ON THE MAXIMAL SPECTRALITY

 $\mathbf{B}\mathbf{y}$

Takasi ITŌ

Let R be a Hilbert space and $\mathfrak B$ a totally additive set class in an abstract space $\mathcal Q$. Asystem of projection operators $E(\mathcal Q)$ ($\mathcal Q \in \mathfrak B$) in R is called a $spectrality^{(i)}$ in R on $\mathfrak B$ if (1) $E(\mathcal Q) + E(\mathcal Q^c) = 1$, and (2) $E\left(\sum_{i=1}^\infty \mathcal Q_i\right) = \bigcup_{i=1}^\infty E(\mathcal Q_i)$. We say a spectrality $E(\mathcal Q)$ ($\mathcal Q \in \mathfrak B$) is maximal (due to Prof. Nakano's suggestion) if

- 1) for any finite measure ν on $\mathfrak B$ we can find an element $x \in R$ such that $\nu(\emptyset) = ||E(\emptyset)x||^2 (\emptyset \in \mathfrak B)$, and
- 2) \Re_E is a simple ring, where \Re_E is a closed projection operator ring²⁾ generated by $\{E(\Phi); \Phi \in \mathfrak{B}\}$.

 \Re_E is $simple^{3)}$ if and only if for any projection operator P that is commutative to \Re_E we have $P \in \Re_E$.

In this paper we shall show that for any given Ω and \mathfrak{B} we can construct a Hilbert space R and a maximal spectrality $E(\emptyset)(\emptyset \in \overline{\mathfrak{B}})$ in R on \mathfrak{B} , and moreover R and $E(\emptyset)(\emptyset \in \mathfrak{B})$ are determined uniquely within an unitary isomorphism (Theorem 1). Conversely for any given R we can find Ω and \mathfrak{B} for which there exists a discrete maximal spectrality in R on \mathfrak{B} . But it is known in Wecken [1] that if the dimension of R is cotinuum, there exists in R a maximal spectrality on the Borel sets in the real line. If R is separable, we can prove that there is no maximal spectrality other than a discrete one (Theorem 2).

Theorem 1. For any given Ω and \mathfrak{B} we can construct a Hilbert space R and a maximal spectrality $E(\psi)(\psi \in \mathfrak{B})$ in R. Furthermore such R and $E(\psi)(\psi \in \mathfrak{B})$ are determined uniquely within unitary isomorphism.

The method of the proof is essentialy same as in [1], so we give an outline only, about details refer [1] or Nakano [2] Chap. V.

Let $\mathfrak{M}_{\mathfrak{B}}$ be the totality of finite measures on \mathfrak{B} . From the property of $\mathfrak{M}_{\mathfrak{B}}$ as a Boolian lattice and Maximal theorem we can find a maximal

¹⁾ cf. [2] § 28.

²⁾ cf. [2] § 14.

³⁾ cf. [2] § 20.

