SUR LES ÉQUATIONS FONCTIONNELLES CONTENANT UN PARAMÈTRE

Par

Masuo HUKUHARA

TABLE DES MATIÈRES

							PAGES
I.	Continuité				• •	•	. 108
	1. Points semi-réguliers, points semi-singuliers	١	•, •				. 108
	2. Cas de l'intervalle fermé à gauche						. 109
	3. Cas de l'intervalle ouvert à gauche		•			•	. 110
II.	DÉRIVABILITÉ				• •		. 111
	4. Cas de l'intervalle fermé à gauche5. Cas de l'intervalle ouvert à gauche						
III.	ÉQUATIONS FONCTINNELLES			• •		÷	. 116
	6. Continuité					•	. 116
	7. Généralisation d'un théorème de MM. LERA	Y e	t Sc	HAU	JDEF	₹.	. 117
	8. Dérivabilité		• •	• •		•	. 119

Le but de ce présent mémoire est à établir la dérivabilité par rapport à un paramètre de la solution d'une équation différentielle contenant ce paramètre⁽¹⁾, en nous appuyant sur les théorèmes de comparaison⁽²⁾. Les théorèmes ainsi obtenus joueront un rôle important dans l'étude des points singuliers des équations différentielles. Dans la dernière section, nous étendrons ces résultats aux équations fonctionnelles.

⁽¹⁾ Pour le théorème déjà classique sur la dérivabilité par rapport à un paramètre, voir par exemple Goursat, Cours d'Analyse, t. III, Chap. XIII.

⁽²⁾ Voir, par exemple, HUKUHARA et SATÔ, Sur les théorèmes de comparaison des équations différentielles ordinaires, ce Jour., 3 (1935), p. 191-211.

I. CONTINUITÉ

1. Points semi-réguliers, points semi-singuliers. Soit donnée une équation différentielle⁽¹⁾

$$\frac{dy}{dx} = f(x, y) .$$

Nous appellerons point semi-singulier à droite (gauche) de cette équation tout point (x_0, y_0) tel que quelque petit que soit le nombre positif δ , il existe au moins deux solutions de (1) prenant la valeur y_0 pour $x=x_0$ et ne coïncidant pas dans l'intervalle $x_0 \leq x \leq x_0 + \delta(x_0 - \delta \leq x \leq x_0)$. Le point qui n'est pas semi-singulier à droite (gauche) s'appelle semi-régulier à droite (gauche).

Soit $\varphi_0(x)$ une solution de (1) continue dans l'intervalle $0 \le x \le a$ et s'annulant pour x = 0, et supposons la fonction f(x, y) continue dans

$$(2) 0 \leq x \leq a , |y-\varphi_0(x)| \leq b ,$$

a et b étant deux nombres positifs. Nous dirons qu'il existe une solution $\varphi_1(x)$ de (1) continue dans $0 \le x \le a$ et différente de $\varphi_0(x)$ et que s'il existe sur la courbe $y = \varphi_0(x)$ des points semi-singuliers à droite on peut prendre pour $\varphi_1(x)$ une solution s'annulant pour x = 0.

Supposons d'abord que la courbe $y = \varphi_0(x)$ est formée des points semi-réguliers à droite. Nous prenons alors une suite de points $\{\eta_j\}$ convergeant vers zéro. Désignons par $y = \psi_j(x)$ une solution de (1) prenant la valeur η_j pour x = 0. La fonction $\psi_j(x)$ tend uniformément vers $\varphi_0(x)$ dans $0 \le x \le a$ lorsque $j \to \infty$. On peut donc prendre pour $\varphi_1(x)$ la fonction $\psi_j(x)$ correspondant à l'indice assez grand.

Supposons ensuite qu'il existe sur la courbe $y = \varphi_0(x)$ des points semi-singuliers à droite. f(x,y) étant continue dans (2) le module |f(x,y)| n'y surpasse pas un certain nombre fini M. Prenons un nombre ξ tel que $0 < a - \xi < \frac{b}{2M}$. S'il existe des points semi-singuliers à droite dans l'intervalle $\xi \leq x \leq a$, il y a au moins une solution $y = \psi(x)$ bifurquant de la solution $y = \varphi_0(x)$ en un point d'abscisse x_1 entre ξ et a. $\psi(x)$ est nécessairement continue dans l'intervalle

$$\frac{dy_j}{dx}=f_j(x,y_1,\ldots,y_n) \qquad (j=1, 2, \ldots, n).$$

⁽¹⁾ La variable x est réelle mais y un vecteur variable dans l'espace à n dimensions, de sorte que l'équation unique (1) est équivalente à un système des n équations différentielles .

 $x_1 \leq x \leq a$. Il suffit donc de poser $\varphi_1(x) = \varphi_0(x)$ pour $0 \leq x \leq x_1$ et $\varphi_1(x) = \psi(x)$ pour $x_1 \leq x \leq a$. Désignons par a la borne supérieure des abscisses des points semi-singuliers à droite situés sur la courbe $y = \varphi_0(x)$. Il reste à considérer le cas où $0 \leq a < a$. Si $(a, \varphi_0(a))$ est un point semi-régulier à droite, il existe une suite de points semi-singuliers à droite $\{(a_j, \varphi_0(a_j)\}$ convergeant vers $(a, \varphi_0(a))$. Désignons par $y = \psi_j(x)$ une solution de (1) prenant la valeur $\varphi_0(a_j)$ pour $x = a_j$ et ne coïncidant pas avec $\varphi_0(x)$ dans $a_j \leq x \leq a$. $\psi_j(x)$ converge uniformément vers $\varphi_0(x)$ dans $a \leq x \leq a$. Il suffit donc de poser $\varphi_1(x) = \varphi_0(x)$ pour $0 \leq x \leq a_j$ et $\varphi_1(x) = \psi_j(x)$ pour $a_j \leq x \leq a$, j désignant un indice suffisamment grand.

