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§0. Introduction

The concept of connection introduced by W. WirtiNneer [1]® was
given as a generalization of WEvL’s connection [2] under the considera-
tion of the possibility of its application to physics and astronomy. He
thought at that time that his theory was ample enough to stand for
any mathematical requirement in some branches of them.

Nowadays, the progress of physics and astronomy is so remarkable
that his idea can not be fully accepted, but from the geometrical point
of view his concept of connection itself is very interesting, various
generalizations have been performed by many students and moreover
the study of his concept is being carried on even now.

Geometrically the WIRTINGER’S connection contains two important
concepts, the one is that of double vectors, the other is that of non-
linear connections.

In the former case H. Evraup [3] generalized the parallel displace-
ment of WEvr but his research has no direct relation with WirTINGER.
Later from a different point of view A. KawacucHt [4] pointed out that
as a special case of his general theory, the WirTINGER’S connection was
derived. In addition to these papers the present author [5] has de-

(1) Numbers in brackets refer to the references "at the end of the paper.
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veloped the theory in higher order spaces.

V. V. Vacner [6] in the Soviet Union has established the theory
of Strip as a method of discussing the differential geometry. His
method seems to us to be a special case of WirTiNGER’S point of view.

In the matter of non-linear connections, after WikrtineEr, G. Y.
Rainicu [7] studied it and H. Friesecke [8], E. Borror.orrr [9], M. Mikam1
[10] and others have followed.

Recently Kawacgucsr [11] has established the foundatlon of non-
linear connections. -

The purpose of the present paper is to develop a general theory
of WIRTINGER’S connections introducing some kinds of WIRTINGER'S cOn-
nections in higher order spaces and discussing the relations between
KAawaAcucHur’s connectlons and WIhTINGER s in view . of the prev1ous papers
of the present author. - :

§1 is devoted to the abrldgment of the classical theory of WIRTINGER s
connections. In §2 WirTINGER’S connections in higher order spaces are
introduced and in addition, the modified forms will be found. §3
involves the discussion of WirTiNGER’S connections in KawacucHI spaces.
The definition of covariant derivatives in our spaces is given in §4. The
covariant derivatives in a special KawacucHur spaces will be stated in
detail in §5 and in §6 various tensors and 1dent1t1es are derived 1n
the space.

§ 1. Theory of the WIRTINGER’s connection

With each point of an n-dimensional space X, (x*) we associate
a fibre (%, v,) consisting of a pair of a contravariant vector 7* and
a covariant vector v, provided that our fibre is chéracterized by the
incidence condition

7" va =0,

In other words, our manifold consists of 4 bundle where (»°, v.)
with incidence condition is an element of the fibre in the base manifold
X,.. Hereafter, such manifold will be called WirtincEr manifold. The
(%, v.) with the condition 7* v, =0 is called double vector by ScHoUuTEN,
and WiIrTINGER named it E, ;-element. FE, ;-elements form a (2n—38)-
dimensional manifold. : |

Let us consider the infinitesimal displacement of any point in the
base manifold X, then %*; v. which are attached to that point are
affected by infinitesimal variations. We indicate such variations by
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the symbols é. 7, 6.v. Where 5. means the variation of &*-direction.

On the other hand, differentials of 7°, v. which belong to double
vectors of any fixed point are indicated by the symbols dyp*, dv.. It
is remarkable that s-differential and d-differential are commutative :

'(1. 1) dedn® =dden” ,  S.dva=dd;va .

Double vectors (3, v,) associated with a point 0 remain double
vectors after all under a contact transformation in accordance with
the infinitesimal displacement of the point 0. Therefore, in order to
introduce our connection we take the contact condition

(1.2) 8¢ (0" dva) = 8¢9 dva+7*8edv. =P7" -dva +avady” .
From the incidence condition we have

Ben® ve+7"Bea =0, A vetytdve =0, 3(dn®vs) =0 (—7*dv.),
and by use of (1.2) ” |
' dc (uady'*_) =0cta-dn* +v, -Bgd)y" = —Pp*-dv,—odp*-v,
are given. | . ‘ ’ :
Where 6.7%, d:va, P, 0 are linear homogeneous functions of ¢%, 9.7 are
homogeneous of degree one in 7* and of degree zero in v.. Vice versa,
OV, are homog'eneous of degree one in vu,, homogeneous of degree zero
in . On the other hand P, ¢ are both homogeneous function of degree"

zero in »*, v.. Such assumptions are all valid in general.
We put

(1' 3) ’ 77a3€Ua = W(x, 7, U, E) .

then under the above assumptions, W(z, 5, v, §) is linear homogeneous
of ¢ and homogeneous of degree one in 7%, v,. Differentiate (1.8)
partially by 7%, vs,

aW(x,z; v, E) :v.ae()s +va’_a§£-z_a— !
(L. 4) a,, 3’7
‘ aW(x, 7, U, E) — 771 easUu
304 . dUg ’

are obtained.
From (1.1) we get -

5p® 0¢7” 839"
S deop = 200 _gns 4 7 g,
¢ % an®- 7 Bug ?

d:dv, = -@ilgﬁ~d77" 4 20eVa dvg ,
877 803
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therefore (1.2) is rewritten as
0en” -dug +7° —aﬁ;—U—“—dnB + 7° —865 %2 dv, :P77“~-du‘a +odp®-v. .

In the above expression, comparing the coefﬁc1ents of dyp*, dv, in both
sides and by use of (1 4) one obtains . : -

‘ BW(x 77, v, &) «
557] ) U, - + Pv‘
Beba = SW(.’D, 2, v, &) — ov, ,

a7 :

The final WirTiNncER’s formulae are given putting f=o¢ in the above
formulae as follows:

SW(-’LU Ny v, E) +‘077 ‘ aeua — SW(x, v,“U, 5) {_PU
BVa an*

1.85) 8.9 =

Formulae (1.5) satisfy the most general assumption for a §-transforma-
tion aﬁecting the relation’ 1n double vectors in the infinitesimally near
points (0) and (0’) subjected to the contact condition.

By the point transformation, W and P vary as

FEv_ _ = ' 32511 _ r ‘.
. W(-T’ 7y Oy E) = W(xy 7, U, 5)_W0a773§ ’
o, %,5,8) = P(x, 70,8 .
- In use of (1. 5) we can define the WIRTINGER’S covarlant differential
as follows:

Dy = 08:7" + aW(a;’uﬂ’U, 9 — P,
(1. 6) | ) |
Du, = 6:0.— aW(an,vZ, v, §) + Pu,

Clearly formulae (1.6) are a contact transformation in the double
vector (%, v.) and as connection they are one kind of non-linear con-
nections. )

If we put the assumption that W(x,»,v,4) is a 11near homogeneous
function in 7“, v, then (1.6) gives a linear connection and is reduced
to an incidence invariant displacement, therefore in our case the
WIRTINGER’S connections seem to be a generalization of an incidence
invariant displacement.
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§2. Generalized WIRTINGER’s connections

Elements of the base manifold in a WirtineErR manifold are points
(x*), but here we assume the elements of our base manifold are line-
elements of order m, that is, (x*, 2%, -, 2*) and we again call them
points. o | | |

With each point of the base manifold we associate double vectors
consisting of a contravariant vector 7 and a covariant ., therefore
the incidence condition

- vu.uu.:O

holds good always. ‘ .
We call such manifold the Wirtinger manifold in higher order and
indicate it by the symbol W, The symbol W means the classical
WirTiNgER manifold in our case. | '

We indicate the differentials of 7%, v, in double vectors associated
to a point (z*, V%, ---, ") by the symbols dy*, dv. and the differ-
entials of 7%, v, caused by z* of that point by the symbols 5. 7%, 5, wv,,
where £ means the variation of z*, that is dx”.

On the other hand, as the base manifold of W{ is a manifold of
line-elements of m-th order, we have to consider the variations of

x(])a’ x(g)“: _,_’a:(m)ut, that is dx(j)a’ dx(-z\a’ ';'y dx(m,)a. NOW we takde the
symbols &%, @2 ... ¢ instead of the above symbols, then

BN, BN, oy S M 5 S Wa, O @Ua, +y Belmd,
are variations of 7%, v. respectively caused by &%, e®« ... gme Ty is

needless to say that d-difierential and Aﬁ-di»ﬂ’erential are commutative
undoubtedly as in §1, that is to say :

Ao on =3, odn*, dd.®v, =8, ®dv, (¢=0,1,2,---,m).

