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1. Introduction. A modulared semi-ordered linear space is a univer-
sally continuous semi-ordered linear space® R with a non-negative functional
m called a modular which satisfies the following conditions :

) x| = |y|, x,yeR implies m(x)<m(y);

) mEx) =0 for each &>0 implies x=0;

M. 3) lim m(éx)=0 for each x€R;

)

)

£ 30
m(éx) is a convex function of £€>0 for each x€R;

xly® implies m(x+y)=m(x)+my);

M. 6) 0=z csx implies sup m(x,) = m(x).
i€

On a modulared space (R. ) a semi-continuous norm® ||-||,, can be defined by
(1. 1) el =inf {25 men=1)”  @eR),

that is, R is a normed semi-ordered linear space with the norm | -|,, at the
same time. The converse of this, Every normed semi-ordered linear space
(R, |[-Nl) has an equivalent norm | -||,. defined by an appropriate modular m,
is not true in general. Counter examples were constructed by the present
author [7] and T. Ando [1].

L,spaces (p=1) and Orlicz spaces L,” on a ¢-finite measure space (E, 2, p),
with a countably additive non-negative measure p defined on a o-field 2 of E,

1) A semi-ordered linear space R is called universally continuous, if 0<x;(1€ 4) implies

Nx:€R, i.e. a conditionally complete vector lattice in Birkhoff’s sense.
€4 ‘

2) xly means that £ and y are mutually orthogonal, i.e. |x|N|y|=0.

3) A norm l+|| is called semi-continuous, if |x:|%:4|x| implies ||z||=sup |zil.
164

4)  |*llw is termed the modular norm by .

5) For the definition of an Orlicz space see [4].
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are considered as modulared spaces with modulars m,(x)=\z|x(?)|?du(¢) and
mo ()= 40 (|2(2)|)dyu(t) respectively, where x<y means z(t)<y(z) a.e..

A modular m on R is called finite if m(x)<+ oo for each x€R, and is
called almost finite if m is finite on a complete semi-normal manifold® M of
R. It is evident that the modulars of L, type (1<p< + o) are finite and the
modulars 72, of Orlicz spaces are almost finite. 72, is finite if and only if @
satisfies the so-called g.-condition.

An excellent axiomatic characterization of IL,-spaces in terms of norms
on semi-ordered linear spaces was established by F. Bohnenblust in [2]. Later
on, H. Nakano characterized norms of I,spaces as norms of unique indicatrix
[5]. Since these chracterizations are based on the particular structure of L,
norms, it seems to be difficult to obtain similarly simple characterizations of
general modular norms, even of modular norms of Orlicz spaces, as L,norms.

In this paper we shall present a necessary and sufficient condition in order
that a norm ||-]| on R be the modular norm by a finite (almost finite) modular,
in terms of the existence of a similar transformation 7" acting from R onto
itself with the following property: for any x,y€R with ||x|=1 and xly,
| T (x+y)||=1 holds if and only if ||y||=1 does (Theorems 1,2). According
to the representation theory, this gives also an axiomatic characterization of
modulared function spaces ... In 5 we shall state some supplementary
remarks with concrete explanations of these results in Banach function spaces.

2. Notations and the theorems. In what follows, let (R, ||-||) be a non-
atomic® universally continuous semi-ordered linear space with a semi-continuous
norm |[-]|. A norm ||-| is called continuous if x,|;>,0 implies ||z,||{;>.0 always.
If there exists a complete semi-normal manifold M such that ||-|| is continuous
on M, |-|| is called almost continuous. The modular norm ||-||,, is continuous
if and only if m is finite. We denote by V the unit ball and by S its surface
respectively, i.e. V={x: ||z||<1} and S={x: |z|=1}. We write z=xDy,
if z=x+y with xly holds.