Supposons enfin le point $(\alpha, \varphi(a))$ simi-singulier à droite. La section par l'hyperplan $x = \alpha + \delta$ de l'ensemble des courbes intégrales de (1) passant par $(\alpha, \varphi(a))$ est un continu C ne se réduisant pas à un point pourvu que le nombre positif δ soit convenablement choisi. Si l'on prend dans ce continu un point $(\alpha + \delta, \beta)$ assez voisin de $(\alpha + \delta, \varphi(a + \delta))$, la solution $y = \psi_1(x)$ de (1) prenant la valeur β pour $x = \alpha + \delta$ est nécessairement continue dans l'intervalle $\alpha + \delta \leq x \leq a$. Il y a au moins une solution $y = \psi_2(x)$ prenant la valeur $\varphi(a)$ pour x = a et la valeur β pour $x = a + \delta$. Il suffit donc de poser $\varphi_1(x) = \varphi_0(x)$ pour $0 \leq x \leq \alpha$, $\varphi_1(x) = \psi_2(x)$ pour $\alpha \leq x \leq \alpha + \delta$ et $\varphi_1(x) = \psi_1(x)$ pour $\alpha + \delta \leq x \leq a$.

De ce qui précède nous pouvons conclure immédiatement que si l'équation (1) n'admet qu'une solution s'annulant pour x=0 et continue dans l'intervalle $0 \le x \le a$, les points de la courbe intégrale sont tous semi-réguliers à droite.

2. Cas de l'intervalle fermé à gauche. Soit donnée une équation différentielle contenant un paramètre⁽¹⁾

(3)
$$\frac{dy}{dx} = f(x, y, \lambda).$$

Supposons que l'équation différentielle

$$\frac{dy}{dx} = f(x, y, 0)$$

n'admette qu'une solution $\varphi_0(x)$ s'annulant pour x=0 et continue dans

$$\frac{dy_j}{dx} = f_j(x, y_1, \ldots, y_n, \lambda_1, \ldots, \lambda_m) \qquad (j = 1, 2, \ldots, n).$$

⁽¹⁾ y désigne un vecteur variable dans l'espace à n dimensions et λ un vecteur variable dans l'espace à m dimensions, de sorte que l'équation unique (3) est équivalente au système différentiel

l'intervalle $0 \le x \le a$ et que $f(x, y, \lambda)$ soit continue dans

$$(5) 0 \leq x \leq a, |y-\varphi_0(x)| \leq b, |\lambda| \leq c.$$

Alors l'équation (3) admet au moins une solution s'annulant pour x=0 et continue dans $0 \le x \le a$ pourvu que $|\lambda|$ soit assez petit et cette solution converge uniformément vers $\varphi_0(x)$ dans $0 \le x \le a$.

Si donc l'équation (1) admet, quelle que soit la valeur λ ($|\lambda| \le c$), une solution $y = \varphi(x, \lambda)$ et une seule s'annulant pour x = 0 et continue dans $0 \le x \le a$, la solution $\varphi(x, \lambda)$ considérée comme fonction de (x, λ) est continue dans

$$0 \le x \le \alpha$$
, $|\lambda| \le c$.

3. Cas de l'intervalle ouvert à gauche. Avant d'aborder l'équation (3) faisons une remarque très simple analogue à celle du n° 1. Soit $\varphi_0(x)$ une solution de (1) continue dans $0 < x \le a$ et supposons que f(x, y) soit continue dans

$$0 < x \le a$$
, $|y-\varphi_0(x)| \le B(x)$,

B(x) désignant une fonction continue dans $0 < x \le a$. Si l'équation (1) n'admet qu'une solution continue dans $0 < x \le a$, les points de la courbe $y = \varphi_0(x)$ sont tous semi-réguliers à droite.

En effet, supposons qu'il existe sur la courbe $y = \varphi_0(x)$ un point semi-singulier à droite (ξ, η) . Alors le résultat au n° 1 s'applique à l'intervalle $\xi \leq x \leq a$. Il y a donc au moins une solution $\psi(x)$ prenant la valeur η pour $x = \xi$, continue dans $\xi \leq x \leq a$ et ne coïncidant pas avec $\varphi_0(x)$. Si l'on pose $\varphi_1(x) = \varphi_0(x)$ pour $0 < x \leq \xi$ et $\varphi_1(x) = \psi(x)$ pour $\xi \leq x \leq a$, $\varphi_1(x)$ est une solution de (1) continue dans $0 < x \leq a$ et ne coïncidant pas avec $\varphi_0(x)$.

Cela posé, considérons l'équation (3) et supposons que $f(x,y,\lambda)$ soit continue dans⁽¹⁾

$$(6) 0 < x \leq a, |y-\varphi_0(x)| \leq B(x), |\lambda| \leq c,$$

 $\varphi_0(x)$, B(x) étant des fonctions continues dans $0 < x \le a$. Si l'équation (3) admet, quelle que soit la valeur λ , une solution et une seule continue dans $0 < x \le a$, $\varphi(x,\lambda)$ considérée comme fonction de (x,λ) est continue pour

⁽¹⁾ On peut remplacer l'intervalle $0 < x \le a$ par $-\infty < x \le a$, car le nombre 0 ne joue aucun rôle important.

$$0 < x \le a$$
, $|\lambda| \le c$.