We denote the variations of »”, v, by 8.7, d.v. respectively corre-
sponding to an infinitesimal displacement from an element (x, , ---, ‘)
to a neighboring element (x+dz, 2° + da, - -, ' + dz“), then the
relation

0 = 0@W+0:W+ -+ 0:0m

holds good always. _
As the condition to introducing connections in our manifold in-
volving the case of W we take the following, that is
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) )
S @@ dv) =08 dva +7% 5 v, —P77 cdva + ov, - dp®

(2.1) 3e<1><v“-du4> = 8e9® dvg +7%+8eotlg = Py v + G- dy®

Bem (- dve) = 8¢ o™ dva +7% e, = P - doe +00s-dy* .
Conditions in (2.1) indicate that the incidence condition holds good
always not only in whole variations together of line-elements but also
in one by one variations. Moreover, it is assumed that §.wn* (1=
0,1,2,---,m) are homogeneous functions of degree one in 7%, of degree
zero in v,., linear homogeneous functions in £©°
Sewu, (t=0,1,2, ---, m) are homogeneous functions of degree one in vu,,

of degree zero in 7%, linear homogeneous functions in 2=,
@)
P, o (¢=0, 1, --,m) are homogeneous functions of degree zero in 77 , Va,

linear homogeneous functions in £9< .
(€3] @
By a transformation of coordinates d.@»*, 6:®uv., P or o transform

in similar manner to the transformation laws of - oT* dx®8, -« T dx®8,

» x(i)B ax(i)ﬂ
af(l;ﬂ dx®® provided that 7%, T., T are respectively contravariant,
o
covariant, scalar in higher order spaces.
‘We put
. @ . o .
2.2) 7% dewove = W, a8, -, 5,9,0,69)  (G=0,1, -, m)
%)
then W(x, a®, ---, ", 7, v, ?) are homogeneous functions in 77 , Va, linear

homogeneous functions in §%“.
Differentiate (2.2) partially in 7%, v, respectlvely We obtaln

(2)
@ 90 @U, AW

a8 aph — 0@V, ,
<2' 3> : (2)
« 3w, _ W
dug - Ak

By use of commutative law between the d-differential an‘d o-differential

o ¢ (.z)dv“ — dg,e‘ (7137)“ — M?i d773 + 135(5),7): du 8
. 877 8 . oU 8
2. 4) |

) i
Seodv, = doewn, = 206 a gno y B0eDa g,
an® g
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are given.
Substituting (2. 4) in (2.1) and applymg (2.3), we obtam from

(€3) (%)

\ (2)
(ZZV t Oug —aus)dvy + <3€(z)77 + aW —-Pv“) dv, =0,

the formulae

(€A
oW (x, xV, -- x"’”, 7,0, E<“)

Se@m* = — +P(oa xD, -, T,y 0, E9) "
OV a
W W, (m) @) @
, X, -, 2" v, .
dewn, = 2 : (x, - a7]“ 275 0, & ) —o (x, x‘” e B, 0, EM o,

. (i:Oy]-,z!""m)’
Therefore the covariant differentials 7%, v, in W™ are

(<)) (4D C(m)

Dp — 3w + azv_t_i_,dme +8_VKB,dx(DB 4 _a_%dn(m)e —py*
aUa - aUa N a[.)a
(2.5) o o o
Do, =d.v.— aWB—de ——E.W,‘Ldg;mﬁ _..._23W, dz™® +ab, |
an* C/ N

) (%) m (%) - m (‘c)

where W = W, dx®8, P-*Z}P 0_20.

The covariant differentials in W™ correspondmg to (1.6) are

(2)

Dp® = o.9" + Z} oW, dz'®f —pp*

) =0 Va
(2. 6) .
DUa = 65})4'_‘ E a ‘Z;B dx(’t)s +p0a
£=0

The formalae (2.5) or (2.6) seem to be the most natural generali-
zation of the classical WirriNGER’S connection, but as these formulae
are not applicable directly to the KawacucHr space when we intend
later to introduce WirTINGER'S connections in the space, we have to
consider the following special case for that.

In W we assume especially that the double vector (7%, v,) has
such relation as

Vi = Ugq (x: xél)’ Tty x('M)i v) ’

where v. are homogeneous functions of degree k in . The d-differ-
ential and ¢-differential of v, are respectively
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dv, = auz dn® ,

an
2.7 - ‘
Mg g , .
Se®v, = axufs“f“w + e 6§<f>7]3 (=0,1,---,m),
accordingly putting |
‘ (%)
Va 56“”7“ = — W(x’ xr(h Tty xgm)’ 7]! v, E(i)) )

and differentiating them partially by 7, v. we can easily obtain
’ ) )

g p faé(i)v “+ v, __aéi(%v«:__ _ SW: o aW auz ’
8) 7 an® Bw,
@.8) ., ; |
dug dug

On the other hand, under the contact condition
) @) ) ()
8@ (T duy) =0 (—0.dn®) = —F @0 A" —v,.8. Ddn* = Pp*-dv, +ov.dy®,

we get

HOUM dv + v, < 865“)77 dn® 855('077 du )
(2. 9) s
) (€3}

= —Pp*-dv, —ov,dn”
applying (2.8). Substitution of (2.7) in (2.9) gives rise to

£) ()
a - aW  aW oau,
(a::aﬁ’“‘S G0 77 Oc )d)y ~< 5 T an, eyt
@)
2. 10) + o e )dy*— (aW +3:wn°® ) do
@ (€5}
— — py® g;B dy* —avady”
By the use of the incidence condition, we get the following relation
2.11 8 s . .,
(2.11) 7 5 v
and substitute (2.11) in (2.10) then (2.10) yields
[€3) (£)
(au,; —2 aug )35'(”)778 _ au: g8 4 1.4 49 oW aui3
2.12) . \ 97 ey am - dug M

(’lf) (€3] )
(T) B B
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From (1.5) and (2.12) we are led at once to

(2) (%)

2.1 o a_ graf_ _Wr a8 aWw oW au,,>
(2.13) 6. @y g ( ax(i)sf + P +2 avs 87" ’

8 —2 aUB ’ gaBgYBZSZ ’

v ‘ _ =Y an“* ,

provided that the determinant |g.;| does not vanish identically. Sub-
stitute (2.7) in (2.18)

where Gap =

() @)

P B, av aW aW oav
2.14) 9e@vs = a5 €0 + v’g <_‘ Fra A 7 20, avg>

is obtained easily.
The covariant differentials in such special Wirtinger manifold W™
are defined by use of (2.13) and (2.14) as ‘ ‘

%) €3

Dy =38,9" +g" i( vy _aWs o3W, av, )dz“’s ,

2a ™8 oy vy "
2. 15) -
. Z Oy v 5 -l aWB
DUa — Béua '—E){ ax(j)s 77d g’Y ax(})s - ar/y
(2)
_9 oW aue> A8 |
BQue AT

§3. WIRTINGER’s connections introduced in
KAWAGUCHI spaces .

An n-dimensional Space with the arc length
5= jF (x! x(l)vv x@), Tty x(M)) dt

is named a KawacucHr space by J. L. Synee and H. V. Craic, hereafter
we denote it by the symbol K{™ . -

In order that the arc length should be related intrinsically to the curve,
we have the so-called ZermELO’S conditions, namely ‘

3.1) é} Rd;(a)timi =F, f;n‘s (g)x(l“s“)iF(aw =0 (m=s=1)
where we put F= _oF_ r=1,2, - ---,m)
ax ¢

Putting m=s in the second expression in (3.1) one obtains
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(3. 2) xu)iF(,,Di —_ 0 .

The relation (3.2) is nothing but an incidence condition between the
contravariant vector z‘* and the covariant vector F',,. This fact means
in general that, in the Kawacucnt space, with each point (z°) the double
vector (@, F(,,) is associated always. ,

In some special KawacucHr spaces, we find that Fl, involves «
and 2z only and the incidence condition

ot Fy, = 0

exists. It is clear that our such case is almost the same as the clas-
sical WirTINGER’S case. 4

In such a point of view, the Kawacucur spaces give various ex-
amples of W&, therefore various WirTINGER’S connections are intro-
duced according to various points of view. We shall take up some'
interesting cases. later on.

With the object of 1ntroduc1ng a connectmn in K™, KAWAGUCHI
[12] considered a manifold with line-elements of order 2n—1 and adopted

(3' 3) - ‘ 'gij = mF&m*lF(m)i n)j + @i@j + @q;(sjj »
as the fundamental tensor in the space.

1 m .
&,, &, in (3.8) are intrinsic SyNeE’s vectors modified by

), R . )
=2 (-D}(;) Fad*™  @=0,1,2,m)
Here we assume that the rank of a matrix .

(MF Cnys cmys + {5" j))

is n—1, then the determinant |g,;/ does not vanish identically, so we
can derive the contravariant tensor ¢ from which a geometrical
qantity I%, of class 1, and of order 2m—1 is defined as
' 12 "7)@- 1 2m —2
I ;= g™ (B 7' Fmyrimys + WF" F iy F(‘Zm—l)j).
1 F®

+ 0%+

1 e 1 e
&) +
L a@)

fu—y
&

g -

This geometrical Quantity I'*; is transformed in the same way as an
affine parameter by the extended point transformation, that is
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s ; ax* ox! ’x* ax’
re, =r*="-_./° — E AL
8 Y AP U ax’ox® ox®

By means of the I'%; we can introduce connection parameters as
follows. If we put '

] 2m:—1 s .
- bri, = z}(,‘)rz(mdxwmk (=12, -, 2m—1),
. r=-p\D/. ; .

then except DF , all of -l%l‘ij are quantities with tensor character,
therefore we can define the connection parameters as

m-1 pm 2m—2
- Z‘,F‘p Dl + NEDT )—=z} LAa Ok
p=1 =0
where ¥ ®=1,2,---,2m—1) are scalar quantities of order 2m—1.

