On certain integral formulas for hypersurfaces in a constant curvature space

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By Tamao Nagai

§ 0. Introduction.

Let V^{m} be a closed orientable hypersurface twice differentiably imbedded in an ($m+1$)-dimensional Euclidean space $E^{m+1}(m+1 \geqq 3)$ and k_{1}, \cdots, k_{m} be the m principal curvatures at a point P of V^{m}. The ν-th mean curvature H_{ν} of V^{m} at P is defined by

$$
\binom{m}{\nu} H_{\nu}=\sum k_{1} \cdots k_{\nu} \quad(\nu=1,2, \cdots, m)
$$

where the right hand member denotes the ν-th elementary symmetric function of k_{1}, \cdots, k_{m}. It is convenient to define $H_{0}=1$. C. C. Hsiung [1] ${ }^{1)}$ proved

$$
\begin{equation*}
\int_{\nu^{m}}\left(H_{\nu+1} p+H_{\nu}\right) d A=0 \quad(\nu=0,1, \cdots, m-1), \tag{0.1}
\end{equation*}
$$

where p denotes the oriented distance from a fixed point O in E^{m+1} to the tangent space of V^{m} at P and $d A$ is the area element of V^{m}. Let \bar{V}^{m} be a closed orientable hypersurface parallel to the given V^{m}. Then, the integral formulas (0.1) have been derived by comparison between associated quantities of V^{m} and \bar{V}^{m}.

Let R^{m+1} be an ($m+1$)-dimensional Riemann space of class $C^{r}(r \geqq 3)$, which admits an infinitesimal conformal transformation

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\xi^{i}(x) \delta \tau . \tag{0.2}
\end{equation*}
$$

We assume that a closed orientable hypersurface V^{m} does not pass through any singular point of a tangent vector field of the paths with respect to the infinitesimal transformation (0.2). Since the transformation is conformal, there exists a scalar field Φ and the vector ξ^{i} satisfies the relation

$$
\begin{equation*}
\xi_{i ; j}+\xi_{j ; i}=2 \Phi g_{i j}, \tag{0.3}
\end{equation*}
$$

where $\xi_{i}=g_{i j} \xi^{j}$ and the symbol ";" means covariant differentiation with respect to Riemann connection determined by the metric tensor $g_{i j}$ of R^{m+1}

1) Numbers in brackets refer to the references at the end of the paper.
(K. Yano [2]). As the generalizations of (0.1) for a Riemann space, Y. Katsurada [3] derived

$$
\begin{equation*}
\int_{V^{m}}\left(H_{1} p+\Phi\right) d A=0 \tag{0.4}
\end{equation*}
$$

for V^{m} in R^{m+1} and when R^{m+1} is a constant curvature space, proved

$$
\begin{equation*}
\int_{V^{m}}\left(H_{\nu+1} p+H_{\nu} \Phi\right) d A=0 \quad(\nu=1,2, \cdots, m-1), \tag{0.5}
\end{equation*}
$$

where $p=n^{i} \xi_{i}$ and n^{i} is the unit normal vector of V^{m}. The integral formulas (0.4) and (0.5) have been derived by applying Stokes' theorem to the relations obtained by exterior differentiation of certain differential forms on V^{m}.

Certain generalizations of (0.4) and (0.5) for a closed orientable submanifold of codimension greater than 1 have been given by Y. Katsurada and H. Kôjyô [4].

These integral formulas have been applied by many authors to the study of closed orientable submanifolds with constant ν-th mean curvature in a Euclidean space and a Riemann space.

Recently, K. Amur [5] derived (0.1) in a different way and also proved for V^{m} in E^{m+1}

$$
\begin{equation*}
\int_{V^{n}}\left(\nabla H_{\nu} \cdot X\right) d A+m \int_{V^{n}}\left(H_{1} H_{\nu}-H_{\nu+1}\right) p d A=0 . \quad(\nu=0,1, \cdots, m-1) \tag{0.6}
\end{equation*}
$$

where the integrand of the first term in the left hand member denotes inner product of $\operatorname{grad} H_{\nu}$ and the position vector X of V^{m}.

