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ARENS-KAPLANSKY [1] and $K\Lambda 1’ I_{I}ANSKY[3]$ investigated, as generali-
zations of algebraic algebras and rings with minimum condition, foll-
owing two types of rings: one is a $\pi$-regular ring, that is, a ring in
which for every element $a$ there exists an element $x$ and a positive
integer $n$ such that $a^{n}xa^{n}=a^{n}$ , and the $\iota$)$ther$ is a ring in which for
every $a$ there exists an $x$ and an $n$ such that $a^{n+1}x=a^{n}$ –this we shall
call a right $\pi$-regular ring. The present note is devoted mainly to
study the latter more precisely. Apparently, the $tw_{-}o$ notions of
$\pi$-regularity and right $\pi$-regularity are different ones in general. How-
ever we can prove, among others, that under the assumption that a
ring is of bounded index (of nilpotency) it is $\pi$-regular if and only if
it is right $\pi$-regular. Moreover, we shall show, in this case, that we
may find, for every $a$ , an element $z$ such that $az=za$ and $a^{n+1}z=a^{n}$,

where $n$ is the least upper bound of $a^{1}1$ indices of nilpotency in the
ring. This is obviously a stronger result than a theorem of KAPT,ANSKY

(2) as well as that of GERTSCtlIKOFF (3), both of which are stated in
section 8 of $KAPI_{I}ANf^{\backslash },KY[3]$ .

1. Strong regularity. Let $A$ be a ring. Let $a$ be an element of
A. $a$ is called regular (in $A$) if there exists an element $x$ of $A$ such
that $axa=a$ , while $a$ is said to be right (or left) regular $\cdot$ if there exists
$x$ such that $a^{d}x=ao$ (or $xa^{2}=a$). Further, we call a strongly regular if it
is both right regular and left regular.

Lemma 1. Let $a$ be a strongly regular element of A. Then there exis$ts$

one and only one element $z$ such that $az=za,$ $a^{0}z(=za^{2})=a$ and $az^{s}(=z^{\underline{9}}a)=z$ ,

and in particular $a$ is $\gamma egular$ . For any element $x$ such that $a^{Q}\lrcorner x=a,$ $zc\sigma incides$

with $ ax^{9}\cdot$ . Moreover, $z$ commutes $l\dot{0}$ith every element uhich is $commutat\dot{w}e$

with $a$ .
Proof. Let $x,$ $y$ be two elements such that $a^{9}\lrcorner x=a,$ $ya\cdot=a$

) Then

(1) $ax=ya^{\underline{0}}x=ya$ ,

so that
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(2) $\alpha x^{9}\lrcorner=yax=y^{9}\lrcorner\alpha$ .
From (1) we have also

(3) $axa=ya^{9}\lrcorner=a=a^{0}\cdot x=aya$.
Now put $z=ax^{0}$ . It $fo$] $lows$ then from (1), (2), (3) that $az=ayax=ax=$
$ya=yaxa=za,$ $a^{\underline{\Phi}}z=aza=axa=a,$ $az^{q}=yaz=yax=z$ , as desired.

Suppose next 2‘ be any element which satisfies the same equalities
as $z:az^{\prime}=z^{\prime}a,$ $a\cdot z^{\prime}=a,$ $az^{\prime 2}=z^{\prime}$ . Then, by replacing $x,$ $y$ in (2) by $z,$

$z^{\prime}$

respectively, we get $z=az^{9}=z^{\prime_{d}}’ a=z^{\prime}$ , showing the uniqueness of $z$ .
For the proof of the last assertion, let $c$ be any element such that

$ac=ca$. Then we have first $zac=zca=zca^{2}z=za^{d}cz=acz=caz,$ $i.e.,$ $c$ com-
mutes with $za=az$. It follows from this now $zc=z^{9}ac=zcza=zacz=cmz$

$=cz$ , and this completes our proof.

