STRONGLY τ-REGULAR RINGS

By
Gorô AzUMAYA

Arens-Kaplansky [1] and Kaplansky [3] investigated, as generalizations of algebraic algebras and rings with minimum condition, following two types of rings: one is a π-regular ring, that is, a ring in which for every element a there exists an element x and a positive integer n such that $a^{n} x a^{n}=a^{n}$, and the other is a ring in which for every a there exists an x and an n such that $a^{n+1} x=\alpha^{n}$ - this we shall call a right π-regular ring. The present note is devoted mainly to study the latter more precisely. Apparently, the two notions of π-regularity and right π-regularity are different ones in general. However we can prove, among others, that under the assumption that a ring is of bounded index (of nilpotency) it is π-regular if and only if it is right π-regular. Moreover, we shall show, in this case, that we may find, for every a, an element z such that $a z=z a$ and $a^{n+1} z=a^{n}$, where n is the least upper bound of all indices of nilpotency in the ring. This is obviously a stronger result than a theorem of Kaptansky (2) as well as that of Gertschikoff (3), both of which are stated in section 8 of Kaplansky [3].

1. Strong regularity. Let A be a ring. Let a be an element of A. a is called regular (in A) if there exists an element x of A such that $a x a=a$, while a is said to be right (or left) regular if there exists x such that $a^{2} x=a$ (or $x \alpha^{2}=a$). Further, we call a strongly regular if it is both right regular and left regular.

Lemma 1. Let a be a strongly regular element of A. Then there exists one and only one element z such that $a z=z a, a^{2} z\left(=z a^{2}\right)=a$ and $a z^{2}\left(=z^{2} a\right)=z$, and in particular a is regular. For any element x such that $a^{2} x=a, z$ coincides with $a x^{2}$. Moreover, z commutes with every element which is commutative with a.

Proof. Let x, y be two elements such that $a^{2} x=a, y a^{3}=a$. Then

$$
\begin{equation*}
a x=y a^{2} x=y a, \tag{.1}
\end{equation*}
$$

so that

$$
\begin{equation*}
a x^{2}=y a x=y^{2} a . \tag{2}
\end{equation*}
$$

From (1) we have also

$$
\begin{equation*}
a x a=y a^{2}=a=a^{3} x=a y a \tag{3}
\end{equation*}
$$

Now put $z=a x^{2}$. It follows then from (1), (2), (3) that $a z=a y a x=a x=$ $y a=y a x a=z a, a^{2} z=a z a=a x a=a, a z^{2}=y a z=y a x=z$, as desired.

Suppose next \dot{z}^{\prime} be any element which satisfies the same equalities as z : $a z^{\prime}=z^{\prime} a, a^{9} z^{\prime}=\dot{a}, a z^{\prime 2}=z^{\prime}$. Then, by replacing x, y in (2) by z, z^{\prime} respectively, we get $z=a z^{2}=z^{\prime 2} a=z^{\prime}$, showing the uniqueness of z.

For the proof of the last assertion, let c be any element such that $a c=c a$. Then we have first $z a c=z c a=z c \alpha^{9} z=z a^{9} c z=\alpha c z=c a z$, i.e., c commutes with $z a=a z$. It follows from this now $z c=z 0 a c=z c z a=z a c z=c z a z$ $=c z$, and this completes our proof.

Lemma 2. Let a be a right regular element of A and let $a^{2} x=a$. Then, for any positive integer n, we have

$$
\left(a-a x^{n} \dot{a}^{n}\right)^{n}= \begin{cases}a^{r}-a x^{n-r+1} a^{n}, & r=1,2, \cdots, n \\ 0, & r=n+1\end{cases}
$$

Proof. Since the assertion is valid for $r=1$, we may proceed by induction on r (for fixed n). Suppose $r \leqq n$ and our lemma holds for r :

$$
\left(\alpha-a x^{n} a^{n}\right)^{n} \doteq a^{r}-a x^{n-\dot{r}+1} a^{n} .
$$

Right-multiplying by $a-a x^{n} a^{n}$ and using the relation $a^{n+1} x^{n}=a$, which follows immediately from $a^{2} x=a$, we have $\left(\alpha-\alpha x^{n} a^{n}\right)^{r+1}=a^{r+1}-a^{r+1} x^{n} a^{n}$ $a x^{n-r+1} a^{n+1}+a x^{n-r+1} a^{n+1} x^{n} a^{n}=a^{r+1}-a^{r+1} x^{n} a^{n}$. But when $r<n a^{r+1} x^{n}=$ $a^{r+1} x^{r} x^{n-r} \equiv a r^{n-r}$, while when $r=n \quad a^{r+1} x^{n}=a^{n+1} x^{n}=a$. This completes our induction.