Making use of thess quantities, the intrinsic covariant differential
oX“ ‘of an intrinsic Vector X? of order 2m—1 can be defined as

(3. 4) L X =dXi+ 2 Ty, Xodr .
a =0

The abOve ‘stated is the connection theory in the line-elements space
of order 2m—1 given by KawacucHr. -

In the first place, we shall embody the special WIrTINGER’S con-
nection in a KawacucHr space making use of the general Kawacucur’s
connection. : ‘

Let a pair (»*, v.) be the double vector in the Kawacucr space K™
in W{, then the Kawacucur’s connections concerning the vectors 7°,
vy are

‘ T 2m-2 ¢ -
== ol77 + 2 I‘B (:1: P, .., g D) 7B dt DT,
(3.5) e

v, = dv, — Z] rs, (e, w@m—l)‘) e da®

with the aid of (8.4) and we find at once

% [€2) i ‘
3 55@)77 __[1:377@0 dx(i)ﬂ = — W(x, x(I)’ e, x(?m—"l)’ 7, U, E(i))
(3. 6) = W, daos (6=0,1,2, -, 2m—2),
’ @m-1) .
.U'r 35(21’»-1)7]7 = -—W dx“”"' RLgE O

from (3. 5).
The relations in (8.6) give rise to
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@ ' @

< [ .
@n Wi, 2Ve=Puy G=01,2,,2m-2).

an® P

Accordingly the covariant differentials based on the spemal WIRTINGER s
connection are
2m -2

D’?“Zdv“ +g7¢ z;) <_a‘ir F?BUS”“zI‘ere 3;5 >dx“)_3 ,

@8

3.8)

. _297&—2{ 30;; . O n 5 aUy k3 R
D[)a ——*dUa ?0 1ax(¢>8 ava g7 <ax(¢)3 F ’YBUE

2
—2I%, ¢ 2 )} s

by substituion of (8.7) in (2.15).
In use of (3.8) we can find the relations between the WIRTINGER'S
connection and the KawacucHr's connection, namely

Dn® —dn® + ”omzz Vo 7.8 _ ”2%2;15 da®8 _2g7e U3 nm_ofa n°da®8
/A 7 g oax“)ﬁ “ = aBUs Xr g 7] E X

. =dyrtgre <du,, — ;’;B d7)3>—g’“(duf~3uy)—2g7“ %;-fj_(a,;hdyﬂ)

Ta a
=g <5u,—2?;$~ 377@) )

and
. ._2m—2 aUa (ir8 aua 7‘8"m—n aU,. o8 .
Dy, =duv, E) 508 da®® + —87]8 g Z} D S5 B dx
———:%%Lg” 3 I goeda©t — 2—:%“ g7 i Fesvf a“" "
£=0

C g a a
— dp.— (du,,—- a;B d;y’3>+ ;’;a (do,. — :;; dvs>_%gva(duv—au,)_

_ ai)_a_— r3 e (8,6 __ 74,0
25,597 5w @r°—dn®)

OVa oV oV 2V 7.8 ov ov
_ Ay — OVa ( O 9 B_) 8 a 78<. 8 s)
L 7 L g’ L 7" dy® + an? 9 3‘7 877*577
— a()a 8 aUa 8 aUa T3 aU'y 8
— ., 4 = — or
75 7 0o L N " 9 oy %
_—_50“—<3:—_§;; 9" )(auy _ am . )

So that
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a __ a a R 807 \
D77 = 677 +g7 (6J7 — avﬁ 3773) ,

3.9)

Dy, = 50.,—(3; —g—;‘,;—g“‘ <5.’)7 —

av® 8

an® % )

are relations between them. .

The formulae (8.8) are the special (or modified) WIrRTINGER’S connection
introduced in the general KawacucHi space.

In a special KawacuoHr space with the arc length
\ p
s = {{A, (x, o) 2"+ B (x, x’)} dt ,

Kawagucur [18] introduced two kinds of connections, say connection
C and connection C’/.
Connection C':
We put
o F=A(z)2"+B@),
where F'is a scalar and covariant vector A4, is a homogeneous function

of degree p—2 in z’¢.
With the exception of 2p=38, the determinant of the tensor

Gy = 2A¢<j)“Aj<z>‘

does not vanish identically.
Let us introduce a covariant vector defined by

d BF oF’

(3' 10) Ti = _2 dt ,ax/[i ax/i == (_Ak('i)—2Ai(k)) x”k—“2AM$’k+B@) 9
-V | _ 94, _ oB
where 1'41:('&) = ax,: ’ = B, = o
and contract T, with G* then we have at once
(3.11) 2= —T,GY ="+ 2I
Where o ' zrj = (ZAMCCM——B@)) Gij , G.ijGi/c-:ﬁ_’; .

The vector 7', defined by (3.10) is nothing but the so-called Craie vector
and among zY, A, and F there exists the following relation

Al = F .

It is remarkable that although this space is a KawagucHr space of order
2, it can be treated in the same manner as K,
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The covariant differentials of a contravarmt vector o’ and a covariant

vector v, are defined as
vt = dvt + 'y, myo’da® ,
(3.12) , HE
507; — d()i — F{i)(k) Ujdxk ’

with the base connection
(3.13) ox’t = dx'*+2I"° .

The connection given by (8.12) is the connection C in our space.
Connection C’: , _

Theorem. Let @, be a covariant vector subjected to line-elements (x, x°, - -, x™)

then ' ’

Din- 2 sa\ 3P, d*~°uv!
pj(d")’)j E()(lo)ax(ai)j dta-—-p

are components of a. covariant vector provided v° be a contravariant vector.

From this theorem given by KawacucHr we see

d J
— DT = 2G,, 7}’;
where I',=G,. %, and by use of the above formulae we can introduce,
excepting the case 2p =3, an absolute differential along a curve as
follows. Putting :

DD]Ui = (fl; +GM< 3 Gh/c(l)x +Fh(l)>

-+ Gik(l)x"kul+2Fi(l)uz y o

and being aided by
nif 1 " 1 M). ' 17 » & ¢
G (? Grrcrs® +r,m) = 5 G"Goery (@ +20%) + Ty
= %Gmth(z) 5xm+r€z) ’

we can define the absolute differential of a vector corresponding to a
displacement from a line element (x x) to a nelghbormg line element
(x+dx, ' +da’) as

(3.14) Dt = do® + Ly gy v da? + ]éG’”'Gnm) veox'd L

This reduces to (3.12), when sz*=0.
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The absolute differential defined by (3.14) is not intrinsic, so that
we have to introduce an intrinsic absolute differential. - For the pur-
pose, we adopt the following notations ‘

= Ayinr+ Agxor+ 0—38) Ascinr»
Jh. = A+ (®—2) Auy v
)= (P—8) G Ly +(—4) Gt T
u~1/(10 3rCL, px=3, =C4 p=3,

where I,;, is homogeneous of degree p—4 in 2’ and J,; is homogeneous
of degree p—38 in .

The tensor C%, is constructed from only A,. By the use of this
tensor an absolute differential is defined as :

1% = dp* + T layry+ Clas Ty 7Pdr™ +Cl%, ntdx’™ ,

(3. 15) |
. B*Urx —_ dua~(Fga)(7)+C?aa F(sy)) UB dx‘r‘-C.Ba'yUB dx” ’

provided 7%, v. are contravariant and covariant vector in our space.
The connection given by (8.15) is the connection C’ in our space.

The concrete forms of WiIrTINGER’S connections corresponding to
(8. 8) are introduced in two ways, the one is obtained by use of the
connection C, the other making use of the connection C.

Now we are going to explain these cases. The ZERMELO’S cond1t1ons
applied to the special KawacucHr space are

Ai (x’ x/) 't = 0 ,
248"+ (A" + Bi) @' = p(A@"+ B),

in which the former is nothing but an incidence condition between z’
and A4, associated to each point in our spaee, therefore all conditions are
satisfied for introduction of the WirrTiNGER’S connection provided that
we have the (2%, A,) as double vectors.

For the sake of introducing a concrete WIRTINGER’S connection based
on the connection C, we put me=1 in (2.15) and especially put v, =v. (x,7)
then the connection is defined as

’ Q) -
aU; _ W, _ o 3Ws aUS ) da®
ox /A W
(1 (1)
+g.,a<_ oWs_o 3aWs _a_Ui) dx8
. an” vy 3"

Dr/a :ae'va +gya(

(3.16)
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C0)

S !
Do =800 — { Ma  BWa . paf Oy _ W, _o3W, aue)] das®

s 9

ax?®  ay?d ax?  ay” AU
ay y "
Boe gro(—2Ws _52Ws 20, )d ZD8
877 an e

On the other hand, since Kawacuchr’s connections in the case are
on® =dy* +F(;B)(r)778dx?. y 00e =dva — I yyweda” ,

the relations - '
Va8 N = — I {gyrynoada” = — i%)’(x, x,n,0,89),
0ade* = — W, o/,7,0,6%) = 0

which lead to

o va aw _
=1 uadx =12 “dx® ,
| 87] (ry(B) 8U5 Y ?
accordingly | |
a « af OV
Dyp* = dp* +g7 (“a—mr— =05 8%y = 2055 &xr 7 )dxﬂ

3. 17) |
o Dv, = dva— {Ugs —0ac3y9" 2 Or 8 =06l Es5rs — 2 Eox 850 Vecr )| A

are obtained at once.
Substituting »*=2'*, v. =A4. in (3.17) we have
Dx'* = du'*+9"" A, s— AT syry—2A55 T8y dac®
8. 1‘8) DA, =dA.— {Au 8= Aasd 2 Ars — ALy, — 21 E5 Accry )}dx
If we adopt the notation | -
| Ous = Aus— Ay Tlaxer—24, sl s
the relation ' ‘
| Pas = VaAu+gar Ty,
can be easily obtained with the aid of Kawacucur’s covariant derivatives

lVBAa = AaBMA“(T)FZB)R'AT['&’.)(‘B) .