Lemma 2. Let $a$ be a right regular element of $A$ and let $a^{\varphi}\lrcorner x=a$ . Then,
for any Poritive integer $n$ , we have $c$

$(a-ax^{?\iota}a^{n})^{\prime}=\left\{\begin{array}{l}a^{?}-ax^{?\iota-,\cdot+1}a^{n}\\0\end{array}\right.$

$r=1,2,$ $\cdots,$ $n$ ,

$r=n+1$ .
Proof. Since the assertion is valid for $r=1$ , we may proceed by

induction on $r$ (for fixed $n$). Suppose $r\leqq n$ and our lemma holds for $r$ :
$(a-ax^{n}a^{n})^{7}=a^{r}-ax^{n- r+1}a^{n}$.

Right-multiplying by $\alpha-a,x^{n}a^{n}$ and using the relation $a^{n+1}x^{n}=a$ , which
follows immediately from $a^{\underline{9}}x=a$ , we have $(a-a\iota^{n}a^{n})^{r+1}=a^{r+1}-a^{+1}x^{n}a^{n}-$

$ax^{n-r+l}a^{n+1}+ax^{n-r+1}a^{n+J}x^{n}a^{n}=a^{r+1}-a^{r+}x^{n}a^{n}$
( But when $r<na^{r+1}x^{n}=$

$a^{r+l}x^{r}x^{n-r}=a\mathfrak{r}^{n-r}$ , while when $r=na^{r+1}x^{n}=a^{n+1}x^{n}=a$ . This completes
our induction.

Now $A$ is called a ring of bounded index if indices of nilpotency of
all nilpotent elements of $A$ are bounded; and, in this case, the least
upper bound of all indices of nilpotency is called the index of A. (Cf.
JACOBSON [2], KAPI,ANSKY [3].) We can now prove the fundamental

Theorem 1. Let $A$ be a ring of bounded index. Then every right regular
element of $A$ is (left whence) strongly regular.

Proof. Let $n$ be the index of $A$ . Let $A$ be any right regular
element of $A:a^{2}x=a$. Then, since $(a-r/x^{n}a^{n})^{?b+l}=0$ by Lemma 2, we must
,have $(a-ax^{n}a^{n})^{n}=0$ . On the other hand, $(a-ax^{n}a^{n})^{n}=a^{n}-axa^{n}$ by the
same lemma, and we obtain $a^{7\iota}-axa^{n}=0$ . Apply furthermore Lemma
2 to $n+1$ instead of $n$ . Then $(a-ax^{n+l}a^{n+1})^{n+1}=a^{n+1}-axa^{n+1}=a(a^{n}-axa^{n})$
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$=0$ , and so $(a-ax^{n+1}a^{n+1})^{n}\Rightarrow 0$ . But $(a-ax^{n+1}a^{n+1})^{n}=a^{n}-ax^{\underline{\varphi}}a^{n+1}$ again by
Lemma 2. Hence it follows $a^{n}=ax^{9}a^{n+1}$

}
Right-multiply now by $ax^{n}$ and

make use of the relation $ a^{n+1}x^{n}=\alpha$ . Then we find finally $a=\alpha x^{99}\lrcorner a^{\wedge}$ , which
shows the left regularity of $a$ .

In connection with the preceding theorem, we want to add the
following theorem, although we shall not need it later:

Theorem 2. Let $a$ be a right regular element of A.. Then $a$ is strongly
regular if and $\cdot$ only if $r(a^{\prime}\sim\prime^{\backslash })=r(\alpha)$ , where $r()$ denotes the set of all right
$annihiht\sigma rs$ .

Proof. The “only if” part is easy to see. So we have only to prove
the “if” part. The right regularity of $a$ implies $a^{7}A=aA$ . The mapping
$u\rightarrow au(u\in aA)$ gives therefore an operator-homomorphism of the right
ideal $aA$ onto itself. Moreover, tbis is an isomorphism because the
kernel is zer $0$ by the assumption $r(a^{-})=r(a)$ . Let $\varphi$ be the inverse
mapping of it; $\varphi$ is also an operator-isomorphism of $aA$ onto itself. Since
$a\in(a^{2}A=)aA$ we have in particular $\varphi\alpha^{9}\lrcorner=a$ . From this it follows $(\varphi^{2}a)a^{b}$

$=q(qa^{2})a=\varphi a^{9}\lrcorner=a$ , showing the left regularity of $a$ .
Remark. VON $NF(f_{A}\backslash IANN$ called $A$ a regul($\iota r$ ring if every element

of $A$ is regular, while $A_{RENS- KAPLANSKY}[1]$ defined $A$ to be a strongly
regular ring when eVery element is right regular. However, it was
shown in above paper that if $A$ is strongly regular then every element
of $A$ is indeed strongly regular; this follows also from our Theorem
1 directly, $ince a strongly regular ring $A$ has evidently no non-zero
nilpotent element. This fact justifies our definition of strong regularity
for elements.

