $t_{1}$ (resp. $t_{2}$ be the $k$-valued point of Spec $k[T]$ which corresponds to the natural projection:

$$
\begin{aligned}
& k[T] \longrightarrow k[T] /(T) \cong k \\
& \text { (resp. } k[T] \longrightarrow k[T] /(1-T) \cong k) .
\end{aligned}
$$

As stated above, these $k$-valued points give rise to morphisms $t_{1}, t: X \longrightarrow Z$ respectively. We can now define the rational homotopy as follows. Let us consider morphisms $f_{1}, f_{2}: X \longrightarrow Y$. Then a rational homotopy from $f_{1}$ to $f_{2}$ is by definition a morphism $h: Z \longrightarrow Y$ such that $f_{i}=h \circ t_{i}^{\prime}$ for $i=1,2$. We also say that $f_{1}$ is rationally homotopic to $f_{2}$.

Let us turn to the problem of constructing the rational homotopy in Theorem $B$. Let $E$ be a quasi-coherent $O_{x}$-Module. $E$ is supposed to be a direct summand of a free $O_{X}$-Module of finite rank. Hence for some positive integer $m$ there are a quasi-coherent $O_{x}$-Module $E_{1}$ and an isomorphism

$$
\begin{equation*}
g_{1}: \quad E \oplus E_{1} \cong O_{X}^{m} . \tag{10}
\end{equation*}
$$

Let us consider another decomposition

$$
\begin{equation*}
g_{2}: \quad E \oplus E_{2} \cong O_{X}^{m} \tag{11}
\end{equation*}
$$

where $E_{2}$ is an $O_{x}$-Module. Suppose $X$ is an irreducible algebraic prescheme with $k$ algebraically closed. From the decompositions (10), (11) we obtain the corresponding classifying morphisms $G_{1}, G_{2}: X \xrightarrow{\rightarrow} G_{n, m-n}$ for some integer $n$. Let $q_{X}$ be the projection of $Z=X \times \operatorname{Spec} k[T]$ on the first factor $X$. We set $E_{Z}=q_{X}{ }^{*}(E)$. Let $U$ be an affine open set in $X$. We write $A, M, W$ for $\Gamma\left(U, O_{x}\right), \Gamma(U, E), q_{x}{ }^{-1}(U)$ respectively. Then $W$ can be identified with $\operatorname{Spec}(A \otimes k[T])$ and, moreover, $q_{x} \mid W$ corresponds to the inclusion: $A \subset A \otimes k[T]$ given by $a \mid \longrightarrow a \otimes 1$ for $a \in A$. Hence there is a natural isomorphism :

$$
q_{x}^{*}(E) \mid W\left(=\left(q_{x} \mid W\right)^{*}(E)\right) \cong(k[T] \otimes M)^{\sim}
$$

where $(k[T] \otimes M)^{\sim}$ is the $O_{w}$-Module associated to $A \otimes k[T]$-module $k[T] \otimes M$. We write the module $k[T] \otimes M$ by $M_{Z}$ below. The decompositions (10), (11) give rise to those of the $A$-module $A^{m}$ :

$$
\begin{equation*}
M \oplus N_{i} \cong A^{m} \quad(i=1,2) \tag{12}
\end{equation*}
$$

respectively. We further have the $A \otimes k[T]$-module decompositions

$$
\begin{equation*}
M_{z} \oplus k[T] \otimes N_{i} \cong(A \otimes k[T])^{m} . \quad(i=1,2) \tag{13}
\end{equation*}
$$

from (12), (13) gives the inclusions: $M_{z} \hookrightarrow(A \otimes k[T])^{m}$. We denote them by $g_{1}(W), g_{2}(W)$ respectively. We define $(1-T) g_{1}(W),(T) g_{2}(W)$ by $(1-T) g_{1}(W) \boldsymbol{\sigma}=(1 \otimes(1-T)) g_{1}(W)(\boldsymbol{\sigma}),(T) g_{2}(W)(\boldsymbol{\sigma})=(1 \otimes(T)) g_{2}(W)(\boldsymbol{\sigma})$ for $\boldsymbol{\sigma} \in$ $M_{z}$. We set:

$$
\begin{equation*}
g_{W}=(1-T) g_{1}(W) \oplus(T) g_{2}(W) . \tag{14}
\end{equation*}
$$

$g_{W}$ induces a morphism ${ }^{"} g_{W}: E_{Z} \mid W \longrightarrow O_{Z}{ }^{2 m}$. Since the affine ope nsets $W$ cover $Z$, we finally obtain a morphism $g^{*}: E_{Z} \longrightarrow O_{Z}{ }^{2 m}$. The image of $g_{W}$ is a direct summand of $(A \otimes k[T])^{2 m}$, as easily seen. Hence we can construct a classifying morphism $G_{Z}: Z \longrightarrow G_{n, 2 m-n}$ by means of $g^{*}$.