A one to one transformation 7" from R onto R is called similar, if it satisfies

(2.1) T(plx)=[pl(Tx) for each x€R and projector [p];
(2.2) Tx<Ty zf and only if x=<y;
(2.3) T(—x)=—Tx for each x€R.

6) A linear lattice manifold M is called semi-normal if |y|=<|x|, x&€M implies y € M.
A semi-normal manifold M is complete, if ML ={0}.

7) For the definition of L,z see [3 or 6].

8) R is termed non-atomic, if each 0%z €R can be decomposed into x=y+=z with v, 20
and yl=z.
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We see easily from the definition that for a similar transformation 7, 7' is
also such a one, and that 7" is order-continuous, i.e. x,1:>,a(or x,i,b) implies
Tx g2 Ta(resp. Tx, |, T5h).

Here we consider the following condition which establishes a relation be-
tween a similar transformation 7" and the norm on R:

(T.C.) For any x,y with x€S and xly, T(x+y)€S holds if and only
if yes.

Now we can prove

Theorem 2.1. In order that a given continuous norm ||-|| on R be the
modular norm ||-||,, by a modular m, it is necessary and sufficient that there
exists a similar transformation T on R satisfying the condition (T.C.).

If a modular », is almost finite the modular norm is almost continuous.
For an almost continuous norm ||-|| we denote by R, the continuous manifold
of R with respect to || -||, i.e., the totality of all continuous elements” of R.
Evidently R is a complete semi-normal manifold on which ||-| is continuous.
Here we put Vo=VNR; and S;=SNR,. Then, for almost continuous norms
we obtain .

Theorem 2.2. In order that a given almost continuous norm | -|| on
R be the modular norm |||, by a modular m, it is necessary and sufficient
that there exists a similar transformation T on R, onto R, which satisfies
the following condition :

(T.C'.) For any x, yeR; with x€S; and xly, T (x+y)eS, holds if and
only if yeS,.

To the proofs of these theorems the succeeding sections 3 and 4 shall be
devoted.

3. Construction of orthogonal additive functional ©. In this section,

let ||-]| be continuous on R and 7 be a similar transformation satisfying the
condition (T.C.) From (2.1)~(2.3) it follows that
(3.1) T(x@y)=Tx®Ty and |Tx|=T(|x| for x,yeR.

First we shall prove several auxiliary lemmas easily derived from the
assumption.

Lemma 1. We have T(V)C V—S.

Proof. Suppose y€S with TyeS. Then we have T(y+0)= Tye.S, which
implies 0€.S by (T.C.), a contradiction. On account of (2.2) and the semi-
continuity of | .||, it is now clear that 7(V)c V—.S holds. Q.E.D.

9) If |xfi0 for each 2,0 with |x|=|a|(l=y), a€ER is termed a continuous element
~of R with respect to |-]|.
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In the sequel, we use the following notations:
(3- 2) SQ=S and Sn_—_ TS’n-fl (n=1, 2, "').

Now we have

Lemma 2. S;NS;=¢ holds for ixj (i,j=1,2,--).

Proof. If z€S;NS; for some 7,5 with i<j, i.e., 2=T‘z=T"y for some
x, yeS we get x=T7"%y. Putting c=T7"*""y, we obtain x=7Tc and ceV,
which is inconsistent with Lemma 1.

Lemma 3. For each x€S, (n=0,1,2, ) & can be decomposed into x=
. ®Dx, in such a way that x,;€S,,, (i=1,2) holds.

Proof. x€S, implies 7 "xeS, whence ||7-"*"«x||>1. Now we put
a=T "™z, Since R contains no atomic element and ||-| is continuous, we
can find an element p such that [p]aeS holds. Because of [pla, Tacs, it
follows from (T.C.) that 1—[p])aeS holds. Hence x=T"*" a=T"*'[p]la
+ T (1—[pl a) with T""'[pla, T (1 —[pl)a)€S, .. simultaneously.

