STRONGLY π -REGULAR RINGS

By

Gorô AZUMAYA

ARENS-KAPLANSKY [1] and KAPLANSKY [3] investigated, as generalizations of algebraic algebras and rings with minimum condition, following two types of rings: one is a π -regular ring, that is, a ring in which for every element a there exists an element x and a positive integer n such that $a^n x a^n = a^n$, and the other is a ring in which for every a there exists an x and an n such that $a^{n+1}x=a^n$ — this we shall call a right π -regular ring. The present note is devoted mainly to Apparently, the two notions of study the latter more precisely. π -regularity and right π -regularity are different ones in general. However we can prove, among others, that under the assumption that a ring is of bounded index (of nilpotency) it is π -regular if and only if it is right π -regular. Moreover, we shall show, in this case, that we may find, for every a, an element z such that az = za and $a^{n+1}z = a^n$, where n is the least upper bound of all indices of nilpotency in the This is obviously a stronger result than a theorem of KAPLANSKY ring. (2) as well as that of GERTSCHIKOFF (3), both of which are stated in section 8 of KAPLANSKY [3].

1. Strong regularity. Let A be a ring. Let a be an element of A. a is called *regular* (in A) if there exists an element x of A such that axa=a, while a is said to be *right* (or *left*) *regular* if there exists x such that $a^2x=a$ (or $xa^2=a$). Further, we call a strongly regular if it is both right regular and left regular.

Lemma 1. Let a be a strongly regular element of A. Then there exists one and only one element z such that az=za, $a^2z(=za^2)=a$ and $az^2(=z^2a)=z$, and in particular a is regular. For any element x such that $a^2x=a$, z coincides with ax^2 . Moreover, z commutes with every element which is commutative with a.

Proof. Let x, y be two elements such that $a^2x=a$, $ya^2=a$. Then

(1)

 $ax = ya^2x = ya$,

so that

 $(2) \qquad \qquad ax^2 = yax = y^2a.$

From (1) we have also

(3)

$$axa = ya^2 = a = a^2x = aya.$$

Now put $z=ax^2$. It follows then from (1), (2), (3) that az=ayax=ax=ya=yaxa=za, $a^2z=aza=axa=a$, $az^2=yaz=yax=z$, as desired.

Suppose next z' be any element which satisfies the same equalities as $z: az'=z'a, a^2z'=a, az'^2=z'$. Then, by replacing x, y in (2) by z, z' respectively, we get $z=az^2=z'^2a=z'$, showing the uniqueness of z. For the proof of the last assertion, let c be any element such that ac=ca. Then we have first $zac=zca=zca^2z=za^2cz=acz=caz$, i.e., c commutes with za=az. It follows from this now $zc=z^2ac=zcza=zacz=czaz$ =cz. and this completes our proof.

Lemma 2. Let a be a right regular element of A and let $a^2x=a$. Then, for any positive integer n, we have

$$(a-ax^{n}a^{n})^{r} = \begin{cases} a^{r}-ax^{n-r+1}a^{n}, & r=1, 2, \cdots, n, \\ 0, & r=n+1. \end{cases}$$

Proof. Since the assertion is valid for r=1, we may proceed by induction on r (for fixed n). Suppose $r \leq n$ and our lemma holds for r:

$$(a - ax^n a^n)^r = a^r - ax^{n-r+1}a^n$$

Right-multiplying by $a-ax^na^n$ and using the relation $a^{n+1}x^n = a$, which follows immediately from $a^2x = a$, we have $(a-ax^na^n)^{r+1} = a^{r+1} - a^{r+1}x^na^n - ax^{n-r+1}a^{n+1} + ax^{n-r+1}a^{n+1}x^na^n = a^{r+1} - a^{r+1}x^na^n$. But when r < n $a^{r+1}x^n = a^{r+1}x^rx^{n-r} = ax^{n-r}$, while when r = n $a^{r+1}x^n = a^{n+1}x^n = a$. This completes our induction.

Now A is called a ring of *bounded index* if indices of nilpotency of all nilpotent elements of A are bounded; and, in this case, the least upper bound of all indices of nilpotency is called the *index* of A. (Cf. JACOBSON [2], KAPLANSKY [3].) We can now prove the fundamental

Theorem 1. Let A be a ring of bounded index. Then every right regular element of A is (left whence) strongly regular.