Let $U_{\lambda}$ be an affine open set defined in $\S 1$. Hence $U_{\lambda}$ is.
We denote by $R, R^{\prime}$ polynomial rings $k\left[X_{i j}\right]_{i=1, \cdots, n ; j=1, \cdots, m-n}, k\left[\mathrm{Y}_{i k}\right]_{i=1, \cdots, n} ;$ $k=1, \cdots, 2 m-n$ respectively. Consider the epimorphisms $s_{1}, s_{2}: R^{\prime} \rightarrow \longrightarrow R$ that are defined by

$$
\begin{array}{ll}
s_{1}\left(\mathrm{Y}_{i k}\right)=X_{i k} & \text { if } \\
s_{2}\left(\mathrm{Y}_{i k}\right)=X_{i, k-m} & \text { if } \quad m+1 \leqq k \leqq 2 m-n, \quad \text { otherwise } s_{1}\left(\mathrm{Y}_{i k}\right)=0 \\
\text { otherwise } s_{2}\left(\mathrm{Y}_{i k}\right)=0 .
\end{array}
$$

Let $\lambda$ be a subset with card. $\lambda=n$ of $\{1, \cdots, m\}$. Add $m$ to each element of $\lambda$. Then we have a subset of $\{1, \cdots, 2 m\}$. We write it as $\lambda+m$. The meaning of $s_{1}{ }^{(\lambda)}, s_{2}{ }^{(\lambda)}$ is evident. These epimorphisms induce morphisms: $U_{\lambda} \longrightarrow U_{\lambda}^{\prime}, U_{\lambda} \longrightarrow U_{\lambda+m}^{\prime}$ respectively where $U_{\lambda}, U_{\lambda}^{\prime}$ are the affine open sets in $G_{n, m-n}, G_{n, 2 m-n}$ defined in $\S 1$ respectively. Gluing these morphisms, we obtain two closed immersions $G_{n, m-n} \leftrightarrows G_{n, 2 m-n}$. We denote them by $s_{1}, s_{2}$ again.

Lemma 5. $s_{1}, s_{2}$ are rationally homotopic to each other.
Proof. Beginning with the epimorphism $s: R^{\prime} \longrightarrow R \otimes k[T]$ that is defined by $s\left(\mathrm{Y}_{i k}\right)=X_{i k} \otimes T$ if $1 \leqq k \leqq m-n, s\left(Y_{i k}\right)=X_{i, k-m} \otimes(1-T)$ if $m+$ $1 \leqq k \leqq 2 m-n$, we can construct a morphism: $X \times_{\text {spec } k} \operatorname{Spec} k[T] \longrightarrow Y$ exactly as above. This morphism is the required rational homotopy.

Lemma 6. The diagram:

has the commutative upper and lower triangles.
Proof. Let $f$ be $a k$-valued point of $X$. Then $t_{i}^{\prime} \circ f$ are $k$-valued points of $Z$ where $i=1,2$. We write $x, z_{i}$ for the closed points corresponding to $f, t_{i}^{\prime} \circ f$ respectively. We follow the notations in the earlier part of this section. Suppose $x \in U$. Then $z_{i} \in W$. To $t_{i}^{\prime} \circ f$ there correspond $k$-homomorphisms: $A \otimes k[T] \longrightarrow k$, which are denoted by $\tilde{f}_{i}$ respectively. Take arbitrary $\sigma \in M$ and $P \in k[T]$. Then from (14) we obtain

$$
\begin{aligned}
& \tilde{f}_{1}^{2 m}\left(g_{W}(\boldsymbol{\sigma} \otimes P(T))\right)=\left(f_{V}^{m}\left(g_{1}(W)(\boldsymbol{\sigma})\right)(P(0), \cdots, 0)\right. \\
& \tilde{f}_{2}^{2 m}\left(g_{W}(\boldsymbol{\sigma} \otimes P(T))\right)=\left(0, \cdots, f_{V}^{m}\left(g_{2}(W)(\boldsymbol{\sigma})\right) P(1)\right)
\end{aligned}
$$

where $f_{V}$ is $f_{\circ} r_{U}$ in $\S 2$. We therefore have

$$
\begin{equation*}
G_{Z^{\circ}} \circ t_{i}^{\prime}(x)=s_{i} \circ G_{i}(x) \tag{15}
\end{equation*}
$$

with $x$ ranging over the closed points of $X$. Since the set of closed points is dense, (15) holds for any point $x$ of $X$. This completes the proof.