Therefore (3.18) gives rise to
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Do'® = da/® +97 @, oda® = da’* +g7° (Vg Ay + gy, T'ls) dc®
= da/* + &yda® +g"°V g A, dxb

DA, = dA.—(A.g—Aucs 937 @ 5 5) dz®
=dA,— {Aas — A 92" VA, +gser<58>)} dx®
=dA,— sy Arda® + A.597V g A, dx® —V 3 A, dz®

Finally the relations between both connections are obtained as follows
| Dx'® = 3x/* +g7*V A, dx® , ' |
B19 DAL = 04, (01— Auirg™?) VoA, dat

The above obtained formulae (8.19) may be found from (8.9) di-
rectly, because if we put 7*=2'*, v,=A4, in (3.9) it follows that

Dx'* = 6a'* +9°7 (3A, — Ay 0%'®) ,
DA, = 0A.— (0t —Aag97?)(0A, —Ars,02%).
Then paying attention to the following relation
A, — Ay 05/® = dA, — Ty s, Auda® — A, (da'® + '8y di?)
= (A,,(B)——F(’,)(B)Aa——A,(S)F(B?) dz®
=V A,dx"? ,

we can attam our object.
As the general form of the WiRTINGER’S connectlon is 1ndlcated in
(8.16) and that of the Kawacucur's in (3.15) we obtain

Va8 = —(L¢ 5, +C%H 3 '3y) 7 00 = “WB’(-’”’ @, n,0),

45)
08¢y = —ClgyTv, = —Wy(x,2/,7,0),
form which

0 0

aW ’ a a aW ‘ 1. ‘ ? |
3 rB :(F(n(s)‘*"c-rsr(ss)) Va 3 8 —-([ (ﬂ(a)‘*‘(/-arspfa'})’?rw
‘ 7] - Ua .
(3. 20) ay Wy
_a_!;_[:_ﬂ =C%;s 0., aWs _ =C3 7"
877 808

are derived. ‘
By the substitution of (8.20) in (3. 16)



aa a. aY'
Dy* = 8.y +g7 { aua (was)'*‘c rar(s)) Up“z(rcoxe)

(1 peF<B>)77 Vs ]de"‘g“( C.veUa““zc e:ts’?e Lk, )d‘”(m’

(3. 20 | "
' aa”‘"a';'""a
9‘495;\3“’“ a [ a::B f_«WUJS.g.T“é { ax® ”I &) o

=2y +Chel 8py)n° au" }]dx

+ . g;; 97 < C",;ul—ZC 7® aU")dx‘”B

are given.. Puting 7" =2'*, v, =4, then the- final formulae of the con-
nection are R " B
Dx* = da'* +9°“{ Age—(Llaxe; +Clss ') Ar
oy e e dxe—gé-“cgeA_adxfée -
DA, = dA.— [Aae+A,,(B>g = Ase+ e +C5%eTE) Ao

+2P(")(s’x A’(5>}]dx A, 5,92PCEcAsda e,

They clearly demonstrate that the formulae (3 21) are a concrete form
of the WIRTINGER’S connection in the special KawacucHr space.

In order to obtain the relations between the WIirTINGER’S connection
and the KawacucHr’s we adopt again the notation §* as the KawacucHrs
covariant differential based on the connection C’, then

0% = A/ + (D yry+Cls g L) /P da” +C x"’dx"
3. 22) = do'® +Ida” =o',
%A, = dA, —(T8 iy, +C8 s I'3,) Agda” —C5,, Agda'
= dA. _[‘(Ba)('r)A dXIY“CBa,,AB ox’” :BA. ——C.B.,,Agdx”

are the covariant dlfferentlals deﬁned by KAWAGUCHI Formulae (3.21)
are rewritten as - -

Dx/" = dx’“+g“¢’3 dx*+g® (Dge— AB(e))dx
F 9t L (P s — Agsy) dat
DA, =dA,+[—A.c+A,.5,9%%P;] dxt
| — AL 59%°CH A, (A ® + T8, dxf)
by the use of
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Dpe = ABe_ZAr(B)r{e)_ATF(YB,)(e) ’
Dge = Agee, — A, Che .
On the other hand, (3. 21) leads us to .
Dx’“ = da’® +F(B)dx +g8V, Agdx” -—g“A C e&x’e
(8.23) DA, =dA, Ty Agdx”—V A, da? ’
: B ——AG(B)g“(V,Aada;"-—-—CfaeA.,ax’F),
by use of V. A, :
In consequence of (3 22) and (3.23) the relations between both con-
nections are expressed as
Do'* = 5*a/*+g°* (V, Apda” —A,Clye e,
DA, = 8% A0 (38 — Aucarg®®) VA, dat — A, C%,50'7) .
Of course, the formulae (3. 24) are easily derived from (3.9). Besides
this there are many special KawacucHr spaces in which such a con-

nection as in (3.23) can be mtroduced for example, in KawAcucHI
speces with matrics = Y

3. 24)

1/

8 = f a, (x, 2') a,;(x, &) "z 4+ 2b (x, x') a; (x; x') x”‘+c’ (x, x’)} vpdt ,
) ‘ . . ; 77 '
s = j{ A (x, ") 2"+ B (x, 2, x”)} ~dt,

we can introduce concrete WIRTINGER’S connections into the spaces.

§4. Covanant derivatives

To 72* and v, in double vectors (7, v.), the covar1ant der1vat1ves
based on the special WIRTINGER’S connection which is introduced in K
can be defined making use of KawacucHr's covariant derivatives.

The base connections in the KawacucH1 space are ‘defined by

Fv-m, 1 ija@ = 3x(2m ])j_(a j'*'@t )dx(nm l)¢+"7:€‘o /ajj dx(a)i ,

a =0 "m-—l
20m—1 2m —p —1 ” w2l . R = R ""”(-’m—p—i)’f
F* E Ap. p+1 Z @'t(l)kdw = ox™

(az +@i —~>dx<°m peie g N CAf daet (p=1,2, -, 2m—2) .
=0 2m-—-p-—1
Making use of these qonnections, \,,on;e ‘may rewrite (3.4) as

- 4.1) SX¢ — 2%17,§“>Xi.3x<u)j v  (0x =da?) , .

a =0
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where

fozm_l)Xi - X(flm——ﬁj ,
(4. 2) .
V%p)X'i = sz)j 2 V(A)Xi/l +I'kJXk ' (p:O! 11 2; et 2m_1).

A=p+1

It should be noticed that | |
gpXt=0" . @»=12,---,2m—1).
By use of KawacucHr's covariant derivatives
| rpxt ®=0,1,2, -, 2m—1),

the covar1ant derivatives in our case can be defined as follows.
From (3.9) the relations between the Kawacucur's connection and
the WIRTINGER’S connection are

a  ___. a a ‘3()1
| Dzy. =" +g" ((‘;u7 — 878.3,78) ,

DU,; = e — <5ay a;; g ><3UT__3—U—;—‘ 6’78) .

Y,
Therefore, corresponding to (4.1) we have the following .expressions
2m—1 2m—1 A .
Z‘ 4 7% Bx‘“s , o = 2 Vavg 828 |
a=0

" Making use of the above expressions, one derives

e _TSE  ascars (TR B (28 By LT E 8 a8
D,y 12_7377 ox +97 <2—VBU,"6x _W 3_2—-17877 < OX )
2m A a ‘ av
EO(VW +g? Val) _g )77 787 >5x(1)a
2m—1 R
= Ny v“-&x‘““ ,
ilfo
where we put
Dl a __ X o a ra A " ra OUy A 3
4. 3) Y _:Vw + 9" Vgu,—g an? Vey
a \
~7377 +g”<VBUv e p ’75>

Similarly
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_ 2m—1 & . 3u 2m—1 &
Du, = 3 Vv, 52;(1)8__(3:“ a > 2 7 0y o220

1=0 77 a=
+ (60‘7_ aua grB 3U'r ‘WE]V 778 N abad
_ ' 7 377 a=0
*=°l AN TN et e
2m—1 A
= E DVﬁUu'ax<a)B ’
A =0

where we put

a . A .\
DVeUa = VsUa - <3a7__ %{%978>Vel)r +<3ar_ *“aia‘g”s)—a‘lig'peva

ant
A
o= B0 )b - i)

It is valid to adopt these expressions defined in (4.3) and (4.4) as the
covariant derivatives in our case; so, when they are applied to the
special KawAGgucHI space in the case of the connection C

> a . « a ot
Ven* =Ven'+g” (VBUT_ a:}; 73775> ’

4. 4)

; a ’ a a 4 8 ’
ey =Van*+g" (hw——ﬁ%—%f)

are obtained.
Putting

a

x’, u,,EA,,,

X
]

and taking care of
VBx’“ = O , V%x"‘ == 3; , V’BAa = AR(B) ,
one obtains ‘
0
DVBxM = Vﬂxm+gya(VBA'r"'Ar(a)VBx,8) - gTaVB A'r ’
1 .
W ol = Vo g7 Py Ay — Ay 5, V2 2?)
=85 +9"" (Arys —Ar3y0d) = 04
therefore as the result we have |
(4.5) Dx'* = g"* Vs A,dx® +5502'" .
On the other hand, from
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D’;eAa = VEA,,V—‘({)‘;’;A;(é)g‘YB)(VéA, A, iV x'?) :;:Ana(e)gm!?e?Ar ’
D&sAu =VeAs— @ - Aai,9" ) A — Ay e'?) = Aaee »
We can derive
4.6). DA, = A0 VA, dnt + VLA 0" |
In like manner, applying (4. 3), (4 4) to the spec1a1 KAWAGUCHI space
with the connection C,

0
J)VBx/a — V xla +gra (V A Z;lv' V x/b)

L 1 - ’ '
: DVBx/u = P x/a+gra<7 A ; 2;4-7 V' x‘/a ,

DVOel Aé =V A.— (54 — a(B)g B)(V A Ar(mV x'®),
Wy Ae = VA= (7 — Aacsrg Vi Ay — Ay 5,V i)
are derived, so that paying attention to
V,at=0, 7t =0f, V= Aim—C’”Ak,
we have : o
DVOB ot =g VA, ,
DVlsx'a = 85 +9"° (AT(B)_C-&aBAB'—Ar(S).aﬂa) ’ ,
o, A, = 7= O = Aucart” N0y = Arcy < 0= Aucat™ T Ay
DﬁeAa - Aa(e) —C! aeA (5 a(vB)'gTB)(Av(E)“C-areA’a”‘Arca)ag)
= Ay, —Ausy9"?C% A, .
From these results we get at once
Dy'* =gV, A,dxs+(3B“——g”C?,BA3)3x’B ,
DA, = Ausy9" Ve A, da® +(Auce, —Aucsr 9" Che A;) 02°

Other covariant derivatives in our special KAWAGUHI space can be de-
fined but the details will be stated in §5. ‘

4.7)

§ 5. Covariant derxvatlves in a special KAWAGUCHI space
On the connection of a special Kawacucur space with the metrics