Car quelque petit que soit le nombre positif δ , $\varphi(x, \lambda)$ tend uniformément vers $\varphi(x, \lambda_0)$ dans $\delta \leq x \leq a$ lorsque $\lambda \to \lambda_0$.

II. DÉRIVABILITÉ

4. Cas de l'intervalle fermé à gauche. Soit $\varphi_0(x)$ une solution de (4) s'annulant pour x=0 et continue dans $0 \le x \le a$ et supposons que $f(x,y,\lambda)$ et ses dérivées partielles $f_y'(x,y,\lambda)$, $f_\lambda'(x,y,\lambda)$ soient continue dans (5). L'équation (3) n'admet qu'une solution $y=\varphi(x,\lambda)$ s'annulant pour x=0 quelle que soit la valeur λ . Si le nombre γ est est assez petit, la fonction $\varphi(x,\lambda)$ est continue dans

$$(7) 0 \leq x \leq a, |\lambda| \leq \gamma,$$

c'est ce qui résulte des propositions établies aux nos 1, 2. Nous allons maintenant montrer l'existence et la continuité de la dérivé partielle $\varphi'_{\lambda}(x,\lambda)^{(1)}$. Désignons par $g(x,\lambda)$, $h(x,\lambda)$ les fonctions que nous obtenons en posant $y=\varphi(x,\lambda)$ dans $f_{y}'(x,y,\lambda)$, $f_{\lambda}'(x,y,\lambda)$. Ces fonctions sont continues dans (7). S'il existe la dérivée partielle $\varphi'_{\lambda}(x,\lambda)$, elle doit coı̈ncider avec la solution $z=\psi(x,\lambda)$ de

(8)
$$\frac{dz}{dx} = g(x, \lambda)z + h(x, \lambda)$$

s'annulant pour x=0. $\psi(x,\lambda)$ est continue dans (7). Il suffit donc de démontrer par exemple la relation

$$\lim_{\lambda\to 0}\frac{\varphi(x,\lambda)-\varphi_0(x)}{\lambda}=\psi_0(x)\quad (\psi_0(x)=\psi(x,0)).$$

Pour cela nous posons

$$\varphi(x,\lambda) = \varphi_0(x) + \lambda \psi_0(x) + \chi(x,\lambda) .$$

La relation que nous voulons établir devient

$$\lim_{\lambda \to 0} \frac{\chi(x,\lambda)}{\lambda} = 0.$$

⁽¹⁾ Ce théroème déjà classique sert de lemme à la démonstration du théorème que nous établirons au n° suivant et il ne serait pas sans intérêt de montrer comment on peut appliquer les théorèmes de comparaison à la démonstration de ce théorème.

L'équation à laquelle satisfait la fonction $u = \chi(x, \lambda)$ est

$$\frac{du}{dx}=k(x,u,\lambda)$$

où

$$k(x, u, \lambda) = f(x, \varphi_0 + \lambda \psi_0 + u, \lambda) - f(x, \varphi_0, 0)$$
$$-\lambda \left\{ f'_{\nu}(x, \varphi_0, 0) \psi_0(x) + f'_{\lambda}(x, \varphi_0, 0) \right\}.$$

Soit ε un nombre positif quelconque. On peut trouver un nombre positif δ tel que l'on ait

$$|f_y'(x,y,\lambda)-f_y'(x,\varphi_0,0)|<\varepsilon\;,\quad |f_\lambda'(x,y,\lambda)-f_\lambda'(x,\varphi_0,0)|<\varepsilon$$
 pour

$$0 \le x \le a$$
, $|y-\varphi_0(x)| < \delta$, $|\lambda| < \delta$.

 $\varphi(x,\lambda)$ étant continue dans (7), il existe un mombre positif ρ tel que l'on ait

$$|\lambda\psi_0(x)+\chi(x,\lambda)|<\delta$$
, $\rho<\delta$

pour $|\lambda| < \rho$. Nous aurons alors

$$|k(x, u, \lambda)| < G|u| + \varepsilon(M+1)|\lambda|$$

pour

$$0 \le x \le a$$
, $u = \chi(x, \lambda)$, $|\lambda| < \rho$,

en supposant

$$|f_y'(x,y,\lambda)| \leq G$$
, $|\psi_0(x)| \leq M$.

Puisque $\chi(x,\lambda)$ s'annule pour x=0, on peut la comparer avec la solution s'annulant pour x=0 de l'équation différentielle

$$\frac{dU}{dx} = GU + \varepsilon(M+1)|\lambda|.$$

Nous obtenons ainsi

$$|\chi(x,\lambda)| \leq \frac{\varepsilon(M+1)|\lambda|}{G} (e^{Gx}-1)$$

pour $0 \le x \le a$, $|\lambda| \le \rho$, ce qui démontre la relation voulue.

Remarque 1. On peut supposer que y et λ soient des variables complexes. Alors la dérivabilité de $\varphi(x,\lambda)$ par rapport à λ dans (7) entraı̂ne la régularité de $\varphi(x,\lambda)$ par rapport à λ dans

$$0 \le x \le a$$
, $|\lambda| < \gamma$.

Par suite on a

$$\varphi(x,\lambda) = \sum_{n=0}^{\infty} \varphi_n(x) \lambda^n$$
,

la convergence étant uniforme dans $0 \le x \le a$, $|\lambda| \le \gamma'(<\gamma)$.