It is obvious from Lemma 3 that x€S if and only if x is represented as,
for any fixed 7, '

(3.3) x = T"(ﬁ—)ﬂxﬁ ,

where x,eS8 (i=1,2,---,2").
Lemma 4. Let a, beS and al|b. Then

(3. 4) | Tma ®b||>1
stands for each n=1.

Proof. We shall prove this lemma by inducotin. In case of n=1,
| Ta®b|| =1 implies ||T(a® T ~'b)|| =1, whence T 'b€S, contradicting Lemma
1. Thus (3.4) is valid for n=1. Now suppose that (3. 4) holds for each n=#%
and || T*"'a®b||=1 for some a,beS with alb. Then |T(T*a®Tb)||=1
holds and 774 can be represented as 7T 'b=5b,®8b,, ,€S (i=1,2). From this
and ||T{(T*a®b,)+b,}||=1, it follows that |[7T%a®b,||=1 holds on account
of (T.C.), but this contradicts the induction hypothesis. Q.E.D.

Lemma 5. If x=@x,=Dy;Dv, with z,€8, y,€8 (=1,2,--.,n; j=
=1 F=1

1,2,---,m) and furthermore x is not a complete? element, then n=m holds.

Proof. Suppose contrarily n<m. Since R is non-atomic, we can find
a set of mutually orthogonal elements {z;};-.CS such that z,lx (1=7=¢) and

10) xER is called a complete element if {x}!={0} holds.
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n+P=2"for some pu=1. Then T”(p@zi@)x):T“(zl(@---@z,,@xl@---@xn)ES
i=1

On the other hand, we get T”(ézi®x)=T”(zl@)---@zp@yl@"'C‘Bym@yo)=

Ty PYn®D2® - D2,) + T (Y@ ®Y.,) + T*(yo), which implies 1=
” T (x®z) “ = “w + lem” ’ where w=T" (y1® e @yn®zl® o C‘sz) belongs to .S.
However, this is inconsistent with the preceding lemma. Q.E. D.

Lemma 6. If x is not a complete element and x=x,® - Px,=y,@D

@y,@yo, wkere Z,E€S,,, yyeS and y,€ V 1=<v=k, 1=pu<l, 0<m,, n,), then
£ l
21

y»=1

Proof We put N=Max {m,, n, Then, for each v (1=<v=<Fk) x is de-

1Sv=s%k
1spsi

composed into x,=xz,.®x,.P--- Pz, ™ with z,,eSy (1=Zi<2¥ ™). Simi-
larly y,=v,,® - -@y,,.¥-», with y, ;€Sy holds for each j (1<j<2""). Hence

k2NT™, 72V "7y,

both x=® ® x,, and =@ @ v,,Dy, holds, which implies 7 ¥z =

v=14=1 p1_7_

DT Yz, ;=®DT "y, ,®T Yy, with T Yz,,€S and T "y, ;€S for each
v ¢ I |

v, #, %, and j. In view of the preceding lemma we find

k£ 4
Z 2N—mv g Z 2N*n‘u .
r=1

y=1

z

Thus we obtain = 2n Q.E.D.
Here we turn to deﬁne an orthogonal additive functional (i.e. @ (x+ y)
=P(x)+P(y) for zly) on R from |[-|. Let R, be the set of all non-complete
elements of R and U be the totality of elements of R, which can be represented
as £,®---Dx, with €S, ((=1,2,---,7; n=1,2,---). On A we define a fun-
ctional @’ as follows:
(3.5) =51,

2’”1,
where r=2,®---Px, with x,€S,, (1=i=<n). According to Lemma 6 we see
that this definition has a sense. It is evident from the definition that @’ is
orthogonally additive on 2. Next, we put for each z€R
sup #’(y),

(3. 6) o(z) = lyl<izl,ven
0, if there exists no element ye with |y|<|x|.

