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Introduction. Let M be a compact C* Riemannian manifold of dimen-
sion n>2 without boundary and X a C' vector field on M. Let {f*} be
the one-parameter group of C'-diffeomorphisms f* of M generated by X.
{f?) is called a differentiable flow (or dynamical system) on.M. More
generally, a one-parameter group of homeomorphisms {¢°} is called a con-
tinuous flow on M if the map g: MxR—M defined by ¢(z,¢) = g'(x)
(xe M, teR) is continuous.

A point xeM is,called a perzodzc pomt of { f’} if there is a t0>0 such
that f*(x)=x holds. We denote by Per ({f*}) the set of all perlodlc points
of {f*}. The orbit { f’( )ItGR} is called a periodic orbit if xEPer ({ .

A point €M is called a non- wandermg point of {f*} if for any neigh-
borhood U of z and any k>0 we can find a #>% such that f*(U)N U#¢
holds. We denote by 2({f*) the set of all non- Wanderlng points of {f}-
Clearly 2({f*}) is closed in M and we have

per(£1) c2((/).

Let Map(M) be the set of all continuous maps f of M into M. ‘For
£, geMap(M) we define the metric d(f, g) by

d(f, 9)=supd(f(x), ¢(a),

where d denotes the metric on M induced by the Riemannian metric on
M. For any continuous function gz on M we define the norm |g|| by .

]l = Max | ().
xeM

DerFINITION 1. {f?) is called to be topologically stable, if there exists
a positive number ¢, having the following property: For any positive ¢<e,,
there exists a positive .0=20d(¢) such that for any continuous flow {g’} with

d(f*, ¢")<d for te [%, 1], there exist a continuous function p on MxR

and a surJectlve map «€Map (M) such that

ulg*(@)) = £7 (u( ))'
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holds for every x€ M and t€R and that the followmg condltlons are satisfied :
(1) dlw, L)+ [(1/opi—1)<e o

for te [%1—, 1], where p,(x)=p(z, t) (xEM t:'E‘R),' |

(i)  plz t+1)=p(¢'(x), +plx?)  (r€M, tER),
(iii) lpll <2 for t€[0,1].
In this note. we shall prove the. followmg

THEOREM 1. If {f*} is topologwally stable, then Per({ f’}) s dense in
LU C
- We have proved in [2] the following :

TuEOREM A. Any Anosov flow {f*} is topologically stable.

For Anosov flows, see [1], [3], [5]
In fact, we have proved the uniqueness of « and p in under

certain conditions on %, which wé shall not use in what follows

Comblmng Theorem 1 and Theorem A we obtain the followmg

COROLLARY. If { S is an Anosov ﬂow then Per({ f‘}) is dens’e in
24N

Anosov [[1] . proved the above corollary by maklng use of stable manlfold
theory.

It is conjectured that 2({f")=M holds for Anosov flow {f?) | (cf. [5).
The idea of the proof of [Theorem 1 was inspired by that of Theorem

4 [6]

§1. Preliminary Lemmas. We shall first prove the'followingylemm‘a
which is intuitively clear. ,

LEMMA 1. Let 6;, ¢ (i=1,2) and a, b be real numbers with -5,<d,,
e<a<e,, and §<b<e,. Then for each yeR weé can find a continuous
curve c¢,(t) (¢€R) in R? satisfying the following conditions (a)~(e)

(a) ()= 9,09), (v, )ER® |
where g, is a differentiable function on R and

j Y . - Jor t<d, or yE&[le, el
| g,(8,) . for t=0, and yE€ e, e).
‘ (b) €1£gy(t>seg fOT tER and 'yE[Sl, 62] .

(¢)  ga(d)=0. | S | o
(d) For each x€R*, we can find one and only one (¢, )€ R? such
that x=c,(¢).
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.(e) - For each se R we can define the map gb R*—>R? by ¢*(c, ()=
c,(t+s). {¢°) is a continuous flow on R>.