Remaruque 2. Il est aisé d'étendre les résultats précédents aux équations différentielles

$$\frac{dy_j}{dx}=f_j(x,y_1,\ldots,y_n,\lambda_1,\ldots,\lambda_m) \quad (j=1,2,\ldots,n).$$

5. Cas de l'intervalle ouvert à gauche. Soit $\varphi_0(x)$ une solution de (4) continue dans $0 < x \le a$, et supposons que $f(x, y, \lambda)$ et ses dérivées partielles $f'_y(x, y, \lambda)$, $f'_\lambda(x, y, \lambda)$ soient continue dans (6) et que

$$|f'_y(x, y, \lambda)| \leq G(x), |f'_\lambda(x, y, \lambda)| \leq H(x).$$

Nous allons démontrer le théorème suivant.

Si l'on a, en posant $\eta(x) = e^{\int G(x)dx}$,

$$r(x) = O(B(x))$$
, $r(x) = O(\eta(x))$,
$$\int_0^x \frac{H(x)}{\eta(x)} dx = o\left(\frac{r(x)}{\eta(x)}\right)$$

pour $x \to +0$, l'équation (3) n'admet, quelle que soit la valeur λ , qu'une solution telle que $y = \varphi_0(x) + o(r(x))^{(1)}$ pour $x \to +0$. Si le nombre γ est assez petit, cette solution $y = \varphi(x, \lambda)$ est continue et admet la derivée partielle continue $\varphi'_{\lambda}(x, \lambda)$ dans

$$(9) 0 < x \leq a, |\lambda| \leq \gamma.$$

Il est aisé de démontrer l'unicité de la solution telle que $y = \varphi_0(x) + o(r(x))$. Puisque

$$|f(x, y, \lambda) - f(x, \varphi_0(x), 0)| \le G(x) |y - \varphi_0(x)| + H(x) |\lambda|$$

on peut comparer la solution $\varphi(x, \lambda)$ avec celle de l'équation

$$\lim_{x\to+0}\frac{|y-\varphi_0(x)|}{r(x)}=0.$$

⁽¹⁾ On peut remplacer cette condition par

$$\frac{dY}{dx} = G(x)Y + |\lambda| H(x).$$

Posons

$$\Psi(x) = \eta(x) \int_0^x \frac{H(x)}{\eta(x)} dx$$

et désignons par γ un nombre positif tel que l'on ait $\gamma \Psi(x) < B(x)$ pour $0 < x \le a$. $\varphi(x, \lambda)$ est continue et satisfait à l'inégalité

$$|\varphi(x,\lambda)-\varphi_0(x)| \leq |\lambda| \Psi(x)$$

dans (9). En portant l'expresssion $y = \varphi(x, \lambda)$ dans $f'_{\nu}(x, y, \lambda)$, $f'_{\lambda}(x, y, \lambda)$ nous obtenons les fonctions $g(x, \lambda)$, $h(x, \lambda)$ continues dans (9) et satisfaisant aux inégalités

$$|g(x, \lambda)| \leq G(x), |h(x, \lambda)| \leq H(x).$$

L'équation différentielle linéaire (8) admet donc une solution et une seule continue dans $0 < x \le a$ et satisfaisant à z = o(r(x)). Nous la désignerons par $z = \psi(x, \lambda)$. Elle est aussi continue dans (9) et satisfait à l'inégalité

$$|\psi(x,\lambda)| \leq \Psi(x)$$
.

Il est à démontrer la relation $\varphi'_{\lambda}(x,\lambda) = \psi(x,\lambda)$.

Soit δ un nombre positif quelconque. Désignons par $y = \varphi(x, \lambda, \delta)$ la solution de (3) prenant la valeur $\varphi_0(\delta)$ pour $x = \delta$. On démontre comme plus haut que $\varphi(x, \lambda, \delta)$ considérée comme fonction de (x, λ) est continue et satisfait à l'inégalité

$$|\varphi(x,\lambda,\delta)-\varphi_0(x)| \leq |\lambda| \Psi(x)$$

pour

$$(10) \delta \leq x \leq a |\lambda| \leq \gamma.$$

En portant l'expression $y = \varphi(x, \lambda, \delta)$ dans $f'_{\nu}(x, y, \lambda)$, $f'_{\lambda}(x, y, \lambda)$, nous obtenons des fonctions $g(x, \lambda, \delta)$, $h(x, \lambda, \delta)$ continues dans (10). Désignons par $z = \psi(x, \lambda, \delta)$ la solution de l'équation

$$\frac{dz}{dx} = g(x, \lambda, \delta)z + h(x, \lambda, \delta)$$

s'annulant pour $x = \delta$. $\psi(x, \lambda, \delta)$ considérée comme fonction de (x, λ) est aussi continue dans (10) et satisfait à l'inégalité

$$|\psi(x,\lambda,\delta)| \leq \Psi(x)$$
.

On sait de plus que $\varphi'_{\lambda}(x,\lambda,\delta)$ coïncide avec $\psi(x,\lambda,\delta)$. Si

$$|\mu_j| \leq \gamma$$
 , $\mu_j \rightarrow \lambda_0$, $\delta_j \rightarrow 0$,

la fonction $\varphi(x, \mu_j, \delta_j)$ tend uniformément vers $\varphi(x, \lambda_0)$ dans tout intervalle fermé $\delta \leq x \leq a$, δ désignant un nombre positif quelconque. En effet, l'inégalité

$$|\varphi_x'(x,\lambda,\delta_j)-\varphi_0'(x)| \leq G(x)\Psi(x)+H(x)|\lambda|$$

montre que la suite $\{\varphi(x, \mu_j, \delta_j)\}$ est également continue dans $0 < x \le a$. On peut donc en extnaire une suite partielle uniformément convergente dans tout intervalle fermé $\delta \le x \le a$. La limite de cette suite est nécessairement la solution de l'équation