2. Strong \mbox{\boldmath $\pi$}-regularity. Let us call an element $a$ of A $\pi$-regutar,
right $\pi$-regular, or left $\pi$-regular if a suitable power of $a$ is regular, right
regular, or left regular respectively. Furthermore we call a strongly
$\pi$-regular if it is both right $\pi$-regular and left $\pi\cdot regular$ . Now it can
readily be seen that a power $a^{n}$ of $a$ is right (or Ieft) regular if and
only if there exists an element $x$ such that $a^{n+l}x=a^{n}$ (or $xa^{n+I}=a^{n}$). On
the other hand, we have

Lemma 3. Let $x,$ $y$ satisfy $a^{n+1}x=a^{n},$ $ya^{m+1}=a^{m}$ for some $n,$ $m$. Then
they satisfy $a^{m+1}x=a^{m},$ $ya^{7\iota+1}=a^{n}$ too.

Proof. When $m\geqq na^{m+1}x=a^{m}$ follows immediately from $a^{n+l}x=a^{n}$ .
Suppose now $m<n$ . Then $a^{m}=ya^{m+1}$ implies $a^{m}(=y^{\Phi_{\wedge}}a^{m+2}=\cdots)=y^{n-m}a^{n}$ ,

and so we obtain $a^{m+l}x=y^{n-m}a^{n+l}x=y^{n-m}a^{n}=a^{m}$ . Similarly, we can verify
the validity of $ya^{n+1}=a^{n}$ .
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Now we prove
Theorem 3. Let $a$ be a strongly $\pi$-regular element of A. Suppose that

$a^{n}$ is right regular. Then a is in fact strongly regular, and moreover there
$ex$ists an dement $z$ such that $az=za$ and $a^{n+I}z=a^{n}$ .

Proof. That $a^{n}$ is strongly regular is an immed\’iate consequence
of Lemma 3. Now from Lemma 1 it follows that there exists an
element $z$ such that $q^{\underline{9}}nz=a^{n}$ and $z$ commutes with every element which
is commutative with $a^{77}$ ; however the latter condition implies, since $a$

is commutative with $a^{n}$ , that $az=za$ . Denoting $a^{n\leftrightarrow 1}z$ again by $z,$ $z$ is
evidently the desired element.

Coroliary. Strongly $\pi$-regular element is $\pi$-regular.
Now we define the index of a strongly $\pi$-reguiar element $a$ as the

least integer $ns$uch that $a^{n}$ is right regular. By Lemma 3, the index
$n$ is characterized also as the least integer such that $a^{n}$ is left regular.
It is to be noted further that every nilpotent eiement is strongly $\pi-$

regular and its index of nilpotency coincides with the index in the
sense defined above, as can be seen quite easily. Furthermore we have

Lemma 4. Let $a$ be a strongly $\pi$-regular element of index $n$ , and $z$ an
ele$7nent$ such that $az=za$ and $a^{n+1}z=a$; (as in Theorem 3). Then $a-a^{9}\cdot z$ is a
nilpotent element of index $n$ .

Proof. Since $az=za$ we have the following binomial expansion:

$(a-a^{9}\rightarrow z)^{n}=a^{n}-\left(\begin{array}{l}n\\1\end{array}\right)a^{n+1}z+\left(\begin{array}{l}n\\2\end{array}\right)a^{n+2}z^{0}\lrcorner-$ $+(-1)^{n}a^{\underline{o}_{n}}z^{n}$ .
But $a^{n}=a^{n+I}z$ implies $ a^{n}=a^{n+}’ z^{7}\cdot=\theta$ $=a^{9}nzn$ Hence we get

$(a-a\underline{z})^{n}=a^{n}-\left(\begin{array}{l}n\\l\end{array}\right)a^{n}+\left(\begin{array}{l}n\\2\end{array}\right)a^{n}-\cdots+(-1)^{n}a^{n}=(a-a)^{n}=0$ .
On the other hand, $(a-a\underline’ z)^{n-1}$ is, again by a binomial expansion, say,
expressible in a form $a^{n-1}-a^{n}x$ with some $x$ ; but this is certainly not
zero because $a$ is of index $n$ . Thus, the index of $a-a^{\underline{9}}z$ is exactly $n$ .

