ON PRIMARY LATTICES
By‘

Eizi INABA

In my previous short note concerning the lattice of all subgroups
of a finite abelian group, I have introduced new sorts of lattices®.
I have called namely a modular lattice, whose quotients are always
chains or sublattices with no proper neutral element, primary (primér)
and the direct union of a finite number of primary lattices semi-
primary (halb-primér). They enable us not solely to illustrate the
intermediate relations between all subgroups of an ordinary abelian
group, but further to characterize the lattice of submodules in a
module with finite bases, where the ring of operators is primary
and uniserial in Kothe’s sense®. We obtain in this way an extension
of the well known fact, that an indecomposable complemented mo-
dular lattice of finite dimension n =>4 characterizes completely the
lattice of all linear subSpaces of an n-dimensional projective space,
in a direction different from that of J. v. Neumann’s continuous
geometry. As we assume no preliminary knowledge about modular
lattices, we shall deal with them in part I. All properties of
primary or semi-primary lattices, which are either characteristie
for them of indispensable for the later developement, shall be treated
in pagt 2. As we deal with only the finite-dimensional case, their
topological aspect was not considered. The remaining parts concern
chiefly with the generalization of von Staudt’s algebra of throws,
to attain the main theorem, that every primary lattice with ms =4
" is isomorphic with a lattice of submodules in a module of the above
mentioned sort®. *

Finally I must tender my hea;
has been kind enough to give me

anks to Mr. Nakayama, who
useful remarks.

(1) Uber modulare Verbinde, welche die Untergruppen einer endlichen abelschen
Gruppe bilden. I. Proc. of the Imp. Acad. Vol. XIX. No. 9, 1943.

. (@) G. Kothe, Verallgemeinerte Abelsche Gruppen mit lyperkomplexem Opera-~
torenrmg Math. Zeitschrift. 39, 1935. \

(8) ‘For the meaning of the condition ms 2= 4 refer the part 2 of this paper
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PART 1. -

A set is called a partially-ordered system, when within elements
a relation z =y is determined, satisfying the following axioms:
" (A) ¥ =z« for each element z, (B) * >y and y >« yield y = «, (C)
if x>y, y==% then x =2. If 3=y and x =y, then the relation
is denoted by x>%. By a least (greatest) element of a subset X
of a partially ordered system is meant an element @ € X such that
for all € X the relation a <« (x < a) holds. If there exists the
least element in the set of all the elements « with u >, u >y, it
is uniquely determined and is called the join 2 < y of z and y. If
further there exists the. greatest element in the set of all the ele-
ments v with v <z, v <y, it is also uniquely determined and is
called the meet x ~ y of « and y. By a laltice is meant a partially
.ordered system, in which any two elements have always their
join and meet. We can then verify easily the following identities
BYE=XAT=8, Y=Y~ cVYy=yva, 2~ny~z) =@~
Yz, ey = (@vy)ve, s~y =2 zv@~y)=2x Con-
versely, a set, in which two kinds of opegati()ns Xx\SY, XY are
so determined, that the above identities hold, becomes partially
ordered, if we define x>y to mean & ~y =y. If the greatest
element (least element) of a lattice L exists, then it is denoted with
I(0). The lattice, whose elements are in a finite number, shall be
called finite. A finite lattice bas evidently I and O. If the modular
identity z v (y ~ 2) = (x Y y) ~ 2 holds for x < z, then the lattice is

called modular. The quotient b or [a, b] is the sublattice™of all
0 ;
the elements » between @ and b, such that a < < b. In a modular

U~
U

lattice the quotient is lattice—isdmorphic' with the quotient

.
. u ~ v .
u < x <uvv. By the dim d of an element a in a modular
lattice L is meant the lar umber d, such thot O = xo <2y < 2
co o< xq = 2, x; being elements from L. A moduiur lattice, whose
-greatest element I is of finite dimension, is called of finite dimension.
It holds then the Jordan-Dede'gnd chain condition ‘with the relation
dim (uvv)+dim (u ~v) = dim ¥+ dim v. The elem:ts vy, ,, -« -2, n

, if we make correspo e element y = v~z to each x with
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L are said to be mdependent if (x1Vx2v in_lvxmv‘- ) AT
=0,71=1,2,---4, hold: '

Lemma 1. If (zvy)~z <L x in a modular lattice, then (xvz)rjy‘
=T~Y. : ’
Pr. e={@vy~z}vvo=@@vyvivsr = {(@ v 2y~ y} vz,
2y = [{(xvz)r\y}vx]ny = {(x )y} v (@ny) = (x2)~y.

Lemma 2. JIf (x, vx2 v )~ =0, 1=2,3.-. 1, ina
modular lattice, then 1, ®,, « -+ %, are z’ndependent.

Pr. By induction on 4. Put X/ = xIng X1 L1 M,
t=1,2,-.- 21, Xy =, v X/, X, =0, vx,~---vr, ., then X ~x;

= 0 by the induction-hypothesis and X;~x; = (}& rva))na; = X/ ~x;

=0,71=1,2,.--2—1, Xarzy = 0 by lemma I, since (X va;) ~a, = 0.

Corollary. If x1, 22, - - -2x are independent in a modular Zattice, '
then, putting X; = ®1 2+« + P2 1Y Xigyr - Y%y, holds Xi~Xom -+ -
~X, = 0. )

Pr. It suffices to prove XinXg~ oo nX; = leVngV YT
by induction .on 7. "The case 7 = 1 is evident. From Xlann‘- .

AKXy = X517 00 - - - Van follows X1 A X -4 AXoA Xop1 = (@i~
Hgyg ™ 00 -7')\)"\ ‘X;+1 = (933+2V o Vx}‘)u(xs+l ~ X;Hl) = Ls42™ M2, .
q.e.d. o »
Any' three elements x, y, z of a modular lattice are said to be
distributive, if the relation xv(y~z) = (v y)~(x2) holds.

Theorem 1. The distributivity relation s symmetric and dual,
t.e. i %, Y, 2 are dz’stwibut@'ve, then we have

xv(y,—\z) (A2 N (A7) R )
Y (2 Ag) = (yuz),\(yux) e o (2)
2~ (wmy) = (zvx),ﬁ(z\{y) .............. (3)
and the three cm"réspo'nding dual relations (4),‘(5), 6). 4

Pr. From modular identity and (I) we have (y ~2) v (y ~ )
= {xv(Yn2)}~y = (@vy)~(ev2)~y = y~(—x), that is (5), and
(z2) A (2vvy) = 2 {yn(zva)} = 2 (y~2) v ly~x) =z~ (x~y), that
is (8). Similarly we obtain (4), (2) from (3) and (6) from (2).

Corollary. If x>y, then x, ¥, 2 are distributive for any z.
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If an element a of a modular lattice L is distributive with any
“two elements in_L, then a is called neutral. The elements I and
O in L is evidently neutral, precisely improper neutral. .Other
neutral elements are said to be proper neutral.

- Theorem 2. Fwvery element of e chain 18 neutral. Generally,
if there exists only one element with a given dimension in a modular
lattice of finite dimension, then it is neutral. - '

Pr. Suppose z is the unique element of dimension 2 and y an

>

arbitrary element. If Dim y > A then the quoteint _(_y)_ contains at

least an element of dimension 4, i.e. the element x. If Dimy <4,

then the quotient L contains at least an element of ‘dimension
)

A—Dimy. Since -its dimension equals to 2 in L, it is nothing else
than the element x. Hence 2z is neutral by the ecorollary to
theorem 1. ' ] '

Suppose- that a lattice L have the elements I and O.. If for an
element a in L an element o/ exists, such that 4va' = I, a~a' = O,
then a is called complemented and o' its complement.

Theorem 3. I’ an element a of a modular lattice L is comple-
mented and neutral, then the complement &' is also meutral and for
every element x.of L holds the identity x = (a~x)“~{(a' ~x). Conversely,
if an element a is complemented and the above identity holds for
every element %, then o s neutral. .

Pr. The neutrality of the element o yields

(@n2) (@ ~2) = {av (@ na)} A {ao (@ ~n)} = fav (@ ~a)} e
= (aua’)m(an)naz = X, *

Conversely x = (a~x) v (a/~x) and y = (a~y)“(a' ~y) yield a~(z~y)
= {(a~z)v(@~y)“ (@ ~2)v (@ ~y)}~a = (anz)~(@~y) > [{@ ~x)v
(@' ~y)} ~a] = (a~x) (@ ~Yy), whence the neutrality ef the element
& follows. But-a is the complement of &' and the identity is
symmetric with respect to a, a/. Therefore a' is also neutral.

Theorem 4. If d 18 & complemented neutral element of a modular
lattice L and o its complement, then every element of L is uniquely
na,

representable as the join of two elements from the quotients % and o
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respectively. Conversely. zj every element of a modular lattice L 28
representable as the join of elements from two sublattices Ly, La,
which have only O as its common element, then we have I = e;“Vez,
O = ey~ez, where e,, e; are the greatest elements of L,, Ly respectively,
and moreover every element x from L 1is uniquely representable as
x = (e,~x2) v (ez2~x), €1, e being neutral. ‘ ‘

Pr. In order to prove the converse statement, let fi be the
greatest element in L;, then fi=fi~ (a1 ¢) = €1V (&2 ~ f1) = 4.
Similarly the greatest element in L, is identical with e;. Frem
& = x~x with z; € L; follows 'mnel (21~ x3) ~e1 = 31~ (T2 ~e€)) = ®1
and x~e; = %3. i ’

Theorem 5. If in a modular lattice L the relation I = e;\~e;~

-~se, holds with independent neutral elements e;, 1 =1,2,---2,

then every element x of L .is reprensentable as x = (x~e) (xe)™~
- (x~ey). :
Pr. By induction on A. ~

Corollary and deﬁnition. In the above theorem, the quotient
r—(e)i is a sublatiice of L (also an ideal in L) and shall be denoted by
L;. FEvery element x of L 1s uniquely representable as the join of
elements x; = x~e; from L;. Then the lattice L is said to be a direct
union of lattices L;, i=1,2, -+ 4, x; being the Li-component of x.
Pr. If @ = @~ -+ %, x;€ L;, then xz~e; = x;~ {(x) 22"
Y TRt TR A ux)\)f\e,i} = 2, since (1™ « * * Y1 i1 i
\-/xl)/\ez g (eluezu e i1 i uel)dei = 0.

Theorem 6. If L is the direct union of L; and z;, y: the L;-
components of x, y respectively, then L;-components of x~y and x~Yy
are x;Y; and x;~Yy; respectively. '

v

~ Pr. By ~e; = (@we)w (Yyne) = 2y .
(@AY e = (xne)~(ym~e)'= xi~Yy:.

A lattice, in which every element is complemented and neutral,
is called Boolean algebra. |

Theorem 7. The set of all complemented neutral elements in a
modular lattice Fs is a sublattice of L and is a Boolean qlgeb’ra,
which 18 called the center of L.
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Pr. Suppose a1, a, are complemented and neutral in .. Then
we have

(aelvazvx)r\(dlvawy) = o, {{a2 > 2) ~ (a2 y)}

= a; v {a~ (w~y)} = (alvaz)V(wr\y)
(al\-‘ag)u(alr\az) = alu{(aeval)f\(afzvaz)} = QYA a| = I
(G« “ag) ~(ai~af) = {(alf\al)u(azf\al)}"a‘z = azf\alf“az _"'O

Therefore ™~ as is complemented neutral and similarly for A1y ,
if dually considered. q.e.d. ‘

- If the center of L consists of only I and O, then L cannot be
a direct union of two sublattices and is called indecomposable.

Theorem 8. If a modular lattice L is the direct union of sub-
lattices L;, 1 =1, 2, + A, then the center C of L is the dzfrect union
_of the centers C; of L

Pr. For ae(C; we have a = a~e; and for arbitrary =, y in L
an(@y) = anen@y) = an@i v y) = (@~ z)~(@~y) = (@~ X))~
(@a~y). From ava =e;, ar~a’ = O follows av(a/ Ve - ve; 1~
i1 - ue)\) =] and a,\(a’\_/elu ce NG e e \./e)‘) P a,,-\e'i,\
(a,’velu @i ey u_g)\) — a,f\[a,’u{(glu cee NS 1\ Cs e Vex)"\ei}]
= a~a’ = O. Hence a belongs to C and ;< C. Further, if x is
an element in C, then (@~e)“(x'~e) = (xa)e; = e, (®ne)
(' ~e;) = O and therefore x~e; € C;. Now it follows from z =
(x—e)) - - -~ (x~e,), that x belongs to the directunion of C;. q.e.d-

Theorem 9. If L is the direct union of sublattices L?, ¢ =1,
. 2, m, each L™ being the diréet. union of ISP, 5=1,2,---2;, then
L is the direct union of all LY , 1 =1,2. ---m; j =1, 2, ’
Pr. Let I =eeMuweduo. .- ue('m«), e e'L(i)’ and e® = e§")ve§"’ w
cieveld, e e L. It suffices to prove that e are independent.
This can be easily proved by lemma 1. ‘ -

Theorem 10. If the dimension of the center C of a modular
lattice L is finite and equals to n, then C econsists of 2" elements and
L i3 the direct union of n indecomposable sublattices.

Pr. By induction on n. In case n =1 evident. If n > 1, let
[=ee, exnez= O, ¢ being proper neutral. Then L = Li+Ly, «
C = C,+C;, where the dimensions %;, n, of C;, C, are smaller than n
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with n = n;+n2, since I . aYe ~ @  Then C; consists of 27
\ e € 0O
elements by induction-hypothesis. Therefore C consists of 2"1.2" = 2"
elements, and is the direct union of 7 indecompesable sublattices,
since C; is the direct union of n; indecomposable sublattices. q.e.d.
An element z of a lattice L is said to be reducible, if x = yvz,
x>y, x >z. If this is not the case, then we shall say « rreducible. -
For example every element from a chain- is irreducible. KEvery
element from a lattice of finite dimension can be represented as the
join of irreducible elements. The independent irreducible elements
%; with & = 2,2, -- -, are called a basis of the element . If
the center C of a modular lattice consists of 2" elements, then
I = e;re,w - - - e, uniquely with irreducible elements e; from C and
every element from C is the join of some e;. Hence it follows:

“Ch&orem 11. Any modular lattice of finite dimension s uniquely
representable as the direct join of indecomposable sublattices.

Theorem 12. Every element of the center of a modula’r lattice
has an umwique complement. Conversely an element of a complemented
modular lattice belongs to the center, if ®ts complement is unique.

Pr. Suppose «/, x’f are complements of an ‘element x in the

center. Then I=xzva, ' = @' ~x)w @' ~2') = 2" ~a', whence
% §x Similarly we obtaln o' < " and therefore xl = x” Next
let @' be the unique complement of an element a, and u# be an
arbitrary element, which is independent with «a. . Then u, a, (u~a)
are independent and consequently u“{(u-a) = a/, whence u <da.
Since (a~x)' ~z is independent with a, where % is arbitrary, so we
have (a~2) ~x < d/. Now we infer

x = (anx)V{(anm)’nm} < (arjx)V(a’nx) <z

Hence a.is neutral by theorem 3. q. ¢. d.

The converse statement in the above theofem does not hold for
arbitrary modular lattices. For exam ple, we consider ‘the lattice of
‘seven elements O, u, Uz, v, V2, Vs, I, where sV uz = v1, ur~u; = O,
v, vvg-—vlvq;3—v2vvg=1 VI Vg =V ~Vsg= Vo Vg= Uz, U™~ V2
=uVvs = I, m~ve = uy~vs = O. This is modulaa and- the element
ve has its unique complement, but however not neutral, since
(vgnva)\/(ulmvg) = Uz =l= g .
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Theorem 13. C being the center of a modular lattice ‘L, the set

W of all elements (b~c)~a, where ce€ C and a <b, is a subla,ttwe of

the center of the quotzent 2

Pr. Flrst we prove, that W is a sublattlce of L.
{(brc)va}vw {(ang)va} = (bre)vbnc)va = {br(c1vc)}vva,

{(bre)va}~{brt)va} =bA(ava)~(ca)

: = b/\{(clr‘sCﬂV‘a} = {bA(C1ﬁCZ)}Vd.
Since we have f_urther

{bro)vayr{brc)va} =b, {bre)va}A{bBAc)va} =a,
every element (b ~ c) v @ is complemented in i From « g <0,
: a
x = (c~x)v (' ~2z) follows <

e~ {braval]ofan{Brd)wat] = {@ne)va) @) va) = 2.

Hence (b~c¢)wa is neutral in the quotient —b—'by theorem 3.
. : a

Theorem 14. If « modular lattice L s a direct union of L;,

1=1,2,-.-n, then a quotiont b of L is isomorphic with a direct
. . a

union of quotients in L;. - !
Pr. Suppose I=ewvevw:--ve, and [, =~ —g’- We infer the

w -

lndependence of (b~e)wa in b from the mdependence of e; in L,
a

as follows

{(bf\ei)ud}f\[{(bf\el)\-/a}u {breiywal o {(brei)wald- -]
= [br{es~(erv- - e, 1veir - )} ~a = a.
Now we have for a <z S b, x=av) (e@r\oc) S{bre)wa} ~x]

and the quotient - becomes the direct union of (07€)va

’

a a
©+=1,2,---n, which are isomorphie w1th the quotlent> bre; re-
. af\ez B

. e
spectively®. | ‘

(1) The sign 3} A; means the join of all elements 4;,i=1,2,....
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" PART 2

Definition. A modular lattice, whose quotients are always chains
or sublattices with no proper neutral element, is called primary.
For instance, chains, indecomposable complemented modular lattices
of finite dimension (projective geometries) and continuous geometries
are all primary. Since the inversion of the order within elements
has no influence upon the neutrality of an element, so we have |

' Theorem 15. A lattice, which s dually isomorphic with o given
primary lattice, is primary. Ewvery quotient of a primary lattice 1s
also primary. '

Definition. A lattice, which is a direct union of a finite number
of primary Jlattices, is called semi-primary. In particula‘r a comple-
mented modular lattice of finite dimension is semi-primary.