{ : /p
s = {4+ B} at,
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we have developed the outline in §3 ard on the other hand, on the
covariant derlvatwes coming in contact with them we have touched

very briefly in §4.
In §5 covariant derivatives subjected to the WirTinGER’S connection

and relations with the KAWAGUCHIS derlvatlves will be stated some-

what in detail.
The Kawacucur’s differentials in the case of connectmn C are

’ 3(6)() — dJ ) +F k) U’ dx ) B(C)Ui == dU,z.‘_ F (,,;)(_‘]c) Ujdx
, * (base connection) ' ox't=dx"*+ I dx’ ,
so that we have - '

AV -V I

C C
=V 0tdx? + V007,
where we put
C Z Z C - i‘
_ ot At : . v
(6. 1) V= 27 am’ it Daopnv® Vf’?? ar’? °

i

Similarly

N gk g BYs k
Tloyn;) dx* + Py o/

©, —
0P, =

( vy, Duy I, —
Yo

Er ax’t ax’t

Jos " ,
VjU.,;dxj +V_;U¢5x/j

Il

where we put *
£ oV,

V0, E—ax” .

c
J— au,,; oV
(5. 2) Vv, = Py ax’i’ I'éy—

From (3. 15) KAW'AGUCfIIS differentials in the case of connection C”

At
ICon v

expressed by ;
6(0’)/)1; = dl)z + F*?jkl)jdxk + C?j/cujdx,k ’
6(0’)U¢ = dU.i — F*'ngl)jdxk — C?@kUjdx”C 9

(base connection) vt =dx"+ I'lyda?

where we put ‘}

Rewriting the above expressions we have
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B(CT)U?; = d()i +[‘€j)(lc) Ujdxk +~C?jk0"6x’k ’
3(0,)0,5 = du,,—f'{i)(,c)uj dxk——-C’;k ')jﬁx’k ’
so that
, v’ v’
B(C )U‘i = < ax" _—'ﬁrfk)"}‘ sz)(k)’) )d’t + ij ) (IJ”‘
(44 C”
=V, vtde? + 7 s
5.2y |
, ou oV 1)
6(0 )Uz :(?x‘z—_ ax,‘il F(k)“l" F(i)(k) Uj)dx + ( i "—C ik Uj) Bx”‘
(¢4 C’
= le)idxj'*‘V;Udax,j
are given, where we put
c’ i ] : i Z
. ov v i OV
Vjt)'t = axj —~a—x—,—l— F€D+Ff,c)(j)u" ’ )V_jl)'z = W j'l—C?kj')k ’
(5. 3)
c’ c’
__ ovu ov . __ OV
VJUi = “aTj-a—x,%' (J) —I'¢ @HYx Vive= Et’if —C% 01

Quantities given by (5.1), (5.2)‘and (5.8) are Kawagucur’s derivatives
from which the next relations can be obtained easily

C’

Vju =V;v,
(5’ 4) C . C'
3 Vo, =V;vu,,
If we put _

the expressions

,

5. 5)

C’

are given by (5. 4).

c
V,xt = iju =0,

c
Voot =Viat=2s%,

c’ c’

le)'i - V';U':+C?kj()k ’
CI’ C/ k
le)¢ == VjU,,;-'—C.ijUk .

Ai ’ U’t = x,i N
c ¢ .
Vj A, = VjAz = Adj_Ai(l)réj)’_Alrf¢)(j) ’
c c . .
V‘;Ai': V;A “"‘C{cijA/c:A,t(j)_AkCl.kij

Since
oU; 1 "
D©yt = dnf +g“< — " gy — 2 3 w1 %"’(”77’9 e’
v, _ du av " n "
D(C) vy = dv; — {ax; o 87761 g* l( ax’; — ond Gy —2 3’72 Honat >} dxj'

are derived by use of (38.9) or (38.17) in our special KawacuHr space
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applying the WIRTINGER’S connection based on the connection C to a
double vector (7*(x'), v;(x, 7)), one obtains :

€8 — 3? dax’? + (3’)/&_
D®y v+ g ox?

3 /ci( g
= ) -7 <+
) ($)] g axj

1 ax”
w W’
= Vprde? +Viytox’ ,

where we put

14
— 05y — 2

oy .
muo_z-a‘v‘;i“ It 7’) dx?

aUzFIu h]_dxj+ an’ Sx'?
P an Y f a7

w _ a oV,
V= S T+ 9“(5-‘““:11(;)(/:) —2 ',; Coxan 7 )
(5.6) ” . ' '
 Ppr= 20
| 3= it
Similarly

D©y, = 2V s i OVi "
ox? ' ax'?

I__ 8')¢ av m
. l 87,7 axlm (j)

w : W’
= Vv, de?+V ;0,007 ,
where we put
- w
au, arnt
Vip, = — i e/
(5 7) jYe 877 ax/m (.7)
) E’U _ ou; Y
e = ar/ ax/’ °

i [ Bs 3 _aaf BVs

gkl

- g _Umrg;)(lc)

\ax? oy ox?

el m ’
23%:“ Iy )} dz’

oU,
ax?

—_ Uml-‘?;)(k)

;'2 Z;};‘ r ("m)(j)’?my da? + 22 27

ox'?
j avl ax/j

Y] m av
9“(  — 0 Gy — 2 - F(m)(j)’? )’

ax?

Put »'=2", v,=A, and substitute them in (5.6) then we have

w
Vx = Fj)+g “(Ary—

By the use of

Alrgj)(k)_ZAl(k)rgj)) .

c
VjAk == Akj Ak(z)ru) F(kxj)Az y

we have such other forms of the above expressions as
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.0 W .,
(5.. 8) V@t = _F(f>+g“(VJA + ¢ p90) = 9" V A,
‘ I/Vij/'i — 6i V x/z

On the other hand, from (5.7) we are led to

W

VA, = — A lipn+Aing” (A,cj_ A, I m)_2 AT
(5.9) = —4Awl <lf>+Ai<l>9“(7 s At Ll gum)
C
= A@(l)ng A4, ,
VA'—Aim—VjA I

The expressmns (5. 8) and (5. 9) give rise to relations between Kawa-
aucnur’s derivatives and WirtingER’s derivatives in the special KawacucHr
space, and it goes without saying that these relations comcuie with
those shown already in (4.5) and (4.6). g

W1th the aid of

B(C)xh: D;C) /¢ — zc%,ﬁ A
D“’)7/ D“”ui are expressed respectively by
C
(5.10) D©yt = V gt da? +l7; 7 (D@x!? —g*V, A, da®)
W.i W,iuc p W, O ,'j.
| = V=V 9"V ; As) da’ +V ' D@7
- w w c
(6.11) D©y, =V u,da? +V;0, *(D@x’j —g*I V A dx®).
w W
= ("0—V30,9% A/c) dx? +V v, DY,

"The geometrical meaning of (5.10) and (5.11) is that if the Wir-
TiNgER’S differential D©x’" is adopted as the base connection, the
covariant derivatives are given by (5.10) and (5 11) Denoting covariant
derivatives by symbols : - ’

w w w )4
, 'Vj"/i v Vs Vives Vive,
we have
w w w ¢ w w
(5.12) V' = ij"—F’,pig“VjAk ’ Vin* = V7’
’ o w w c o ow W
V V; = Vjui zUigv,lejAk ’ Vo, =V o,

From (5.8), (5.9), (5.10) and (5. 11) the relations among each kindi.‘of
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covariant derivatives can be derived.
Now we put »’=z"?, v,=A4, in (6.12) and we have

PR w o w w c s w
(513) ijli — p’jxli__fo./i kL7 .Ak — O Vj 't = 3
W g w

In the KawacucHar’s covariant differentials 3‘“77"’, 0y, with the con-
nection C we take the WirTiNGER’s covariant differential D®xz’* in place

of the base connection §“xz’””. Then we have
B(C)qu — Vmidxj+l7}7]“‘3‘0’x”
C . C \ . c
_ j‘vidx.f_’_ vt (DOwI—gHil , A, dar’)

C

= Vﬂ,/ —-V 77 sz A )dx +V sz((I)llj

C
0@y, = Vjv,;dxj.—}-V}U.iB@x’j »
c c , c
= V,u,de?+ V0, (DCx?—g* 'V, A, dx?)
¢

C C C
= V0, —V;0,0"V , A® da? +F 50, DO’

Puttin’g B

c c
(5. 14) ch)vt = V,fde’+ 7 sz(C)x/j ,
) ' c
8Oy, = ij dxj + V ), DO
one obtains '
- c ¢ cC c . c c
(5. 15) Vit = V' =Vin'g"¥ ; Az Vi =V,
- C c c c c c
VjU,; - VjUi—VEUiglejA-k y V,’i’)’o - V.;U‘Z .

Therefore, in the case of 7=z and v,=A4, (5.15) becomes

C c

C C
x/t = ij,i_‘V;x,(zngVjAk — _gkz'VjAk,,

Nia
Q.

&
— ijlz — 63 ,

Q.
8
-
|

(5. 16) . c
=V;A,—A,,,9"V; A, = (67— z(l)g )V A,

V!ln Qﬁh o
>

C K
= Vin = Az'm .

The above stated are relations between two kinds of covariant deriva-
tives in the KawacucH1r space with the connection C.