We now obtain from Theorems 1, 3 and Lemma 4 immediately
the following

Theorem 4. Let $A$ be a ring of bounted index (of nilpotency). $2hen$

every right $\pi$-regular element of $A$ is strongly $\pi$-regular and its index does
not exceed the index of $A$ .

Above results show us in fact the appropriateness of our defini-
tion of index for strongly $\pi$-regular elements. This is strengthened
$furth\dot{e}r$ by the following
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Remark. Suppose that $A$ is (not necessarily finite dimensional)
algebra over a field $K$. Let $a$ be an algebraic element of $A$, and $/4(\lambda)$

the minimum polynomial of $a$ (without constant term). JACOBSON [2]
defined the index of $a$ as the largest integer $r$ such that $\lambda^{r}$ divides
$\mu(\lambda)$ . Now we want to show that $a$ is then strongly $\pi$-regular and (the
Jacobson $index$)

$..r$
coincides with the index in our sense. For the proof, we

may assume, since $\lambda^{r}$ divides exactly $f^{4}(\lambda)$ , that $\mu(\lambda)$ is of the form $\lambda^{r}+$

$ a_{1}\lambda^{r+1}+a_{2}\lambda^{r+0}\lrcorner+\cdots$ (with $a_{I},$ $a\underline{7}$ in $K$). It follows then $a_{1}\lambda\mu(\lambda)=a_{1}\lambda^{r+1}+$

$ a_{1}^{2}\lambda^{r+2}+\cdots$ . and so we have $\mu(\lambda)-a_{1}\lambda\mu(\backslash \lambda)=\lambda^{r}\dashv-(a_{2}-\alpha^{\frac{r}{1}})\lambda^{r+2}+\cdots=\lambda^{r}-\lambda^{r+1}\nu(\lambda)$ ,
where $\nu(\lambda)=(a^{\frac{}{1}}-a_{\tau})\lambda+\cdots$ is also a polynomial. Since now $\mu(\lambda)$ has $a$ for
a root, so does $\mu(\lambda)-a_{1}\lambda\mu(\lambda)$ too, i.e., we have $a^{r}=a^{l+1}\nu(a)$ , which shows
the strong $\pi$-regularity of $a$. Let $n$ be the index of $a$ (as strongly $\pi-$

regular element). Then $n\leqq r$ , and moreover we have from Lemma 3
that $a^{n}=a^{n+1}\nu(a)$ , that is, $a$ is a root of the polynomial $\lambda^{n}-\lambda^{n+1}\nu(\lambda)$ . Since
$f^{t}(\lambda)$ is the minimum. polynomial of $a,$ $the-$ ] $atter$ must be- divisible by
$t^{l(\lambda),\cdot and}$ this implies in particular that $n\geqq r$ , proving our assertion.

Now $\grave{w}$e-say that a ring $A$ is $\pi$-regular, right $\pi$-regular, left $\pi$-regutar,
or strongly n-regular if so is every element of $A$ respectively. (Cf.
KApLANSKY [3].) Evidently $A$ is strongly n-regular if and only if it is
both right $\pi$-regular and left r-regular. Moreover, strong $\pi$-regularity
of $A$ implies $\pi$-regularity of $A$ , according to Corollary of Theorem 3.
However, the converse is also true provided $A$ is assumed to be of
bounded index. Namely, we have

Theorem 5. Under the assumption that $A$ is of bounded index, the
following four conditions are equivaZent to each other:

i) A $\dot{r}s\pi$-regular,
ii) $A$ is righ.$ l\pi$-regular,
iii) $A$ is left $\pi$-regular,
iv) $A$ is strongly $\pi$-regular.