Now A is called a ring of bounded index if indices of nilpotency of all nilpotent elements of A are bounded; and, in this case, the least upper bound of all indices of nilpotency is called the index of A. (Cf. Jacobson [2], Kaplansky [3].) We can now prove the fundamental

Theorem 1. Let A be a ring of bounded index. Then every right regular element of A is (left whence) strongly regular.

Proof. Let n be the index of A. Let A be any right regular element of $A: a^{2} x=a$. Then, since $\left(a-a x^{n} a^{n}\right)^{n+1}=0$ by Lemma 2, we must have $\left(a-a x^{n} a^{n}\right)^{n}=0$. On the other hand, $\left(a-a x^{n} a^{n}\right)^{n}=a^{n}-a x a^{n}$ by the same lemma, and we obtain $a^{n}-a x a^{n}=0$. Apply furthermore Lemma 2 to $n+1$ instead of n. Then $\left(a-a x^{n+1} a^{n+1}\right)^{n+1}=a^{n+1}-a x a^{n+1}=a\left(a^{n}-a x a^{n}\right)$
$=0$, and so $\left(a-a x^{n+1} a^{n+1}\right)^{n}=0$. But $\left(a-a x^{n+1} a^{n+1}\right)^{n}=a^{n}-a x^{2} a^{n+1}$ again by Lemma 2. Hence it follows $a^{n}=a x^{2} a^{n+1}$. Right-multiply now by $a x^{n}$ and make use of the relation $a^{n+1} x^{n}=a$. Then we find finally $a=a x^{2} a^{2}$, which shows the left regularity of a.

In connection with the preceding theorem, we want to add the following theorem, although we shall not need it later:

Theorem 2. Let a be a right regular element of A. Then a is strongly regular if and only if $r\left(a^{2}\right)=r(a)$, where $r()$ denotes the set of all right annihilators.

Proof. The "only if" part is easy to see. So we have only to prove the "if" part. The right regularity of a implies $a^{\prime} A=a A$. The mapping $u \rightarrow a u(u \in a A)$ gives therefore an operator-homomorphism of the right ideal $a A$ onto itself. Moreover, this is an isomorphism because the kernel is zero by the assumption $r\left(a^{2}\right)=r(a)$. Let φ be the inverse mapping of it; φ is also an operator-isomorphism of αA onto itself. Since $a \in\left(a^{2} A=\right) a A$ we have in particular $4 a^{2}=a$. From this it follows $\left(4^{2} a\right) a^{2}$ $=4\left(4 a^{2}\right) a=4 a^{2}=a$, showing the left regularity of a.

Remark. Von Nedmann called A a regular ring if every element of A is regular, while Arens-Kaplansky [1] defined A to be a strongly regular ring when every element is right regular. However, it was shown in above paper that if A is strongly regular then every element of A is indeed strongly regular ; this follows also from our Theorem 1 directly, since a strongly regular ring A has evidently no non-zero nilpotent element. This fact justifies our definition of strong regularity for elements.
2. Strong π-regularity. Let us call an element a of A-reguiar, right π-regular, or left π-regular if a suitable power of a is regular, right regular, or left regular respectively. Furthermore we call a strongly π-regular if it is both right π-regular and left π-regular. Now it can readily be seen that a power a^{n} of a is right (or left) regular if and only if there exists an element x such that $a^{n+1} x=a^{n}$ (or $x a^{n+1}=a^{n}$). On the other hand, we have

Lemma 3. Let x, y satisfy $a^{n+1} x=a^{n}, y a^{m+1}=a^{m}$ for some n, m. Then they satisfy $a^{m+1} x=a^{m}, y a^{n+1}=a^{n}$ too.

Proof. When $m \geqq n \quad a^{m+1} x=a^{m}$ follows immediately from $a^{n+1} x=a^{n}$. Suppose now $m<n$. Then $a^{m}=y a^{m+1}$ implies $a^{m}\left(=y^{3} a^{m+2}=\cdots\right)=y^{n-m} a^{n}$, and so we obtain $a^{m+1} x=y^{n-m} a^{n+1} x=y^{n-m} a^{n}=a^{m}$. Similarly, we can verify the validity of $y a^{n+1}=a^{n}$.

Now we prove
Theorem 3. Let a be a strongly π-regular element of A. Suppose that a^{n} is right regular. Then a^{n} is in fact strongly regular, and moreover there exists an element z such that $a z=z a$ and $a^{n+1} z=a^{n}$.