Proof. Let *n* be the index of *A*. Let *A* be any right regular element of *A*: $a^2x=a$. Then, since $(a-ax^na^n)^{n+1}=0$ by Lemma 2, we must have $(a-ax^na^n)^n=0$. On the other hand, $(a-ax^na^n)^n=a^n-axa^n$ by the same lemma, and we obtain $a^n-axa^n=0$. Apply furthermore Lemma 2 to n+1 instead of *n*. Then $(a-ax^{n+1}a^{n+1})^{n+1}=a^{n+1}-axa^{n+1}=a(a^n-axa^n)$

G. Azumaya

=0, and so $(a-ax^{n+1}a^{n+1})^n = 0$. But $(a-ax^{n+1}a^{n+1})^n = a^n - ax^2a^{n+1}$ again by Lemma 2. Hence it follows $a^n = ax^2a^{n+1}$. Right-multiply now by ax^n and make use of the relation $a^{n+1}x^n = a$. Then we find finally $a = ax^2a^2$, which shows the left regularity of a.

In connection with the preceding theorem, we want to add the following theorem, although we shall not need it later:

Theorem 2. Let a be a right regular element of A. Then a is strongly regular if and only if $r(a^2)=r(a)$, where $r(\cdot)$ denotes the set of all right annihilators.

Proof. The "only if" part is easy to see. So we have only to prove the "if" part. The right regularity of a implies $a^{3}A = aA$. The mapping $u \rightarrow au$ ($u \in aA$) gives therefore an operator-homomorphism of the right ideal aA onto itself. Moreover, this is an isomorphism because the kernel is zero by the assumption $r(a^{2}) = r(a)$. Let φ be the inverse mapping of it; φ is also an operator-isomorphism of aA onto itself. Since $a \in (a^{2}A =)aA$ we have in particular $\varphi a^{2} = a$. From this it follows $(\varphi^{2}a)a^{2}$ $= \varphi(\varphi a^{2})a = \varphi a^{2} = a$, showing the left regularity of a.

Remark. VON NEUMANN called A a regular ring if every element of A is regular, while ARENS-KAPLANSKY [1] defined A to be a strongly regular ring when every element is right regular. However, it was shown in above paper that if A is strongly regular then every element of A is indeed strongly regular; this follows also from our Theorem 1 directly, since a strongly regular ring A has evidently no non-zero nilpotent element. This fact justifies our definition of strong regularity for elements.

2. Strong π -regularity. Let us call an element a of A π -regular, right π -regular, or left π -regular if a suitable power of a is regular, right regular, or left regular respectively. Furthermore we call a strongly π -regular if it is both right π -regular and left π -regular. Now it can readily be seen that a power a^n of a is right (or left) regular if and only if there exists an element x such that $a^{n+1}x=a^n$ (or $xa^{n+1}=a^n$). On the other hand, we have

Lemma 3. Let x, y satisfy $a^{n+1}x = a^n$, $ya^{m+1} = a^m$ for some n, m. Then they satisfy $a^{m+1}x = a^m$, $ya^{n+1} = a^n$ too.

Proof. When $m \ge n$ $a^{m+1}x = a^m$ follows immediately from $a^{n+1}x = a^n$. Suppose now m < n. Then $a^m = ya^{m+1}$ implies $a^m (=y^2 a^{m+2} = \cdots) = y^{n-m}a^n$, and so we obtain $a^{m+1}x = y^{n-m}a^{n+1}x = y^{n-m}a^n = a^m$. Similarly, we can verify the validity of $ya^{n+1} = a^n$.

36

Now we prove

Theorem 3. Let a be a strongly π -regular element of A. Suppose that a^n is right regular. Then a^n is in fact strongly regular, and moreover there exists an element z such that az=za and $a^{n+1}z=a^n$.

Proof. That a^n is strongly regular is an immediate consequence of Lemma 3. Now from Lemma 1 it follows that there exists an element z such that $a^{2n}z=a^n$ and z commutes with every element which is commutative with a^n ; however the latter condition implies, since a is commutative with a^n , that az=za. Denoting $a^{n-1}z$ again by z, z is evidently the desired element.