It is seen from the above two lemmas that $s_{1} \circ G_{1}$ and $s_{2} \circ G_{2}$ are rationally homotopic. Hence we get Theorem $B$.
5. $\boldsymbol{B}_{k}$ and $\boldsymbol{B}_{k}^{s}$. In this section we construct the direct limit of Grassmannian $k$-schemes $G_{n, n}(n=1,2, \cdots)$ in the category of $k$-schemes and then define the classifying $k$-space $B_{k}$. We shall further prove a proposition.

Consider the polynomial ring $k\left[X_{1}, \cdots, X_{n}\right]$ in $n$ variables. We use the notation $A_{n}$ for it. Substituting the zero for $X_{n+1}$, we get a homomorphism $i_{n, n+1}: A_{n+1} \longrightarrow A_{n}$. It induces a closed immersion $j_{n, n+1}:$ Spec $A_{n} \longrightarrow$ Spec $A_{n+1}$. We further put $i_{n, m}=i_{m-1, m} \cdots i_{n, n-1}, j_{n, m}=j_{m-1, m} \cdots \cdots j_{n, n-1}$ for integers $m$ with $n<m$. Thus we get an inverse system ( $A_{n}, i_{n, m}$ ) of rings and a direct system ( $\operatorname{Spec} A_{n}, j_{n, m}$ ) of affine schemes. The direct limit of the latter in the category of schemes is equal to Spec lim inv. $A_{n}$.

Consider the Grassmannian $k$-scheme $G_{n, n}$. Take arbitrary $\lambda \in \Lambda$ and
set $U_{1}=U_{2}$. We write $\Lambda_{n}$ for $\Lambda$ from now on. We define an element $\mu \in \Lambda_{n}$ by $\mu=\lambda \cup\{2 n+1, \cdots, 2 m-1\}$. Instead of $U_{\mu}$ we write $U_{m}$. Then $\Gamma\left(U_{m}, G_{m, m}\right)$ can be viewed as $A_{m}{ }^{2}$. Hence the system $U_{m}$ with the natural immersions can be identified with a cofinal subsystem of (Spec $\left.A_{n}, j_{n, m}\right)$. We denote the direct limit by $V_{n, 2}$. Then we have the natural closed immersions $j_{m}: U_{m} \longrightarrow V_{n, 2}$. We want to glue $V_{n, 2}$ where $n$ ranges over the positive integers and $\lambda$ over $\Lambda_{n}$. Let $\lambda, \mu \in \Lambda_{n}$. We put $d=\operatorname{det} M$ and $d^{\prime}=\operatorname{det} M^{\prime}$ (see $\S 1$ for $M$ and $M^{\prime}$ ). If we begin with $U_{\mu}$, then we have another direct system: $U_{1}^{\prime} \longrightarrow U_{2}^{\prime} \longrightarrow U_{m}^{\prime} \longrightarrow \cdots$. It is readily checked that $U_{m} \cap U_{m}^{\prime}=\left(U_{m}\right)_{d}=U\left({ }_{m}^{\prime}\right)_{d^{\prime}}$ and that lim dir. $\left(U_{m}\right)_{d}=\left(V_{n, 2}\right)_{d}$, lim dir. $\left(U_{m}^{\prime}\right)_{d^{\prime}}$ $=\left(V_{n, \mu}\right)_{d^{\prime}}$. The morphism of the direct systems:

gives rise to an isomorphism: $\left(V_{n, 2}\right)_{d} \longrightarrow\left(V_{n, 2}\right)_{d^{\prime}}$. These isomorphisms satisfy the condition of compatibility. Thus we can obtain a $k$-prescheme $V_{n}$. In addition $V_{n}$ is contained in $V_{m}$ as an open sub-prescheme for $m>n$. We define $B_{k}^{s}=\bigcup_{n=1}^{\infty} V_{n}$. Then $B_{k}{ }_{k}$ can be viewed as a $k$-scheme. We can further consider $G_{n, n}$ as a sub-scheme of $B_{k}^{s}$ in the natural way, so that we have a sequence of sub-schemes: $\cdots \subset G_{n, n} \subset G_{n-1, n-1} \subset \cdots \subset B_{k}^{s}$. We define $B_{k}$ to be the union of $G_{n, n}(n=1,2, \cdots)$. Then there is a natural injection $\pi: B_{k} \longrightarrow B_{k}^{s}$. Using $\pi$, we introduce the structure of a geometrical $k$-space into $B_{k}$. In other words the structure sheaf of $B_{k}$ is defined to be the inverse image by $\pi$ of that of $B_{k}^{s}$. $\pi$ turns out to be a morphism.