In the succeeding section we shall show that © thus defined is in fact
a modular on R and that ||-|| is nothing but the modular norm by #.
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4, Properties of ¢ and the proofs of Theorems. In view of con-
struction of © and Lemma 6 we see easily that © satisfies the modular con-
ditions M.1) and M.2). Since R contains no atomic element, we bhave also

(4. 1) 0(x) =0 (x) for each xe¥.

In order to prove the remaining conditions M. 3),~M. 6), we need some
lemmas.

Lemma 7. We have
4.92) o (z)> Elgandp(x) <21—m imply | T~"z|>1 and | T x|

<1 respectively (m=0,1,2,--);

(4. 3) P(x)< + oo, for each x€R;
(4. 4) 0 (x)= sup ¢'([plx), if P(x)>0.
[plze
Proof. (4.2) follows immediately from the definition of 0. Since | -] is

continuous, each element x€ R can be represented as x:él-)xi with ||| =1
=1

(1<i<n) for some n=1. From this we have 0(x)<#z in view of (3.5), (4.2)

and M.2). Thus (4.3) is valid. Next, we shall show that if P(x)>—2]% x is

written as x=§?xi€—)xo with |7 ™x,||>1 for each i (1=<i¢<k). By (3.6) there
exists 0<x'eU such that lxlgx’———:@lxé@xé with z}esS,, (1 gigk) and x,eU.
Now we decompose x; into :cé-——é)x’ " with x/e€ for each ;. On the ground
of Lemma 4 HT‘ (;Dx)||>1 ( 1<z<k) must hold. Putting x,;=[xiDx!]x
and x,=x— @xz, we obtain x= @xé@xo with || 7~"x,]| >1 for each i (1= 4).

From this one derives easily that if 2(x )>2i there exist projectors {[p,]},

such that [p;]1=[x;] and | T "[p]x| =1 hold 1ZiZk), where {.’chq;}z N satlsﬁes

the above condition. Since [p;]x;€S,, and @[pi]xz- (Z][p%] ), P’([p]x)Zz—m
follows and (4.4) is proved, where [p]=§][p,-]. ' _ Q.E.D.

Lemma 8. @ is orthogonally additive, i.e., it satisfies M. 5).
Proof. From the definition of ¢ it follows that

PlxPy)=P(x)+L(y)
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holds. Now suppose P(x@Dy)>P(x)+0(y) for some z,yeR with x+yeR,.

Then we can choose a natural number 7 such that p(ac@y)>p(:c)+p(y)+217 ,
By (4.4) there exist projectors [p], [¢] for which #(2)— @' ([p]2) < 2}“2 . Ply)—
#([glv) <o [pleeA and [gly €A hold  Since P(1—[p)a) <P (x)—
olp) )< and e((1—[q)v) < P(y)—Pllgly) <, hold, we can find a,

8=1 such that both a(l1—[pllx and B(1—[¢])y belong to S, .. according to
(4. 2) and the fact that 7" is similar. Putting x'=[plr+a(l—[p])x and y'=
[gly+B(1—[glly, we obtain x', y’€A and ' (2'Dy’')=0"(z')+0'(y')=L"([p]x)

+ 0’ ([q] y)+L , since P’ is orthogonally additive on 2. Hence we get

2m+1
O (= DY) 2P (e ®Y)> P (@) +0 (1) +
! l4 1 ’ ’ ’ 1
= 0 ([plx)+P ([q]y)+§;=0 (DY) + T ?
which is, however, a contradiction. Thus we see easily that © is orthogonally
additive by virtue of Lemma 7. QO.E.D.
Lemma 9. We have
(4. 5) P(x)<1 if and only if ||x||=1.

Proof. The fact that ||x|| <1 implies ©(x)<1 is ovbious by virtue of
Lemma 4. On the other hand, for any x with ©(x)<1 we can find a sequence
of projectors {[p,]}:: such that [p,]12.[x], [p]xeW and P([p.]x)t.P(x)=1
on account of (4.4) and the orthogonal additivity of ©. By (4.1) and the de-
finition of ©’, we now get ||[p,]x||=<1 for each v=1, hence |z|]|<1 because
of the semi-continuity of ||.|. Q.E.D.