Some generalizations of (0.6) for a closed orientable submanifold of codimension greater than 1 in E^{m+1} have been derived by K . Yano and B. Y. Chen [6].

The main purpose of the present paper is to give an integral formula which is similar to (0.6) and valid for a closed orientable hypersurface V^{m} in a constant curvature space R^{m+1}. In accordance with the idea given by Y. Katsurada [3], we also assume that R^{m+1} admits a conformal Killing vector field ξ^{i} and use it in place of the position vector X in (0.6). The method of calculations is learned much from the paper of K. Amur [5]. $\S 1$ is devoted to give some notations and fundamental relations which will be used in the following section. Some integral formulas will be given in $\S 2$.

The present author wishes to express his sincere appreciation to Professor Y. Katsurada for her kind guidance.

§ 1. Preliminaries.

Let $R^{m+1}(m+1 \geqq 3)$ be an $(m+1)$-dimensional Riemann space and x^{b}
and $g_{i j}$ be the local coordinate and the positive definite metric tensor of R^{m+1}. We consider that a closed orientable hypersurface V^{m} in R^{m+1} is expressed locally by parametric equations

$$
x^{i}=x^{i}\left(u^{a}\right) . \quad(i=1,2, \cdots, m+1: \alpha=1,2, \cdots, m)^{2)}
$$

If we put

$$
B_{\alpha}^{i}=\frac{\partial x^{i}}{\partial u^{\alpha}} \quad(\alpha=1,2, \cdots, m),
$$

the m vectors $B_{\alpha}=\left(B_{\alpha}^{1}, \cdots, B_{a}^{m+1}\right)$ are linearly independent and span the tangent space of V^{m}. The induced metric tensor $g_{\alpha \beta}$ of V^{m} is given by

$$
g_{\alpha \beta}=g_{i j} B_{a}^{i} B_{\beta}^{j}
$$

and $g^{a \beta}$ is defined by $g^{a \beta} g_{\beta r}=\delta_{r}^{\alpha}$, where δ_{r}^{α} denotes the Kronecker delta.
Denoting by $N=\left(n^{1}, \cdots, n^{m+1}\right)$ a contravariant vector such that

$$
\begin{gather*}
g_{i j} B_{a}^{i} n^{j}=0, \quad g_{i j} n^{i} n^{j}=0, \tag{1.1}\\
\operatorname{det} .\left(B_{1}, \cdots, B_{m}, N\right)>0, \tag{1.2}
\end{gather*}
$$

then we can see that N is determined uniquely at each point of V^{m} and is the unit normal vector of V^{m}.

If we denote by the symbol ";" the covariant differentiation due to van der Waerden-Bortolotti, we have the following Gauss and Weingarten formala:

$$
\begin{align*}
& B_{a ; \beta}^{i}=b_{\alpha \beta} n^{i}, \tag{1.3}\\
& n_{; \alpha}^{i}=-b_{a}^{\imath} B_{r}^{t}, \tag{1.4}
\end{align*}
$$

where $b_{a, \beta}$ is the second fundamental tensor of V^{m} and $b_{a}^{\gamma}=b_{a \beta} \gamma^{7 \beta}$.
Let k_{1}, \cdots, k_{m} be the roots of the characteristic equation

$$
\operatorname{det} .\left(b_{\alpha \beta}-k g_{\alpha \beta}\right)=0,
$$

then the ν-th mean curvature H_{ν}, of V^{m} is defined to be the ν-th elementary symmetric function of k_{1}, \cdots, k_{m} divided by the number of terms, i.e.

$$
\binom{m}{\nu} H_{\nu}=\sum k_{1} \cdots k_{\nu} \quad(\nu=1,2, \cdots, m)
$$

As usual we put $H_{0}=1$.
We denote by $\varepsilon_{i_{1} \cdots i_{m+1}}$ and $\varepsilon^{i_{1}, i_{m_{+1}}}$ the ε-tensor in R^{m+1}, that is
2) Throughout the present paper the Latin indices run from 1 to $m+1$ and the Greek indices run from 1 to m.