Proposition 3. $B_{k}$ is isomorphic to the direct limit of $G_{n, n}$ in the category of geometrical $k$-spaces.

Proof. We denote by $B$ the direct limit of $G_{n, n}$. Then there is a morphism $\tilde{j}: B \longrightarrow B_{k}$. Let $x \in B_{k}$. Then $x \in G_{n, n}$ for some $n$. To $x$ there corresponds a prime ideal $I_{x}$ in $A_{n^{2}}$. We write $I$ for the inverse image of $I_{x}$ by the natural morphism: lim inv. $A_{n} \longrightarrow A_{n^{2}}$. Then the proposition follows from the fact: $O_{B_{k}, x}$ is isomorphic to (lim inv. $\left.A_{n}\right)_{I}=\lim$ inv. $O_{G_{m}, m, x}$.

Proposition 4. Let $X$ be a quasi-compact reduced $k$-prescheme and $G_{X}$ a $k$-morphism: $X \longrightarrow B_{k}$. Then $G_{X}$ decomposes into $X \longrightarrow G_{n, n} \subseteq B_{k}$ for some $n$.

Proof. It suffices to prove $G_{X}(X(k)) \subset G_{n, n}$ for some $n$. (See $I, 5.2 .2$, [1]). Suppose the contrary. Then there are closed points $x_{n}(n=1,2, \cdots)$ of $X$ such that $x_{n}^{\prime} \in G_{n+1, n+1}-G_{n, n}$, where $x_{n}^{\prime}=G_{X}\left(x_{n}\right)$. We set $S=\left\{x_{n}^{\prime} \mid n=\right.$ $1,2, \cdots\}$. Since $x_{n}^{\prime}$ are closed in $B_{k}^{s}$, they are so in $B_{k}$ too. Let $S^{\prime}$ be any subset of $S$. Then $S^{\prime} \cap G_{m, m}$ are closed in $G_{m, m}$ for any $m$. Hence $S$ is a closed discrete subset in a quasi-compact set $G_{X}(X)$. Therefore it is finite. This contradiction proves the proposition.
6. Proof of the main theorem. Let $X$ be an irreducible noetherian scheme over an algebraically closed field $k$. A coherent $O_{x}$-Module will be called projective if it is a direct summand of a free $O_{X}$-Module of finite rank. Hence a projective $O_{X}$-Module is locally free (see $\S 3$ ). Let $K P(X)$ be the Grothendieck group of classes of projective $O_{x}$-Modules. Then each $\xi \in K P(X)$ can be written in the form: $[E]-l$ where $[E]$ is the class of a projective $O_{X}$-Module $E$ and $l$ a positive integer. For $E$ there is a coherent $O_{x}$-Module $F$ such that $E \oplus F \cong O_{X}^{m}$ for some positive integer $m$. Hence we can construct a classifying morphism $G_{X}: X \longrightarrow G_{n, m-n}$ by the use of this direct sum decomposition, where $n$ is the rank of $E$. We restrict ourselves to the case where $2 n=m$ from now on. We view $G_{X}$ as a morphism: $X \longrightarrow G_{n, n} \times(l-n)$, and further as one: $X \longrightarrow B_{k} \times(l-\mathrm{n})$. We define $\varphi(\xi)$ to be the rational homotopy class $\in\left[X, B_{k} \times Z\right]_{\text {rat }}$ containing $G_{\boldsymbol{x}}$.

Lemma 7. $\varphi(\xi)$ is uniquely determined by $\xi$.
Proof. First we replace $E, F, m$ by $E \oplus O_{x}{ }^{k}, F \oplus O_{x}{ }^{k}, m+2 k$ respectively. Hence $l$ must be replaced by $l+k$. In this case we easily see that $G_{X}$ does not change as a morphism: $X \longrightarrow B_{k}$. Consequently $\varphi(\xi)$ also does so.