Corollary. Strongly π -regular element is π -regular.

Now we define the *index* of a strongly π -regular element a as the least integer n such that a^n is right regular. By Lemma 3, the index n is characterized also as the least integer such that a^n is left regular. It is to be noted further that every nilpotent element is strongly π -regular and its index of nilpotency coincides with the index in the sense defined above, as can be seen quite easily. Furthermore we have

Lemma 4. Let a be a strongly π -regular element of index n, and z an element such that az=za and $a^{n+1}z=a^n$ (as in Theorem 3). Then $a-a^2z$ is a nilpotent element of index n.

Proof. Since az = za we have the following binomial expansion:

$$(a - a^{2}z)^{n} = a^{n} - \binom{n}{1}a^{n+1}z + \binom{n}{2}a^{n+2}z^{2} - \dots + (-1)^{n}a^{2n}z^{n}$$

But $a^n = a^{n+1}z$ implies $a^n = a^{n+2}z^2 = \cdots = a^{2n}z^n$. Hence we get

$$(a-a^2z)^n = a^n - \binom{n}{1}a^n + \binom{n}{2}a^n - \dots + (-1)^na^n = (a-a)^n = 0$$

On the other hand, $(a-a^2z)^{n-1}$ is, again by a binomial expansion, say, expressible in a form $a^{n-1}-a^nx$ with some x; but this is certainly not zero because a is of index n. Thus, the index of $a-a^2z$ is exactly n. We now obtain from Theorems 1, 3 and Lemma 4 immediately

the following

Theorem 4. Let A be a ring of bounded index (of nilpotency). Then every right π -regular element of A is strongly π -regular and its index does not exceed the index of A.

Above results show us in fact the appropriateness of our definition of index for strongly π -regular elements. This is strengthened further by the following •

Remark. Suppose that A is (not necessarily finite dimensional) algebra over a field K. Let a be an algebraic element of A, and $\mu(\lambda)$ the minimum polynomial of a (without constant term). JACOBSON [2] defined the index of a as the largest integer r such that λ^r divides $\mu(\lambda)$. Now we want to show that a is then strongly π -regular and (the Jacobson index) r coincides with the index in our sense. For the proof, we may assume, since λ^r divides exactly $\mu(\lambda)$, that $\mu(\lambda)$ is of the form $\lambda^r +$ $\alpha_1\lambda^{r+1}+\alpha_2\lambda^{r+2}+\cdots$ (with α_1,α_2,\cdots in K). It follows then $\alpha_1\lambda\mu(\lambda)=\alpha_1\lambda^{r+1}+$ $\alpha_1^2 \lambda^{r+2} + \cdots$, and so we have $\mu(\lambda) - \alpha_1 \lambda \mu(\lambda) = \lambda^r + (\alpha_2 - \alpha_1^2) \lambda^{r+2} + \cdots = \lambda^r - \lambda^{r+1} \nu(\lambda)$, where $\nu(\lambda) = (\alpha_1^2 - \alpha_2)\lambda + \cdots$ is also a polynomial. Since now $\mu(\lambda)$ has a for a root, so does $\mu(\lambda) - \alpha_1 \lambda \mu(\lambda)$ too, i.e., we have $a^r = a^{r+1} \nu(a)$, which shows the strong π -regularity of a. Let n be the index of a (as strongly π regular element). Then $n \leq r$, and moreover we have from Lemma 3 that $a^n = a^{n+1}\nu(a)$, that is, a is a root of the polynomial $\lambda^n - \lambda^{n+1}\nu(\lambda)$. Since $\mu(\lambda)$ is the minimum polynomial of a, the latter must be divisible by $\mu(\lambda)$, and this implies in particular that $n \ge r$, proving our assertion.

Now we say that a ring A is π -regular, right π -regular, left π -regular, or strongly π -regular if so is every element of A respectively. (Cf. KAPLANSKY [3].) Evidently A is strongly π -regular if and only if it is both right π -regular and left π -regular. Moreover, strong π -regularity of A implies π -regularity of A, according to Corollary of Theorem 3. However, the converse is also true provided A is assumed to be of bounded index. Namely, we have

Theorem 5. Under the assumption that A is of bounded index, the following four conditions are equivalent to each other:

- i) A is π -regular,
- ii) A is right π -regular,
- iii) A is left π -regular,
- iv) A is strongly π -regular.