Theorem 16. A lattice, which is dually isomorphic with a given
semi-primary lattice, 1s semi-primary. Any a'rbztfra/ry quotzent of a
semi-primary lattice is also semi-primary.

Pr. Let L be dually isomorphic with a given semi- prlmary
lattice L and denote the correspondmg element in L of an element

2 in L with . If I =ewvev.--ve,, where ¢; irreducible elements
from the center of L, then, pu‘rtlng E; = e1vep .- v 1076, ¢
en, we have I = Es~(Erw - Fi g i - E,) and EywE,w

-k, =0, since I = E;w(Ey-- -Li_lnE',;H- «-~E,) and Ey~E,~
+~FKE, =0 hold. Hence E;, i=1,2, ---n, are independent and
neutral. The quotient ?“ is now dually isomorphic with EI"' = gg
whence it follows that L is a direct union of primary lattices

T

7 The proof of the second part of this theorem is immediate in

virtue of theorem 14. q. e. d.
As regards theorem 13 we can sharpen this as follows.

Theorem 17. The center W of the quotient b of a semi-primary
- a

lattice L is the set of all elements (b~c)wa with elements c from the
center C of L. In particular, if c¢ irreducible in C, then (b~c)wa
48 wrreducible in W.
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“ Pr. It suffices to prove, that every element d in W is repre-
sentable as b ~¢) v a with ceC. Let I=e, v ew --- e, wiith
1rreduc1ble element:, e; in C, then we have d = Z{G w (e; ~ d)}.

Since au(e,md) {(bmez)ua}ﬁd belongs to W, and since b is 4

a

direct union of primary lattices —Q—M by theorem 14, so the\
a .

(bre)wa and henceforth a i (e;~d)

element aU(ezr\d) is neutral in ~—
a

‘=aqa or av(e~d) = (b~e)wa. It follows then, that d is the join

of some av(e;~b), whence d = a v (£~b), EeC. That aw(e;~Dd) is

a(e;nb)
‘o

irreducible in W follows from the fact, that the quotient

is primary, if e; is irreducible in C.

Definition. If a quotient ‘g*\ is a c¢hain, then it is called a

chatn in L with a as its summsit. If moreover it is not contained
in another chain in L, then it is called a maximal chain in L.

Theorem 18. In a primary lattice L of finite dimension®, which
is not a chain, there are at least three elements, which cover the element
O, and the element I covers at least three elements. Further any
element d, which does not belong to a chain in L _covers at least
three elements.

Pr. Suppose there exists only one atom in L®. Then it would
become proper neutral by theorem 2, contradictory to the assump-

tion. Next suppose there are two atoms a, b, then the quotient
ab

must have another atom ¢, which is different from both a, b,

since otherwise the quotient would not be primary. The dual con-
sideration asserts that I covers at least three elements. The last

part of the theorem "is now obvious, since _OOL is primary, and not
a chain.

. Theorem 19. A semi-primary la,tticé, whose elements are all
neutral, is a direct join of chains.

(1) Hereafter by primary or semi-pi‘imary lattices are meant always only those
of finite dimension. -
(2) An element, which covers O, is called an atom.

-
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Pr. If a primary lattice is not a chain, then by the preceding
theorem there exists at least three atoms, Whlch are not neutral

Theorem 20. If a modular lattice L is a direct union of L;,
1=1,2,.--n, then any chain in L is a chain in some L;. ‘
Pr. 1t suffices to prove only in the case n = 2. Let I = e;vez,

1= —n, L, = 82 , then thé relation a = (a~e) v (a~e) holds for

any chain TC)L’ whence a~e; = a or a~e; = a. The chain is there-
fore contained in L; or L.

Theorem 21. An element a in a semi-primary lattice I is
wrreducible, if and only if it is the summit of a chain in L.

Pr. That o is irreducible, if % is a chain, is evident. Sup-

pose that a is irreducible, then a is contained in some primary
sublattices L; of L, for the relation a = 3] (a—e;) yields a < e; for

some 7. If %@ were not a chain, then it would cover at least two

elements b, ¢, such that ¢ = bwe¢, contrary to the assumption. q.e.d.
Since any element of a lattice of finite dimension is representable
as the join of irreducible elements, so we have

Theorem 22. Any element of a semi—fwioﬂary lattice L can be
represented as the Jomn of irreducible elements, which are summits of
chams wm L. =

Theoregn 23. Any element of a complemented modular lattice
L of finite dimension can be represented as the join of independent
atoms n L, that is, any element from L has its basis.

Pr.  We will prove by induection on the dimension of the given
element a. If, dima > 1, a covers an element b, then a = b (b’ ~a),
b ~a) = 0. In virtue of the dimension-relation the element
b'~a must be an atom. But b is a join of independent atoms by
-induction-hypothesis, and these together with ¥ ~a make a basis of a.

Lemama 3: If in a complemented modular lattice L a>>b and
if the atoms a;, t=1,2;---m, b;, j=1,2, ---n are bases of a, b
respectively, then we have a new basis of a, such that it consists of
whole b;, j=1,2, ---n, and a part of a;.
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Pr. Let a; be an atom in ‘g—, which' is not contained in b

and put b® = bwa, . Putting d**V = bMvaq,,,, successively, such

. . . b .
that the atom a,,,, is not contained in b , we have dimbd"**) =

dim ¥ +1 < dim a, whence we conclude ™™ = qa,

Theorem 24. Any modular lattice, whose elements are all re-
presentable as the join of a finite number of atoms, is complemented.

Pr. Let I= 10 - - - o, With independent atoms ¢; and let
a be an arbitrary element with a = a;wvagw---va,, a; being in-
dependent atoms. Then by the preceding lemma we have [ = av
(e; e, - -C4,-,), Where an(c; ey - Ciuz,) = 0. q.e.d.

In theorem 22 we have shown, that every element of a semi-
primary lattice L can be represented as the join of irreducible
elements. We shall call the set of all elements in L, which are
representable as the join of irreducible elements of dimension not
greater than %, the u-th derivative of L and denote it with L™. .
Evidently L® has only the element O. If L&D < LW = [, then
we shall say, that L has a height h. The greatest element in L)
is_ obviously unique and shall be denoted with e®™).

Theorem 25. The v-th derivative L® of a semi-primary latiice

L is an ideal in L and the dimension of any arbitrary cham m
e

s not greater than p.(*

Pr. By induction on ». First we prove the case v = 1. For
this purpose we have only to prove, that the meet of %in element
in LY with any element in L. belongs to L®. But this verification
can be achieved, if we show, that no irreducible element b of

6]
e Let eV = g, .

dimension 2 can be contained in the quotient

dp\ -+ -wa with independent atoms a;, and, suppose b covers the
atom a,. Then putting A, = alu.--vas_luam ce- v, wWe have

(*) By an ddeal in L is meant a subset S of L, where the join of any two
elements from S and the meet of any element from S with an arbitrary element
from .L belong always to S. That L(") is an ideal in L, means therefore, L(Vv) is

e(v)

identical with the quotient —0—
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ji) o —% in contradiction with\ the modularity of L.
If b covers none of the atoms a;, but covers the atom c, then there
exists an 4;, such that A;~b = O, since otherwise ¢ < A1~ A4z .-~
A, = O would follow. We then' have i;l) o %, which is however
not the- case. In. case v > 1, suppose =z sis an irreducible element

&

v-1)
% el > =

eV = A,Ub,

in L with dimxz = v+1. Then we have

is a chain of dimension 2 by induction-hypothesis. But

=] where
ev-1 . x~et-D’

_®
el

does not contain the chain

the first derivative of the quotient —-—
e

%\ eV
-1

e

of dimension 2. Hence z is not contained in q.e.d.

(v) . ’ .
.The quotients -% of L are complemented modular lattices by
e . .

theorem 24. Ifin particular L is primary, then they are moreover
indecomposable. We shall call the system (a®, a®, --- a™), where
a® = (a~e®) etV = e (q et V), h being the height of L, system
of representdtives for an element @, and denote the dimension-of the

. 0. . ) .
element a” in the quotient —?;— with 7:(a).
‘ e

~1)

n .
Theorem 26. >)7:(a) = dima.

=1

Pr. By adding the both sides of the following relations

dim (ar\é(i’) = v(a)+dim (@~e® V), i =1,2,---h. q.e.d.

By the invariant of an element @ of a semi-primary lattice L
is meant the system_(v(a), --- 7a(@). The invariant of the element
I is called the invariant of L and denoted with (yi, 72, -+ - 7a).

Theorem 27. Ifa>b and a® =59, i=1,2,--- h, then a = b.-
Pr. The assumption a® = b® yields a\e®* ) = puerD, Now
we will show, that awetD = hwet-1 follows from awve® = bwet.
awelh aveti D - gue® _ bue® b eli-D
a® (@ —eli-D)~e® JG) G b
aetD >puel-1 we have a\wet D = puetV and finally a = b.

Since and

Definition. A homomorphism of a lattice L into a dattice W
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is called proper, if it is not an isbmorphiém and moreover the image
W has at least two elements. A ]attice’ L is called simple, if there
exists no proper homomorphism of L.

Theorem 28. FKEvery homomorphism of a complemented modular
lattice L. of finite dimension -1s equivalent with the endomorphism
x—xwa, where a s neulral, and the homomorphic zmage of L %8s

then zsomorphw ®with the quotient !-
a

Pr. Suppose L is homomorphic with a lattice W. The set of
antecedents in L of the least element in W is evidently an ideal in
L. Let a be the greatest element in this ideal. Then we can
prove that two elements = and y in L have the same image % in

. W, if and only if xva =yva. x— %, y~— ¥ yield namely (x~y) ~
(xwy) — O, whence (x~y)~(@vy)<a. In virtue of the relation
ey = (@~y)v{@~y' ~(@vwy)} we conclude zvwy < (x~y)wa and
therefore wa = ywa. Sinee for any arbitrary two elements z and
y (xva)~(ywa) and x~y have the same image in W, we obtain
(vaynlyva)=(@~y) —va. W is therefore isomorphic with the

quotient —I—, if we make cori'espond to ¥ the ‘element zya.
a _ :

Corollary. An indecomposable complemented modular lattice of
finite dimension is simple. ‘

This is however not the case for a chain. We can establish
homomorphisms of a chain of dimension » into a chain of dimension -
(n—1Yy!
(r—1!(n—r)! )

Theorem 29. A primary lattice L is simple, if it is not a
chain. o

Pr. By induction on the height %2 of L. In case A =1 it is
evident by the preceding corollary. In case h >1,¢? =1,2 ... h,
can not be all different for a homomorphism of L, unless it is an.
isomorphism. Indeed, if ¢ —a, b— &, a ==b, then either a b > a
or awb>b. Supposmg avb > a, (aub)“’> a® holds for some ¢ by
e®
gD

r<n in different ways.

theorem 27. But (a,ub)(‘) = a® Dbelongs to the quotlen’c and

we have ¢ = ¢@ D gince the quotient is simple. Now we

' have only to treat the following two cases
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(i) O:e():(...:e(k“l)<‘éﬁ¥)

(i) O<eW <l ooi LD = g =T,

For other cases do not occur by the induction-hypothesfs, if we
e(h“l)

consider the quotient -, which is not a chain by theorem 18.

In case (i), #, y being arbitrary from L, we have

(™ Doy~ (e Doy) = GuE) By = o (E~Y) = *Dolzry),
where e®*Vog, e* Doy and e Vo(x~y) are elements from the

quotient S}nce this quotignt is simple .by'the corollary to

o1 ‘ ‘
theorem 28 the present homomorphism of L induces an isomorphism
of ‘this quotient. . Hence (e® Vo)~ (e Viy) = e®*D(x~y) holds
and e*-? is neutral, contrary to the hypothesis, that L is primary.

In case (ii), the homomorphism induces an isomorphism of the

) e(h=1)
quotient

, because e®, i=1,2, ... h—1, are all different.

Now; z, y being arbitrary from L, we have

eV ~z)y o (e®Dy) = (Tmig)u(fng) = I~ (Zg) = e* D (xy)

and consequently (e® VAg)yw (e Vy) = e D~z —wy) econtrary to
the assumption. q.e.d,

We will show here an example of a modular lattice, which has
no proper neutral element, and which however not simple. Consider
the modular lattice L, which consists of ten elements O, E®, i =1,
2,3; E®,j=1,2; EP, k=1,2,38 and I such that EMEQ = EQ
v B = EO U E® = E®, EWVA ED = ED ~ E® = EO ~ ED = O,
EPwEP = EP, EP ~EY = E{), Ef) wEf) = Ef) W EP = Ef) v Ef
=1, EP~EY = EP~EP = EP~E® = ED, and the mddu?ar_ lattice
L', which consists of eight elements O, F{V,¢=1,2,3; F?,j=1,
2,8 and T such that FOUFM = FOUF® = FMVOUF®W = FP, FWA~
FP = FWAF® = FWAFW = 0, FOUF® = FE UF® = FOUF®
=1, FOAF® = F®O~F® = FOA~F® = F®, L is then proper
homomorphic with L’ by the following correspondence : '

EO PO =12 3,‘[«,{2) —F®, EQ—F®, k=1,2,3.
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Definition. If an element a in a semi-primary lattice L has =z

basis a;,%2=1,2, --- r, then we call the number r of the compo-
nents a; rang of the element a. If further »; is the dimension of
a;, where pyy =1 = --- =, then we call the system (v, v2, * - vy)

type of the element a. By basis, rang or type of L is to be meant
the basis, the rang or the type of the elem‘ent I of L respectively.

Lemma 4. If in a semi-primary lattice r irreducible elements
a, 1=1,2, ... 7, are independent, among which a;, as, -+ ar, are of
dimensions greater then v—1, then a,~e*V,1=1,2 .-.7,, are in-
dependent over eV, '

Pr. Suppose 'a;w e are not independent over et~ 1’ then
(@1 Qg v v o Qs e D) A (B e D) > "D for some s <7, and
hence a.,1~e™ < oy vagw - - va. e, Putting A = QTS e
as, we have A, (a1~ e™) gA wel~D and

Asu(as+1he(”) ~ a}s+1f‘e(v) Asve(”_l) a - ev-1
A, o . A, A, ~etD

Agvel D . . . .
£~ —— would then contain a chain of dimension

The quotient

8

v, which contradicts with theorem 25.

~ Lemma 5. Ifa;,i=1,2---17 are of dimension greater than
v—1 among the components of a basis of L and 2>y, then a} = (a;~
™

eM)ywet D §=1,2, .- 7, make @ basis of the quotient «—e—g-:—l—)—.

Pr. Since a;we™ ™V are independent over eV by the preceding

lemma, so (a;~e™)we D gre independent atoms in the quotient
) .
'_(6»_1)”’ whence we have v, = d1m 27\. . On the other hand it
elv- e
holds dim I = 2}-9‘, = yZi v, , whence v, = v, follows and (a; ~ e™)w
T & 2. .
™

eV =1,2 ---7r,, become a basis of ‘%‘T)“' Next, in order to
=

prove the case 42>y, we can assume y = 1 without loss of generality,

since a;we* ™, ¢i=1,2, -.-7r,, are a basis of _Putting a;~e®’

_L_
v

' by
=aM i=1,2, .- r, we now have dim (a{VvaPv ... valM) = 2 i

in virtue of the independence of a{*. The relation dim e = 2'7,,,

v=1
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A ) TS
= S\ r; yields then e® = g waMw .- wal.
i=1

Corollary., If a;,72= 1,2, ---m, are independent and irreducible
in o semi-primary lattice L, then a;~e™, 1 =1, 2, ---m, are indepen-
dent and (ay~ag -+ - v am) e = (g3~ne) v (azne™) - - - v(amme™).

Pr. Putting (@1 azwv -+ v an) ~ e =28, it becomes the
U7 NP
, o
and a;~e™ = g;~e™. Hence a;~e™ are a basis of the quotient

grleatest element of the i-th derivative of the quotient &
’ é(}')

Theorem 30. An element a of « sémi-pmﬁmaﬂ'y lattice L is
supposed to have bases. The number r, of the basis-components with

dimensions greater than v—1 and the type of a are then uniquely

determined trrespetiye of the choice of bases.

Pr. In the proof of lemma 4 we have showed », =%, ', " where
v, is clearly irrespective of the choice of bases. .

»

Lemma 6. If a quotient —% A4s a chain, then there exists a chain,

l .
— h that g = [k. -
0 suc at g —

~

Pr. Let g=a1vasv --- va,, where a;, 1=1, 2,---3, are
irreducible, and let a%«rk; be with the highest dimension among
the quotients ___%51!9_. Then we have a;vk a,vk, t=1,2,---s,

ai~ra, ok

since otherwise the sublattice ° of the quotient 9. would

”»

not be a chain. Therefore we have g = a, k.

" Theorem 31. A primary lattice L is suppsed to have a basis,
whose components are all of - dimension greater than v. Then every
maximal chain in L -has a dimension greater than v.

Pr. Let r be the rang of L. The case r = 1 being trivial, we
first consider the case » = 2 and make its proof by induction on ».