Proor. Let geC=(R) be a differentiable function on R such that

0 t<a,
1 t>0,,

and that ¢(£)<g(s) for §,<t<s<0,.
Next, we can find a differentiable ‘monotone increasing function 2 on
R satisfying the following conditions (i)~(iv).
(1) h([e:, e])=les, &)
(ii) ha)=b.
(i) hls=ly
where S=R —[¢;, &,].
(V) R(D<t (resp. h()>t) for t€ey, e, if a>b (resp. a<b).
Put ¢,(8)=y +(h(y)—v)g(2) for (, y)ERZ It is easily seen that gy() is
an increasing functlon of y for fixed t€R, from which we can Verlfy (d).
1t is also readlly seen that (a)~(c) hold.
. By the property (d) the map ¢° is well defined. The map o, ¢, of R?
onto R? defined by ot v)=(z g,(0) and 0, (2, y) (t+s gy(t+s)) for (¢ y)eR?
are both homeomorphisms of R? onto R®% Since ¢ =00, we see that
{¢"} is a continuous flow on R Q.E.D.
" We can now prove the following lemma Whlch is a generalization of

g(t)=

Lemma

Lemma 2. (Detour Lemma). Let ¢, 6; (i=1,2) be real numbers with
5,<8, and &,<e,. Let Q=(e;, )" ! be the cube in R, where (e, &)=
{teR|e;<t<e). Let A,BeQ.

Then, for each yeR™' we can find a continuous curve C,(f) (t€R) in
R” satisfying the following conditions (a)~(e).

(a) G )=(G,(2) teR,
where G,: R—>R"*! is differentiable and
[ v <0, m'yEQ
| , | G,(6) 26, and yeQ.
(b) G,()eQ  t€R, yeQ.
(c) G4(3,) = B.
...(d) - . For each. xeR™ we can - find one and only one (t y)ER?R" !
such that x=C,(¢). ‘

G,(#) =
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(e) For each s€R we can define the map ¥*: R*—>R" by ¥*(C,(¢)=
C,(t+s). {¥*} is a continuous flow on R™

Proor. We denote g,(£) in by ¢,(£)=0.s.,(t), since g, depends
ona,b. Put A=(ay, -, a,), B=(b,, -, b,) and y=(y,, -, ¥.) with a;, b;, y.€R
(i=2, -, n).

We define G,(¢) in the following manner:

Gy (&) =(g3(8) -+, 3) ,

where gé(t)zg“i”'i:?/i(t) for i=2,---,n.
We can see as in that the family of curves C,()=(¢, G,(2)
satisfies the conditions (a)~(e). Q.E.D.

REMARK. We see that the flows {¢*} and {¥*} above are differentiable
flows on R? and R™ respectively.

LemMmA 3. Take ¢, S—;— in Definition 1. Then the function p(x,t) in

Def. 1 takes positive values for t>4 and xeM.

Proor. Using the property (ii) in Def. 1. we can prove by induction
on k that for te€[k, £+1] we have

Pl 1) =pla, 1B+ Tp (¢ *(2), 1)
for xzeM. Since 1—e<p(x, 1)<1+¢ and ]p(‘x, 1| <2 for every (z, t)e M x
[0, 1] we get
plx, ) >k(1—¢)—2,
from which the lemma follows. Q.E.D.

§2. Proof of Theorem 1.

Take a point x,€2({f*})—Per ({ f*}) and fix a positive e<¢, and d,=23(e),
where ¢, is as in Definition 1. We can assume §,<e. Since x,& Per ({f*})
we have X(x)#0.

Assume first that X is of class C% Then, we can find a coordinate
neighborhood U of x, with CZ%coordinate system {z!,---, 2"} such that

2*(2) =0, |x¢l<51§% for i=1,2, -7 and that

(1) Xy =08/ox'|y

(cf. p. 115). For 6,>6>0, we put U,={xeU]||2*(x)|<é (i=1,: -, n)}.
We take a positive §,<d;, such that
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(2) diam (U,) <6, -

2

We assert that there is a positive 5<%2— such that

(3) FUNNU,=¢ for 23529@.

If not, there would be sequences {t} and {p,}C U, such that p,—x,
(v—>00), 26,/3<¢t,<6 and that f*(p,)—x, (v—>oc0). Then, we can assume that
t,—>t, (y—>00) with some #€[28,/3, 6]. Hence f*(x))=x,, whence x,ePer({f }).
Thus our assertion is verified.

We can also assume that 6 satisfies the following condition:

(4) do(x, y)<0; x,ye U imply
d(fH(a), F) <
for 0<t<1, where dy(z, y)=Max |z*(x)—z*(y)|.
If not, there vlzould be sequ;nces {t} and z,, y,€U (v=1,2, ---) such that

oz, 1)-0,  d(f(z), fo0.) 20

We can assume that ¢,—%, x,—>2° y,—9° (v—=>00) with %€][0, 1], 2° y°e M.
Then we have z°=9° and d(f*(z°), f*(y")=>d,, which is a contradiction.