Proof. That a^{n} is strongly regular is an immediate consequence of Lemma 3. Now from Lemma 1 it follows that there exists an element z such that $a^{2 n} z=a^{n}$ and z commutes with every element which is commutative with a^{n}; however the latter condition implies, since a is commutative with a^{n}, that $a z=z a$. Denoting $a^{n-1} z$ again by z, z is evidently the desired element.

Corollary. Strongly π-regular element is π-regular.
Now we define the index of a strongly π-reguiar element a as the least integer n such that a^{n} is right regular. By Lemma 3, the index n is characterized also as the least integer such that a^{n} is left regular. It is to be noted further that every nilpotent eiement is strongly π regular and its index of nilpotency coincides with the index in the sense defined above, as can be seen quite easily. Furthermore we have

Lemma 4. Let a be a strongly π-regular element of index n, and z an element such that $a z=z a$ and $a^{n+1} z=a^{n}$ (as in Theorem 3). Then $a-a^{2} z$ is a nilpotent element of index n.

Proof. Since $a z=z a$ we have the following binomial expansion:

$$
\left(a-a^{2} z\right)^{n}=a^{n}-\binom{n}{1} a^{n+1} z+\binom{n}{2} a^{n+9} z^{2}-\cdots+(-1)^{n} a^{2 n} z^{n}
$$

But $\quad a^{n}=a^{n+1} z$ implies $a^{n}=a^{n+2} z^{3}=\cdots=a^{2 n} z^{n}$. Hence we get

$$
\left(a-a^{2} z\right)^{n}=a^{n}-\binom{n}{1} a^{n}+\binom{n}{2} a^{n}-\cdots+(-1)^{n} a^{n}=(a-a)^{n}=0
$$

On the other hand, $\left(a-a^{2} z\right)^{n-1}$ is, again by a binomial expansion, say, expressible in a form $a^{n-1}-a^{n} x$ with some x; but this is certainly not zero because a is of index n. Thus, the index of $a-a^{2} z$ is exactly n.

We now obtain from Theorems 1, 3 and Lemma 4 immediately the following

Theorem 4. Let A be a ring of bounded index (of nilpotency). Then every right π-regular element of A is strongly π-regular and its index does not exceed the index of A.

Above results show us in fact the appropriateness of our definition of index for strongly π-regular elements. This is strengthened further by the following

Remark. Suppose that A is (not necessarily finite dimensional) algebra over a field K. Let a be an algebraic element of A, and $\mu(\lambda)$ the minimum polynomial of a (without constant term). Jacobson [2] defined the index of a as the largest integer r such that λ^{r} divides $\mu(\lambda)$. Now we want to show that a is then strongly π-regular and (the Jacobson index) r coincides with the index in our sense. For the proof, we may assume, since λ^{r} divides exactly $\mu(\lambda)$, that $\mu(\lambda)$ is of the form $\lambda^{r}+$ $\alpha_{1} \lambda^{\lambda^{+1}}+\alpha_{2} \lambda^{r+2}+\cdots$ (with $\alpha_{1}, \alpha_{2}, \cdots$ in K). It follows then $\alpha_{1} \lambda \mu(\lambda)=\alpha_{1} \lambda^{\lambda^{+1}+}$ $\alpha_{1}^{2} \lambda^{r+2}+\cdots$, and so we have $\mu(\lambda)-\alpha_{1} \lambda \mu(\lambda)=\lambda^{r}+\left(\alpha_{2}-\alpha_{1}^{5}\right) \lambda^{r+2}+\cdots=\lambda^{r}-\lambda^{r+1} \nu(\lambda)$, where $\nu(\lambda)=\left(\alpha_{1}^{2}-\alpha_{2}\right) \lambda+\cdots$ is also a polynomial. Since now $\mu(\lambda)$ has a for a root, so does $\mu(\lambda)-\alpha_{1} \lambda \mu(\lambda)$ too, i.e., we have $a^{r}=a^{r+1} \nu(a)$, which shows the strong π-regularity of a. Let n be the index of a (as strongly π regular element). Then $n \leqq r$, and moreover we have from Lemma 3 that $a^{n}=a^{n+1} \nu(a)$, that is, a is a root of the polynomial $\lambda^{n}-\lambda^{n+1} \nu(\lambda)$. Since $\mu(\lambda)$ is the minimum polynomial of a, the latter must be divisible by $\mu(\lambda)$, and this implies in particular that $n \geqq r$, proving our assertion.