Given a chain -—%- in L with dimension A< yp+1, let a1, as be a

d

) . . . . . e()‘) . . .
\baSIS of ¢?*D and let o be a maximal chain in o which is in-
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dependent with ~OIL By \induction-hypothesis dimd = 4. Then

*) . . . . 4 -
e? = pvd, and % o~ ~d is a chain of dimension A, which is con-

(A+1)

tained in the quotient £

(A+1)

This quotient is however not a chain, since the quotient O
e

. ‘ . . o c . ey, . .
is not a chain, Hence there exists an atom > in - 7 which is

independent with e® over b. We have now by lemma 6 .¢c = buf,

]
AT . . . 3 - - (A)
where f is a chain, which is not contained in f—é-—». Henceforth we

‘have dime¢ =dimf = A+1 and c=f, b<J. ,Therefofe -g— is not

maximal. In case r>2 we prove by induction on r. Given a
chain —g~ in L with dimension 4, let a;, ¢ =1, 2, - .7, be a basis of
e®*) and put A = gy vae—--- a,_;, where we can assume b~a, = O
without loss of generality, since otherwise we can replace a, by a
new component aj, such that a,va; = a,wa;, a.~b = O. Since the

relation arvA _ (bvar)d o bar holds, and dim (bva,)
' A (ba)~A
. . . d . d arod
= 24+1, we have, putting (bwa,)~A4 =d, = — —me ST
, (0] d~a, ar
= &b b . The quotient a is_therefore a chain in - with
ar O o . - 0

dimension 4. Now by induction-hypothesis there exists a chain —3—

of dimension 2+1 in L(;l-, which contains d and is independent with

c\ Ay

a,.. The quotient is primary of type (A+1, 2+1) and more--

over contains the chain % of dimension A. ‘Therefore —g- is not
‘maximal.

Theorem 32. E’very element of a primary lattice L has a basis.
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Pr. Since every quotient ~g— is primary, we need only prove,

_that the element I has a basis. Suppose L is not a chain, we
choose an ‘irreducible element a; of highest dimension in L, and
next an irreducible element a, of highest dimension, which is in-
dependent with a;. Suppose we have thus successively v irreducible
elements a@;,7=1,2,--.,, such that @; is independent with A,
= @1+ -wa;y, and moreover of highest dimension. We will
~prove, that, whenever A, <I, we can find an irreducible element
‘@y+1, which is independent with A,. Since A, <<I, there exists
certainly a chain, which is not contained in ‘21)“.

. We choose among
those a chain l’éﬂ,, such that 4,~b,,; = d,,; is of least dimension.
‘Suppose d,,1 > O and ¢,,; cover d,,; in le and let %’L be a.

maximal chain in %l, which contains dy.1. . If ey,1 > d,,1, then

‘ev+l ch-plv

O .

-does not belong to

is not a chain and therefore contains an atom %, which

dv +1
O

, such that Awve,,1 = ¢,,1vey 1. Then we-

have A~A, = O, which contradicts with the assumption. Now
suppose e,,1 = dy.1, then, putting u = dime,,; = dimd,,;, holds
the inequality u <dimb,,; < dima,. By the way of selec-
tion of ‘the elements a;, 1 =1, 2, ---», we have evidently
dimae, < dima,, < -+ < dima,. The preceding theorem then as-
serts that there exists certainly a place, where dima, > x and
dim dp,1 < p hold. If (g1wasw -+ way)~ey,.; = O, then (a;wazw---
“ap) by, = O, contrary to the assumption, that a,.; is indeperdent
with A1 Ue -+ vap and ‘moreover of highest dimension. Now let

fyir = (@1vazw - -- Udp)f\ewl > O. - Then there exists a chz2in I‘(’)L‘ of

A1\ qa\t » » « (. - . ’
1-72 %  which contains %,,,. The quo-
O ’

. we . . . . .
‘tient f‘”—’é—"”—, being not a chain, contains an atom ¢, which is

“-dimension x+1 in

contained neither in lz_;i nor in %’i Since fy.1~ a1 = kv,1, the



58 . E. Inaba

quotient JoarOir pag g basis, whose components are both of
v+l .

dimension = p+1—dim k,,;. Let ¢ be a maximal chain in this
) v+l -

&uotieht with dim ¢ == u+1, such that ¢ contains §wk,,;. Then
¢ =1ky,,1, where [ is a chain and dim{ < pu+1. If diml = p+1,

then 1> k,.,, whence lgf): Thé chain % then contains the
atom @ and henceforth i’(—)ﬂ contains 6 contrary to the hypothesis,

that 6 is not contained in »J—%l. Therefore dim ! < p and ! is not

V’ - . - . ’ \ b
cgntalned in ?) v since otherwise we would have ¢,.1 < 4, from the

relation ¢ifyi1 = fri1 v = [f,,1. On the other hand we have
dim( ~ 4,) =diml +dimA4,—dim( v 4,). v A, =lvfi,vA,
= ¢av A4, dim (e v A4) =dime,q +dim 4, — dim (¢,.1 ~ 4)),
¢ A, =baa~ A, =dy,,, whence dim (I~ A,) , :
=dim! — dimec¢,,1 + p= dim[l—1 < x—1, yielding a contradiction
dim ((~A4,) <dim (b,,;,~A)). q.e.d. ' '

Theorem 33. FEvery element of a semi-primary lattice has a
basis, its type being uniquely determined irrespective of the choice of
the bases. _ \ -

We now fix ‘the order of types of elements in a semi-primary
lattice lexicographically; namely (v, v2, +--) > (4, o5, -+ ), if v =

crpg =y and Vei1 > Vil

Theorem 34. If a>=b, then holds the relations following : (1)
rang of a==rang of b, (2) type of a = type of b, and (3) m,(a) = m,(b),
where m,(a) denotes the number of basis-components with dimensions
greater than v—1 for the element .

Pr. If we denote with a®,¢ =1, 2, --- h- the representatives
of the element a, we have a® >b® and consequently v;(a) = v:(b)..
It follows then m,(a) = m.(b) by virtue of the relation r, =7,. q.e.d..

The summit of a maximal chain in L is not always a basis-
component of L. For example, consider the lattice of all subgroups
in an abelian group, which is generated by an element a; of order
8 and an element a, of oder 2, where az==ai. Then the cyclic
subgroup {aias} is of order 4. This subgroup being the -summit
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of the maximal chain, which contains {afa:}, {ai} and {e}, can not
become a basis-component of the group. Under what conditions
the summit of a maximal chain becomes a basis-component, shall be
answered in the following. ' ‘

Theorem 35. The summit of a maximal chain in-a semi-
primary lottice L can become a basis-component of L, if and only if
1t 18 complemented. ‘

Definition. A chain of highest dimension among those chains,
which havé a given atom commonly in possesion, is called absolutely
maximal.

Theorem 36. An element o in o semi-primary lattice L. s
complemented, if and only if every qbsolutely maximal chain in the

quotient —g— is always absolutely maximal wn L.
Pr. By induction on the rang s of the Quotient —g—-. In case

s =1 the Quotient ——g— itself is an _absolutely maximal chain in L by
hypothesis. Let ¢;, ¢ =1,2, .- r be a basis of L with dime¢; =,
vlgx)z_z_ gw, and suppose dima = , vt>a2m+1, Yo = 00O

By theorem 31 we have (c;~cp---vwe)~a = O and hence —g— must

be a chain of highest dimension, which is independent with ¢;vwcpw
-we;. Then a = 1., and the element @ becomes a component of
a basis together with ¢j, ¢z, --- ¢;. If conversely a is complemented

and if _(C;‘ were not absolutely maximal, such that there exists a chain

b

- with dim e < dim b, 'anb>0, then we have b~a/ = O and

-

0O |
, Sl /

¢ _ eva _bwd b i contradiction. Next suppose s> 1 and
o a’ o’ O .

©

a;, t=1,2,---s are a basis of ;—gm with dima; >dima, = --- =

dima,. First we consider the case y; = dim ¢, = dima; =- - - =dim a, .
Then a;,% =1, 2, --- s, are all able to become components of a basis
of L, as in the proof of theorem 32 and therefore complemented.
'Next consider the case y; < dima, = dimaz = --- =dima,. Then
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there exists , such that »; > dim a;, > 1:,,. Putting C;, = 1 Cp
-w¢, we have a~Cy = O, since otherwise thz absolutely maximal

chain in .6‘3’; which contains an atom in a~ C, would not be absolutely"

maximal in L by theorem 81. Hence we have a,~C,= 0O and
necessarily dima; = v¢,;. Then a; can become a basis-component of
L together with ¢, ¢;, --- ¢:. Since further (¢;vep—r---vepvay -«
wva;)~a; =0 and dima; = v;,1,5=1,2, ---5s, so a; are all basfs-
components of L and therefore a is complemented. Finally consider
the case dimaq>dimay,, = -+ =dima,. Putting a,waw---war
= Ay, v ---va, = Az, it follows by the induction-hypothesis,
) Al Az

or 2 is always.

that every absolutely maximal chain in 5

absolutely maximal in %«»and consequently absolutely maximal in

L. A, is therefore complemented in L by the induction-hypothesis:
and L has a basis, which contain all a;,% =1, 2, ---1 as its com-
ponents. Let it be b;, i=1, 2, --- » with dim &; = »;. Since
v = dim a; > dim a;, there exists »; such that v > dim ae =1, .
Putting B; = byjbyw-- - wby, we- have Bi~A; = O and dim a5 = p;,;.
The elements @.,, ---, as become then basis-components of L to-
Ofether ‘with b, --- b,. Since a,, az, --- a; are part of b,, - - b, S
a; are all bas1s—components of L, Whence a is complemented

The converse statement of the last two cases follows immediately
from the fact, that if @ is complemented, therl every basis-com-
ponent a; of o becomes a basis-component of L. In fact the quotient
v% will then be absolute!y maximal in L according to the converse

statement of the first case.

Corollary. A chain in L can become a basis-component of L if’
and only if it is absolutely maximal in L.

Theorem 37. If a complemented element ¢ in a primary lattice
L is of rang v, then we can find r+1 complements of ¢, such that
the joir of them equals to e®, where by h is meant the height of the
complements. _

Pr. The cases ¢ =1 or ¢= O being trivial, we prove by in-
duction on 7. In case r =1, let ¢/ be a complement of ¢ and let
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. - ' r
fg be an absolutely maximal chain of highest dimension in %—
Further let dime¢ = t, dimd = h and d' be a complement of d in

o cd’ .. evwd

——. - If t=h, th ist imal chain , whi
p = ere exists a maximal chai 5 in 5 w 'lch

does not contain the atom commonly with —3— and —g—~ Then we

have ¢~ = 0, cwc’ = cvwd, dimc’ = h, cn("vd) =0, cw(cw
d’) = I. Hence ¢’"—d' is a complement of ¢ and (' wvd')wc = (/'
dywd = {{cvd)ne®}wd = (cre®)c = e, If t<h, let g be the

element of dimension A—t in —g—— There exists a maximal chain
¢’ ‘. . L .. evd .
—— of dimension ¢ in ——=, which does not possess the atom com-
g ’ g .
o 1"
monly with £~79 and d— ‘We have then ¢’~¢ = O and —CO— is a
. g g .

» . ’ . o .. / . 4 ) e
chain of dimension % in Cod . For, if ?) were not a chain,

“(ewd)~eV and ¢’~e? would be of rang 2 and c¢’~c> 0. Hence
~we obtain ¢’’~¢ = dwc"” = ¢cwd and consequently ¢’—d’ is a com-
plement of ¢ .and ¢/ v (’"vd)=I=e?, In case r>1, let ¢,

1=1,2,..-7, be a basis of ¢ and let g be an absolutely maximal
chain of highest dimension in ~(°;-—, where ¢’ is a complement of ¢,
and dimb=h. We choose a complement b, of ¢; in fég—b,, such

that b b = (¢;wb)~e®™. Further let ¢;, f be .complements of ¢;, b
!

in é y % respectively: Then we have (bﬁuf)uc = (b)) lc;wcl)
= (b)) v (fweh) = (czub)\./(fuc’z) =cwce' =1, b,wf)~c = (biuf)r
c; = bi~ec; = O. - Therefore b, wf, i =1, 2, --- r, are all complements

of ¢ and we have ¢ 3} (Bivf) = 31 (bbif) = buf 3 (eime™)
: im1 i=1 : =1
- = Zr (cive')me® = e?,
t=1

Corollary 1. Ewvery complemented element in a primary lattice,
~which s different from O and I, has at least two complements.

Corollary 2. An element in a semi-primary lattice, which has
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an unique complement, is meutral and consequently belongs to the
center. ‘ '

Pr. Let ¢ be such an element and I = ¢, e -:-\e,, where
¢; indepenpent and irreducible in the center. Since c¢~e; must have

- . . N . . \ :

an  unique complement in ~—(e)—’, we have hecessarily c~e; = e; or O
and hence ¢ belongs to the center.

-Corollary 3. If —(—§~ 18 & chain of highest dimension ina primary

lattice L of rang v, then we can choose two of its complements, such
that their meet is of rang r—2 and complemented, and that their
join -equals to €™, where by h is meant the height of the complements.

Pr. Considering the case ¢> /4 in the proof of the above
theorem, we have (¢’ vd’)~¢’ = d’ and d’ is evidently complemented.

Theorem 38. If avb and anb are both complemented “in a
semi-primary lattice L, then a and b are complemented in L.

Pr. Since a~b is complemented in the quotfents —2- and —%~,
we have from a = (a~b) v a b=(a~b) ~b, where a ~b =0,
b~a = O, the relation awb = awb=>bwg. Hence a, b are both
a b '

complemented in and "consequente_ly also in L.

Lemma 7. If an element a of a semi-primary lattice can be re-
presented as the join of m irreducible elements, then rang of a <X m.
"~ Pr. By induction on m. Suppose m >1 and @ = ay;agw---
“anm, where a; is of the highest dimension among the irreducible
elements a;., Since the dimension of any chain in -gi is not greater

than that of a;, so a; becomes a component of a Dbasis and

consequently complemented. Putting a,~ ... va,= A, we have
a _mvA A4 aj, where a] is a complement of a;. Since
ay ax Af“al .

A is the join of a;wv(A~a), t = 2,38, --- m, where %V(Ahal) are
. —a

chains, so we have rang of aj < m—1 by induction-hypothesis.

Hence rang of a < m. - . ‘

Theorem 39. If d;z;b, then m,(a)gm,,(_—g-) and type of a =
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type of % In pwr‘ticz{clar, rang of a = rang of %.

Pr. Incase v=1, let a;, 1=1,2,---r, be a basis of a. Then
a = 3 (a;b) and by the above lemma rang of —g- < rang of a.
Now, denoting with e®, E® the gfeatest element of the ¢-th deri-

vative of the quotient —g~, % respectively, we have the inequality

_ a -
( )—- rang of E(" 5 < rang of — NOPCETS < rang of 1) my(a) ,
since E-D>contains bwel*™V |
Lcmma 8. A basis a;, i=1, 2, - - - m, of a complemented element
a in a semi-primary lattice L and a basis ai, ©t=1,2,---n, of its

complement make together a basis of L.
Pr. From lemma 1 and lemma 2 follows the independency of-
Qg (L_; . ’ '

Lemma 9. If an element a in.-a semi-primary lattice L 1s com-

plementod then aue(” are complemented wn —f——)
e

"Pr. This follows directly from Lemma 4 and lemma 8.

Lemma 10. Given an element a with the basis a;, 1 =1, 2,
m a semi-primary lattice L and given an another element b 'w%tk
b= a, rang b = s <7, we can choose 1—s COMPONENLS Qi , Qiy, *** By,

among a;, such that (a; ~a;~---a;_ J~b= 0. -
Pr. Suppose b;,t=1,2,.---3s, is a basis of b, then b(”——b‘”u

. )
b - b where b = b;~eW. Since the first derivative @ of.

a is complemented modular, so we have by lemma 8 a new basis
of a®, which consists of b, 7 = 1, 2,---s and af, a,
.such that b (a; va, - wa,,_ ) =

Theorem 40. If aZ,b and b 1s complemented ) % then
7}%(—%) = may—m;bd), t=1,2, --- h.

If b s 1ot complemented n —g-», then at least one of the above
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equalities does not hold.
‘Pr. It suffices to prove -in the case ¢ = I. ‘Suppose b has a

complement b, then we have by’ lemma 8 m“(’{,‘) = m;(") = m;(I)
-—\m,;(b). "If b is not complemented, then there exists certainly an
absolutely maximal chain —g— in %\, which is not absolutely maximal

in —éﬁ by theorem 36. So let *()J: be a chain in —é—, which contains

the atom in ,-(%—, such that dimf > dim d. Further we can find a

basis of b, to which d belongs as its component. Suppose 7, s are
the-rangs of I and b respectively. In the case » =s, we have

b1, m1(~bl—)> O, and 'ml(I) = my(b). In case = >s, we can ﬁnd.
A= (B S S AR PR where a; are the bas1s-components of («I)
S}lch that b~ A = O by lemma 10. If d <f, we have
(bof) (b d) =bo{frbwA)} =bul{fr(dud wA)}
= [dA v A)~FHwb=dub = b,

Whére d’ is a component of d in % bwf and b~ A are therefore

independent over b and consequently we have

A"mn(—;;);_ml(‘bufv )=m (buf)+ (buA

= 14ma(A) > my(I)—m(b).

If d < f does not hold, then d(\;f _is not a chain and con-

séquently of rang two by lemma 7. We have then a chain % sueh

that duf=fwh, h~f=0 and dim# < dimd, whence follows,

putting dimd =i, eé-Vod < DU f. Since d is in % comple-

bwel-b

F=y by lemma 4 and
e’lv— kS

mented, so dwet* D is complemented in
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(i-1) : L, ) (G-1)
henceforth the chain ﬁl—\i‘f— is absolutely maximal in -Q-~—i — but

6(1—1) 6(
_“_I—j-, whence follows
-
bue(‘“”
(ogen) > m (~~a~w)
bwet-1

Considering the relation.dim - ! —— = dim -~I—f—~d1 ———,
bue(@—l) et-D eli-1

not in

then holds for some j the relation

G-D
( bue(' 1) )< ( G-1 ) bu(f:l,‘) = Mii-1(L)—Mi.5-4(b).

Since further, for the 1—-1 th derivative E'(‘“” of -5 the relation

bwe™D < EG¢-D holds,.so we have _
I
m‘i+j-1(“5‘) =m (E" D ) =m ( b:;;(:") <My i) —mi54(0) .