R
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‘When we take the connection C’ in place of connection C, (3.9)
or (3.20)Y gives rise to

Dyt = dy*+ g“{%;’; —(Tton + Clul' ) va—2(L Gy +Clasl i) 7*

x 22t} dat+ g~ Cleyor—2C 7 S ) da”
(5. 16Y
= Ff’,vidxfw;rfaxw ,

’ ov 1)) ou 3 ,
D€y, = dui_[‘a’x‘;’_ 827: g {ax]; — L exsy + Clul'{p)oa

—2 I+ O Tty 1 2 1] da?
+ 2 C1F _(m — 0™, 42 PV mY dtd
377l g %3 Um 537 —3’7]7: T |

W’
= Vjutdxj+7'ju¢3x’j ,

where we put

w’ 3 a3 ‘ - ‘ 9
Vi’ = azj +g* {—a;l§ (Ll +C¥al ) v, — 2 (Céh)u)'*'th; L/ :;l}
Fo ) o]
- { aZ”' +9* (_C Al 2C%Lw° lﬂ)‘ I'ty
v e o s OU
ij)’l"____ az’j_'_gki(—C{ijl—ZC.lajv ‘877—/2) ’

it o, f av - Bm
vV, =22% g* E (I »+Cx, I ,— 27+ CR )t —2
i ot g9 \ 2z’ (I Coxcn wid () Vs 4 L Goen (W AN/ 2" | |

Vg 2 m m 3 o m
._.[ aJ + Uf g ( .kh0m~20.3h7 a;k )} ?J) ’

lax”” ay
v =23 au m avm

Taking 7’=a’%, v,=A4, in the above expressions we have

V5 = g% {Aw— Ty + Chal't) A2 (s + Claul i) 0 Arcey }
— {05 +9* (—C4UA,—2C 02" Aiu)} T'lyy o
= g"{Ax— (Fuocj)‘*‘u i) An—20(pAun}t — F En+9"Clnd
= " (Ary— Al o — 2 Ay — AnClii T ) — Tl + 9% C10 A, T,
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ki ¢ ki 4 '
= g*"V; A, + 'ty — 9" A Chully— i+ 97 ClLaAd Y,

i
=g iVjAk ’
W’ .
Vot = ‘5;+g“("‘C-lijz"‘ZCfaJxlsAz(lc)) =085—9g* Chil,,
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w’ .
VA, = Ay 0 {Asy— (Ll + Coul i) An—2(L oy + sl er) B Ay}

—{ A+ A9 (—C1 A, —2CT, 0 A i) } Tl
= Az(ng (A,c, Al e — 2Am(/c> rs)—Awl'
= A«z)Q (V A+ Ay Il — 24,051 Y) — Al = A g” V Ak,
W‘I
V; A, = At(j)_Ai(l)g C’-'ZjAm = Am)(ﬁj g* s A,)
(444 cr
= A {85— 9" (Awpn—V 40} = Ay (35 — 9% Arp) + Ay 95V As
Summarizing these results we get
-4 14 kic’ W” Z Y7 I
(5. 17) V" = g™l Alc ’ Via* = 05—9 ClisA,,
w’ . (54
V As = At(l)g V Alc ’ V; A, = Ai(l)(a.li_gklA/c(j)+gle_;Alc) .
. 17) yields at once '
o W
Vj A, = A g8V ;AL = AV 527
and similarly we have
W‘/ Cl CI
V;wli — V}x’i"—gkiAk(j)'l"gkiV;Ak .
Accordingly one obtains
) w’ ) c’
ViA; = Awyy(0F— A9+ Ay @™V 5 Ay
. 'WI CI
= A5 — Aoy I+ Ay O3 —V 52" + 9% Arcy)
WI C’ W’
== Aw)V}x’l"‘Ai(z)(aﬁ"V’ﬂ’”) = AV a0,

namely there exists

w’ w’ w’ W:
(5.18) VA, = AW, VA = APt

Similar relations appear in the case of the connection C maklng

use of (5.8) and (5.9), that is

: w w
(5.19) ' 'Vj As = Aun V, x'* VA, = Ay Vix'*

Moreover the followihg relations
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3

' w 7. . .7 w
(5_ 20) VjAt — A(“k)yj'wlk,, , V;A'z — Az o V’xllc

come into existence, but in fact 7 jA and 7 jx’i are both zero. Apparently
5.17) corresponds to the WirTINGER’S covariant derivatives g1ven by
(5. 8) and (5. 9). o

Now we are gomg to.define covarlant derivatives when we take the
WirtingeRr’s differential in p]ace of the base connection '3z, . From
(3.24) we have

DOt = a g7 (P A drt— A CHu00) | :
= (07 — 97 A, C*,) 0" + g7, A yda* = Aow' + gV, A, dx’

where we put
45 = 6 _—gﬁAlchjl ,
B(C)xl’i = 5'(0’)in __—_—-___:(lei ,
T w0
Vil =T, A=A,

Since the determinant |4 does not vanish in general there ex1sts
the conjugate tensor 47, and 4:4= 5! holds good. ’
Thus we have .

(5' 20)/ oxlt = 4 D(Cr)xl/c_ 4% g%* Vz Ajdxz )
and (5.16) brings into existence
v oo w: .
Dw”wf =V >f'dx’+l7 mox? =V midx? +T7 '7;¢(AfD<°”x”‘ — 49, A, dx™)
- (Vj7 __V viAIL lijAl) dxj +£7 viA/cD(C )x/j
—_— V vidxj_l_V 77'1? D(C )xlj ,
D(C Ro— Vjuidx +V oy 3:1:” = juﬂx +Vj u,,i(AjD(C 't — AlgtT A dx™)

W

(ViU’”—Vh Uidlcg ijAz) dx? +V W 45D )x’j

N

V uidxj+V vy D“”x” ,

where we put

- -

(5. 21) V' =V 7 _V ARGV AL, Vjﬁ = V;ﬁ]’d
) W w’ w ‘ : w

Vs =Vi0,—Vw,diV;A,, Viv, = Vk v d% .

l

Making use of
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gtV A, = W
in (5.21), then we are led to
E} : W : N ?Zr - e WI
V x/i P ij/i Wh x/z V.;_xli — A;:V;c xl'l y
S S

therefore in consideration of (5.17) the relations between them and
KawacucHr's covariant derivatives are expressed by

¥

Iaft = g A — W (3 —g"Cla 4)

N

jx”' = 4 (az MCZM: l) ’

Ny

(5.22) , o
in = Az(z>g 4 Ak W Az(a) (5h g“ Ak(h)+gle;LAk) ’

N g

A = AjAz(g)(Bh g Ak(h)"*‘g V Ak)

The covarlant derivatives wh1ch correspond to (5 16) are.obtained
with the aid of (5.2Y and (5. 20y, for whlch we put

6t =7 v*drj+7 yow =7 p’dxf+l7’7y“D<C @,
. c
8Cy, = V;,ugdx’-!-Vjuﬁﬁx’j — Vjuidx +V 0, DC %7,

where
’ (Z (044 ' E q: c’ .
V' = rj’? _V ° 4 "‘"VJA,, , Vigt = V;ﬂ?iAI; ’
‘C/ . Qf, ) C’
7.77] = VjUz"VzUle g i An ’ Vive = V;cuidldc .
Accordingly,vve have at.once
¢’ cr c , o c
v /1:___7 1 _ P apl? z___ @ 7 V/ilc__Ai,
(5. 23) C,a; ; x 1% wi, . wi, Cj x4
| P A, =T AT AW, ~m—VAmj
The following,relatlons can be easily derived from (5. 23)
’ ¢ ¢ c
(5.24) V A, = V ANV AT ot V,A, =V, AV 2",

where (5. 24) corresponds. to (5.18) or (5.19).

Various kinds of covariant derivatives are defined in the special
KawacucHI space, but it is possible to define other covariant derivatives
which are not involved in stated cases. For examle, we can define a
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covariant differential taking the WirTingER’s differential as the base
connection

(5 25) Dyt — dUt + sz)(lc) Ujdxk -+ C?j/c UjD(C,)x,k ’
D(W')U,z = dU,g —_ [“(jd)(/c) U; dxk - Cjz;]c oF D(C’)x,k 9

so we have

A ‘ ¢ '
(5.25Y Dyt =2 _qgt + O dut 4 It o pidat+ Cly ' DCOx*
ax* ax’* X

On the other hand, multiplyng
DOl = fisw’?+gHV, A dxt, by 47
we have |
da'* = 45 DCx’I —(I'E+ 9 a4V A) da®
by thé‘ use of
A2 D gt = dx'* + g¥t a2V A dxt = da’™ + l‘&dx’+g""‘4§‘7 Adet .
Substituting the above result in (5. 25)’ and p'utting in order, then

J
4 (2% 45 4 0o 0 DeogrE
o7 Ok -3a U €

Dyt = f L +r(m)u U ,+g”A"V,,A)] d*

is obtained. ,
Then, after some calculations we have -

31) v ,
DPv, = 5 e da’ + ax/in da'™ — Iy 042" — Clypv , DOx'*

2 ; ~ |
= { a;zi — Iy vs— (F ) +g44v IcAl)} dx*

4 (aau, 47 —C" chj) DCOyt®
After substitution of
D€ = Afox’ +ghP, A,dx*, dx = o' — fj)dxj ,
in (5.25) we get |

. : aui . ,
D(WU” = axf da? + a /j dx;’ + Il pyvida® + Cly0? DCO g%

— ;"j da’+ =2 ou" 70077 — Il ')+ T ey v? dt*
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+ C%, uj(/ll" ox’’ +

g7, A, da)

%
::(au - ax P(j)+r(k)(j)u +C¢llcu gth A ) dxj

ax’

+(a

—(VjU +C% 0%

similarly

DP v, = WV, 0,—Cluo,g™V ; A,) da? +( aw

is obtained.

+Aj Ciu > o'’

C ik Ul) 874.” ’

—4 ;‘Cfi_ku,) Szt
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The covariant derivatives in this case can be deﬁned as usual,

namely

B * * ' Coxk )
Dyt =T, vtde? +V 08w =V jotda?+ V' D%

E 3 k3 Kk *
Dy, =V o,da? + V50,80 =V p,da? + V0, D%

where we put

* : v
mVjUi = ,le)i"l’“C?lkUzgthjAh y

%
VjU,; = Vjui_C?ikU;gthjAh R

sk %

& oV n

V0t =V ;00— mgl 4.V;4,, »
S Bu, *
V oy = V0, — 500 A L

Vv,

i

ox

ov
L — Ajk Clw U;

ax’?

v’ k2
At +AjC.UcU ’

Taking v=a"*, v,=A, in the above expressions we have

f;jx/z =V,x" =0 ‘,

P A, =V,A, — CWA, g™ A, ,
}jx,i = —g"4.V;4, = —W,,
;;',A; = Vin“Adcm.gmdﬁijz

= Vd At"‘Ad(,h)W-hj ’

* -

Vet =0},

'3

V;Ai - Ai(j)_AjC‘ikAl ’
i .