Now, since x,€2({f*}), there is a #>6 such that f*(U;)N U;+#¢, where
U? denotes the interior of U,. Hence there are two points v, weU; such
that % (v)=w holds. Put # =inf{¢>6|f*(v)=w}. Then we have f%(v)=w.
Consider two points A’, B'’eU; defined by

(5) A =fEOw), B =),
Clearly we have
(6) - 2 (A= —§, B)=9.

Hence in the coordinate system {zx',:--, 2"}, we have A'=(—d, A),B'=(j, B)
with A, Be(—d, 0"~ .

By making use of the Detour Lemma for ¢=6,=—4, &=0,=4, and
Q=(—6,0", we can construct a continuous flow {¢*} on M by patching
up the restriction of the flows {f*|s-5,} and {¥*|y,}. The flow {¢’} has the
following properties: ‘

(a) ¢*(A")=DB.

(B) zeM, f(x)g U, for t€[0, 1] imply ¢*(x)=f*(x) for z€ [0, 1].

(1) If fox)eU, and f*(x)g U, for 0<z<t#, then ¢‘(x)=f*(x) for
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0<t<¢ and ¢(x)=T""%(f*(x)) for t,+20>¢t>¢.
Next, we assert that Gl
(7) | A <a, o refo1].
Take a point x€M and fix it. If f*(x)g U, for all tE'F[O:Il], then we
have f*(x)=g'(x) and so d(f*(x), ¢*(2))=0." T
Assume that there is a #€ [0, 1] such that fa(x)eU;. Put : 't1'=ifn‘f{t‘é
10, 1]].f*(x)eU,} and #,=¢ + 2. S an A
~ In case ,€[0, 1], we have f*(zx)=g'(z) for 0<¢<4,, f*(x)€U, ~f6f"t1§t$t2
and f*(x)g U, for t,<t<1 by virtue of (3) and (1). Hence ‘we'get (),
g'(x)e U, for ,<t<t,, which implies d(f*(x), ¢*(x))<d by (2). For £,<t<1
we have ¢*(z)=/f"""(z’), where x'=Cp.(,(26) by (r). Put 2”=f*(x). Then
', "€ U, and dy(a’,2”")<56. Hence we get d(f*(x), ¢*(x)) = d(f* *(z"),
F(@)<a, by (4) | o
In case £,>1, we have f'( 2)eU, for t,<t<L1. We get d(f*(x), ¢*(x))=0
for O<zf<t1 and f*(), ¢ ‘(x)eU, for 4,<t<1, which implies d(f*(x), ¢’ (x))<d
Thus (7).is proved.. . L R a1
By our assumption and Def. 1 there ex1st a map u: M—»M and a
function p on M x R satisfying the following condition : NS

(8) u (g (@) = fr=* (u(a))
for (z, )e M x R and d(x, 1,)<e. I
- Put #/ =8} +2'(v)—2'(w)—25. Then, since f%(v)=w we have
(9) feB)=A"
by virtue of (5).
Clearly we have # >#'>4 since £ >6. Using (3) and (1) we see that
(B¢ U, for 0<t<ty.
By (8) and (9) we have ¢%(B)=f%(B)=A". By (a) we get B'=g®»(A’)=
g";””(B'):g’é’(B’), where we put #"=t'+25. By (8) we obtain

u(B) =u (g% (B)) =" (u(B)).

Now, by virtue of we have p(B', t,)>0, since %" >t'>4. Hence
the point «(B') is a periodic point of {f*}. Since d(u, 1))<e, we have
d(xy, u(B')<d(xy, B)+d(B, u(B))<2. Thus, we have proved that there
is a periodic point of {f*} in the 2e-neighborhood of x,. Since ¢>0 can
be taken arbitrarily small, we have proved Per ({f*}) is dense in 2({f*}).
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In the case X is not of class C?% we construct a “flow box” around x,
namely, a homeemerphism- @ .of. an open.cube V=(—4g, )" in ‘R" onto a
neighborhood U of z, satisfying the following conditions

(1) ?(0)=x,, : .

(i) (@@t 2, X)) =L (D21, -, 22))
for (z1, -+, Tn)y (T + 1, X5y -+, 2,)€ V. Using the Detour lemma for V and
transporting it into U by @ we can construct a continuous flow {g’} satisfying

(7). Therefore, we can prove [Theorem 1| in the same way as in the case
when X is'of class CZ. o - - - QE.D.
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