PART 3

Definition. Two elements o« and b in a modular lattice are
called quasi-perspective, if there exists an element ¢, which is called
the axis, such that a ~¢=0 and awe=>bwc. If furthermore
b~c = O, then a and b are called perspective with wspect to the axis
¢ and denoted with the symbol a ~ b. ‘

Theorem 41. Ifa and b are quasi-perspective, then —OCL and bic

are isomorphic by the correspondence w-—v with O < u<La, brne v
= b~ (uwe) < b, whewe U cmd v are also quasi-perspective with respect
to the axis c.

Pr. voe= (bvwc)n~(uvwe) = (auc)r\(uuc) =UC, UNC=aNC
= 0, whence the quasi-perspectivity of u and » with the axis ¢
follows. We see from thz relation (vwc)ma = (uwec)ra = uv(cra)
= u that the correspondence u v = b~(uwc) is one-to-one. It
remains to prove that this induces moreover an isomorphism. From
U —> Uy = (ulu(')r\b Ug — v, = (U2 v ¢)~b, we obtain

v ve = {(Up e b} {(uze)~b} < (U upre) b .
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urous = {wre)may o {roo)na} < (v na,
(uluugu.c)r\b < (v )b = v Vv, '
which yields v,wvs = (U ~ruzcy~b. Further we have ,
vy = (o) ~b} A {r ) ~b) 2= { ) e b,
wue = {(mwe)na}~{(vzw)nay Z {(n~v)wetna,

Uy~ uz) v ¢ = (1~ v2) e, whlch yields v;~vp = {(uy~ug) ey~ b, q.e.d.
We can choose the ax1s of guasi- perspectmty in such a manner

that it is contained in the quotient i O b . Putc¢ =c¢~(awd). Then

we have awc’ = (avwe)~(avwb) = avwbd, b = (bwe)(awd) = avb,
arc =arc =0, b~¢’ = bre¢, whence the quasi-perspectivity of «
and b with respect to the axis ¢’ follows. Since (uwc’)~bd = {(uvc)
~(awb)}~b = (u~c)~b holds, this change of the axis exerts no
influence upon the correspondence. ' .

Theorem 42. If a and b are perspective with the axis c, then
are® and bre® are perspective with the axis c~e® by the corre-
spondence ure® —vre®, where OSuLa, Ovh, and v = (uc)~b.

Pr. From awec =bwec and a~c =brc =0 we have by the
corollary to lemma 4, the following relations

(@reD)w(cmeD) = (ac)re® = (be)ne? = (bre®)w(cre?),

(am e(i)) ~(cr e(i)) = 0, (bﬁ e(i)) ~(er e(i)) =0
Further from v = (u\c)~b we obtain .
ve®) = (uwc) ~e® b = {(ur~eP)y(c~e®}~ (br\e(i)) .

Theorem 43. Two irreducible elements e, e; of the same dzmen—
son 1 & primary lattwe are. perspective.

Pr. Suppose e;=kFe, and dim er = dime;. The quotient ‘7%
being not a chain, there exists certainly an element -e3, such that
eve; = € ey, exneg = 0. For the case ¢;~e; = O we may take for

) . P o . 21 . . . - :
€; the summit of a maximal chain in QOJL, which contains neither

“s e ‘ . -
the atom in ﬁ Then e;\ve; = e ve3 = ey ey,
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ey~ e3=eeg =0, proving e, ~e. For the case e~ ea > O,
es~eg = O follows from e ~es = O, whence we have e;e; = exves
and consequently e; ~ ez.

and

Theorem 44. If in a primary lattice two quotients .

X

i cw'_e isomorphic, and if (a~b)wd is complemented m é, then a

and b are quasi-perspective in .
. ard

Pr. Put avd =4/, a/~b= (dua)/f\b = dwv(anb) =d and let
. , _ v v |
ci,t=1,2, ---8, be a basis of —C;— Since by hypothesis d' is com-

—

r ) / . .
plemented in @_  we can find a basis of Oobl , such that it consists

of ¢;,i=1,2,---sand ¢,5=1,2,---m. Since d’ is also comple-

l
mented in %, and since by hypothesis —3— is isomorphic with _c'l“’ we

may assume that ¢;,t1=1,2,---s, f5,i=1,2, m is a basis of

% with (e;~ - - ven)~{(fiv - N fm) = d where éi

and fd are chams

of the same dimension. Now e; and f; are perspective in —C—Ii— by the

precedmg theorem and hence there exists ¢, such that e;wg; = fiv

gi = e;fi, eingi =fir g = e fi=d. Then we have a v 3 g
— "o Sgi=Se o Se v g =3la Y 20fi v 295 =bv 210,
@~Sg)vwd =ad' ~Sgi=d=b~Sg;. Hence anXlg; =d~a and

with the axis ) g: .-

therefore a is quasiperspective to b in
. an

Corollary 1. If %.and % are fésomorphic and ab -is
complemented, then a and b are perspective.

Corollarv 2. If a and b are perspective, then they are projeclive.
-Conwversely, if a and b are projective and further if anb 18 comple--
mented then they are perspective.

Pr. From awc¢ = bwe, a~c = b~c = O follows immediately

a _ a . avec _ bwc b

o

0] a~c ¢ - c. O’

-

The converse statement follows from the preceding corollary.
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Theorem 45. A modular lattice L is primary if and onl J if
all atoms in any quotient of L are parrwive perspectwe

Pr. It is evident by theorem 43, that any two atoms in a
quotient of a primary lattice are perspective. We will show econ-.
versely, that there exists no proper neutral element in L, if L is
not a chain, and if L satisfies the above mentioned condition. Let
a be an arbitrary element distinet from O and I. For the case,

%— is not a chain, let fg— be simply a chain in L, which is not

contained in -%». For the cse, g‘ is a chain, the chain %;— must
A

be moreover so chosen, that it does not contain the element a.
Then we have b~a<la, b~ a< b and, demoting the ‘atoms in
a b ‘
"bra’ bra
cvf =dvuf=cud, enf=dnf=bra = ¢~d, since by hypothesis
@b . Then we have (dvf)ra = (cvd)~
ab
a=c and (dra)w(fra) = {(fr\a)ud}r\a = {(bra)vd}~a =dra
= b~a, whence @dra)yw(fra) < (duf)r\a, and therefore @ is not
neutral. q... d. :
In a primary lattice L let a* be quasi-perspective to b with

axis # and b quasi-perspective to a¢ with axis Y, where O <a* <L a.
*
Then %-- is 1somorph1c with a quotient £.. We shall eall thls
K

lsomorphlsm a projection of a* into a, and «, a~b, and xwy)~a=C
respectlvely base, pole and center of the projection. Here the base

= {(@~b)—y}~a is obviously contained in the center C. In the
partlcular case x = O we have automatically a* = ¢ and then the

with ¢, d respectively, we - can find S such that

c and d are perspective in

projection is called a projective automorphism of ~(—)—«,

.Theorem 46. In q projection of a* into a with base x, pole P, |
center C to every element u in P~a* corresponds wu~—«x and to every
element in C~a* corresponds an element in C. :

Pr. If u<a*~b, then v = uvwvr)nb=uvw(xnbd), Wy ~a
={uv(@~b)wyl~ag= =uv[{@ b))y} ~al=uwr. If u X (By)~aX,
then v = (uor)~b[{(xwy)na*}ow]~b = (x—y)y~(a*wx)~b = (v
y)~b, and, [{(xvy)ﬁb}vy]ﬂa = (@vy)~ by a = xuy)f\a = C,
whence (voy)~a < G
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Theorem 47. If in a projection of a* into a with pole P, u — v
with v = (u~x)~b and v — w with w = (vwy)~a, then unP = v~ P
= w~P.

Pr. From (u~P)~xz = O follows v~P = (u~z)~P =u~P by
lemma 1. Further we have (voP)ry by =0, whence wnP
= (vwvy)~P = v~ P follows by lemma 1.

-~

Theorem 48. . If u~C = O, then v~ (xwy) = bz, w~C = g.
Pr. From the hypothesis u~(zxvwy) = O, we obtain v~ (xvy)
= (uvwa)nbr(zvwy) = xnb and wnC = (vy)nan(Zvy) = k.

Definition. If the axes of a projection of a* into a are both
irreducible, then it is called normal.

Theorem 49. In a normal projection the base « and the center
C are both irreducible. .
Pr. C= (xzwvy)~a and Crz = O yield

+

CQ__(_?uacSmuy_‘,ﬁ Y

Theorem 50. If a normal projection of a* into a has the base
& with dimension v, then to every irreducible element g of dimension

*k N
A in %’ which s independent with P, corresponds an irreducible ele-

ment h of dimension A+ in %, which 1s independent with P.

Pr. h~P = O follows immediately from g~P = O by theorem

47. From %2 =_2% ~ @b < by :::—g—follows,'théta=Pul

P anb b T b |
with an irreducible element ! by lemma 6. Hence we obtain from
v = (gwx)~b and (vwy)~a = h the relation

hoP = @wvwPvoyra= (voPouy)~(Pwl) = Pu{l~(vwPuoy)}
h hoP _ POU U

Putting I’ = { Poy), we have 1t ~ = -

f g ~(vwPwoy), we have O B P PN

proving that —é" is a echain of dimension A2+, since —g— and L are
K

isomorphic in the projection.

Lemma 11. In o primary lattice L with height h, there exists
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‘an irreducible element of dimension h, which is independent with two
given elements, whose rangs are less than my,.

Pr. let a;, i=1,2, --- my, be all the basis-components with
dimension % of L, and ¢,, ¢; two given elements, whose rangs are
less than ms;. The theorem is evident for the case, where among

the atoms a{’ = a;~e? at least such an one exists, that it is con-

talned neither in «%L nor in {52—. If it.is not the case, there exists

o o . - . . m
certainly an atom a{ contained in 70—)?« but not contained in -A°%

: N . .o ) . . NCo -
and also an atom a{’ contained in —g— but not contained in ﬁ‘—(—j@«

a® v a“)

Then, the quotient being not a chain, containg an a"'tom a,

which is distinet from both o’ and af’. The absolutely maximal
chain, which contains a, is of dimension-% by theorem 31 and is
independent with both ¢;, ¢;. q. e. d.

Two projections are said to be identical, 1f thelr correspondence
‘relations are same in both pro;)eetlons

Theorem 51. In o primary lattice L -with the height h and
mp =4, let P;, B, be two normal projections of a* into a with centers
C; and poles P;, 1 =1, 2, where it is assumed, that rang a < ms—2,
P, < P, and Ci=C; or C, < C,. If for a given element t, which
satisfies the relations to~ Ci = O, ty~Ce = O, a* = (Py~a*)to, holds
Bi(te) = Pato), then By and Vi are identical.

. Pr. Suppose that P; is generated by the quas1-perspect1v1t1es
T N b with axis x; and - b o @ with axis y;, where we can
O T 0, 7; .
assume that avy; = b;wvy; = avwb;, a*vwx; = byww; = a*wb;. If we
put (fowz)~b = vf?, (P vwy)~a = we, (fovz)~b: = vf?, then we
have (v§? wy)~a = wo by hypothesis. It is required to prove, using
these relations, that for any element ¢ the relation (vevwy)ma = w
follows from (tvwax)~b, = v1, (vpvy)ra=w, (Evwa)~be=17v,. We
shall now distinguish two cases: case (i), where x;~(awx) = O and
case (ii), where x,~(avwx) > O . .

Since (tway, b))~y < (a* wap) ~xy = 0 we have by lemma 1

(1) Vg = (tuxluxz)nbz..‘

Since ava, = aby = avye = byt and (wviywbe) i S (@vx)~yr

~a
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=anyy = w, we have also by lemma 1

() T o= (wvm)nb = (w vyzvyl) b .
Then (1) and (2) yleld '
3 VeV = (Ewxyva)~(wyery))~ba .

- Putting # = (z1vx,) ~(y;v¥:) and considering v S wvy, 1 tva,
we have uvwn < (tvaywxs) ~(wwy,~y). Hence from (8) follows

4) i (u uvl)r;bg < Vo g .

Now we will .show that (uww)~b,=7v.. From v, = (twa)~b
= (t v, wx)~b,, we have

) uom = (wob)~(Eoa o).

<« ®& (tomy o s) ~ (o g o) = (V8 oy s} (VD vy, y2)
= v A{ ) ~ (0 v o m)} = v u

where the last inequality follows by lemma 1, since

s

)“(W1szu?ilvy2) = W(l)f‘(csv-%’l) = (to\/%)’“(civxl)’“bl
= b [z {ton (Civa)}] = birne < X125 -

where ©=1 or 2 according as C;=C, or C,=>C,. Similarly we
obtain : :

. (tor @y ) ~ (worr 1 o) = v .
But (a* ~ Py) v ol = (a* ~ P {(tovz) ~b} = {(a*~P)vitowxi} ~by
= (a*wvz)~b = b, and (a*~P)wvf? =b,. Hence we have byu

= bysu in virtue of (6) and (7). Substituting this in (5) we have
uwv = (uwby) ~(E v, —wx2), whence
(U—v) by = by (t vz Tx2) = bar (T ) = V2.

Then from (4) follows v» < v.~v, and this implies v,>>v,. Hence
() o Z () ~a = {(wey) b} wy)]la = (woy) o p)
a =w. If we further regard, that (vewy)~a and w are of the
same dimension, then we have finally the required result.

Proof of the case (ii). By lemma 11 we can find an irredicible
element w3, such that ws~(avwg) = O, xm~{avx) =0 and dim a3

a a a b by, ..

= dimy,. Since = = = 2L ~ 22 g0 the uqo-
% P, an~b, by b )
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tient -&%s is of type (dim'y,, dim y) and coﬁsequently there exists
1

a complement b; of Tgvpl in 278
: © L1

P) = Py, and a,\/bé = quwas = bjwxs. Putting bs = bj~(a*vxs), we .
have bgwus = a*wwz, bs~as = O. Therefore o™ and bs are perspective
with respect to the axis x3. Next, put vs = ({fov23)~bs, (Worvg)
(Civxs) = y3, and we have

, such that a~b; = Py, b~ (25

'

®)  we(Pi~a¥) = (a* wws)~by = by

Now it holds towv; = tor {bi~(tove)}y = Gor by) N (U2} = by 2y,
since towb, =ty (af ~ P) b = a* b = b z,. Hence it follows
tor wo = to v {(vi vy ap = (lovvyvy)na = (e vy )na =t {(x
vy ~a} = teoCy. Now from we~C) = k;, we have wywty = tyvC
= wyw C; and by virtue of this relation :

9)  vewys = (Worvs) ™ (Crovgwas) = (worvs) ~(Cytywas)
= (Worv3) N (Cr v Wy v a3) = Wo IV = WorYs .
From (8) and \‘(9\) we have
(10) bsys = (Pima*)wvsoys = (Pina*leowerys = avys,

where (Pi~a*)vw, = a follows from (Pi~a*)wvit, = g* by the iso-
- * .
morphism —%—‘9’— -2 . Further we have
: p

by~ ys = (Wo v vs) ~(Cyrwg) by = {?Jsv(wuf'\ba)}f"((auxs)
= {vs (WP} ~(Cyvias) = v3~(Civvas) (by theorem 47)
= (tow@s) ~ba~ (Crvzs) = @s~bg = O,

whence bs~ys = O and s0.bs is quasiperspective to a with the axis ys
by the relation (10). Since vsys = (tovxs) ~(Crva3) ~bs = 23~ b3 = O
and ¥ VY . WU o Wo g 4 is 1rredu01ble and we
Vs Vs WoN Vg
have a normal projection 5133 of a* into ¢ by means of s, ys, bg.
Next by virtue of vswaxz = to~vas we have (s = (xsuyg)r\a = (wovto
v as) N (Crvas) ~a = (to v Cy v a3) ~ (Cy uxs)r\a = Ci~a = C; and
Pa=anby=P ~a*< P, whence (Ps~ a*)vwio=a*. From (9)
follows (s i) ~a = (wo v N = worr (Vs a) = wors (fo~P1) = wo and
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therefore Ps(fo) = Pu(te) = Va(t). Now, usmg the result in the first
case, we obtain Ps=P; and Ps==P2. - ‘

PART 4.

Hereafter L is supposed to be primary and ms=4 with the
height 4. a,, a, being two independent irreducible elements in L,

the quotient ﬂ‘b\i“i is called a‘stmight line in L. Ina given/ straight

line I we choose a complemented irreducible element as its origin
and one of its complements in [ shall be fixed as the infinite point
of . Every irreducible element in !, which is independent with
the infinite point, is called a finite point. The dimension of any
finite point is evidently not .greater than that of the origin. In
what follows, we denote with @, the origin and with a, the infinite
point. Now we will establish a composition among finite pomts of
/dlmensmn 2 by means of a normal projective automorphlsm in the

sublattice (mneM)va, .

If the infinite point contams its center and

is contained in its pole, then we say such an automorphism addition.
If in an addition the image of the point, which is contained in the
origin, is the finite .point ¢, we denote this addition with the symbol
A; and the image of any point uw with A«u).

Theorem 52. For any finite point t of o straight line there
exists the uniquely determined addition Ag.

Pr. According to the assumption m, =4, we can ﬁnd certainly
an irreducible element x of dimension 2, which is independent with
aaz. We put af = a;~e?, i =1, 2, and choose an irreducible

a;

element as of dimension A in T which is 1ndependent Wlth both

a; and z. Next we put aswaz =0b, a® = a®wva,, then we have
a®MAg =brx =0, aMug =buzr = aPub. Hence g™ is perspective
to b with the axis z. Putting further (a{¥vx)~b = v, (E v
(azx) =y, we have apwy = (@i vo)~(azwx) = (@™ Jv)) ~ (2 2)
= (a{V v ay) ~(ay—x) = az~x, Whence aMuy=aMNuxr=bwr=bwy.
Fiom v (tvay) = vo~a® = O follows aP~y = gz~ (Evve) = aent =0
and b~y = O by virtue of the relation dim b = dima®. Hence
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. S ™
a® ~b with the axis y and y is irreducible by g ~ 2 (:y
\ , al

tY) , -
=0 Y% X Thus we obtain a normal prOJectlve automorphlsm

a®» O

. 2) . e
of f%,‘ by means of w, ¥, b. That this is the required addition A4, ,

can be seen as follows. (@ v y) ~a® = (@ vt~ (ay v x)~a®
= (@vwivv)~azsa: and C L ae = aP?~b = P, Furthermore vy
= (t )~ (@ x v v) = t vy, whenece (vowy)~a® = tu(v,~a®) = ¢,
By theorem 51 we can conclude i’urther that such an addition is
unique.