$$\frac{dy}{dx} = f(x, y, \lambda_0)$$

satisfaisant à l'inégalité $|y-\varphi_0(x)| \leq |\lambda_0| \Psi(x)$ dans $0 < x \leq a$. Elle coïncide donc avec $\varphi(x,\lambda_0)$. On en conclut que quelque petit que soit le nombre positif δ , $\varphi(x,\lambda,\xi)$ converge uniformément vers $\varphi(x,\lambda)$ dans (10) lorsque $\xi \to 0$. Par suite les fonctions $g(x,\lambda,\xi)$ convergent uniformément vers $g(x,\lambda)$, $h(x,\lambda)$ dans (10) lorsque $\xi \to 0$. On en conclut comme plus haut que $\psi(x,\lambda,\xi)$ converge uniformément vers $\psi(x,\lambda)$ dans (10) lorsque $\xi \to 0$. En remarquant que

$$\varphi(x,\lambda,\xi)=\varphi_0(x)+\int_0^\lambda \psi(x,\lambda,\xi)d\lambda$$

on obtient

$$\varphi(x,\lambda) = \varphi_0(x) + \int_0^{\lambda} \psi(x,\lambda) d\lambda.$$

En dérivant cette relation par repport à λ , on obtient la relation voulue.

Remarque 1. Si $f(x, y, \lambda)$ est régulière par rapport à (y, λ) , $\varphi(x, \lambda)$ est régulière par rapport à λ .

Remarque 2. Il est aisé d'étendre les résultats au cas des équations différentielles simultanées contenant un nombre fini de paramètres. Mais pour obtenir des propositions qui s'appliquent à des problèmes concernant les équations différentielles et intégrales, il est préférable de traiter les problèmes analogues dans l'espace abstrait.

40

III. EQUATIONS FONCTINNELLES

6. Continuité. Soient \mathfrak{E} un espace linéaire, normé et complet⁽¹⁾, E un ensemble ouvert dans \mathfrak{E} et \mathfrak{Q} un ensemble dans le plan de nombres complexes⁽²⁾. Soit $F(y,\lambda)$ une fonction définie dans $(\overline{E} \times \mathfrak{Q})$, complètement continue (vollstetig) par rapport à $y^{(3)}$ et également continue par rapport à $\lambda^{(4)}$. Nous voulons étudier l'équation en y:

(11)
$$\varphi_{\lambda}(y) \equiv y - F(y, \lambda) = o.$$

Si le degré topologique $d(\varphi_{\lambda}, E)$ de la transformation φ_{λ} dans E n'est pas nul⁽⁵⁾, l'équation (11) admet au moins une solution⁽⁶⁾. Si l'équation (11) n'admet qu'une solution $y = \varphi(\lambda)$ quelle que soit la valeur λ , $\varphi(\lambda)$ est continue dans Ω .

En effet, soit λ_0 un point de Ω . Si $\varphi(x)$ n'était pas continue en λ_0 , on pourrait trouver une suite de points $\{\mu_i\}$ dans Ω , convergeant vers λ_0 et telle que toute suite partielle de $\{\varphi(\mu_i)\}$ ne converge pas vers $\varphi(\lambda_0)$. $F(\overline{E}, \lambda_0)$ étant compact, on pourrait supposer que la suite $\{F(\varphi(\mu_i), \lambda_0)\}$ converge vers un point η , en prenant, s'il est nécessaire, une suite partielle. A un voisinage V de o on pourrait faire correspondre un nombre positif δ tel que l'on ait

$$F(\varphi(\mu_i), \mu_i) - F(\varphi(\mu_i), \lambda_0) \in V$$

pour $|\mu_j - \lambda_0| < \delta$. La suite $\{F(\varphi(\mu_j), \mu_j)\}$ convergerait donc vers η . Puisque $\varphi(\mu_j) = F(\varphi(\mu_j), \mu_j)$, on obtiendrait $\eta = F(\eta, \lambda_0)$, ce qui exige $\eta = \varphi(\lambda_0)$. La suite $\{\varphi(\mu_j)\}$ convergerait donc vers $\varphi(\lambda_0)$ contrairement à l'hypothèse.

⁽¹⁾ Espace de M. BANACH.

⁽²⁾ On peut supposer, d'une manière plus générale, que Ω soit un ensemble dans un certain espace distancié.

⁽³⁾ Cela veut dire que $F(y, \lambda)$ considérée comme fonction de y est continue dans \overline{E} et que l'image $F(\overline{E}, \lambda)$ de \overline{E} est compacte. \overline{E} désigne l'ensemble de fermeture de E.

⁽⁴⁾ C'est-à-dire, à chaque voisinage U de o et à un point λ_0 de Ω on peut faire correspondre un nombre positif δ tel que l'on ait $F(y, \lambda) - F(y, \lambda_0) \in U$ pour $|\lambda - \lambda_0| < \delta$, $\lambda \in \Omega$ quel que soit le point y dans \overline{E} .

⁽⁵⁾ On peut remplacer cette hypothèse par $F(\overline{E}, \lambda) \subseteq \overline{E}$ si E est convexe. On peut alors supposer que $\mathfrak G$ soit un espace de HAUSDORFF, linéaire et localement convexe. Voir TYCHONOFF, Ein Fixpunktsatz, Math. Ann., 111 (1936).