$$
\begin{aligned}
& \varepsilon_{i_{1} \cdots i_{m+1}}=\sqrt{G} e_{i_{1} \cdots i_{m+1}} \\
& \varepsilon^{i_{1} \cdots i_{m+1}}=(\sqrt{G})^{-1} e^{i_{1} \cdots i_{m+1}}
\end{aligned}
$$

where $G=\operatorname{det}$. $\left(g_{i j}\right)$ and the quantites $e_{i_{1} \cdots i_{m+1}}=e^{i_{1} \cdots i_{m+1}}$ are defined to be zero, when two or more of the indices are the same, and to be 1 or -1 when the indices are obtainable from the natural sequence $1,2, \cdots, m+1$ by an even or odd permutation.

Let

$$
\begin{array}{cl}
V_{(\lambda)}=\left(v_{(\lambda)}^{1}, \cdots, v_{(\lambda)}^{m+1}\right), & (\lambda=1,2, \cdots, p) \\
\mathrm{W}_{(\mu)}=\left(w_{(\mu) \alpha}^{1} d u^{\alpha}, \cdots, w_{(\mu) \alpha}^{m+1} d u^{\alpha}\right), & (\mu=p+1, p+2, \cdots, m)
\end{array}
$$

be contravariant vectors and vector valued differential forms in R^{m+1}, then we define a combined product [$]_{i}$ and its exterior differential $\delta[]_{i}$ by

$$
\begin{aligned}
& {\left[V_{(1)}, \cdots, V_{(p)}, W_{(p+1)}, \cdots, W_{(m)}\right]_{i}} \\
& \quad=\varepsilon_{i_{1} \cdots i_{m} i} v_{(1)}^{i_{1}} \cdots v_{(p)}^{i_{p}} w_{(p+1) \alpha_{p+1}}^{i_{p+1}} \cdots w_{(m) \alpha_{m}}^{i_{m}} d u^{\alpha_{p+1}} \wedge \cdots \wedge d u^{\alpha_{m}}, \\
& \delta\left[V_{(1)}, \cdots, V_{(p)}, W_{(p+1)}, \cdots, W_{(m)}\right]_{i} \\
& \quad=\left(\varepsilon_{i_{1} \cdots i_{m} i} v_{(1)}^{i_{1}} \cdots v_{(p)}^{i_{p}}, w_{(p+1) \alpha_{p+1}}^{i_{p+1}} \cdots v_{(m) \alpha_{m}}^{i_{m n}}\right) ; \alpha d u^{\alpha} \wedge d u^{\alpha}{ }_{p+1} \wedge \cdots \wedge d u^{\alpha_{m}},
\end{aligned}
$$

where \wedge means exterior product.
By means of (1.1) and (1.2), we have

$$
\begin{equation*}
\varepsilon_{i_{1} \cdots i_{m} i} B_{1}^{i_{1} \cdots B_{m}^{i_{m}} n^{i}=\sqrt{g}, ~} \tag{1.5}
\end{equation*}
$$

where $g=\operatorname{det} .\left(g_{\alpha \beta}\right)$. Making use of (1.5), we can see that

$$
\begin{equation*}
\left[B_{1}, \cdots, B_{m}\right]_{i}=\sqrt{g} n_{i} \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
\left[N, B_{1}, \cdots, B_{\alpha-1}, B_{\alpha+1}, \cdots, B_{m}\right]_{i}=(-1)^{\alpha} \sqrt{g} B_{i}^{\alpha} \tag{1.7}
\end{equation*}
$$

where $B_{i}^{\alpha}=g_{i j} g^{\alpha \beta} B_{\beta}^{j}$.
If we put

$$
U_{\alpha}=(-1)^{\alpha} \sqrt{g} d u^{1} \wedge \cdots \wedge d u^{\alpha-1} \wedge d u^{\alpha+1} \wedge \cdots \wedge d u^{m}
$$