Secondly suppose we have $E \oplus F^{\prime} \cong O_{X}^{m}$ also for some coherent $F^{\prime}$. Using this decomposition, we construct a classifying morphism $G_{X}{ }^{\prime}$. Then $G_{X}{ }^{\prime}$ is rationally homotopic to $G_{x}$ by means of Theorem B. Hence $\varphi(\xi)$ does not change.

Finally let $\left[E^{\prime}\right]-l^{\prime}$ be any other form of expressing $\xi$. Then $E \oplus O_{x}{ }^{k}=$ $E^{\prime} \oplus O_{x}^{k^{\prime}}$ for some positive integers $k, k^{\prime}$. Suppose $E^{\prime} \oplus F^{\prime}=O_{X}^{m^{\prime}}$ for some coherent $F^{\prime}$ and some positive integer $m^{\prime}$. Let $G_{x}{ }^{\prime}$ be the classifying morphism obtained from this decomposition. By the above first and second steps we see that $G_{X}{ }^{\prime}$ is rationally homotopic to $G_{X}$. Hence $\varphi(\xi)$ does not change, even though we start by $\xi=\left[E^{\prime}\right]-l^{\prime}$. This completes the proof of Lemma 7.

Lemma 8. $\varphi: K P(X) \longrightarrow\left[X, B_{k} \times Z\right]_{\text {rat }}$ is surjective.
Proof. Let $[f]$ be the rational homotopy class $\in\left[X, B_{k} \times Z\right]_{\text {rat }}$ containing
a morphism $f: X \longrightarrow B_{k} \times l$ where $l \in Z$. Then $f(X) \subset G_{n, n}$ for some positive integer $n$.
$\varphi$ sends $f^{*}(E)-(l-n)$ to $[f]$. This completes the proof of the subjectivity of $\varphi$.

From now on suppose further $X$ is non-singular quasi-projective. Then we have the following lemma.

Lemma 9. Let Y be a $k$-scheme of the same kind as $X$. Let $f, g$ be morphisms $: X \longrightarrow Y$ which are rationally homotopic. Then $f^{\prime}, g^{\prime}: K(\mathrm{Y}) \longrightarrow$ $K(X)$ coincide.

Proof. Let $h: X \times \operatorname{Spec} k[T] \longrightarrow \mathrm{Y}$ be a rational homotopy from $f$ to $g$. Then we have $f=h \circ t_{1}^{\prime}$ and $g=h \circ t_{2}^{\prime}$ (for $t_{1}^{\prime}, t_{2}^{\prime}$ see $\S 4$ ). Let $p$ be the projection: $X$ Spec $k[T] \longrightarrow X$. Then $p \circ t_{1}^{\prime}, p \circ t_{2}^{\prime}$ are the identity. On the other hand $p^{\prime}: K(X) \longrightarrow K(X \times$ Spec $k[T])$ is also an isomorphism. For this fact see [2]. Hence $\left(t_{1}^{\prime}\right)=\left(t_{2}^{\prime}\right)$. We therefore have

$$
f^{\prime}=\left(t_{1}^{\prime}\right)^{\prime} \circ h^{\prime}=\left(t_{2}^{\prime}\right)^{\prime} \circ h^{\prime}=g^{\prime} .
$$

This completes the proof.
Let $[f] \in\left[X, B_{k} \times Z\right]_{\text {rat }}$ be an arbitrary class with $f(X) \subset G_{n, n} \times l$ for some $n, l$. Let $E$ be the universal bundle over $G_{n, n}$. Then it is easily seen from the above lemma that

$$
f^{\prime}\left(\gamma_{x}(E)\right)-(l-n)
$$

is uniquely determined by the class $[f]$. We write $\psi([f])$ for it. Then $\psi$ can be viewed as a map of $\left[X, B_{k} \times Z\right]$ into $K(X)$.

Let c be the natural homomorphism: $K P(X) \longrightarrow K(X)$, i.e. the one sending [ $E$ ] to $\gamma_{X}(E)$ for a projective $O_{X}$-Module $E$. Then we have the commutative triangle:

as will be easily checked. Hence we have obtained the main theorem.

## Bibliography

[1] Grothendieck, A.: Elements de geometrie algebrique (with J. Dieudonne). Publ. Math., I.H.E.S.
[2] Borel, A. and Serre, J.-P.: Le theoreme de Riemann-Roch. Bull. Soc. Math. France, 86 (1958), 97-136.
(Received January 5, 1972)