Lemma 10. 0 s semi-continuous, i.e., it satisfies M. 6).

Proof. Let 0<x,};csx and P(x)>2k;m. As is shown in the proof of (4.4),

there exists p€R such that [p]xe¥, [p]x=_(L—sz- and || 7T "w,||>1 (1=i<k).

Then, since [wi]xm“ [w;]x=w,; holds for each 7 and ||-| is semi-continuous,
we have for a sufficiently large 2, that |7 "[w;]x,]|>1 stands for every
i (1=i<k). Therefore we have

11) In case of o(x)=0 (or ¢(y)=0), we choose p=0 (resp. g=0).
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p(xlo>zp<[p]xzo)zzim ,

which shows the semi-continuity of 0. "Q.E.D.
Lemma 11. @ satisfies M.3). i.e., lim P(Ex)=0.

£-0
Proof. U P(Ex)>% holds for each &>0, we have || T-"x||>1. Since

Né&|lz| =0 stands, N 7T ~"¢&|x|=0 holds. Hence it follows that || 7T ™éx|[—0 as
£>0 £>0

£—0, because of the continuity of |[-]|. This is a contradiction. Q.E.D.
Summing up the above results, we see that © satisfies all the conditions of
modular except M.4). Next lemma shall show that ¢ fulfils M.4) too.

Lemma 12. P(éx) is a convex function of & (E=0) for each x€R.

Proof. We shall first show that the set B;={x: P(x)<¢} is convex for
every & with 0<¢=<1. Let x,y€B; and a, >0 with a+=1. By virtue of
semi-continuity of ©, we may assume without loss of generality that there exists
02 z€R belonging to {x,y}'. Furthermore we may choose z as P(z)=1-¢,
since PO satisfies (4.3) and R has no atom. It follows that both x+=2 and y+=2
belong to V, hence a(x+z)+8(y+z2) does also. Consequently, we obtain
P(ax+ By)+P(2)<1 by Lemma 9, hence ax+ pye€B;. Therefore B; is convex.

Next, suppose that 2(¢éx)<1 and P(ypx)<1 for some x€R and £>7=0.
Since @ is finite, orthogonally additive and semi-continuous, we can find p€ R
for which e (&[plx)=0P(E(1—[p])x) holds. If P(p[plx)<P(n(l—[p])x) stands
for such [p], there can be constructed a system of projectors {[p.]}s.< and
{[£21} 0sesn such that [p.]l([pl]1) as al0, [p=[p), [p]=(1—[p]) with [p.]
=[pl, [p]1=(1—[p]), and P([p.]x)=L(EQ~[p])1—[p.])x)=a PE[L]x) holds
for each 0<a=<1. Putting [q.]=[p.]+1—[2])[2.], we obtain [¢g.]=[x] and
P([g.]x) =P(E(1—[q.])x) for every «. Furthermore we see easily that both
o(plg.]x;<P(p(l—[q:))x) and P(ylg.]x)>L(y(1—[g])x) hold. From this it
follows that 0 (y[g.]x)=0P(n(1 —[q.])x) stands for some a. In consequence, we

have shown that there exists peR such that 0(&[p] x)=% @ (éx) and P(p[p)x)

= ;— P(px) hold simultaneously. Because P(&[plx+n(1-—[p])x)=~Llp]lx-+

1

(1 —-[p) )= {P(Ex)+P(2)} <1, we have

1

(9}
&

(4.6) o[ texrm) s (e em)+ o i)

by the fact shown just above.
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Finally, since each x can be decomposed orthogonally into x= ®x, with

é=1
P(x)=1 (1<i=n), we see that (4.6) holds for any z€R, i.e. P(x) is a convex
function of & (6=0) for each xeR. Q.E.D.
Here we are in position to prove the theorems stated in 2.