Via* = 45,

£

—C% 4,
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Various covariant derivatives related to the special WirTiNGER’S
connections in the KawaAcucHi space have bheen defined and it goes
without saying that various tensors or identities should be derived
corresponding to these covarian’c_ derivatives.

§ 6. Curvature tensors and identities in a special
KAWAGUCHI space

_ Of the special KawacucHl space we have discussed in §5 concer-
ning its proper covariant derivatives given by KawacucHr and other
covariant derivatives based on the WirTINGER'S connection. Also we
have treated the relation between them.

The covariant derivatives in the special KAawagucHr space 1ntroduced
with the connection C are expressed by

cC Z .. C : Z
Vu‘z:;_au__a_u z_+['¢ NG 'V’Ui:i
i ac? B’ LD NV s J 2
C s
__ oug aU¢ 273 4 __ 9y
Vo, = ax? T ax’t F(j) F(z)(f)’)/c , Pios = ax’?

which are shown already in (5.1) and (5. 2).

From the parenthesis of Poisson for the covariant derivatives, we

find
. C C C C C (44 C',
6.1) - Vo=Vl po* = —RF0+ K V0,
) ’ c ¢’ ¢ ¢ c
V=PV vt = —Bio*,
where

ced — T
Bﬂczz =T (DD »

c .
PRI A2 al ¢y
R = 7 (zku“) - axf( + I

v » ¢
o% (D(J')I R - P(l)(k) F(i)(h)

Sh [ 13 (3 .
+ U T v — Lol oy

C ' [ .
al’t,, ol
K--z = (¢ (k)+F I —I». I .
J& axk ax DL WL @BWE DWW »
are all curvature tensors in our space.
The identities among these curvature tensors can be found easily as

follows :
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C C

R +Rit =0,

C C C

R +Rii'+ R =0,
C

R[jklfli == O ’

C C

C
B2 =0,

These curvature tensors
C

c ¢ :
veed ..
R;¢, B!, K

are all found in the equations of structure of the connection C

Y =ldr’ wl] =0,
-~ C
& = (Y +[wfo’] = — & Kji* [da dat],
’ ’ C
Q5 = (0 + [0 0f] = — %ﬁ I%,;gf [dx*da’]— Bj;; [da* '] ,

when we consider the following differential forms

dxi_ » (l)i == dm’i'*‘ Ffﬁdxj ’ Cl)ij == F&X/ﬂ) dxk .

109

About the connection C’ it is the same as in the case of connection

C and from (56.4), the covariant derivatives

cr c
7ot =000,

¢ C ‘
P00 = V0 +C% ;0% ,
c c

Vy0; =V,0,,

¢ c

Viv, = Vio,—C%; v,

are derived.
The parentheses of Porssox are
v c Ccr (o4 C" C - c’ C"
ViV —ViV ot = —RiF0'+ KV,

oo C , )
’ ’ e k2
(Vij-“ kpj) U, = _—Bjkl [ +C.j/chU ’
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I C/ C/ C’ C/ C’

(!7 Fe—Vils) ot = — it 0t —2C% 1V 0",

where

Rj/cz = Rj/cz +Kjlc Cia s

1 4 )
i : A 3C%: | *n ¢ 12, p ‘
Bﬂcl. =1 @b T C-kkr(l')(J) - 7 + C-lk(k)l Ph F(h)(j)c-llc + F(Lj)(k) C-m

Cl
= I'tonar—V31Chs »
CI RN .
P;i = C?lj(lc)ﬁcl-zlk(j)_f—kalcc-hlj —C?,;C%z
are curvature tensors and identities and
C’ s c’ P
R/+R:;;*=0,
PR O o c c.
Rjii' + Rif + Riji’ = Kji"Clu+ Kii"Cly+ K" Chs
S | . ; »
(6. 3) R(j.;c;)i = 0
(l
Pm + Pkﬂ =0,
P(j',;;)‘ =0  ete.

can be easily verified.
The equations of structure in our case are

= [dxj (Uji] = j/c [dxj(() ]

¢
Q= (@ +[ws0’] = — é Kj,c [dx’dx’“] C [j,c][w 1) ]
9 = (oY +ewlof] = — %— R [ da® dxl]——B ;c'l'}i [dx "],
14

“2—‘ Pklf[w (U]

under the differential forms
dxi Py (l)‘i —= dx,i + F" dxj (l)g- pmavand ['i(j)(k) dxk + Ci ik a)k

Based upon these preliminary cons1derat10ns we are gomg to discuss
the cases WIRTINGER’S connections. «

Since
£ ' £
0Oyt = qutdq.j_'_ V;biD(C)x/j ”
c c
and the relation between F;u* and V;v* is
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4 c c

—~ C C Y C
V0t =V ,;0° =P 9"V ; A, = V;0°+ 8,700,

j
where we put
S = ——g"‘lngk ,
so that we have
¢ c ¢ c c ¢ ¢ c
V, V0t =V V04SP 00+ 7, U5+ S,V U, ,
the parenthesis of Poisson is expressed as |

¢ C c C c C

cc
(V V.—7, Vj)u = W,V, —V V)U +S VVkU — S5V ;0
C
-SLr.Uy,

where we put '
c
L =S5V, ,

From (6.1) and the following expressions

C C 2,.% 2 g [
= oV , 2V V" g+ ; 3
Vol vt = 25 3x”.  ax"ax’’ 'y, TS %oy + Tinasat™ + Iy
C Z z -
BU. aU. vy v A
7, Us = aa:’@ - ax”k o+ non Ul—1 ék‘)(i)-U?z ’
'g, Ui _ 8S ?Lk an : n a‘z()i ‘
14 kT 1 T amin 'k It !
ax 2 ox'"2x

the parenthesis of POISSON is led to

c C ¢ C

(6-4) (V V _V V )U _‘( Rj/cl +1I (l)(k)(n)s F(l)(.i)(’n)sk)u

aSh _ aS,
ax? ax*

+ (K +_rgj>(,z> S TlsST +

ax /e B axln y

T ooed, 1 ’“’..z"' 3
—Rjkl 7] +Kjk VZU y

I

where we put

) (4
cred . sef ¢ - S
jrl = lecl +27 O] nj] ’

‘;Uh

. :
Kj'r'f = K;i! + 20 10 STy + 2 aick 2 aSU Dy + 28!

Since

AaS e EN )V

N 2

U

av”

axll

’

111

n éSkJ
s 5% I
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112.

C C 2 3 ~2,,¢ ,

=, = 7V 2"V au”

V'V, =——— i d (p— [' + I'% v+ I

F A axj ax/k ax/nax//c (€ 855 [€)IC} IINED XD T aw
aS: av? ;. vt
s e TV et
32 U'z 32’)6 z ’ 73 81)’ Y] aut 7 82 Ui
i+ T WD 5 7E T I oo + 52 )

C ¢
V,V,uot = —-
737k . ax/k axj ax/kax/l

another parenthes1s of Porsson is computed as

cc
(6. 4y (VJVIQ—*V/cVﬁUz: “sz/cU "H jlcV ’
where we put’ ‘
c c z
Bl.lcj = Blk;: ’ H{jlc = ‘5&7? .

The identities which correspond to (6.2) or (6.3) are

(J -C .
Rjn:l + Rlcjl - ’

C
Rt + Bt + Rt = 0,
c : c
Ej}c-l-«;x/l — Kj'/'ci
£ ~ < £ :
Bi*a" =0, Ki'+K; =0, etc..
Similar treatment is allowed in the case of the connectlon C.

As we have
4 0/ . C’r

c
V0t = Pt —aFS,T 00,
» gl Ct
Vot = A5V 0f
, C, ¢ ¢ oo

Q/ g; lold C‘ c. —
Vijuz:—_Vij- ‘-—VjS‘ —S¢ VVlu -—S’VV,CU
- C/ - C/ - - C’ C’

; +S?jV;Sf’7',chUi+SijT"kV;V;nui,
where we put

St = 4£87,,

the parenthesis of Poisson is computed as follows:
¢ cr ¢ o oo

v C , _
(A4 Vj)u = (V V,—V,7 ) +(7,8: j_V S0t + 50, 7 — P37 o
BN A PPN A BEIN AT

l (J/ I C!

+§,5 7, PP
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c c c c o c . C - c
- _‘Rj.k.l.il)l+Kj.];lV‘lUi+(Vkaj—VjS?k)VlUi+S€j("‘Bk.l.,;ij+CznklUi)
- c’ % - O - - -
—84(— Byt + Oyl o)+ (87784 — S 81 Vot
~ =, C’ C', )
+S848%(— Pymnto®—2C%,,.,V 0%
Cr - Cl - Cr . — - C/ :
= —(Ryi;*+S™; Byt —S™ Byt + 8% 87 Pymi®) V°
= = 194
+S7Clm—8m Clim) V 10
c C o~ o~ - C o~ ~ o~ o = c
+(Kj',;’+Vkaj—V,ka+S’Z”jl7;,,ka—S’?,chS?,—ZSf‘jS’t‘ka[,,;nJ)_V,u‘? ,

therefore the above expressions give rise to

()/ Cr

(6. 5) (V V _V Vj)u — —_—Rjkl 7] +ijlVlU +KjlclVlU »

where we put

(014

-—v’ —-— C’ .
lecl »— lecl +2S [jBlc]ml Sffisw-bkpr'n;bii 5
. c
K= K,';;’+ZVC,CS jJ+ZS Vim

ijl = 2§9fz[ijk3m .
Making use of

o o

Vit = 42750,

o ¢ e o o
V00 = V0t —AFSLV 0t =V ;00 =87V ,0°,

R Cc lsd
we substitute 7,v%, Fo* in (6.5). Then we have
, co oc < c ¢
(6.6) v, V —V Vo' = =R vt +J 5V, + K V0,
where we put ‘
Kjil = 4, Kjin + 8t i
The parenthesis of Poisson (6.6) corresponds to (6.4) and what corre-
sponds to (6.4Y is obtained as follows. N
Since
cc oo _ o o _c
ViVt =V, V' =S4V Vvt =V (A,"V’-ui).——Sf V’(A‘;V’u“)
c’ . C C -G .
=V, 47V ;00 + 4V, V;0*—S87, ASV v —87, A"V V v,

accordingly -
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Q/ g,/ Q 2/ . Cr C/ C’ C/ - C/ C/ - Ur C’
(V,C-V"—'V’V AVt = Af(V»V =PVt + 4785V, =V, P ) v’
4 14

b 7o de =S A5 — 477,50 Vot
= _Aj(Bkjhi'*‘S Pjshi)’) +(AJC j) th +( ZAljS C[Sj]
c '. v C’ (84 T

+F .S S”V Aj — 477 Sk)V,Lu
_ —-ék'l',fu"—i—a V 1} +E ]CZV U ’

where we put

Q . . Cl ‘. - C/

Byt = 47 (Bkjnz+s P ianl)

a'-h/cz = Ale?L'kj - :

' — o~ - C. Jig

E.k/cl = —“ZAljS?kC.]L[&jJ"}‘VkS{LlbS?]ch Ajh‘— IJV;S{L/,; .