Proof. That ii) implies iv) is a direct consequence of Theorem 4. By right-left symmetry, iii) implies also iv). Therefore we have only to prove that ii) follows from i).

Suppose that A is a π -regular ring of index n. Let a be an element of A. Then a^n is π -regular, that is, there exists an integer $n'(\geq 1)$ such that $a^{nn'}$ is regular. Put r=nn'. Then $r\geq n$ and there exists an element x such that $a^rxa^r=a^r$. Write $e=a^rx$. Then e is an idempotent and satisfies $eA=a^rA$. Similarly, the π -regularity of, say, a^{r+1} implies the existence of an integer s and an idempotent f such that s>r and fA

 $=a^{s}A$. Since then $a^{r}A \supset a^{s}A$, fA is necessarily a direct summand right subideal of eA. Hence we can construct, as is well-known, two orthogonal idempotents f_1 and g such that $e=f_1+g$ and $f_1A=fA(=a^sA)$. Now take any primitive ideal P of A. By KAPLANSKY [3, Theorem 2.3] the residue class ring $\overline{A} = A/P$ is a (full) matrix ring over a division ring of degree at most n. Denote by \overline{a} the residue class of a modulo P, and consider the chain of right ideals $\overline{A} \supset \overline{a}\overline{A} \supset \overline{a}^2\overline{A} \supset \cdots$. It follows then, since the degree of the simple ring \overline{A} is equal to the composition length for right ideals of \overline{A} , that $\overline{a}^{n}\overline{A} = \overline{a}^{n+1}\overline{A} = \cdots$, and we have in particular $\bar{a}^r \bar{A} = \bar{a}^s \bar{A}$. Write further by \bar{e} , \bar{f}_1 , \bar{g} the residue classes of e, f_1 , g modulo P respectively. Then $\bar{e}\overline{A} = \bar{a}^r\overline{A}$, $\bar{f}_1\overline{A} = \bar{a}^s\overline{A}$ whence $\bar{e}\overline{A} =$ $\overline{f}_1\overline{A}$. On the other hand, $\overline{e}=\overline{f}_1+\overline{g}$ and \overline{f}_1 , \overline{g} are orthogonal dempotents; hence $\bar{e}\overline{A}$ is the direct sum of $\bar{f}_1\overline{A}$ and $\bar{g}\overline{A}$: $\bar{e}\overline{A} = \bar{f}_1\overline{A} \oplus \bar{g}\overline{A}$. This implies evidently that $\bar{g}\bar{A}=0$, i.e., $\bar{g}=0$ or $g\in P$. This is the case for every primitive ideal P, and so g must lie in the intersection of all P's i.e. the (Jacobson) radical of A. If we observe however that 0 is the only quasi-regular idempotent, it follows indeed g=0, and this shows that $a^rA(=eA=f_1A)=a^sA$ whence $a^rA=a^{r+1}A$. The latter equality implies, since $a^r = a^r x a^r$ is in $a^r A$, the right π -regularity of a. Thus. the proof of our theorem is concluded.

Remark. The radical of a π -regular ring as well as that of a right π -regular ring is always a nil-ideal, as was shown in KAPLANSKY [3, section 2] and ARENS-KAPLANSKY [1, Theorem 3.1]; the assumption in the latter that (the right π -regular ring) A is of bounded index being superfluous for proving our assertion.

Department of Mathematics, Hokkaido University

Bibliography

- [1] R. ARENS and I. KAPLANSKY, Topological representation of algebras, Trans. Amer. Math. Soc., vol. 63 (1948), pp. 457-481.
- [2] N. JACOBSON, Structure theory for algebraic algebras of bounded degree, Ann. of Math., vol. 46 (1945), pp. 695-707.
- [3] I. KAPLANSKY, Topological representation of algebras, Trans. Amer. Math. Soc., vol. 68 (1950), pp. 62-75.