Theorem 53. (commutative law of addition). ¢, s being any two
finite points of the same dimension in « sz"ra,zght line, Ays) = AJ(t)
holds.

Pr. In the proof of the preceding theorem, put vo= %', Az
=b, @ va))~(swx)=1y. Then 2’ is obviously an irreducible
elemf—\nt of dimension A= dim¢ = dims. We have a;wvy=>b and
vy = (azrswx)~ (@ waz) = (™ wx)~b=>. Hence a®uy = a{M
wb=aMur =aMox and by =xvaroy =x b= wr’ =aPluy.
Since a®M Ay = (@' wa))~s=brs =0, V~y =@ va)~z=brzx=0,
Mg’ = aP vy =aM~b =0 and V' ~2' = (g vx)~ve = O, s0 wWe
have a®™ ~ ¥ with axis ' and a™ ~ b’ with axis ', where ¥’ is

! a®Muy - aMuz - X

irreducible by the 'rglatiton Y = B R Thus.

. . . . )
we obtain a normal projective automorphigm of. 2 by means of

b, «', y'. It holds furthermore a®~b = aM~(aawzx) =a,, 2y
= @' va ~(sva ') = bn{svarwr), @ wy)~a® =an(swrwz)
< a: and (@)~ = (@M wr)~(aavwx) =%, (@wy)~a® = (e
va) N (swa)~aM = a® w(swx) = s. This automorphism is therefore
the addition A;. Since (tva')~b = (ivwv)~(aywx) =y and (ywy')
~a?M = [yv{(wowa) ~(swz)}]~a® = [y w{bn (s v 2)}]~a®, so we
have the required result As(t) = A«(s). q.e.d.
This theorem justifies the adoptlon of the symbol t+s for the
point A«s) = A8, if dims =dim¢.

Theorem 54. (associative law of addition). - t, s, u being any
three finite points of the same dimension, holds the identity

t+(s+u) = ({t+s)+u.
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Pr. Suppose we have obtained A; by means of », y, b just as
in the proof of theorem b52. We put further (s x) ~b =1,
(a{M o)~ (aevx) = z. Then ay v, = (ayvswx)~b=Db,

1) aM oz = apvafV vz = ap {(af? v~ (@ )}
= @ aM v, = a b = aM
@2 - aVrz= (@) =a)rae= 0

by lemma 1, since v;~a® = (swx)~b~a® =s~az= 0. Now z is
irreducible and of dimension 2. For in virtue of (1) and (2)
2o oMoz aMor @ '
O a® a® o
{(a{M v az o) ~(ay o)y = voragwx = bz = ek, This, together
with (1), yields bwz = a®vwz. Hence a® ~ b with the axis z and
we obtain A,;,; by means of z, y, b. For we have a®~b.= a,,
2wy < agvw, whence (zvy)~aM L az and (e w2)~b = (@M wv)~b
= v, (vy)~a® = A,(s). We see further, that A, can be obtained
by means of z, z, b. In fact &vwx)~a® < (ewajyra® < ax and
@ w)nb=12, (ivx)~a®=(swvx)~a® =g It holds then
(As(u) —vx)~b = (uz)~b, whence we have [{(A«(u)}—x)~b}wyl~a?
= [{(uw2)~b} wyl~a®, proving the identity A4 w) = A (u).
q. e. d. . '

Further b vz = v ag 2z = vg v

Theorem 55. (possibility and uniqueness of substraction). Given
any two finite points s, t of dimension A, there exists the addition A,
uniquely, such that A.(t) =s, i.e. u+t =s:.

- Pr. We choose z, b as in the proof of theorem 52 and put
@t)~b = v, (vws)~(avx) =y. Then a;wv =>b and @y = (a2
v s) A (dzvw z) = (@ wv) ~(aywx) = azox. Hence Moy = aMox
and buy = bux, whence a™uy = bwy. Further we have aMry
=g~ (Vus) =a~s= 0, since v~ (azws) =v~a® = (xwt)~a
=tra = 0, and by = (Vws)~b~(azwx) = v~ (apx) = O. There-
fore a is perpective to b with the axis y. Furthermore holds the
relation -Y— ~ a® y = P ~ % .and consequently y is irre-

a® a® O ,
ducible. Since a®~b = q, and @wy)~a® = (rvvsirm S a, We
have now an addition by means of x, y, b and, since vy = (vVazw.
x)~Wos) = (bur)~(vws) = vwvs, (vwy)na® = (vs)naM) = s (v
~a®) = s holds, the image of ¢ is indeed the point s. Since from
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Ayu) = Agu') follows u = u’, so the substraction is unique. q.e.d.

The dimension of the meet of a finite point ¢ and the origin is
called order of the point ¢ and denoted with O(f). Every finite
point, whose order is zero, I&S called unit. In a given straight line
= W~0%  where @, is the origin and ap the infinite point, put.
m~e? = a?, o’ =a¥. A normal projection of o into a®,
where j <7, is called multiplication, if P> ay, ¢« < C< a; holds,.
where «, P, C are base, pole, and center of the projection. We
choose one of complemented units in / as a fixed unit point of [ and
denote it with e;. ' :

Theorem 56. Given a finite point t of dimension 1 with order
v, there exists uniquely such a multiplication, that the image of the
point eff) = ep—~e is the point t, where j = i—yp.

Pr. We choose an irreducible element « of dimension j in L,

which is independent with alvaz, and also an irreducible element

a(J)

as of dimension j in _*O k, which is lndependent with both @, and

w. Putting ¢ =af v a,, b=azw az, we have a@ g =b w x,
uD~x = b~x = 0. Hence a" is perspective to b with the axis .
Next we put (eff) vx)~b = viz, (t )~ (a{?—x) =y. Then it follows.

by = (v~ (@ ) ~b = {vrw Enb)} A (af ww) = v (af? v x)
= (e wm) b (af ) =a~b = O,
Gz vy = (az—el) wx)~b = (@D wzr)~b =D,
vy = (tovp) (P wr ) = (B~ (af velf) v i) =‘:tvvm
= (twv)~ (@f wtvr) = toy, |

whence by = ag vy = gevtwy = a® vy, By these relations we-
see that b is quasiperspective to a® and y is irreducible, since

Y= 0, ’U12V2/= tV?le and Y o~ Py tuvlz —"—'— : ¢ . Further
o V2 V12 ~

a"~b = q,, (xuy)r\a("Sal and « = a®~y = a{*’, so we have a.
multlphcatlon by means of x, y, b. Next it follows ‘ )

(Ve y)na® = (tvvp)~a® = o (ven a‘”) =1 ‘

and therefore the image of eff is the point ¢. q. e. d.
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We denote the above multiplication with the symbol M, and
the image of a point u with My u). That such multiplication is
unique, is the result of theorem 51, since ef’'~C = O, e v (Pra?)
= e waz = a® hold. Given a finite point ¢ with dim¢ =17, O(t) = »
and an arbitrary finite point s, we define product of ¢ and s as the
point My(s® %), where s¢-) = s~et-*), and denote with the symbol
ts. The present definition yields then dim s = 1, 1f dims=>1%—v,
and dim ts = dim s+, if dims <{i—y.

.Thorem 57. If dimt=14, O({)=v, dims=p < t—y, then
t-s = tO+¥s, where tVTW = t~elvt®), :

Pr. We choose z, as, y, b just as in theorem 56. Putting
b(i") __—; azuagu)’ x(l-‘) = xh»e(“), (e}%") \—/x(f“))r\b(u) = rv("'), y(f") — (t((-"*\’)urv(lﬂ"))
A (@ oua®), we have M., by means of 2™, y®, b,  Since
t g = [{(s v ™) ~ ™} o y®] ~a® K [{(s v )b} wyl~a®? = ts
‘and dim {¢*"Ms = dim ¢s, sO we obtain t"*M)s = ¢s.

Theorem 58. s, t being two finite points with O(s) = u, O(t) = v,
dim ts = j, then O(ts) = O@)+O0(s), of 3> p+v, and O(ts) =7, if
FS pto - |

Pr. Suppose M; is generated by means of =z, y, b just as in
theorem 56. Then, putting dimt¢ =12, (s®*"Vwx)~b= v, (11 vy)~
a® = ts and a? vy = a{? . Hence we obtain

(3) aPwts = (af? v wy)~na® = (af? vvwx)~a®
= (e st ug)~a® = g sV,

"In case dims > i—yp, we have dim ts =45 =1¢. Then from (3)
‘ follows

dim (a{i)uts) =i+ @—v—pn), if v+u<z,

dim (a{? wts) = 1, if v+pu=>17,
whence

O@ts) = v+p, if pt+p<yJ
O(ts) = j, if v+p=>y

In case dim s <i{—y, we have j=dims+v=p+r and from (3)
dim (af?wts) = i+dim s—H, whence follows

L ]

(1) This follows from Poy< Pz, d?~y=af and dimy = dimz+v.

&
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O(ts) = (dim s+u+i)—(’i+dim‘s———p) = pty.

Lemma 12. The product of a point in the origin w@th any
finite point is in the origin.

Pr. Suppose t=af® and M, is generated by #, y, b. Then
(Owz)~b =0, (Ovy)ra®? = g = af’ = t. )

Theorem 59. (associative law:of multiplication). (ts)u = t(su) .

Pr. Suppose dim¢ =1, O@F) =v, O@B) =pu. If w+v>=14, then
ts = a{? by theorem 58 and (ts)u = a{® by the preceding lemma,
Since dim (su) > p == 7—v, we have dim t(su) = %, O(su) = . Hence
dim t(su) < O@)+ O(su) and by theorem 58 #(su) = af?. '

Now we have only to treat the case p+v<%. Put i—v =4,
if dims=>=4%—y, and dims = 4, if dims /i——u Theorem 57 and 58
‘yield then the results ts = t**Vs, dim ts = 2+, O(ts) = pu+v. Since
further dimsu < dims, we have #(su) = t**"(su) by, theorem b57.
Therefore we can assume dim¢ = ¢ = 2+v without loss of generality

and we see that
(4) (ts)u = Mts(u(k—p)) ; (5) t(S’M,) = Mt{Ms(u(}“‘“)}

by virtue of My(u®*~") = (su)®. We will now prove that the right
hand sides of both (4) and (5) are equal. Suppose M, is generated
by %, y, b, where b = a,—af?, (sMwx)~b = v, and (v;wy)~a? ={s
as in theorem 56. Putting (e wwv)~(zwal) = 2z, we have a®~z

= (e vo)~af) = e ~af? = O, where (afVvel) v, L aMAy = 0.
From the relations zA4efy = O, zweld) = (e v ful) ~ (% v af® e
2z pwefy) _ ePov v

= ¢}’ v, follows o

= and" therefore z 1s
0O e e

irreducible. Further we have
(6) Oy vy = (G sP )b = (e wr)~b = b
(1) vz = (e wv)~(@wvwa®) = () wz)~ (s wal)
— e Moz, |

From (6) and (7) follows bz = @y v,z = a*~"wz and hence a*~®
is quasisperspective to b with the axis z. Since further (xuz)ma“"

= (e vvyvr)~aM <L a,, so we have a multlphcatlon by means of
2, z, b. That this multiplication is indeed Ms), can be seen from

-
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(g w2) b = @) e Aoy = o,
(Q)lux)f\a’(” = (S_(”\Jx)f’\a,“) = gt |

Next the quasi-perspectivity of a*~*) and b with axis z and the
_ quasi-perspectivity of » and a® with axis y yield a normal projection
of a®® into a®. Further (y v 2).~na? < (x v af?) ~aDZ ar,
(@R 2)~b = v, (nvy)~a® = t-s. Hence this projection is M.
Then we have (P ™™ w2z)~b=12y, (vevwx)~a® =M u*") ,
{Myu*~P)wx}~b = (o) b=, (V2 y)~a® = Mua@®™"). q.e.d.

"Theorem 60. If O@) < O(s) and dims<dimt for any two
finite points t, 8, then there exists uniquely a finite point q, such thal
s = tq and dim q = dim s—O(¢).

Pr. Put dimt=1i, O@) =», a® VW =affM v, b=ava,
(e wx) b = vy, (Vi) (af? wx) =y just as in theorem 56, then
we have M, by means of », y, b. Now in this projection to s cor-
responds the élement ¢ = (vwz)~a® ", where v = (swy)~b. Since

gvr =vwx, grnr=a*YV~zr=0 and CENPORICA S NN’ A
' : O % x O
and since vy = sy, vy = b~y = O, 2~ Y . SYY ~ s
(9] Y oy a‘”

so ¢ is irreducible and of dimension dim s—vy. Further, by virtue
of graz = vray, = (swy)~az = O, q is finite and s = {g.

, . Theorem 61. If O(s) = p, O@t) = v, p=v and dim s < dim ¢+
(,u——u) for any two finite points s, t, then there exists a finite pomt
q such that s = qt and dim q = dim s.
Pr. First we consider the case g = » and put dims = ¢. Since
the case ¢ = p is trivial, we assume that i >». We determine x,
b as in theorem 56 and put (@wa)~b=v, (swv)~(a{?vvx) =y
Then we have a® vy’ = (a{? wswv)~(af? ) = (af? wvad~" wv)~(af? v
y _ a®oy
a,ﬁ") a®

2) = a®vwx and a®@~y = (swv)~al? = af”. Hence

(O ;
=978 ~ ® and Y

is a chain of dimension 4. By lemma 6

a® O af?
we have then y = lva{", where [ is irreducible and of dimension
not less than 4. Since I < a{’ vz, the dimension of ! must be equal

to ¢ and consequently [~a{® = O. Thevquotlent %—‘ is then of type

(z, v). If we put further v~ (a{?wx) = vy, then vy = (#vaf’)~b and
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dim v = dim b+dim (2w a{?)—dim (bwzx) =
: . . . 4 Yy . . A . .
Now v, is contained in o and — is a chain of dimension 2. For
‘ ~ Vo '
y __(svv)n(@for) vv{(suv)ﬁ(a“’vba)} _ 8vYv _ 8
"~ g v (swv)~(af? o). S v 0

4
Since mj( Yy )= my(y')—m;(ve) holds for every j, so v, is comple-
Vo

’ R (v) ’ _
mented in —(y)—‘ by theorem 40. The chain a(‘) is absolutely maximal

, L , . . . g
in -%— Therefore a complement y of v’ in —%— 1s _irreducible with
‘dimension ¢ and independent with a; by the assumption 7> .

o .
“Hence y is also a complement of a{” in % From b~y = v~ (af®wzx)

= (D)~ (af) wx)~b = (v af”) ~b =1, follows bry=bry ~y
= po~y =.0 and from aPoy = oMoy = a® oy follows b < aPoy,
whence by = awy and consequently a® ~ b with aXis y. Since
further a®?~b = az, (xwy)~a® < (xvy) ~a® < af” holds, so we have
a multiplication by means of %, y, b. (t?wx)~b = v and

wvwy)~a? = (g y) ~a® = (voy)~a®
= (swv)~ (af? A w)~aD = su{vA(af) wtD)} = s

show that this is the required multiplication.

In case p>v, we choose an arbitrary finite point ¢ with
dimq’ =17, O(¢') = p—v and put s’ =¢’t. Then O(s') = O(s) and
dim s’ = dims. Hence there exists a finite point - ¢”, such that
s = ¢"'s’ = ¢"(¢'t). Finally, applying the associative law, we obtain
s = (q"q")t.

Theorem 62. t, s being two finite points of the same dimension,
it holds O@+s) = 0() = O(s), if  O(t) = O(s), .
and O(t+s) = Min {O(t), O(s)}, if O@F) &=O0(s).
- Pr. Put O(s)=p, O() =v and assume v=pu. In virtue of
As®)=Aaf*))=t*) and A(s®**V) =D wehave dim{(t+s)~t}=pu,
whence follows ({+s)~a; = s~ a,l , that is O(t+s) = u. In particular
Olt+5) = p, if v> 4.

- Theorem 63. (first distributive ldw). If s, u are two ﬁm'te
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points of the same dimension, then holds t(s+u) =1ts +tu for every
finite point t. -

Pr. Suppose dimt =14, O@()=». Then we can assume dim s
— dim % = i—p without loss of generality. Next suppose we obtain
M, by means of x, y, b, such that, putting 2 = i—, (€M w2)~b =1,
(wwt)~ (@ wx).=y. Next we choose an irreducible element ' of
dimension -4, which is independent with a;va,wx and an irreducible
element @, of dimensionmr 2 in —a’{-?gﬁ'—, which is independent with
both &’ and a,. Putting ¥’ = aswa,, (@ wa)~b =2/, (V' ws)~ (2w
@) = o, we have a® ~ b with axis 2’ and b’ ~ a® with axis y.
Since a®MAY = az, @ wy)~a® La, and @' wy)~a® =s hold, so
we obtain A, by means of &', ¥, b’. Now the perspectivity a* '
~bwx' with axis # and the quasi-perspectivity of bz’ and a® w2’
with axis y generates a normal projection P of a®wa’ into a®
where the pole is (¢ wa)~(bwa') = &' —a.. Since v’ @ vag) = O,
PB(v') = q is irreducible and of dimension ¢ with g (&' vagz) = O,
q>« = ai by theorem 50. Putting b/’ = azq, we have

b wx' = azr P(v') w P(a') = ayo P o) = azw Pa) !
where  (a®) = [{(af? ww) ~(bwa)}yln (@l o)
= [{(a{”\/x)ﬁb} uy]f\a(i) — aﬁ"’ .
Therefore we haye b’ = a®vwa’, a?~x' = O and b~ = o,
whence a® ~ b with axis «’. Further we have

blluyl — azuy'Q?JS(v’) — azux’uiﬁ(v’) = p'on = aPuwr = a(i)uy’,'

and b~y = a®D~y = (v ws)~az = v/ ~az = O, whence a® ~ b with
axis y'. It holds furthermore a®@~b"'=az, (@'wy)~a® < a; and
(@ w2) b = (af? ')~ (a2 q) = B{(a wa)~ (a2 v)} = PE) = g,
(i) ma® = PL vy )~a®} = B(s). - ’ .
. . e qe e . ® ‘
Since P induces a multiplication M; 1In %—-, so P(s) = ts.
Consequently we have A, by means of af, ¥/, b, and
t(s+u) = Pls+u) = P{(uwa) ~b'} oy~ Pa® *
= (B vz )~b'}wy1~a® = ts+ Pu) = ts+tu.