So that, from " '

[0 O o %4
V=P,V Yot = "—'Bklh v+ C* Z(V,,u +S7 V U)+ b AmV, vt
we get at once ' '

c ¢ c C

C . -~ ¢ |
(Vk Vz“VzVQUi == —Blc'z'z'inh'*‘C-hu VhUz+E{LsznUi .

NG

where we put

In the same manner one obtains
o oo < £, <
where we put
1% o
Pk.l‘l;i = AlchSPj:s.h:i 5
C’ oY -
c™, = (—4, w7 LAk + 4, fV G424 8C ) A7 .

From the Kawacucur’s differentials 6%, 6¢°v* based on the con-
nection C and the connection C’ respectively, two kinds of covariant
derivatives are introduced according to the selection of base connec-
tions, i.e. the one represents KawacucHr's proper base connections and
the other WirTINGER’S base connections. ,

In these cases the relations between KawacucHr’'sS curvature tensors
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and WirTiNGER’S have been already developed, moreover the same con-
sideration is applicable to the WirTiNGER’S covariant derivatives derived
from D¢,

But we should devote our attention to the cases of D®u? and D™,
in which the vector v* is not a general vector but a vector included
in the double vector (v¢, v,), therefore it is impossible to continue our
discussion as was done above.

In the case of D™ uv* we have

% *
Dyt = T vt da? + 7yt DO

where we put

%k 3 i
o v auv® . =
14 ";—_————-—____._I“l __S’l +[‘i v

s ax?  ax? ( ’(j> j) @DHY

<%

" av’ AI4+Ct . 0°
s = ey el O TN

accordingly taking
T, =TrI!,-8

we are led to
x x
k. ok 0 ]
.k P St e X x
ViVrvt = - I'}+ Lip sy Vi’ —Lhypn Vo0

*
*

ax? ax’’

and the parenthesis of Porsson is expressed by

£ *
* % 7 ,é 7 1 *
X X av..u aV. . =
¢ .. T ET _ CTLEY  gw i A
Vi Vo' = 2 ax? Lot It Vi
— 8]16)[(,«) 8l 1"—1’h I ' Jao 2
= T\ oH + L oo L+ L Goras L iaowm ) v
ol 71w\ 90
: + ( L4 e, T} B
axk] tewa £ 43 o1t
Substituting
EDX = i
ax’t T A7V 50t — A7 Cl y0*

in the above expression, then we have

*

k *k
t __ T oo, 1 IF L7, .4
I¢]U — —Rjkl v +Kj/c VZU ’

| %

<
¥

2

%)

where we put
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al (s
D4 25 e L+ 20 S T

3
Rt =2—33— “or

8I'
+2< 2% o +Frk|(p>1['ﬂ>/1 Cn s

) o F 5
Kﬂ = Z—chj“ +2 I ' -
Similarly since
* X o ¢
(Vj Vk 4 VJ)UZ - (A,c I’(m(jxn_rchxnc j,c-—V,C' hk) v*+C!

i 3t
i

* -
+ V48—l 4 + T iy A —C 0 T™) — axm

. . ok ~ x
= —(Alcl[’fh)(f)(l)—rgk)(l) C-lj/c‘“VjC?hk).Uh‘f‘ijk (VzUi"}‘ 3% ImF Fém)(l)u )

% —~ ,..,' *
+ (V40— Tl did + Ty did — Cljp I 1) (A7 Vvt — 45, CF,07)

= “{Akz (h)(ﬁ(l)_['(h)(l)c J/c—V Ci Ic+Cij(th)+(V Ak Ffl)U)Alcl

+Fj<z)Ak)A C?} o™+ C% -nU +(714k It pdi +Fj(l)dk)A VnU ,

we get
x % X % * : * *
P V=Vl = —Bii* v+ C% V0t + A 0t

sk
B’ = 4¢ s — Tnvey Clyn — V 1Ch+C e iy

+ @, 4¢—Dlyp 4+ Ty 44) 4:Ch

k
Ajtr = V48— i+ T A7) A2
Another parenthesis of Porsson can be computed as follows
% * 3k Z
([7 V 7 j)U"' — ’ng'/hzk“djl* aC? nj A+ C:;ZJC “"C?l/chhj

-+ C{jkcz:hl_c-lkjcf:hl> Uh+(C{jkAlh__ cl h) a ——

i g7 acm A,c+cuch,c—cl,ccm+cj,ccm —C,,Ch,

—(ijkA,p~kajAlp)Ap8 C?M] v+ (Clyp—Ch ) 4,24, 7;0’ ,

: since
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one obtains

* X xox - =
PiVe—Vilpov® = =P’ v" + 207,V 0",

where we put

Pt = a);,, 4f— a” —~A,c +C?,C,.—C%. Cly .
Identities which correspond to Biancur’s identies can be obtained from
coefficients of the bracket expressions
[det do? da*], [da’ da? ot], [daf o’ w*], [of @’ w*]
involved in the Pearrian form |
(28— [ws 2£] + [Lwt] = 0

or can be derived from covariant derivatives.

For example, the Biancur’'s identities in the case of the WIRTINGER’S
connection based on the connection C can be computed as follows.

Since
c¢c ¢ ¢ ¢ c c c c cc
(Vth v, R )Vk = —thz zU +RM V i+Ké}lV;VkUz s
¢ ¢ ¢ c c ¢ cc ¢ c ¢¢
27 V V —Vhﬁykl v _lecl V/zUl‘l“'VKJiZV;Ui+K}kZVhV;Ui ’

one obtains

(4 4

c c c ¢ ¢ c

T i,z I -3 7 P .17 BY 22,

— VR v — R Vagv" + Ve K ig Vo' + Kt VagVi0°
¢ ¢ ¢

G Vvt + Reisia' Vot + K

Il
:cm

namely

¢ < £ £ ¢ C £ <
~VenRsin* + Koy By o'+ Ten K jid — K7y Stae)Viv* = 0.
Then we have at once
¢ c . ¢ ¢ ¢ C
6.7) VinRjid + Ky Beyid = 0, Vein K jii—Kiry” Sl =0. _
The former of these identities corresponds formally to the Kawa-
cucHr’s, while the latter adds the term involving

'« — 9S4
S'k(r) == *éaa/;

in the Kawacucur’s form.
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Similarly, from

c cc cc c c c £ c s c.c
VIL(VjV,Ic“'V;ch) v = Vthkl v “Bj/cz Vyvt— VnS{j(ic) VzUi—Sfj(;c) V,7ut,
¢ ¢ c c ¢ ec o ¢ c c ¢ c
V}C(Vth—Vth)ui = V/thjl v ~—R,miV,CU +V;CK ZVZU +K,;;ZV}CV;U‘ s
c ¢ c  C ¢ L c e 4 c c C
“_Vj(VhV;c“V;chDUZ — VthkleZ_}_Bhkl U +V Sh(k)V UZ+S§z(1c)VyV;U ’
[ c ¢ C e ¢ c 4 4 ¢ c
(V’LVj—Vij)VkUZ = "'thszkUl—*"thllV;Uz'{'Kh]lV;V,kUz y
A c ¢ c £ L L ¢ c ¢
—(VhV;c“‘Vk Vfa)Vjuz = B Vle~Bhkjl Vo +S (35 V;VjUz ’
¢ C c ¢ ¢ 14 ¢ ¢ ¢ C
(V v Vij)VhU?;— ”‘Bj'lc'szhUl+ Bﬂch VzU S J(lc)V; VnUi ’
one obtains
e cc
~(2‘7ULBJ¥J/¢ + V2R3 — S Bhrz+Sﬁ(k)Bdrl ) vt
¢ e c
. *‘(ZVchS j](lc) +R jnz"‘V/,eK 'j.l_Sd(lc)S-k(.r)“’f‘S-h(lc)S-j(r)) V;Ui =0 ’
so that the identities
¢ c [
(6 8) 27 B l +Vlthjl +zsch(7c) Bj]rl - 0
‘ C c
) 27, St j](lc)+thk "‘Vka +2Scmcmlsﬂ(r> =0

are the required result.
Identities (6.7) and (6. 8) are the Biancur's identities in our case,

in which the tensor S§’; characterizes the WirrtiNncEr’s connection based
on the connection C and our identities correspond completely to Kawa-

cucHr’'s identities except the tensor S%.
The present author is grateful to Prof. A. Kawacucur for his

constantly kind advice.
‘Faculty of Science, Hokkaido Univ.,
Sapporo, Japan
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