Proof. That ii) implies iv) is a direct consequence of Theorem 4.
By right-left symmetry, iii) implies also iv). Therefore we have only
to prove that ii) follows from i).

Suppose that $A$ is a $\pi$-regular ring of index $n$. Let $a$ be an element
of $A$ . Then $a^{n}$ is $\pi$-regular, that is, there exists an integer $n^{\prime}(\geqq 1)$ such
that $a^{nn^{\prime}}$ is regular. Put $r=nn^{\prime}$ . Then $r\geqq n$ and there exists an element
$x$ such that $a^{r}xa^{r}=a^{r}$ . Write $e=a^{r}x$ . Then $e$ is an idempotent and
satisfies $eA=a^{r}A$ . Similarly, the $\pi$-regularity of, say, $a^{r+1}imp^{1}1ies$ the
existence of an int $e$ger $s$ and$\cdot$ an idempotent $f$ such that $s>r$ and $fA$
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$=a^{s}A$ . Since then $a^{r}A\supset a^{s}A,$ $fA$ is necessarily a direct summand.right
subideal of $eA$ . Hence we can construct, as is weJl-known, two ortho-
gonal idempotents $f_{1}$ and $g$ such that $e=f_{1}+g$ and $f_{1}A=fA(=a^{s}A)$. Now
take any primitive ideal $P$ of $A$ . By KAPi,ANSKY [3, Theorem 2.3] the
residue class ring $\overline{A}=A/P$ is a (full) matrix ring over a division ring
of degree at most $n$ . Denote by $\overline{a}$ the residue class of $a$ modulo $P$,
and consider the chain of right ideals $\overline{A}\supset\overline{\alpha}\overline{A}\supset\overline{a}^{2}\overline{A}\supset\cdots$ . It follows
then, since the degree of the simple ring $\overline{A}$ is equal to the composition
length for right ideals of $\overline{A}$ , that $\overline{a}^{n}\overline{A}=\overline{a}^{n+1}\overline{A}=\cdots$ , and we have in
particular $\overline{a}^{r}\overline{A}=\overline{a}^{s}\overline{A}$ . Write further by $\overline{e},\overline{f}_{1},\overline{g}$ the residue classes of
$e,$ $f_{1},$ $g$ modulo $P$ respectively. Then $\overline{e}\overline{A}=\overline{a}^{r}\overline{A},\overline{f}_{1}\overline{A}=\overline{a}^{s}\overline{A}$ whence $\overline{e}\overline{A}=$

$\overline{f}_{1}\overline{A}$ . On the other hand, $\overline{e}=\overline{f}_{1}+\overline{g}$ and $\overline{f}l’\overline{g}$ are orthogonal dempo-
tents; hence $\overline{e}\overline{A}$ is the direct sum of $\overline{f}_{J}\overline{A}$ and $\overline{g}\overline{A}:\overline{e}\overline{A}=\overline{f}_{1}\overline{A}\oplus\overline{g}\overline{A}$ . This
implies $evident^{1}y$ that $\overline{g}\overline{A}=0,$ $i.e.,\overline{g}=0$ or $g\in P$ . This is the case for
every primitive ideal $P$, and so $g$ must lie in the intersection of all
$P’ si.e$ . the (Jacobson) radical of $A$ . If we observe however that $0$

is the only quasi-regular idempotent, it follows indeed $g=0$ , and this
shows that $a^{r}A(=eA=f_{1}A)=a^{s}A$ whence $a^{r}A=a^{r+1}A$ . The latter equality
implies, since $a^{r}=a^{r}xa^{r}$ is in $a^{r}A$ , the. right $\pi$-regularity of $a$ . Thus,
the proof of our theorem is concluded.

Remark. The radical of a $\pi$-regular ring as well as that of a right
$\pi$-regular ring is always a nil-ideal, as was shown in $KAPI\lrcorner ANSKY$ $[3$ ,
section 2] and $AR1_{J}^{F}NS- KA1^{1}LANSKY$ [ $1$ , Theorem 3.1]; the assumption in
the latter that (the right $\pi$-regular ring) $A$ is of bounded index being
superfluous for proving our assertion.
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