- Theorem 64. (second distributive law). If u, s are two i1tz
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points of the same dimension, then (s+u)t = st+ut for every finite
point t. : .
' Pr. Putting dims = dim « = 7, we assume A =‘dimt = i—p >0.
First we consider the case O(s) = O(u) = », O(@) = 0. Then
# = O(s+u) = v by theorem 62. We choose as; #, b as usual such
that a® ~ b ‘with axis x. Puttmg (e(”ux)r'\b = p, (tvx)~b=q and

(8) (sup)h(al‘"vx) = ys, 9 (up)~(af?wr) = Yo,
we have . . ]
(10) (ys@)mat? = st, (11) WYurg)~a® = ut.

If we put ¥ =14i—pu, then ¥ <4 and from the above perspectivity
follows a®? ~ b with axis a®) and (e“” w N~ ) = PO
AP o2 A = q(A')

. : e . c.oafor
We choose an irreducible element a, of dimension < in ~—O——,

which is independent with both «, and a’. Putting a{®wva{® = o/,
raMway = b, we have ' ~ b with axis /. Further putting (a{*)'ux’)
Y =, (Vws)~(awa') =y, we have A, ‘by means of z/, ¥, b.
Hence [{(uwa')~V}vwyl~a® = s+u and putting {(s+u)wp*}~
(@ x) = Ys,u, we have

(12) Yssu~rq@?)~a® = (s+u)t .
Next- it holds for a{® vz = d the relatioﬁs
(dvwa)ywp = aP v/ vrwp = afdveMoroa’
= af? waf? wr o’ = (a/va)wp,
(de’)r\p =drp=dr(ewr)~b=2a~b=0,
(@' wx)yr~p = (d/ wa)~ (P wx)~b = af) ~(eM o) = O
Hence o'z’ ~ dwz' with axis p Next we have
(dva)vg = (af O Ual)(gon) = (@ oa') ot o)
= afd wa/ vaP ux = o/ va' g |
and (dwa)y~g = (dux’)h(tux)r\b =gxnb=0,

Yo' wxy~q = (@' v/ )~ ([t vx)~b = a ”r\(tux)
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Therefore o'z’ ~ dwa’ with axis ¢ and we obtain a normal pro-
jective automorphism 7 of a’wa’ by means of p, q, dwz’, its pole
being (a'vwz)~(dva') = af?wx’. From (8), (9), (10), (11) and (12)
we have st =T(s), ut= T(u), (s+ut<<T(s+u) and T(z') =<',
TO® )z = T va') = T(a'vx"). Now we proceed as follows

T(afV) = [{(a§" wp)~(dwa')} wql~ (@' ')
= [{(@Vwp)~(dwa’)} vawi]~af) = (@ vat)~af?) = af.
Hence 7T'(b')wa’ = T(a’ ux’; = T(a?"ua;”u;é’) = a{"’uaé"ux’ = o' v’,
T TW) = T wy) = T(@' vy) = T@)TW) = o' v TC) .
and  T(W)~a' = TH' ~a') = O, TH)ATW)=TW~y)=0.

Therefore a® ~ T'(b')wap with axis &’ and T(y'). Since further
T(H)~a' = T(af) = af”, {&'vT(¥)}~a®} < as, and |

K@ w2 )~TO)} v TW)]~a' = T{(af va)~b} vy lna’ = T(s) = st,
. S0 we bbtain Aq by means of o/, T(y'), T(d')~az. Then .
st+ut = [{(utwa') ~T®)} v T()]~ao’

= T[{(u‘ux’)r\bf} vy lna = 71(s+u).

Now we have (s+ u)¢t<st+ut, from which we conclude
(s+u)t = st+ut considering the dimensions of the both sides.

In case O() = O .and O(s) > O(u), it follows O(s+u) = O(u)
= O(—u).® Hence we have (s+u)t+(—w)t = {(s+u)+(—u)}t = st.
From (—u)t+ut = {(—u)+u}t = af{® follows then (s+u)t = st+ut.
In case O(t) >0, it .is evidently O(t+e®) = 0. Hence it follows

. ' ' A
(s+u)(t+e®) = s(t+eM)+u(t+eM) = st+ut+se™ g-uet ,)
= st+ ut+é+u.

On the other hand we have (s+u)(t+eV) = (s+u)t+(s+u) by
applying the first distributive law. .Hence the uniqueness of sub-
straction yields (s+ u)t = st+ ut.

(1) Here —u means a finite point, for which (—u)+« = 1) holds.
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"PART 5. _

~ As in the preceding parts let L be a primary‘ lattice with
height h, ms>>4 and let a;, 1, 2, - 7, be its basis with d; = dim a;,

where dy = dp = ds = dy = k holds. In each straight line #17% we

choose an irreducible element e; of dimension d; as its unit element,

which is independent with both @; and a;. In the straight line -

%%  where ¢, g distinet from 1, we fix the element
[y {(@ive) (@i e) ] (@i a;) as its unit element e;. Then we

will show that (i) ey is independent with both a; and a;. (ii) eq

is irreducible.and of dimension Min (d;, d;). In order to prove -

these, we suppose d; =>d;. Since
[a:iv {(aive) ~(ai—en)ylna = { (@ el waz)o (@)} ~a
= [aivA{er (@i wa)}]na = (aivey) ~a = eynag=0,
so lemma I yields |
eima; = {(a;ve) (g ven)} ~ap = (e ven) = aines = 0.
Similarly ey~a; = O. The validity of (i) can be seen by |

€ii ~ Wiei . (mvaies) ~(aivay) _ a8y o O

@) a; a; a; 0 )

Theorem 65. Among the unit elements e;; of straight lines Qi B

in L hold the relalions

[ar— {(a:ver) ~(a; e} ] (as v a) = elf?,

where k is distinct from ¢ and j. - _
Pr. By definition the case k =1 is evident. For the case ¢ =1
{or j = 1) we have .

-

(a1 ex)(a; v ew) = [‘1'1 v {{azy - ey) ™ (a5~ ex) (o en)

= {(q;cuelj)h(a'iuelk)}\;{alr\(a'jue?k)} = (axpez)(a;ven),

whence [ar—{(a,ew) ~ (@ ven) }] A (v ay) = (apeff)n(ar—ay)
' = e{3x),

The cases, where all 4, 7, k are distinet from 1, can be treated
as follows :
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aiver = [av{(aivarvey) (@i a;wer)t] (avrar—a;) ;
;A er; = [%V{(djuakueu)f\(aiVafvelk)}]’“(aiva'kvaj) .
Now the relaﬁon alr\(aiua,fuelk)‘-: O yields |
| (@i en) ~ (a5 ens) = [ap {(aiwaren) m (@ are) ~ (@i aen) }]
A(arvar—as),
[ar— {(aiver) ~(a;ver) } 1 (a; v ay)
= [a; v {(a;veff?) ~ (a; v eff)} I (aiva) S e P q. e d.

For an irreducible element ! of dimension 2 in the straight line

A~ Aj
O .
k==j7. Then we can find an irreducible element !’ of dimension 4

with apvl = apol, ar~l = 0, (a;va;)~l' = 0. We put

we choose a basis-component ay such that dim ar=4, k=17,

= K(asl)~(aivan)} Alair ) (@ a} ] (@i a)

and will prove that 7 is also an irreducible element of dimension 2,
uniquely determined irrespective of the choice of ar, I’. Suppose
~a; = O and take a;, a; respectively as the origin and the infinite
point of the straight line. Using a;wi = a;—a!”, we have

(ajva)var = (ajol)var, (ajl)rar=1Ura,=0

by lemma 1, since (ax~l~a; = I~a; = O. Therefore a; o a® ~a;ol’
with axis a;. Putting (a; ')~ (a;wvar) = m, we obtain m~a; =
(a;vl)na; = a;~a; = O and

m o mve _ g o
O S ay a; -0

Hence m is irr- ducible and of dimension /I‘. | Further we have
(a.):iua'?))uvm = qjwaival}) = ajua,ﬁ;*‘)uy = (a;wl)wm

and m?\(ajuag”) = 0. mm~(a;wl) = ';nhajr-: Q by lemma 1, since
U {ajom) =Un(apoad) = Un(apr DA (a;wal)) |

= U~laP ~{a;~ (oD} = Unafd = 0.

(1) The calcuation of dimension of the lefi-hand s de yields the required result.
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Therefore a;—1 is perspective to a;—af”’ with axis m. Since further
(ajva)~(a; ) = a;, (ar—m)~(a;iwvaM) < a; holds, we have really

Qi a;

an addition in by means of a;, m, a;wi. Now we put

p = (a;~vap)~(a;wl) = (a?’vak)f\fajul’)-
Then I = (pvm)~(a;va;) = (pvm)f\(aﬁx’vdj%

Hence ! is the image of a$® in this .add#tion and therefore {is
irreducible Wlth dlmensmn A. Since further

(Qva)~(aol) =1,
. emyn(avay) = (aivl’)f\(ajvakul’)n(aﬁ“vaj) = afV,

so we have A;(l) =af, that is [ = —I. Therefore I is uniquely
determined irrespective of the choice of ar, I by theorem 51.
The element ¢ is called conjugate to the element I.

Theorem 66. (exi\er)~(a:;wva;) = ¥, where ey is conjugate to
e; and ez~a; = O, eza; = O. ~ :

Pr. Putting gazuekg)n(a,uem) = ¢};, we have. axwe); = a,elf
by theorem 65, and ej;~ar = O, ¢;~(a;wva;) = O. Now it follows

ef? = [{(ayely) (@ ar) } o {(aiely) ~ (a5 ar) }]~ (@i a)
= [{(a; e~ (a;var)} v {(a:veid)(a; Uak)}]" (a:ivaj)
(e(do)‘-’e(d ))’\(at\/aa) = (ekzueka)h(azua'a)
Theorem 67. (e5wem)(aiway) = e,

Pr. Choose a,, such that d,=h, p==%, p=j, p==k. Then
we have ' : L -

eis = (€ €0) (i a5) = (€pi €5~ ) ™ (A~ a5).

G = (epi ue?juew::) m (a'j e ak)

eiin e = [{(€p€ps e ) ™ (@i @)} Q] (€45 €5 €41)

(a'(dj) i ) (em €pj Vepk)

) (e wam) ~(asar) = (emvepk)f\(a("”vak) =ef. q.e.d.

- a V .
ay aai and kN U5

Given two different straight lines , aprald?
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is perspective to ax\ai?? with axis e;;. This perspectivity shall be

| denoted with the symbol P Z;’) and the image of a point ¢ with

)q For the sake of completeness we_shall give the symbol

( ) the meaning of the iaentlcal correspondence such that

P(k z)q =q.
Theorem 68.
(3) P(llz ;)egg.ﬂ =edd, (1) P(z ;);Efﬂ = @,

Pr. Suppose d;==d;. Then (1) follows from (axe:;) (o a?)
=ar, and (2) from (a;ve;)(arval@?) = g/, . Theorem 66 yields
eri e = e el and consequently (ex;wey)~(ar v al?) = {29, which
proves (3), and finally by theorem 67 we have (ek,uez,)r\(akua(d")

= e{@), which proves (4).

Theorem 69. If ¢ is irreducible m 9-@5—9‘5"— and if P( )c =d,

then. P(} 0)s = d.

P.. Choose a,, such that d, = h, p=kk, 4,5 and an irreducible
element ¢’ such that a,w¢ = a, ¢/, ~a, = O, ~(axrva;) = O. Then
by definition ¢ = [{(arwc') (a, v a;)} v {(a;wc ) (a,var)}]~(a:var).
The perspectivity of a,wa;wa®’ and apuakqa‘di’ with axis €:; e;; being
denoted with the symbol P, we have .

£ 9 = (@ o B (@, wal )

A{(a§ BN (@, v an)} ]~ (@ v ar)

But a,wd = a,«B(c) = a,~P(c/) and P()~a, = O, B(¢)~(araf®)
= 0. Hence P(llf: )c-d q.e.d.

.The image of a given element ¢ exists for P k ?’) when ¢
belongs to axwa{®’. Every element, whose image ex1sts is said to
be proper with respect to the perspectivity. If for every element
t, which is proper with respect to P and Pz, PBu(f) being proper with
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respect to PB;, the relation PH(PxA?) ‘*“'Bs(t) holds, then we say that
Ps is product of P, and P, and write PoP, = Ps: Further an element
t is said to be proper with respect to the product of perspectivities
Bi, Bay o+ P, if Bu(Pe - - - BPu@®) exists. Two products are said to
be equivalent, if for every element, which is proper with respect
_to both, its"i unage is the same for both products.

Theorem 70. If 4,7, k, l are all different, then

Pkl)P< ) P/k?,

Pr. Put Min (d;, d;) = ». Then we have

\

P(EE(E 1)t = Hven(avoaft) veal~(awwaf)
= (tug—,;ué;;)r\(akua,}“)) .

But from theorem 67 follows e we; = o9 we;, which yields

P(k '%)P( )t > (e (ap—vaf?) = k z) t.

Theorem 71. If 4,7, k, p are all d@ﬁwevzt, then

2k () = )R-

Ei\p(t 3\ — 14 Ny Ly
P DYP(3 %)t = Lt ew (@ aft D} e ]~ (anoaf)
= (tvenes) (@ wal®?) .

On the other hand we have

’ (Z P>P(?' J = [{(,tué;)r\(aiuafudj))}\./e_t-,;:]r\(ai‘uagcdé))
= (tuéypve_i;)f\(af,dj)va}f‘)) .

Theorem 72. If 1,3, p, Kk cire all dzfﬁ'e'r:ent, then

(8 YeE D) = 76 DD
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P N\p(P F\pfT J p\pPJ ( )
Pr. | P )P<P Z>P( o y) P( )P( )P )P by theorem 70
PJ (3]
( E z)P< z)P(lc j)P(P j) by theorem 71
= pfk kEN\p(t I a3
= P(j z)P(k i)P<lcj again by theorem 70.
q.e. d.

Now we define P(} ) = P(F P31, it k=i, i3, k+p.
1f moreover i, j, k, p are all different, then this is the perspectivity
of a{d wal®) and afd? wal?? with axis e;, ey by theorem 71. Further

‘we define P(; Z,) = P(k z)P(k J)P(Z J) where d; = h and k<=1, j.

Theorem 73. P( P)P(k P) P(
Pr. The case 1 =£k or j=p is ev1dent For the case 1=k,

J=pand j=k
2o )i ) = 7 )P 7)) = G 2)RGeg) = 7 2
For the case vk, j==p, J =k, i =p wWe can assume o=1 and |
K] () = (G e )rEDRE |
R DR ~ H R DR
HEDEOHED) - KD - (]
‘where _S=F1,7, 0. Por the case 7=k, L=k, i=p, i=¢
we w.have P( )P( ) P( )P( )P( ) P(; J ) Finally in
‘the case z:l:lc y#p i=k, iEp; 1o,
GO ) =G OrG G = PG ORGD)
) = D) -
Theorem 74. P( )P( (

- Pr. The case i =Fk or 5 =p is ev1dent Suppose ¢ =k, ] == p,
j=k%. By the preceding theorem we have
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(L) - ok DGDAES) = (ki) = #(E5) -

If ik, j==p and j = k, then we havé for the case 7=kp

25 D)PG5) = 2G PG e 5) = P(5 )R ) = (5 5).
and for the case ¢ =p . ‘
GG = FGIREEGS)
=25 PR = 2GR = 2(5%)
by the preceding theorem. q.e. d.. .
Theorem 73 and 74 show that through successive perspectivities
the final image of a given point depends only on the final straight

line, whereupon the process of perspectivities ends, and never depends
on the choice of intermediating straight lines.

Theorem 75. P('L ‘7>t =t~ for every umt t n O“Jl, where t1

‘means a point, for which Mt ) < e;; holds.
Pr. We put dimt=24 From tva,<a;va;, tva; < a,,va»

follows dim a; >4, dim a; = 4. Suppose P(Z ‘7) P( )P(llz )P(% . ),
where dim a;x =>4, and put !

(tve) (@ wa) =1, (t'vel)(a? va}?’) =t
@ Qg}?)f\(a.ﬁ)‘)va?)) = ¢/
Then we haue obviously /" = P(?’7 i)t and
aP ot =P, et =aal,
whence (aMvwa;) vt = (¢’ va;)—t'. Further
(@M wa) ' = ' vef)~ad = ePna =0,
(P wa)~t = (' veD)~a =t ~ad =0 .

Therefore a{"va; ~ a¥va; with axis ¢ and we have a projective

automorphism of a{wa; by means of ", 2y and af¥va;. If we
take a; as the infinite point and a; as the orgin of the straight line
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a‘-“o’“" , then this automorphism becomes the multiplication M_,.

In fact (afV v a;)) ~(af v a)) =a;, " v ef) ~(aP va) < a;, and
ot (e = (' weP)n (@ va) = U, (ve)~ (@M va) = ¢
The image of the point e = —e{) being ¢, we see that the image
of e{ is the point —¢ by the use of the first distributive law. Now
it follows (¢ t”)r\(aﬁ’uaj) = e}}’ and (e —el)~(aMway) = e by
theorem 67. Hence (—&)-t" = —e), whence ¢/ =¢1. q.e. d.