we can verify that U_{α} are transformed under parameter transformation $\bar{u}^{2}=\bar{u}^{\lambda}\left(u^{a}\right)$ such that

$$
U_{\alpha}=\frac{\partial \bar{u}^{2}}{\partial u^{\alpha}} \bar{U}_{\lambda},
$$

where $\bar{U}_{\lambda}=(-1)^{\lambda} \sqrt{\bar{g}} d \bar{u}^{1} \wedge \cdots \wedge d \bar{u}^{\lambda-1} \wedge d \bar{u}^{\lambda+1} \wedge \cdots \wedge d \bar{u}^{m}$. Therefore U_{α} is a covariant vector.

Denoting by $d x$ the vector valued differential form

$$
d x=\left(d x^{1}, \cdots, d x^{m+1}\right)
$$

where $d x^{i}=B_{a}^{i} d u^{\alpha}$, then by means of (1.7) we get

$$
\begin{equation*}
[N, d x, \cdots, d x]_{i}=(m-1)!B_{i}^{\alpha} U_{\alpha} \tag{1.8}
\end{equation*}
$$

From (1.8) it follows that

$$
\begin{equation*}
d x^{i}[N, d x, \cdots, d x]_{i}=-m!d A \tag{1.9}
\end{equation*}
$$

where we put $d A=\sqrt{g} d u^{1} \wedge \cdots \wedge d u^{m}$ and $d A$ is the area element of V^{m}.
From (1.4) we have $\delta n^{i}=-b_{\alpha}^{\gamma} B_{r}^{i} d u^{\alpha}$. Therefore, we obtain

$$
\begin{equation*}
\delta n^{i}[N, d x, \cdots, d x]_{i}=m!H_{1} d A \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
[\overbrace{\delta N, \cdots, \delta N}^{\nu}, \overbrace{d x, \cdots, d x}^{m-\nu}]_{i}=(-1)^{\nu} m!H_{\imath} n_{i} d A . \tag{1.11}
\end{equation*}
$$

If f is a scalar field on V^{m}, by means of (1.8) we have

$$
\begin{equation*}
d f \wedge[N, d x, \cdots, d x]_{i}=-(m-1)!\frac{\partial f}{\partial u^{\alpha}} B_{i}^{\alpha} d A \tag{1.12}
\end{equation*}
$$

§ 2. Integral formulas.

Theorem 2.1. Let R^{m+1} be an $(m+1)$-dimensional Riemann space which admits a conformal Killing vector field ξ^{i} and V^{m} a closed orientable hypersurface in R^{m+1}. Then

$$
\begin{equation*}
\int_{V^{n}} \frac{\partial H_{\nu}}{\partial u^{a}} \xi^{a} d A+m \int_{V^{m}}\left(H_{\nu} \Phi+H_{1} H_{\nu} p\right) d A=0, \quad(\nu=0,1, \cdots, m) \tag{2.1}
\end{equation*}
$$

where $\xi^{\alpha}=B_{i}^{\alpha} \xi^{i}$.
Proof. We have

$$
\delta\left(H_{\nu}[N, d x, \cdots, d x]_{i}\right)=d H_{\nu} \wedge[N, d x, \cdots, d x]_{i}+H_{\nu} \delta[N, d x, \cdots, d x]_{i}
$$

Making use of (1.11) and (1.12) we get

$$
\delta\left(H_{\nu}[N, d x, \cdots, d x]_{i}\right)=-(m-1)!\frac{\partial H_{\nu}}{\partial u^{\alpha}} B_{i}^{\alpha} d A-m!H_{1} H_{\imath} n_{i} d A
$$

Therefore we have

$$
\begin{equation*}
\xi^{i} \delta\left(H_{\nu}[N, d x, \cdots, d x]_{i}\right)=-(m-1)!\frac{\partial H_{\nu}}{\partial u_{\alpha}} \xi^{a} d A-m!H_{1} H_{\nu} p d A \tag{2.2}
\end{equation*}
$$