⁽⁶⁾ Voir Leray et Schauder, Topologie et équations fonctionnelles, Ann. Ec. norm., 51 (1934). Nous supposons que la valeur que prend la foction $F(y, \lambda)$ soit un point de $\mathfrak G$ et que $y \neq F(y, \lambda)$ pour $y \in \overline{E} - E$.

Remarque. On voit de même que l'ensemble des solutions (y, λ) de l'équation (11) est fermé sur $(\mathfrak{C} \times \Omega)$. Nous emploierons désormais les mots fermé, ouvert, continu etc. par rapport à $(\mathfrak{C} \times \Omega)$, s'il n'y a pas de mention contraire.

7. Généralisation d'un théorème de MM. LERAY et SCHAUDER. MM. LERAY et SCHAUDER ont démontré l'existenc d'un continu de solutions le long duquel λ prend toutes les valeurs de Ω , en supposant que Ω soit un segment et que l'équation (11) n'admette qu'un nombre fini de solutions pour une certaine valeur λ_0 de λ , la somme des indices de ces solutions étant differente de zéro. Nous allons établir ce théorème en nous plaçant dans les hypothèses moins restrictives c'est-àdire en ne supposant pas l'existence d'une valeur λ où l'équation (11) n'admet qu'un nombre fini de solutions. Quant à Ω nous supposerons seulement qu'il soit un continu borné dans le plan de nombres complexes⁽¹⁾.

Soit \mathfrak{E}^{λ} l'ensemble de tous les points de $(\mathfrak{E} \times \mathcal{Q})$ ayant la même abscisse λ . Si A est un ensemble dans $(\mathfrak{E} \times \mathcal{Q})$, nous désignerons $\mathfrak{E}^{\lambda}A$ par A^{λ} . Soit C l'ensemble des solutions (y,λ) de l'équation (11) en (y,λ) . C est un ensemble fermé, c'est ce que nous avons déjà remarqué au n° précédent. Considérons une suite de points de C: $\{(y_j,\lambda_j)\}$. \mathcal{Q} étant compact, on peut extraire de la suite $\{\lambda_j\}$ une suite partielle convergente $\{\lambda_{j_k}\}$. Soit $\bar{\lambda}$ la limite de cette suite partielle. L'ensemble $\{F(y_{j'_k},\bar{\lambda})\}$ étant compact, on peut en extraire une suite convergente $\{F(y_{j'_k},\bar{\lambda})\}$. Si η est la limite de cette suite, on voit sans peine que la suite $\{F(y_{j'_k},\lambda_{j'_k})\}$ converge vers η . Puisque $y_j=F(y_j,\lambda_j)$, $(\eta,\bar{\lambda})$ est une solution de l'équation (11) et la suite $\{(y_j,\lambda_j)\}$ admet une suite partielle convergeant vers $(\eta,\bar{\lambda})$. L'ensemble C est donc compact.

Soit ε un nombre positif quelconque. C étant compact, il se partage en un nombre fini d'ensembles C_1, \ldots, C_m tels que deux points quelconques d'un même ensemble C_j puissent être reliés par une chaîne de points de C à chaînons moindres que ε et que la distance de deux ensembles C_j et $C_k(j + k)$ soit au moins égale à ε . Désignons par U_j l'ensemble des points de $(E \times \mathcal{Q})$ qui sont à une distance de C_j inférieure à $\frac{\varepsilon}{2}$. Supposons que (\mathcal{Q}) d $(\mathcal{Q}_0, E) + 0$. Le degré topo-

⁽¹⁾ Nous pouvons supposer, comme MM. LERAY et SCHAUDER, que $F(y, \lambda)$ soit définie dans \overline{D} , D étant un ensemble ouvert sur $(\mathfrak{G} \times \Omega)$. La démonstration s'appliquera sans aucune modification essentielle.

⁽²⁾ Nous supposons ici que 0 appartienne à Ω . Sinon, on remplacerait 0 par un point quelconque λ_0 de Ω .

logique $d(\Phi_0, E)$ étant égal à la somme $\sum_{j=0}^m d(\Phi_0, U_j^0)$, il existe au moins un indice j pour lequel $d(\Phi_0, U_j^0) \neq 0$.

Prenons une suite de nombres positifs $\{\varepsilon_k\}$ convergeant vers zéro. Posons $\varepsilon_1 = \varepsilon$, $\Gamma_0 = C$, $\Gamma_1 = C_j$, $V_1 = U_j$, j désignant l'indice tel que $d(\Phi_0, U_j^0) \neq 0$. Nous pouvons définir comme ci-dessus l'ensemble Γ_2 de manière que deux points quelconques de Γ_2 puissent être reliés par une chaîne de points de Γ_1 à chaînons moindres que ε_2 , que si $\Gamma_1 - \Gamma_2 \neq 0$ la distance de Γ_2 à $\Gamma_1 - \Gamma_2$ soit au moins égale à ε_2 et que $d(\Phi_0, V_2) \neq 0$, V_2 désignant l'ensemble des points de V_1 qui sont à une distance de Γ_2 moindre que $\frac{\varepsilon_2}{2}$. Nous pouvons définir de la manière analogue les ensembles Γ_3 , Γ_4 , de proche en proche. Alors les propriétés suivantes seront vérifiées:

- 1° $\Gamma_j \subseteq \Gamma_{j-1}$;
- 2° Si $\Gamma_{j-1}-\Gamma_j = 0$, la distance de Γ_j à $\Gamma_{j-1}-I_j$ est au moins égale à ε_j ;
- 3° Deux points quelconques de Γ_j peuvent être reliés par une chaîne de points de Γ_{j-1} à chaînons moindres que ϵ_j ;
- 4° Si V_j est l'ensemble des points de $(E \times \mathcal{Q})$ qui sont à une distance de Γ_j inférieure à $\frac{\varepsilon_j}{2}$, on a $d(\phi_0, V_j) \rightleftharpoons 0$.