Proof of Theorem 1. Sufficiency. The functional © constructed in 3
is a modular satisfying (4.5), as is shown above. Hence we have |x|=

inf{ él ; (Ex)<1} i.e., ||| is the modular norm by the modular e.
Necessity. Let ||-|| be the modular norm by a modular 72 on R. m is
necessarily finite since ||-|| is continuous, In the same manner as in the proof

of Theorem 2 in [8], we can construct a similar transformation 7, on R
satisfying

m(ﬂx}=—é—m(x)’ for every x€eR.

It is now clear that 7, satisfies the condition (T.C.). Q.E.D.

Proof of Theorem 2. Sufficiency. In view of Theorem 1 we find
a finite modular # on a complete semi-normal manifold R, of R, for which

Il is the modular norm on R;. We extend now @ on the whole space R
as follows:

4.7) O,(x) = sup P(y) (xeR).

0sSy=|z|, ¥€ER,

0, thus defined is an almost finite modular on R, as is easily seen, and ©,(x)=£(x)

if z€R;. Because of the semi-continuity of ||« || and @, ||z|| =inf I ——3 P, (Ex) Sl}
holds for each z€R, that is, ||-|| is the modular norm by o,. The nessecity
is derived similarly as the proof of Theorem 1. Q.E.D.

5. Here let (R, ||-]|) be the same as in 3 and @ be the modular defined,
in the manner described above, from | .|| and a similar transformation 7" on
R satisfying the condition (T.C.). From the construction of © one derives
easily '

P(Tx)=%9(a:) (x€R).

Also this enables us obviously to restate properties of the modular £ in terms
of similar transformations 7. We describe below a few examples of such

12) Of course, we can state properties of # by means of ||-]|, since there are found closed
relations between modulars and their norms [1, 6, and 7].
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restatements in terms of 7. Being trivial, their proofs are omitted.

5.1. © is simple (i.e. P(x)=0 implies x=0), if and only if N T"x=0
for each x€R. B

5.2. 0 is uniformly simple (i.e. inf 0(x)>0 for each 6>0), if and only

lleliza
if for each ¢>0 there exists m=0 with sup | T7x| <e.
zeS

5.3. 0 is uniformly finite (i.e. sup P(x)< + oo for each 6>0), if and

[lx||=6

only if for each 6>0 there exists m=0 with inf || T ™x| >d.
z€S

5.4. 0 is upper bounded (i.e. P(ax)<7P(x) holds for every x€R, where

1<a, T are fixed constants), if and only if T = (%)710—1‘3) for some p=1.

Finally let (E, 2, p) be a o-finite non-atomic measure space with a countably
additive non-negative measure g on a o-field 2 of E. A modulared space (X, m)
consisting of measurable functions on E is a semi-normal manifold of modulared
function space Ly, defined by a modular function M(§, £)' on [0, oo)x E,
that is, X is contained in the totality of all measurable functions f such that

{ . Mlalf(®), 2) du()< + oo for some a>0, and
5.1) m(f)=| M@l 8 du@

holds for each feX. Conversely, it is known [6] that each modulared semi-
ordered linear space R can be considered as a modulared function space L,
on a measure space (E, £2, p) suitably chosen, and 7 is represented by (5.1).