If we put

$$
S=H_{\nu} \xi^{i}[N, d x, \cdots, d x]_{i}
$$

then we have

$$
\begin{equation*}
\xi^{i} \delta\left(H_{\nu}[N, d x, \cdots, d x]_{i}\right)=d S-H_{\nu} \delta \xi^{i} \wedge[N, d x, \cdots, d x]_{i} \tag{2.3}
\end{equation*}
$$

In consequence of (0.3) and (1.7) it follows that

$$
\begin{equation*}
\delta \xi^{i} \wedge[N, d x, \cdots, d x]_{i}=-m!\Phi d A \tag{2.4}
\end{equation*}
$$

By means of (2.2), (2.3) and (2.4) we get

$$
\frac{\partial H_{\nu}}{\partial u^{\alpha}} \xi^{\alpha} d A+m\left(H_{\nu} \Phi+H_{1} H_{\nu} p\right) d A+\frac{d S}{(m-1)!}=0 .
$$

Since V^{m} is a closed orientable hypersurface, applying Stokes' theorem to the last relation, we obtain (2.1).

Theorem 2. 2. Let R^{m+1} be an ($m+1$)-dimensional constant curvature space which admits a conformal Killing vector field ξ^{i} and V^{m} a closed orientable hypersurface in R^{m+1}. Then

$$
\begin{equation*}
\int_{V^{m}} \frac{\partial H_{\nu}}{\partial u^{\alpha}} \xi^{\alpha} d A+m \int_{V^{m}}\left(H_{1} H_{\nu}-H_{\nu+1}\right) p d A=0 . \quad(\nu=0,1, \cdots, m-1) \tag{2.5}
\end{equation*}
$$

Proof. We put

$$
\left(\Delta_{\nu}\right)_{i}=[N, \overbrace{\delta N, \cdots, \delta N}^{\nu}, \overbrace{d x, \cdots, d x}^{m-\nu-1}]_{i} .
$$

Since R^{m+1} is a constant curvature space, we have $\delta \delta N=0$. Therefore, by means of (1.11) we get

$$
\begin{equation*}
\xi^{i} \delta\left(\Delta_{\nu}\right)_{i}=(-1)^{\nu+1} m!H_{\nu+1} p d A \tag{2.6}
\end{equation*}
$$

On the other hand, as in [5] we obtain

$$
\begin{align*}
&\left(\Delta_{\nu}\right)_{i}=(-1)^{\nu} \frac{m}{m-\nu} H_{\nu}[N, d x, \cdots, d x]_{i} \tag{2.7}\\
&+(-1)^{\nu} \nu!(m-\nu-1)!\sum_{p=1}^{\nu}(-1)^{p}\binom{m}{\nu-p} H_{\nu-p} K_{(p) t}
\end{align*}
$$

where we put

$$
K_{(p) i}=B_{i}^{1}\left(k_{1}\right)^{p} U_{1}+B_{i}^{2}\left(k_{2}\right)^{p} U_{2}+\cdots+B_{i}^{m}\left(k_{m}\right)^{p} U_{m}
$$

Making use of (1.11) and (1.12), we get from (2.7)

$$
\begin{align*}
\xi^{i} \delta\left(\Delta_{\nu}\right)_{i}= & (-1)^{\nu+1} \frac{m}{m-\nu}(m-1)!\left(\frac{\partial H_{\nu}}{\partial u^{\alpha}} \xi^{\alpha}+m H_{1} H_{\nu} p\right) d A \tag{2.8}\\
& +(-1)^{\nu} \nu!(m-\nu-1)!\sum_{p=1}^{\nu}(-1)^{p}\binom{m}{\nu-p} \xi^{i} \delta\left(H_{\nu-p} K_{(p) i}\right) .
\end{align*}
$$

If we put

$$
T=\xi^{i} H_{\nu-p} K_{(p) i}
$$

it follows that

$$
\begin{equation*}
\xi^{i} \delta\left(H_{\nu-p} K_{(p) i}\right)=d T-H_{\nu-p} \delta \xi^{i} \wedge K_{(p) i} \tag{2.9}
\end{equation*}
$$