The quotient FX%Y % where a;, a;, ar are any three basis-

components of L, is called a plane in L. The perspectivity of two

planes LU gng UV EM with axis e, shall he denoted by
P(Z’g ’ k,). Then we define further
'Z', Js k 3 Js k ,.7: k 3 > !
(,3, ) P<,.7, )P(,J,k” if gk
D BRS¢ i s
/ Ik cr . g
KO3 8 = rGnGEE). i i k
. P 7” I k) P(;’ ?L K :)P(i’ ';:’ k,) ~ and so forth
» Yy ’

Theorem 76. The perspectivity P(@’ -7’ k’) m g’*—-\%— mdices
I k,) in W% |
i’k 0 _
Pr. Incase i =1, =7, kk' we have for t < a;wvax
7, .7’ dr)
P( Y = (o)~ (@as i)
= (tep) (@ val?) = " @’)t )

The proofs of the other cases can be readily obtamed by virtue of
theorem 78 and 74.

PART 6.

As in the preceding parts we consider a primary lattice L with
a basis @, az, - a,, where =>4 and dima, = dim a; = dim as
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= dim ay = & holds, h being the helght of L and we denote with
A the join of all a,,»=1,2,---4—1,i+1, --- » except a;, with
A;; the join of all a, except a; and a;, ete. If l is an irreducible
element of dimension 2 in L, we put ;= (Agv)~(a;va;), and
will prove '

Theorem 77. [; is irreducible and, if, putting dim (I~ A;) = 4,
a,gzz , then li~a; = O, dim l;; = A—2;, dim (i~ ;) = 4i—2:.

by Lij Awulm _ Aul l A
Pr. Since 0 AL A A, INAL holds, #;
is irreducible and dim /; = dim [—dim ((~A;) = 2—4;. Since further
liina; _ (AylDra; ' {(Aijul)f\ai}VAij
O {(Awul)na,q}ﬁ A” A
_ Ay (4  I~A;
. Ay T I~Ay

we have dim (lyma;) = dim (I~ A)—dim (~Ay) = 4—2%. Similarly
we have (0% ~ (nA:
o —lﬁfli;j

i =2

Theorem 78. If ;= Min (%, &), then li; < lnioly. If moreover
A; g A; z AL hOldS, then Z];:qul_'n = il . .

Pr. Choose a,, such that p=k4,7, k¥ and dima, =% and an
irreduclbie element {’, such that a, v ly=a, vV, ! ~a,=0,
Un{ar—va;) = O. Putting ¢t = (' va;)~ (A1), we have

whence l;~a; = O follows in virtue of

Aot = (Ao A (Agerl) = (Ao~ (Aipol) = Al
and  tva; = {va)~(Apvl) = U va)~(Apol) = a;ol .
Now it follows /
I = [{(ael)~ (@50 a)} (a5 l) A~ (@ a) A (@ as)
= [{(As V)~ (a5 v ap)} o {(Are )~ (@ v a,) } 1 (or v 05)
= [ {45 D) (@ v @)y (A, o) ~ (v @)}~ (v as)
= [a: {'(Ajpiut) ~ag s @yt a) } o { (A o) (@7 v @)} 1 (ar v a5).-

But Aj;,@-uA,-Pkutuakua,- = Apiut and (flm'\Jt)r'\aZ e Apif\a/i =0 ”
Wheré\(AP,- v/ %) ~t= A{, ~t=aq;, " (Ar[jk Vl) = Q; M Ag‘jk = O, since.
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~

¢ ) . )
[ ~ (a;w Ags) = I~ Ay < Ay by hypothesis. Hence we have -by
lemma 1 -

les = [{(Asei ) (052 Gy @)} {(Aikp o) i i @)} (a2 05)
S HAsvt)~(ava)t{(Awat) ~@iva)} a1 (@ a)
'={«Awnyv@uw»u«AWJV%mu%»P%mUw)

= /(Z,.julki)n(akuwj), whence
(1) s < Uil

If moreover A; == 4; == A, then diml; = A— 2 , dim lp; = 2—2;, dim lj;
=2A—%. Since l;na; =0 and liim~a; = O, we have l;nly =0, ®
lei~l; = O and conséquéntly dim (lx; ;) = dim (x5 —1;:). Hence from
(1) we conclude Il = lul;. q.e. d. -

The perspectivity a,kuai-"’_j) ~ apwal®  with axis e,-,-’ shall be
denoted with the symbol P(;ﬁ;) Then we have.

Theorem 79. If Il is an irreducible element in ﬁ&:’a‘zﬂ with
_ okt _ p(kiy (ki) _ p(kd
trai = O, then P(§ Ty = P} 1)L B3 1) ‘ Py B |
Pr. Put g = (Iva;)~(are;)and 2 = dim/l. Then g is 1*rreduc1ble
and of dimension 2 with 2<d;, d;. For gno; = ain(aevsi) = O
gwa; _lvay A~ )
a; a; O )
Now we have

and 4 =~
0]

g5 = (Agog) (@ a5) = (arog) ~aroa) = Ioayoa) ~es = e,
g = (Ao g)~(@war) = (aywgim(@an) = (oa)~lanra) = L.
These relations yield
P3N = (vew) (an o af®?) = (gugi) ~ (ax o i)

But, since gnA; =g A; = ({va)~ar =l~a, = O by hypothesis,
so we obtain P%%)l > gr; by theorem 78. Further we have

P8l = (1) ~(a— aft?) = (i gig) (@~ a*?)
< Gri gr) (v af*?) = gri s |
Hence we have P(¥)l = P()l by theorem 69, which proves the first
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formula of the theorem, The secohd one follows from' this by

observing that [ = 7.

Theorem 80. If =4 =4, and if we put PMow = hwi,
P35 = hji , P(3gr; = haj, then hy;, hg,, and hyx; are finite with the
relation hp; = hpih;; . .

Pr. We put P(#)gr; = lws, P(?;%)gﬁ = lj ‘yielding P(i”s)lkj = hyj ,
Pl = hj;. By theorem 77 we have, gura; =0, gura; =0,
grin~a;= 0, whence li;~nas=0, lijrnaa=0, Arina,=0, hjna:=0,
hii~az = () Putting 2 =dim g, we have dimlx; = dlm lr; = dim hk,

= dim hg; = A—4&, dimhz=diml;=2—2;. We put further
a=a**oa, b=af* o, a*=al*"*vq. Then a*~b with

axis e *”. Since dim (Ix;~a) = dim (gp;~ar) = 4;—A4,, and
afr = O Ly = aP M O qf M) = gfr2) U l;, so we have a v i
=bwvwly, where bmly=af*'~0;=0. Thus we obtain
M;,; by means of e}, I;;,b. For arnb=az, (i iy ~aLas,
and (ef} 2 el ~ b =8l ), P = hx;. But theorem
79 yields (kv e$29) ~ b = (hj v en) v (az v as) = P B = PE)hs
=l;;. Since moreover from gj; Gii = gii v g follows Il

=l hy; by P®i), so we have (ln w i) ~ a = hy;, that is
e = ibkj'ﬁji = hkg hg, . q.e. d. .

» In the following we use the notation P(#)g; = hy, if 4<%,
and P)gi = by, if 42>4;. If A =24;, then hy; is an unit and
hi; = hiz' by theorem 75. *Given an arbitrary irreducible element g
in L, we can find 4, such that g~A, = O by the corollary to

lemma 2. Then A=dimg <dimea, and h,;,i=1,2, -+ are all
finite points of dimension 4, where %,, means e{>. Every system {th,:},
1=1,2,..--r with arbitrary unit e is now called a system of

coordinates of the irreducible element g. If A,~g ="0Oand A,~g = O
(o = p), then h,, is an unit and we have h,; = h,ohe; , if i ko, ikp,
by the preceding theorem. Furthermore k,, = hpohap 5 Bpo = Rpottao -
Hence two systems of coordinates {4;} and {h’} of an irreducible
element are in a relation h; =e¢h),c=1,2 -.-r with an unit e.
Among the coordinates #; there exists always at least an unit h
such that d,>2 and, since from g,;va, <La,va; the relatlon N
Posran < aluagdw’ follows, it holds O(k;) = 2—d; . Conversely to every
system of finite points h;, i =1, 2, --- r of dimension A in ﬁ%’—a’z—,

where £, is an upit with d, =2 and O(k;) > a—d;, there corresponds
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an irreducible element in L, such that h;,¢=1,2,---r, are its
coordinates.

- In order to prove this assertion, we put h;'h; = hy;, PGDhoi = 04y
where h,; is proper, since h,;wva{®) < a{?r)wal??,-and put

g = E;I’)(Apiugpg). Then g;ihAP = gpir\ai = O,

Aprng = TT{(Apv g n A} =TT A =0,
P - krald

-
by the corollary to lemma 2, and ‘

Avg = (Amugm)’—" H (aJuAP:)ugpz (Apivgpi)njEP(APung)

J#t p
= (Apiug?i)r\(APuafy‘)) = piugpi .
Hence it holds -2 ~ Ay ,A“"ug“' ~ 9¢i 4 is therefore an
0] LA A, - 0
irreducible ele'nent of dimension A2 with the relation (A,,,vg)f\(aP
;) = ¢,;, proving that %; are coordinates of g. We prove further,

that for the coordinates A%, h® of two different elements g®, g®
.the relations A ="h® do not hold with an unit e. If ek} =hrg,
i=1,2,---r with an unit e, then, 2@ and AQ being units, we
‘have 1, =2, =0 for both g™ and ¢®. Hence AQ = h2hr® and
consequently A = A2, ¢ =g@. From this we obtain A,;wg®
= Ay g® = A, w9}, whence g = I (Apawg®) = g®. q.e.d.

We shall now investigate the relatlon which the coordinates of
every point on a given straight line satisfy.

Theorem 81. The coordinates h;, 1 =1,2, ---r of any point

Pon a stright line »PIO Iy , where Py, P, are independent points with

coordinates h and h® respectively, satisfy the relation

= WO+ D i =1, 2,

£

with two fized points A and Ay of dimension dim P, where either 2 or
A2 18 an unat.

Pr. We can assume that dim P; = s > dim P;-=t, and find A
such that Az~(P,wP;) = O by lemma 10. For an arbitrary point

P in P10P2 it holds either P~A, = O or P~A4; = 0. If we put

PyoP, =, Ag~l = w, then we have ' e
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w WAy _ Aen(vAy) _ (ayoAm)~ (v Ay)
~ 0 Ar; Ars ‘ Ap;
| _ Am~Aain (v A} o 0 (o Ag) ]

Hence w is a point and w~A4; = O, whence wi;~a; = 0, dim w;;
=dimw for all 7==j5. We first consider the case Py~A4, = O,
’ P"\Ak = O and put P(%)’wm = .Wij, P(g)ij = PZ;-, A= dlmP = dimP;,,j
= dim P};, v = dim (P ~ 4;) = dim (Px; ~ ax) = dim (P; ~ @;). Then
PPy = P(4)Pr; = hjr, where hy;~a; = O and, since

Piow = Pio{Ap~ (PP} = (PrvAr)~(Pro Py)
=@~ (P, wP) =P P, =1,
it holds dim w = dim P, = ¢ = dim W;;. We choose an irreducible
2%  which contains Wi, if A>>¢,

and put Wi = WP, if A< ¢t. Then, putting PG WS} =%, PE WP
= l;;, we have Ui =>1l;;, ;~ax = O. ’ '

Next it holds obviously a{*~V'was ~ af*~"wa; with axis V.
Smee, in virtue of P;~ar = af, the relations :

element W% of dimension 2 in

(@ va) Pl = (@@ P, P (o ™wa) = Piray = O

hold, so af*~"wa, is quasi-perspective to a{"wa, with axis P
Further (af"vaz)(af*~"va) = as, (e v PH(afVva) < ax

(@B wef™) (@ va) =2, (@O PE A (o) = hu .

Thus we have M, ; by means of ¢l ", P% and a$*Ywva,. If we
put M = (%f‘*‘”)uP,;’;)n(a}“vaz), s0 we have from

GO el (af I wa) = PETEO = Wio-»

the relation M = Pl = —hiil; . It holds furthermore af v as~P5wa;
with axis W}. Since (af?vaf?)~ (a2 P = Pj, (P WEHA (0w
az) = M, so we have Ay by means of af¥, Wi and a,wP. Now
we put Py = (Ary v P)~(axr—a;wa;) and obtain

Prii o Pris~Ari . AwioP P

. ' - 0 A Apis 0

Py is therefo‘l;e a point of dimension A1 and similarly for
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P = (Apyo PP~ (arvaira) .
Then it holds
) = (Ao PO P~ (@i o) - |
Prijowl)) = {AkijVP)f\(akuaiuaj)}u{(AkijVPwVP,‘;”)“(GiVaj)}
= (Aro P)~ (A PP o PO) ~ (ar— a7 05) o
= (Aww PP) A~ (Apis o PR o PR~ (ar~ air 05) = Prg w3y -

If we put P ({‘2'5)? kii — Qk.gj and P({%)P]M = Qkij ’ then

) Quij~ Wi = Qi W -
We have further Py;a$? = Py al from (P~ o) ~(arnra:) = Pri,
whence follows Quij\waf” = hu: waM, and similarly Qisaz = Pioa.

Hence we have
(hair a§V) ~ (P az) = (Quis~ a§?) ™ (Quis~ @2) = Quis

where Qui;~(azwas) = O follows from Pri~(aiva;) = O, and putting
(Qris~ W)~ (afV —az) = U, it holds '

(3) U= M+hy = ""'hkjl;“%"‘-hlcff, . . T
In virtue of (2) we have similatly U = —hf)M[f + Q™ . This, to-

gether with (8), yields hu—hQW = (h;—hHON;. 1If 2 >4, then
dim (P~ Py) = A—t, Ohwui— h“"”)ZZ—t and hence

(4)  h— RO = (hug—h{ ) .

-If A < t, then I} = l;; and therefore (4) holds also in this case.

We next consider the case P,~Ar >0 and P~A; = O. Then
it holds Py~w > O and therefore P:~A; = 0, PB,~P = O, whence
dim P <t = dim P2 Further we have

w Prow _ _ (Pov A~ (PivPy)  Pin(Per A S Pire® PP

O . Py P, O - 0 O

which yields dimz(;g t. Since fhe point P lies on the straight line
) ‘ -

~£§—té\i£2—, we can apply the above result for the present case, if

we only relace the point P; with Ps. We have henceforth

(1) Here Py;; does not signify the conjugate point of Pgij.
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65 i B2 = (g h O

In similar manner we treat the case Pr\Aj =0, P,~A; = O and
the case P~A; = O, Pi~A; > 0, and we have

6) C ha—h®® = (hp—hP M, or
(") hii—h@D= (hj—hPPYmy; ,

where A;~l = u, P = my, . , ‘
Now, assuming Pi~A; = O and P;~Ay = O, it follows from 4)

(8) hid—h® = (WG —hPO),;
where A{Z—h@® is an.unit. For -

98~ 983 = (Ao P) ~ (Ao Py ~(ar )
= [Awi v {Pi~ (Ariw Po)} ~(an v @) = Agir (anway) = O.

Putting RB—hP® = -1 we have from (4) and (8)
o B = (g R — h)

for the coordinates of the point P of dimension 1 with. PrA; = 0.
If we put further (hrs—h{)M)e =0, then @ is a. finite point of
dimension 2 and Ay = 61 + (M —O0)h) . Furthermore it is evident
from theorem 62 that either @ or ¢™—@ is an unit. ‘

If P~Az> 0O, then P~A4; = O, wnd;=0 and [ = Piow,
A=dim P <t = dim w. Hence we have from (7)

9) hii—U = himy; .
Since further u~A; = O, PL~ A, = O, we have Mug—hf* = — B,
with u = dim » and, substituting this in (9), we obtain

(10) g =l + (e — hih )

= hahfR + (e — hah ) (b2 — )

If we put further, (ef2? —hanhfP)e = 6, then hji = Oh@ + (hj— O,

where in case O(h;—@)> O it follows from (hir—0)e™ = hyy ,‘-,’i’:—e]‘é’

that O(ks) = O, whence 0O(B) = O. -
We can treat the case Py~ A4; = O, Py~ A; = O similarly as akove.

(1) . That # = 4, follows from Pu 2 (PuAj)~(PyoP) = PP,
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. For the case P~ Ay = O Igr\Ak> O we have [ = P,uw and
from (10) we obtain

(11) BD = hQRE + (e —h@hO); .
Since O(h®) > O, e —hDh{) is an unit and we have from (4) and (11}
k "_h}cli)“) :‘g‘?(h'kj_h;g(k))s(h;?ﬁ)'—h.;'?c)hg)) ;
where e“’ —h@hY) = ¢! and P~A; = O. It follows then
hii = OR? + (e — ORI .

with 8 = (hy;—h{))e. That either 0 or e{’—6Oh{? is an unit, can be
easily seen. If P~A;> O, then P~A; =0 and dim P.<t. Con-
sequently P< P®PuP;, =1{. Hence we have to consider the new
straight line I/, where P®~A; > 0. Py~A; =0, P~A; =0, and,
interchanging £ with 5 and P, with P{® in the above result, we
obtain ‘

s = OhY+ (el —OMAP

Where 6 = (h k—h(zm))e -1 eg) h(l)(t)h(m

Finally for the ecase Plr\Ak> O, P,nA, = O, we can treat as
follows. If P;~A; = O, then it reduces to the second case and, if
P.~A; = O, then we can treat in the same way as the third case.

Theorem 82. (Converse of theorem 8I) If h{?, h® represent the
coordinates of two independent points P,, P respectively, and if 4, A
are twe finite points of the same dimension s, where at least one 1is
arn unit and dim 24" = dimp zzh‘” =8, then h; = LA +2h® are coor-
dmates of a point of d@menswn s on the stratght line M.