Les ensembles Γ_i sont évidemment fermés. L'ensemble $C=\Gamma_0$ étant compact, l'ensemble

$$\Gamma = \mathop{\mathop{H}}_{j=0}^{\infty} \Gamma_{j}$$

n'est pas vide. Γ est l'ensemble dont nous voulions démontrer l'existence. Puisqu'il est le produit des ensembles fermés, il l'est aussi. Si Γ était la somme de deux ensembles fermés et disjoints A et B, la distance δ de A à B serait positive car $C(>\Gamma)$ est compact. Γ_j contiendrait une chaîne à chaînons moindres que ϵ_j , qui joint un point de A à un point de B. Si $3\epsilon_j < \delta$, Γ_j contiendrait donc un point η_j qui est distant de A et de B plus de $\frac{\delta}{3}$. On pourrait extraire de la suite $\{\eta_j\}$ une suite partielle convergente. Le point limite η de cette suite partielle appartiendrait à Γ et serait distant de A et de B au moins de $\frac{\delta}{3}$, ce qui est absurde. Γ est donc un continu. Il reste

à démontrer que λ prend toutes les valeurs de Ω le long de Γ . Pour cela il suffit de montrer que λ prend toutes les valeurs de Ω le long de Γ_i .

Puisque $(\overline{V}_j - V_j)C = 0$, le degré topologique $d(\Phi_{\lambda}, V_j^{\lambda})$ est indépendant de λ . Il est différent de zéro pour $\lambda = 0$. Par suite $d(\Phi_{\lambda}, V^{\lambda}) \neq 0$ pour $\lambda \in \Omega$. L'équation (11) en y admet donc au moins une solution. Elle appartient nécessairement à I_j car $CV_j = \Gamma_j$. Par conséquent, λ prend toutes les valeurs de Ω le long de Γ_j .

C. Q. F. D.

- 8. Dérivabilité. Nous supposerons ici que $F(y, \lambda)$ soit définie dans $(E \times \Omega)$, complètement continue par rapport à y et également continue par rapport à λ et que l'équation (11) n'admette pas de solutions sur la frontière de $(E \times \Omega)$. Nous supposerons en outre vérifiées les hypothèses suivantes.
- A. $F(y, \lambda)$ admet dans $(E \times \Omega)$ la différentielle $\delta F = G(y, \lambda; \delta y, \delta \lambda)$. Plus précisément, à un nombre positif ε et à un point (y, λ) dans $(E \times \Omega)$ on peut faire correspondre un nombre positif ρ tel que si l'on pose

$$F(y+\delta y,\lambda+\delta\lambda)=F(y,\lambda)+G(y,\lambda;\delta y,\delta\lambda)+\Delta(y,\lambda;\delta y,\delta\lambda)$$

on ait

$$||\Delta(y,\lambda;\delta y,\delta\lambda)|| < \varepsilon(||\delta y|| + |\delta\lambda|)$$

pour $||\delta y|| < \rho$, $|\delta \lambda| < \rho$, $y + \delta y \in E$, $\lambda + \delta \lambda \in \Omega$, $G(y, \lambda; \delta y, \delta \lambda)$ étant linéaire par rapport à $(\delta y, \delta \lambda)$.

B. La différentielle $G(y,\lambda;\delta y,\delta\lambda)$ est complètement continue. Plus précisément, étant donnés un nombre positif ε et un point (y,λ) dans $(E \times \Omega)$, on peut trouver un nombre positif ρ tel que

$$||G(y,\lambda;\delta y,\delta \lambda)-G(z,\mu;\delta y,\delta \lambda)|| < \varepsilon (||\delta y||+|\delta \lambda|)$$

pour $||y-z|| < \rho$, $|\lambda-\mu|\rho$, $z \in E$, $\mu \in \Omega$, et $G(y,\lambda;\delta y,\delta \lambda)$ considérée comme fonction de $(\delta y,\delta \lambda)$ est complètement continue.

Posons

for a part

$$G(y, \lambda; z, 0) = G_1(y, \lambda; z), \quad G(y, \lambda; 0, 1) = G_2(y, \lambda).$$

C. Si (y, λ) appartient à $(E \times \Omega)$, l'équation linéaire en z

$$z = G_1(y, \lambda; z)$$

n'admet que la solution z = 0.

Nous allons d'abord établir la proposition suivante:

Si (y_0, λ_0) est une solution de (11) on peut trouver un nombre positif ρ tel que l'équation (11) en y n'admette pas deux solutions distinctes dans $|y-y_0| < \rho$ si $|\lambda-\lambda_0| < \rho$.

En effet, supposons le contraire. Il existerait deux suites de solutions $\{(\eta_j, \mu_j)\}$, $\{(\zeta_j, \mu_j)\}$ telles que

$$\eta_j = \zeta_j$$
, $\eta_j \rightarrow y_0$, $\zeta_j \rightarrow y_0$, $\mu_j \rightarrow \lambda_0$.