By virtue of (0.3), we can see that

$$
\begin{equation*}
\delta \xi^{i} \wedge K_{(p) i}=-\Phi \sum_{i=1}^{m}\left(k_{\lambda}\right)^{p} d A \tag{2.10}
\end{equation*}
$$

In consequence of (2.9) and (2.10), (2.8) can be rewritten as follows:

$$
\begin{align*}
\xi^{i} \delta\left(\Delta_{\nu}\right)_{i}= & (-1)^{\nu+1} \frac{m}{m-\nu}(m-1)!\left(\frac{\partial H_{\nu}}{\partial u^{\alpha}} \xi^{\alpha}+m H_{1} H_{\nu} p\right) d A \\
& +(-1)^{\nu} \nu!(m-\nu-1)!\sum_{p=1}^{\nu}(-1)^{p}\binom{m}{\nu-p}\left(d T+\Phi H_{\nu-p} \sum_{\lambda=1}^{m}\left(k_{\lambda}\right)^{p} d A\right) \tag{2.11}
\end{align*}
$$

According to the identity of Newton for the elementary symmetric functions, we have

$$
\begin{equation*}
\sum_{p=1}^{\nu}(-1)^{p}\binom{m}{\nu-p} H_{\nu-p} \sum_{\lambda=1}^{m}\left(k_{\lambda}\right)^{p}=-\nu\binom{m}{\nu} H_{\nu} . \quad(\text { See [5]) } \tag{2.12}
\end{equation*}
$$

Making use of (2.6), (2.11) and (2.12), we obtain

$$
\begin{aligned}
&\left(\frac{\partial H_{\nu}}{\partial u^{\alpha}} \xi^{\alpha}+m H_{1} H_{\nu} p-(m-\nu) H_{\nu+\nu} p+\nu \Phi H_{\nu}\right) d A \\
& \quad\binom{m}{\nu}^{-1} \sum_{p=1}^{\nu}(-1)^{p}\binom{m}{\nu-p} d T=0 .
\end{aligned}
$$

Since V^{m} is a closed orientable hypersurface, applying Stokes' theorem to the last relation we obtain

$$
\begin{equation*}
\int_{V^{m}} \frac{\partial H_{\nu}}{\partial u^{\alpha}} \xi^{\alpha} d A+m \int_{V^{m}}\left(H_{1} H_{\nu}-H_{\nu+1}\right) p d A+\nu \int_{V^{m}}\left(H_{\nu+1} p+H_{\nu} \Phi\right) d A=0 \tag{2.13}
\end{equation*}
$$

Eliminating the term $\int_{V^{m}} \frac{\partial H_{\nu}}{\partial u^{\alpha}} \xi^{\alpha} d A$ from (2.1) and (2.13), we obtain

$$
\begin{equation*}
\int_{V^{n}}\left(H_{\nu+1} p+H_{\nu} \Phi\right) d A=0 \tag{2.14}
\end{equation*}
$$

(2.14) is the integral formulas (0.5) obtained by Y. Katsurada [3]. In consequence of (2.13) and (2.14), we obtain (2.5).

On certain integral formulas for hypersurfaces in a constant curvature space

References

[1] C. C. Hsiung : Some integral formulas for closed hypersurfaces, Math. Scand. 2 (1954), 286-294.
[:2] K. Yano: The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957.
[3] Y. Katsurada: Generalized Minkowski formulas for closed hypersurfaces in Riemann space, Ann. di Mat. p. Appl., 57 (1962), 283-293.
[4] Y. KATSURAdA and H. KôJYô: Some integral formulas for closed submanifolds in a Riemann space, Jour. Fac. Sci. Hokkaido Univ., Ser. I, Vol. 20, No. 3 (1968), 90-100.
[5] K. AMUR: Vector forms and integral formulas for hypersurfaces in Euclidean space, Jour. Diff. Geom., 3 (1969), 111-123.
[6] B. Y. Chen and K. Yano: Integral formulas for submanifolds and their applications, (to appear).
(Received July 27, 1972)