Pr. We can assume here that 2, is an unit and ¢t =dim P <
dim P, = s = dim 4;. Supposing (PivP,)~Aju = O, we first consider
the case” Pi~A; =0, P;~ A, = 0. Then we can assume further
that A" = A and AP =A@ . Since AN ~hZ = O, either 4+4 or
MR} 4 R is an unit. If A1+4, is an unit, we put

A+ )has = Ml + 2037, PG3his = Pas,
PG = PR}, (A,-kquj)nz =P.

We shall now show that P is a point of dimension s on . Since
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O(%) = s—dim P,, we obtain O(kr;—h{) = s—dim Pz , whence
dim (Pi;~P{Y) > s—dim P, follows. Hence we have ‘

Ajie~ Py < Aj~v PR PR = Ay P,wP,

P AkUP A'k\/Pk_‘ Pk
and th e 3 — J J A~ J
an fn O A_,-k A_,k 73

&

and (Pv )~ (a;~ar) = Py;. Since the point P lies on [ = P, v P,
and Pi~nA, =0, P,nAr =0, P~A, = O, we have for the eoordi-
nates of P = 0R+(e—0O)h{), where 0 = (hr;—h)e and
et =RhP—h{F?. But (4+4)0 = AEF—hEH)e = 2 and (4 + ) (e —
) = 4. Hence (4+A)hi; = h; are coordinates of P. If A+4, is
not an unit and if 4,A{)+ 242 is an unit, then both 4 and 4 are
units and ¢ =s. Putting (ApwPip)~l =P, 4+ = QAL+ ks
and P(})hjyr = Pj., we have '

P AuPa

i, O o \;Pﬂ",*

T « O Ajg O

Hence P is a poiat of dimension s with P~A4; = O and (PwAd;)~
(ajvar) = Pj. Its coordinates are now h; = @42 + (hyp—0)h® with
(e —huhi))e =0, el=p@P—nl. But LWAD+4h2Z)O =4 and
AWhY + kD) hipp—0) = 2, yield (AhL+hE)h;; = h; , - proving that
these are coordinates of the point P.

For the case P,~A4; =0 and P;~A; = O we can treat analo-
gously as above. In case Pi~nAy = 0O, P,~ A, > O, we can assume
that 2® = A and AP =hP. Since OGRY) >0, 4+ih must be
an unit. Putting (h+hE) 0w = 300+ 4, PCDhi = Pr; and (Ajw
Pyj)~1l = P, we see that P is a point of dimension s with P~ A4, = O,

(PwAjp)~(ajway) = Py, and its coordinates are hy; = 6L + (i —
ORELY with @ = (h,vm—fz DNe, e —hPrY = e 1. Since (44 +1AEO = A,
and (4 +2hE) (el —04F) = 41, so we have (4 +2hE )y = h;. Finally,

if PonA, >0, PonAp = O, we have either the case P,~A; = O,
Pyg~A; = 0O or the case PinA; =0, P,~A4;> 0. The latter case
can be treated in the same way as above, if we interchange j and k.

Theorem 83. Let a®, a®@. --- a™ be a basis of an element a

in L and P be an irreducible element (point) of dimendion 2 in %_

wztk coordinates h; ,'then there exists finite points A, bk =1,2, ---p
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. v .
of dimension A in “1‘0’“’2, such that h; = S 4k, O@y) = A—dim a'®
) k=1

and ot least one of Ax is an unit, wherée b, i =1,2,---r are coor-
dinates of a®. Conversely, if Av, k=1,2,---v are all finite points
of dimension 2 with O(Ag) == A—dim (a'®), of which at least one s an .

unit, then h; = 3 Ah$® are coordinates of a point of dimension A in -%—.
k=1 .
Pr. By induction on y. The case v = 2 is evident from theorems

™ )
81 and 82. Suppose, » > 2 and P does not belong to —9’6—~. Putting

A(V) — a(l)ua@)u e U(L(V_l)’ (Pual(“)),-\A(“) —_— d’ we have

d _ dwa® _ Pua® _ P

c e a® . PAa®’

Hence —%— is a chain with O <dim d < 2 and consequenﬂy the 'point

* a}(“') W) d
0 .

P lies on the straight line By theorem 81 we have

hy = A0+ ud; Where 4, and p are finite points of dimension &, of
which at least one is an unit, and where d; are coordmatos of the

_point d. But by induction-hypothesis we have d; = Z&’h"" , Where
1, are all finite points with dlm 2’ dim d -and at least one of R
an unit. Hence it follows %; = 2 ud i 42, 1, where either 2, or
at least one of wd; is an unit. -

The converse statement of the theorem can be proved also by
induction on ». If A, is not an unit, then at least one of 4, %4, ---

: v—-1
A,_, is an unit and A = 3 42 will be coordinates of a point d with
: k-1 -
AWM

dimension 2 ia o Hence h; = hi+a,h{? are coordinates of a
. . . . . ) . .
point with dimension 4 in d\;)a, < g . In case, 2, is an unit,

let O@p) = be the least one among O@), i =1, 2, - v—1 3rid put
M = Aptg, k=1, 2, -+ »—1 with dim pz = A—v. Then A = kz prh &

are coordinates of a point ¢ with dime¢=42a—v in 5 since

up = e is an unit. Therefore h; = Aph; +Ah{" are coordinates of
cwal¥) a
L= < =

a point with dimension 2 in .
) O = O
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PART 7.

Let the height of the given primary lattice L be A and a;,
1 =1, 2, -+ - r be its basis with rg4, di=dys=ds=dy =h. Then

all finite lpoints of dimension % in the straight line gl—éiai generates

a ring R with respect to the addition and the multiplication defined
in part 4. The set of all points P in R with O(P) =1 is now an
ideal J; in R by theorems 58 and 62. That conversely every left
or right ideal in R is such an ideal, can be seen from theorems 60
and 61. Indeed, if u is a point in an ideal J with the least order
O(u) = 4, then we can find by theorems 60 and 61 points ¢, and ¢,
In R for any point ¢ with O@) =4, such that t=qu or t = uQy,
whence J; <J and hence J = J; follows. Now we see that the
ideal J; is a prime ideal without divisors and consequently the
residue class ring R/J, is a field. (generally non-commutative). If
we select a point + from each class of R|J\ as its representant,
then we can represent uniquely any finite point ¢ in R as # — o+
Tt TP+ -+ 1w ! with a fixed point 7 of order I.

Co- Now, r being the rank of the lattice L, we consider a R-module
M of rank », i.e. a module with the opefator ring R and with a
basis @1, #;, --- @.. To each irreducible element (point) P of dimen-
sion A in L we make correspond a submodule’ Mp of rank 1, such
that Mp = (er 7 *h;x;), where h; are coordinates of P and 7 is a
fixed point i;llR with O(w) = 1. Given any submodule S bixs) of
rank 1 in M, such that O(b;) = h—dim a;, there exists always its
corresponding point P in L. In order to prove this, let Min O(®b;)
= O(b,)) = t, then = %; = h; are coordinates of a point of dimension
h—t in L, since O(h;) =h—t—d; and h, is an unit. That this
correspondence is one-to-one can be proved as follows. Let %; and
ki be two coordinates of a point of dimension A with hi=ch;, e
being an unit. Then 7*~*A; = (#h=2em=G-M)gh-2c, and ph-rep-G=N ig
an unit in ' R. Hence the submodule (3 7w *hlx;) is identical with
the submodule (3} #*~*afw;). Conversely if (3 ba;) and (S blx) are
-the same submodule, then b} = ¢b; with an unit ¢ and Min O(bly
= MinO®;) =t, =%, = (w-'ent)w%h;, where wtext is evidently an
unit,. ‘

Theorem 84. Let M,, M, be the corresponding submodule for
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the point Py, P» respectively. From Py <P, follows My < M, and
vice versa. '

Pr. Suppose P,~A, = O and A®, h®,i=1,2, --- r are coor-
dinates of P,, P, respectively, where dim P, = ¢, dim P, =t,. We
have M, = SbWx;, M, = S 6@%; with b = w-thQ | b@ = 7h-uh .
From P, < P, follows t; < t; and h@%W = A, whence b = qtz~tip@
and consequently M; < M,. Conversely, if M, < M,, then we have
bV = en*b® , where ¢ is an unit. Hence #* " WhY = ex*+t-tp@ gngd
consequently ty—t; = u, MY = ch?® | & being an unit, which yields-
P 1 g F. 2. N " v .

Lemma 13. A, i=1,2, -7 being coordinates of independeny
points P,, v =1, 2, --- s, it holds ‘

Min {O(Zsl Ay, ()(i a_,-hgjj), -+ -} = Min (O@y), Oy, ---).
v T i=1

Pr. By induction on s. First we treat the case s = 2, where
we can suppose that O(%) 2 O(4) and A{ is an unit. If O(h)>O(4),
then we have O(AY + 4hP) = O(4) and O@RY + 2hP) = O(4); i =1,
2, ---r. If Oh?) = O(;), then O(2) = O(4) and AP is an unit.
Hence we can assume A <epn, AP < ep. If OWAY +2RP) > O(4)
for every j, it would follow O(hP—h{M) > O for every j, which
yields however the dependence of P; and Pz; contrary to the
hypothesis. If s_>2, we can put by induction-hypothesis

" Min {0(2 AP, -} = Min(O@y, -+ -, Olg-)) ="
p3

We conclude therefore that A} = w3 WP+ - - +7 1D are
coordinates of a point P’ of dimension A—y, which is independent
with P.. Then it follows 3} k% = =*h}+ih$ and

i=1
Min { Q(}i; PYA 2 R O(z‘} 4R8N}
3= 3-1
"= Min (O(="), O(35)) = Min (O, O), - - - ORy)) .

Yheorem 85. If a®,7=1,2,---s are independént points in

L, then Lhe corresponding submodules M; = (3] Af%5), ¢ = 1,2, -+ s

I=1 . A
. ) . . . a(l)ua(z)u. . .a( )
are independent. Moreover to every point in the quotient )

corresponds uniquely a submodule in the module M of rank s, which
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18 generated by }i‘ APx;, i= 1,2, ---s. Cohversely to every submodule
% 2 ' :

L y . . a(l)ua,@)u N L)
of rank 1 in M corresponds a potnt in 0 .

Pr. First we consider the case s = 2. Since any submodule,
which is contained both in M and M., corresponds to a point in

M) A @ : L )
@@ by theorem 84, so M; and M, are indepedent. The coordi-
) . . . 0 (2) R ' : ,
‘nates of a point of dimension 4 in 'C-L—;qﬂ are Aal?+Aa®, where
af, i =1,2 are coordinates of the point a(¥ respectively. Then it
corresponds the submodule generated by

ro . _ __ - r - i Y .
2 m_h~ )\(Ala,;_l) -+ Azaf))xj —_ ,n.h ‘}‘31'77_‘ (h-mny) E Agl)xj_}_ ,”.h }‘32'77' (h~m5) 21 A;a)xj ,
. . i=1 j= -

Ji=1
where n; = dim a?, 7 =1, 2, 4 < Max (n;, ns) end O(#"~22) = h—ny,
O(n"*2) = h—nz. Hence it is contained in the submodule, generated
by M, and M. Conversely, if a submodule {i (r AL + 1, AP)x;} of
rank 1 is given, we have by Iemma'13 ‘ =

Min {0 AL + r,AP), - - -} = Min {O@ri* ™), Orgn™ ")} .
Denoting this with », it ‘corresponds the point, whos& coordinates are
7r°"(’i"1A;-”+T2A?)) = 7" v’f‘17r1h"‘”1d}l) + 71"”’)”271-"'"266(,2) , |

where = "rm? ™, 7 Vg " are both of dimension A—» and at least
.one of them is an unit. The point is therefore of dimension A —v
. q® @) ' ~
in &' ~Ya
O - \
, The general case will be proved by inductien on s. Any sub-
f . 7
module of rank 1 in the submodule generated by >)AMx;, -
234
r . . Mog® .. gD
STAMDg;  shall - correspond a point in @ a UO e
i1 ' »
hypothesis, if o <s. >1AWx;, ---;3) APz, are then independent in
virtue of the relations (¢®Pv .- wa* MN~ag® =0, u =2, ---s. The
. . . . . 1) @ ... (a)
coordinates of a point of dimension -4 in & % ; ~a are

h; = Z}Zja,‘;j’ and its corresponding submodule is generated by’
J= E

by

r 7 s . s > ’

. L . ~ o X
1.21 My = >3k D . 2,aPx; = DYt P pyr G S A9,
= = j“] N _’:}] ‘

~t=]
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where n; = dim a®, O@) = i—n;. bonversely, (if a submodule
(EZTJA‘”).L'@) of rank 1 is given with Min (2 né"’) =, then

2=1 j=1
v = Min (#7* ") and the coordinates of the: correspondmg point are.

Sy g, where 7w Vry7* " are of dimension ~—»y in R and
I=1 .
at least one of them is an unit. Hence the point belongs to

a®oa®o ... g
| 0
Now we make correspond to an element with a basis c‘”, c®,
, ¢ in L, the submodule in M, which is generated by ZC( %,
Z C®zx;. That this correspondenoe is unique, can be seen from
the precedlng theorem. We see furthermore, that, if. ¢<b in L,
then M,< M, and vice versa, where by M,, M, are meant the
corresponding submodules of b, ¢ respectively. Therefore we have

~

q.e. d.

] Theorem 86. A primary lattice of rank r >4 with a basis
Oy, @y, Ay, where dim a; = dim a; = dim a3 = dim as = h, h being
the height of L, is isomorphic with the lattice of all submodules in «a
submodule M of a R-module M with basis x,, %z, - -+ &, where, R
being an uniserial complete primary ring, M has a basis gy, 1 =1,
2, -+ r with = in R and A; = h—dim a; ,0(=) = 1.

Theorem 87. If K is an uniserial complete primary mng, then
bhe lattice of all submodules in any K-module M is primary.

Pr. Since K is complete primary and uniserial, K has only
such ideals J; = (#%), ¢ =1, 2,.--.1, where J; = (0) <J1< -+ <
Jy < K holds. Every submodule A of rank 1 in M is generated by
an element > a;x;, where x»,, 23, --- are basis of M and a; € K. If
neJy, then the submodule A, = (S]7a;x;) is properly contained in
A, because the ideal (7a,) is different from the ideal (a;) and hence
ena; = a; with ¢ e K does not hold.. We. have only to show by
theqrern 45, that, a.submodule N being contained in a submodule

N*, two atoms in the quetient ]]YV - are always perspective. We

represent these two atoms as A< N and BN, where A = (3] aws),
B = (X bx;). We shall now show that 4 v N and B v N are

jp'erspective with axis CwN in- 11\7\7*’ where C is the submodule

{S) (@:+b:)e;§. Since it holds evidently AwCuN = BwCuUN, it
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remains to prove that (4vN)m((,uN) = N, (BuN)ﬁ((‘uN) = N,
Since AN @s an atom in f%;k--, A would belong to CwN, if
(A N)~(CwN) = N does not hold. But then it would follow that
a submodule {3)(a;—7na;—7b;)x;} with e K is contained in N. Since
B can not be contained in A N, so 5 belongs to the ideal J,. Then
both A. and B, are contained in N and consequently also A in N,
contrary to the assumption. Similarly we can prove (BwN)~(Cw
N)=N. ) ’

Theorem 88. [f R is the ring of all matrices with degree n in
an uniserial complete primary m"ng K, then the latiice L of all sub-
modules in a R-module of rank m is isomorphic with the lattice L*
of all submodules in a K-module of rank mn.

Pr. Let x;,7=1,2, ---m be .a basis of the R-module M and
consider a K-module M’ with basis ejx;, ©=1,2, ---m, 5 =1, 2,
- n, where ¢; are matrix units. To every submodule A in M, which

is generated by A®»= 3 allewnw:, afl € K, v=1.2, ---r, we

5k .
correspond the submodule A’ in M’, which 1is generated by
A, = )_. allew;, A=1,2 ---7r, p=1,2,---n. Then to every sub-
module m M', which is generated by B, = S10exi, B e K, v =1,
o W3
2, ---s corresponds the submodule in M, which is generated by-
B, 2 N bYerx; . Now, if a submodule C = ( > cixerjx;) of rank
%3 $.3k ) .

1 in M is contained in the submodule A4, it holds

E;thjkel;j = L A amge;m ’ 1= 1 2 -m
3ok v e

with 4, = L e € R, whence ¢y, = E A},‘,?ai;t’ . Then

S Cigrers®; = }_J a4 E alle v, .
2.2 . .o

Hence the corresponding’submodule C' in M', which is generated by
chkel,xt, k=1,2,---n, is contained m A'. Conversely, if a sub-

module (X dijejwi),, di; € K, is contained in A’, then di = 2 Ay and

>;‘; Z dieri%: = ?‘(Z Ausers) > adeyx; . Hence the corr espondmg sub-
1,2

zJV

module in M 1s contamed in A. The above consideration shows us
that the_correspondence is one-to-one and isomorphic. q. e. d.
By the preceding theorem we see readily that, if R is a direct



On Primary Lattices » 107

sum of uniserial primary rings R;, ¢ =1,2,--4 and if R; is the
ring of all matrices with degree n; in a complete primary ring K;,
then the lattice L of all submodules in a E-module of rank s is
isomorphic with the direct union of lattices L;, where L; is the
lattice -of all submodules in a K;-module of rank n;s. Therefore L
is semi-primary. Conversely, if L is a direct union of primary
lattices L; and my,(Ls) = 4, then L is isomorphic with a lattice of
submodules in -a R-module where h; being the height of L; and R
is a direct sum of unlseual primary rings. It is to be remarked
further that by theorem 88 the lattice of all submodules in a K—
module of rank % is isomorphic with the lattice of all left ideais in
the ring of all matrices with degree m» in K. Then theorem 86
agserts that a primary lattice of rank ¢ with m, = =>4 is isomorphie’
with a lattice of left ideals in the ring of all matrices with degree
7 in an uniserial complete primary ring. N