Now we say that a ring A is π-regular, right π-regular, left π-regular, or strongly π-regular if so is every element of A respectively. (Cf. Kaplansky [3].) Evidently A is strongly π-regular if and only if it is both right π-regular and left π-regular. Moreover, strong π-regularity of A implies π-regularity of A, according to Corollary of Theorem 3. However, the converse is also true provided A is assumed to be of bounded index. Namely, we have

Theorem 5. Under the assumption that A is of bounded index, the following four conditions are equivalent to each other:
i) A is π-regular,
ii) A is right π-regular,
iii) A is left π-regular,
iv) A is strongly π-regular.

Proof. That ii) implies iv) is a direct consequence of Theorem 4. By right-left symmetry, iii) implies also iv). Therefore we have only to prove that ii) follows from i).

Suppose that A is a π-regular ring of index n. Let a be an element of A. Then a^{n} is π-regular, that is, there exists an integer $n^{\prime}(\geqq 1)$ such that $a^{n n^{\prime}}$ is regular. Put $r=n n^{\prime}$. Then $r \geqq n$ and there exists an element x such that $a^{r} x a^{r}=a^{r}$. Write $e=a^{r} x$. Then e is an idempotent and satisfies $e A=a^{r} A$. Similarly, the π-regularity of, say, a^{r+1} implies the existence of an integer s and an idempotent f such that $s>r$ and $f A$
$=a^{s} A$. Since then $a^{r} A \supset a^{s} A, f A$ is necessarily a direct summand right subideal of $e A$. Hence we can construct, as is well-known, two orthogonal idempotents f_{1} and g such that $e=f_{1}+g$ and $f_{1} A=f A\left(=a^{s} A\right)$. Now take any primitive ideal P of A. By Kaplansky [3, Theorem 2.3] the residue class ring $\bar{A}=A / P$ is a (full) matrix ring over a division ring of degree at most n. Denote by \bar{a} the residue class of a modulo P, and consider the chain of right ideals $\bar{A} \supset \bar{a} \bar{A} \supset \bar{a}^{2} \bar{A} \supset \ldots$. It follows then, since the degree of the simple ring \bar{A} is equal to the composition length for right ideals of \bar{A}, that $\bar{a}^{n} \bar{A}=\bar{a}^{n+1} \bar{A}=\cdots$, and we have in particular $\bar{a}^{r} \bar{A}=\bar{a}^{s} \bar{A}$. Write further by $\bar{e}, \bar{f}_{1}, \bar{g}$ the residue classes of e, f_{1}, g modulo P respectively. Then $\bar{\epsilon} \bar{A}=\bar{a}^{r} \bar{A}, \bar{f}_{1} \bar{A}=\bar{a}^{s} \bar{A}$ whence $\bar{\epsilon} \bar{A}=$ $\bar{f}_{1} \bar{A}$. On the other hand, $\bar{\epsilon}=\bar{f}_{1}+\bar{g}$ and \bar{f}_{1}, \bar{g} are orthogonal dempotents; hence $\bar{\epsilon} \bar{A}$ is the direct sum of $\bar{f}_{1} \bar{A}$ and $\bar{g} \bar{A}: \bar{e} \bar{A}=\bar{f}_{1} \bar{A} \oplus \bar{g} \bar{A}$. This implies evidently that $\bar{g} \bar{A}=0$, i.e., $\bar{g}=0$ or $g \in P$. This is the case for every primitive ideal P, and so g must lie in the intersection of all P 's i.e. the (Jacobson) radical of A. If we observe however that 0 is the only quasi-regular idempotent, it follows indeed $g=0$, and this shows that $a^{r} A\left(=e A=f_{1} A\right)=a^{s} A$ whence $a^{r} A=a^{r+1} A$. The latter equality implies, since $a^{r}=a^{r} x a^{r}$ is in $a^{r} A$, the right π-regularity of a. Thus, the proof of our theorem is concluded.

Remark. The radical of a π-regular ring as well as that of a right π-regular ring is always a nil-ideal, as was shown in Kapransky [3, section 2] and Arens-Kaplansky [1, Theorem 3.1]; the assumption in the latter that (the right π-regular ring) A is of bounded index being superfluous for proving our assertion.

Department of Mathematics, Hokkaido University

Bibliography

[1] R. ARENS and I. Kaplansky, Topological representation of algebras, Trans. Amer. Math. Soc., vol. 63 (1948), pp. 457-481.
[2] N. JACOBSON, Structure theory for algebraic algebras of bounded degree, Ann. of Math., vol. 46 (1945), pp. 695-707.
[3] I. Kaplansky, Topological representaton of algebras, Trans. Amer. Math. Soc., vol. 68 (1950), pp. 62-75.