On obtiendrait, après un calcul facile,

$$\eta_j - \zeta_j = \int_0^1 G_1(\eta_j + t(\zeta_j - \eta_j), \mu_j, \zeta_j - \eta_j) dt.$$

On aurait

$$||G_1(\eta_j+t(\zeta_j-\eta_j),\mu_j;u)-G_1(y_0,\lambda_0;u)||<\varepsilon_j||u||,$$

 ϵ_j tendant vers zéro avec $\frac{1}{j}$, d'où

$$||\eta_{j}-\zeta_{j}-G_{1}(y_{0},\lambda_{0};\eta_{j}-\zeta_{j})|| < \varepsilon_{j}||\eta_{j}-\zeta_{j}||.$$

Posons

$$\eta_j - \zeta_j = || \eta_j - \zeta_j || u_j$$

De la suite $\{G_1(y_0, \lambda_0; u_j)\}$ on pourrait extraire une suite partielle convergente. Si u est la limite de cette suite, on aurait

$$u = G_1(y_0, \lambda_0; u), ||u|| = 1$$

contrairement à l'hypothèse.

Supposons, pour fixer les idées, que l'ensemble \mathcal{Q} soit connexe⁽¹⁾. L'équation (11) n'admet pour $\lambda = \lambda_0$ qu'un nombre fini de solutions y_0 , y_1 , ..., y_{m-1} , et les indices de ces solutions sont égaux à +1 ou à $-1^{(2)}$. Soient C l'ensemble des solutions (y,λ) de l'équation (11) et C_j le plus grand continu contenu dans C et contenant y_j . Il est maintenant aisé de démontrer les propositions suivantes:

L'équation (11) admet m solutions et m seules quelle que soit la valeur λ .

⁽¹⁾ Sinon, on prend au lieu de Ω le plus grand ensemble connexe contenu dans Ω et contenant λ_0 .

⁽²⁾ LERAY et SCHAUDER, loc. cit.

Le nombre des points contenus dans C_j^{λ} ne dépend pas de λ . Supposons par exemple que

$$C_0 = \ldots = C_{n-1}, \quad C_0 C_n = 0, \quad \ldots, \quad C_0 C_{m-1} = 0.$$

Si l'on désigne par $\varphi(\lambda)$ la solution de (11) qui prend la valeur y_0 pour $\lambda = \lambda_0$, $\varphi(\lambda)$ est continue et prend n valeurs distinctes permutables dans Ω . Si Ω est un domaine simplement connexe, $\varphi(\lambda)$ est nécessairement uniforme.

Démontrons enfin la dérivabilité de la fonction $\varphi(\lambda)$. En différentiant par rapport à λ la relation

$$\varphi(\lambda) = F(\varphi(\lambda), \lambda),$$

nous obtenons

$$z = G_1(\varphi(\lambda), \lambda; z) + G_2(\varphi(\lambda), \lambda)$$

où $z = \varphi'(\lambda)$. On sait que cette équation linéaire en z admet une solution et une seule $z = \psi(\lambda)$. Il est à démontrer la relation $\varphi'(\lambda) = \psi(\lambda)$. Pour cela il suffit de montrer que

$$\lim_{\lambda \to \lambda_0} \frac{\varphi(\lambda) - y_0}{\lambda - \lambda_0} = z_0 \qquad (z_0 = \psi(\lambda_0))$$

car λ_0 est un point quelconque de Ω . Si l'on pose

$$\varphi(\lambda) = y_0 + (\lambda - \lambda_0)z_0 + \chi(\lambda) ,$$

 $u = \chi(\lambda)$ satisfait à l'équation

$$u = G_1(y_0, \lambda_0; u) + \Delta(y_0, \lambda_0; (\lambda - \lambda_0)z_0 + u, \lambda - \lambda_0).$$

Soit ε un nombre positif donné. $\chi(\lambda)$ s'annulant pour $\lambda = \lambda_0$, on peut trouver un nombre positif ρ tel que l'on ait

$$||\Delta(y_0, \lambda_0; (\lambda-\lambda_0)z_0+u, \lambda-\lambda_0)|| < \varepsilon(||u||+|\lambda-\lambda_0|)$$

pour $u = \chi(\lambda)$, $|\lambda - \lambda_0| < \rho$, $\lambda \in \Omega$. Prenons une suite quelconque convergeant vers λ_0 et posons

$$u_j = \chi(\mu_j)$$
, $u_j = ||u_j||v_j$.

On aura alors

$$||v_{j}-G_{1}(y_{0},\lambda_{0};v_{j})|| < \varepsilon_{j} \left\{ 1 + \frac{|\mu_{j}-\lambda_{0}|}{||u_{j}||} \right\}, \quad ||v_{j}|| = 1$$

 ϵ_j tendant vers zéro avec $\frac{1}{j}$. Si l'on avait

$$\overline{\lim}_{\bullet j\to\infty}\frac{||u_j||}{|\mu_j-\lambda_0|}>0,$$

on aurait

$$\lim_{k\to\infty} \left\{ v_{j_k} - G_1(y_0, \lambda_0, v_{j_k}) \right\} = 0 , \qquad ||v_{j_k}|| = 1$$

en choisissant convenablement la suite d'entiers croissants $\{j_k\}$. On pourrait supposer que la série $\{G_1(y_0, \lambda_0; v_{j_k})\}$ soit convergente. Soit v la limite de cette suite. On aurait alors

$$v = G_1(y_0, \lambda_0; v), \qquad ||v|| = 1$$

contrairement à l'hypothèse. On doit donc avoir

$$\lim_{\lambda \to \lambda_0} \frac{\chi(\lambda)}{\lambda - \lambda_0} = 0.$$
 C. Q. F. D.

Remarque. Si Q est le cercle $|\lambda| < R$, $\varphi(\lambda)$ y est régulière. On a donc le développement

$$\varphi(\lambda) = \sum_{n=0}^{\infty} \beta_n \lambda^n.$$

On peut étendre les résultats obtenus jusqu'ici aux équations contenant plusieurs paramètres.