~ For any fmite modulared function space™ (L, (E), ||+]]) we can obtain
a similar transformation 7" with the condition (T.C.) directly as follows: We
define for (&, #€[0, oo)x E

MTQLAﬂa@, if M, 4>0;
(5. 2) 8 = 2

£, it M, =0,
where M ;'(€) is the inverse of the function M, (&)= M (¢, ¢) for each € E. Then
h(& t) on [0, 0)x E is a Carathéodory’s function, and the transformation Y

defined by

13) 1 is the identity operator on R and 5.4 follows from Theorem 3.3 of [9].
14) For the definition of modular functions see [3 or 6]. Roughly speaking, M(£,¢) is

a N’-function of ¢ for each t€E. In Lue,s) we consider 5EM(|f(t)|, t) du(t) as a modular m

always.
15) m on L, is finite, if and only if M(2%,¢) <vM(¢, t)+a(t) for all (§,2) &[0, co) X E,
where r>0 and a ()€ L,(E)[3]. m is almost finite if and only if M(£,#)<-oo a.e. in [0. co)X E.
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(5. 3) Y(f(2) =n(f@), ) (f€ Lie,»)

forms a similar transformation satisfying the condition (T.C.) for the modular
norm on L, ,. Conversely, in view of Theorem 1 we have

Theorem 3. If (X, ||‘]||) is a normed function space'® with a continuous
norm ||-||, and if a similar transformation Y) from X onto X, defined by
a Carathéodory’s function h (&, t'” on [0, oo)x E, satisfies the condition (T.C.),
then there can be found a modular function M(E, t) on [0, o) x E such that
X is a semi-normal manifold of L., M(E t) satisfies (5.2),® and |||
coincides with the modular norm of the space L -

Remark 1. In this theorem if moreover, (X, |-||) is monotone complete
i.e. 0Z 11, sup ||fi]l < + oo implies ljf,eX), then X= L, , holds.
vl p=1

Remark 2. In Theorem 3, if A(&, t)=h(&) for all (&, ¢)€[0, co)x E, then
Ly, can be replaced by an Orlicz space Ly,.

When ||-|| is almost continuous, we have a similar theorem as above on
the basis of Theorem 2. In this case, }) acts from L., , the finite manifold
of Ly, (the totality of all fe L, ,, with m(Ef)< + oo for every £=0), onto
itself and satisfies (5.2), if O<M (&, £)< + oo.

On the basis of Theorems 1 and 2, a theorem characterizing the modular
norms in terms of norms only can be obtained, and it shall be shown in a
separate paper.

References

[1] T. ANDO: Converity and evenness in modulared semi-ordered linear spaces, Jour.
Fac. Sci. Hokkaido Univ., 14, No. 1, 2 (1957), 59-95.

[2] F. BOHNENBLUST: An axiomatic characterization of Lp-spaces; Duke Math. J., 6
(1940), 627-640.

[3]1 J. IsHII: On the finiteness of modulared spaces, Jour. Fac. Sci. Hokkaiko Univ.,
15, No. 1, 2 (1960), 13-28.

[4] M. A. KRASNOSELSKII, J. B. RUTICKIi: Convex functions and Orilicz spaces (in
Russian), Moskow, 1958.

[5] H. NAKANO: Stetige lineare Funktionale auf dem teilweise geordneten Modul,
Jour. Fac. Sci. Imp. Univ. Tokyo, 4 (1942), 201-382.

[6] ————: Modulared semi-ordered linear spaces, Tokyo 1950.

[7]1 T. SHIMOGAKI: On the norms by uniformly finite modulars, Proc. Japan Acad.,
No. 6 (1957), 304-309.

[8] — A generalization of Vainberg's theorem 11, Proc. Japan Acad., 34,

16) We assume that X is semi-normal.

17) For h(¢,7) we assume A(0,f) =0 for all z€ E.

18) Strictly speaking, A (&, )=M;*(3M(%,¢) holds a.e. for (§,¢) satisfying M (¢,£)>0. In
general, A(&,2)=¢ does not hold for (£, with M(&,¢£)=0.



152 T. Shimogaki

No. 10 (1958), 676-680.
[9]1 S. YAMAMURO: Exponents of modulared semi-ordered linear spaces, Jour. Fac. Sci.
Hokkaido Univ., 12, No. 4 (1953), 211-253.

Department of Mathematics,
Hokkaido University

(Received September 28, 1964)