 $T. It\bar{o}$

system $m_{\lambda} \in \mathfrak{M}_{\mathfrak{B}}(\lambda \in \Lambda)$ such that (i) $m_{\lambda} \perp m_{\lambda'}(\lambda \rightleftharpoons \lambda')$, that is, if $\nu \in \mathfrak{M}_{\mathfrak{B}}$ is absolutely continuous about m_{λ} and $m_{\lambda'}$ then $\nu = 0$, (ii) for any $\nu \in \mathfrak{M}_{\mathfrak{B}}$ we can write $\nu(\emptyset) = \sum\limits_{i=1}^{\infty} \mu_{\lambda_i}(\emptyset)(\emptyset \in \mathfrak{B})$ for suitable countable measures $\mu_{\lambda_i} \in \mathfrak{M}_{B}$, $\mu_{\lambda_i} \prec m_{\lambda_i}$, $i = 1, 2, \cdots (\mu_{\lambda_i}$ is absolutely continuous about m_{λ_i}). Putting $R = \sum\limits_{\lambda \in \Lambda} \oplus L^2(m_{\lambda})$ and $E(\emptyset)\{f_{\lambda}\} = \{\mathcal{X}_{\emptyset}f_{\lambda}\}$, where $\{f_{\lambda}\}$ is an element of R, $f_{\lambda} \in L^2(m_{\lambda})(\lambda \in \Lambda)$, and \mathcal{X}_{\emptyset} a characteristic function of \emptyset , we obtain a spectrality $E(\emptyset)(\emptyset \in \mathfrak{B})$ in R. This spectrality is maximal. Because by the definition of $m_{\lambda}(\lambda \in \Lambda)$ it is almost evident that the condition 1) of the maximality is satisfied. The condition 2) and the uniqueness of R and $E(\emptyset)(\emptyset \in \mathfrak{B})$ are obtained by the following facts. Denoting by $[x]_{\mathfrak{R}_{E}}(x \in R)$ the projection operator of the subspace generated by $\{E(\emptyset)x; \emptyset \in \mathfrak{B}\}$, then $[x]_{\mathfrak{R}_{E}}R$ is unitary isomorphic to $L^2(m_x)$, where $m_x \in \mathfrak{M}_{\mathfrak{B}}$, $m_x(\emptyset) = ||E(\emptyset)x||^2(\emptyset \in \mathfrak{B})$. Let $C_{[x]_{\mathfrak{R}_{E}}}$ be the cover⁴) of $[x]_{\mathfrak{R}_{E}}$, then $C_{[x]_{\mathfrak{R}_{E}}}$ is equivalent to $m_x > m_y$. And \mathfrak{R}_{E} is simple if and only if $[x]_{\mathfrak{R}_{E}}[y]_{\mathfrak{R}_{E}}=0$ and $C_{\mathfrak{C}^{2}\mathfrak{R}_{E}}=C_{\mathfrak{C}^{2}\mathfrak{R}_{E}}$ imply x=y=0.

Let R be any Hilbert space and a_{λ} ($\lambda \in A$) a complete orthonormal system in R.

Putting
$$Q = A$$
 and

 $\mathfrak{B} = \{ \psi; \, \varphi \not\ni \lambda_0 \text{ and at most countable or } \varphi \ni \lambda_0 \text{ and } \varphi^c \text{ at most countable} \},$ where λ_0 is a fixed index, and for $\varphi \in \mathfrak{B}$ $E(\psi)$ is the projection operator of the subspace generated by $\{a_{\lambda}; \lambda \in \varphi\}$, then obviously \mathfrak{B} is a totally additive set class and $E(\psi)(\psi \in \mathfrak{B})$ is a spectrality in R on \mathfrak{B} . We remark that if R is separable, $\mathfrak{B} = 2^{\Lambda}$. A projection operator P belongs to \mathfrak{R}_E if and only if P is the projection operator of the subspace generated by $\{a_{\lambda}; \lambda \in S\}$ for a subset $S \subseteq \Lambda$. For $x \in R[x]_{\mathfrak{R}_E}$ is the projection operator of the subspace generated by $\{a_{\lambda}; (x, a_{\lambda}) \neq 0\}$, hence $[x]_{\mathfrak{R}_E} \in \mathfrak{R}_E$. Therefore \mathfrak{R}_E is simple ([2]th. 20. 3). Next for any $\nu \in \mathfrak{M}_{\mathfrak{B}}$ we put $\mathcal{Q}_1 = \{\lambda; \nu(\{\lambda\}) \Rightarrow 0, \lambda \Rightarrow \lambda_0\}$ $\mathcal{Q}_2 = \mathcal{Q} - \mathcal{Q}_1$, then $\mathcal{Q}_1 \not\ni \lambda_0$ and at most countable, and we put $x = \sum_{\lambda \in \mathcal{Q}} \sqrt{\nu(\{\lambda\})} \ a_{\lambda} + \sqrt{\nu(\mathcal{Q}_2)} \ a_{\lambda_0}$, then for $\varphi \in \mathfrak{B}$

$$\begin{split} ||E(\mathscr{Q})x||^2 &= \sum_{\pmb{\lambda} \in \varOmega_1} \nu(\{\lambda\}) ||E(\mathscr{Q})a_{\pmb{\lambda}}||^2 + \nu(\varOmega_2) ||E(\mathscr{Q})a_{\pmb{\lambda}_0}||^2 \ &= \sum_{\pmb{\lambda} \in \mathscr{Q} \cap \varOmega_1} \nu(\{\lambda\}) + \nu(\varOmega_2) ||E(\mathscr{Q})a_{\pmb{\lambda}_0}||^2 = \nu(\mathscr{Q} \cap \varOmega_1) + \nu(\mathscr{Q} \cap \varOmega_2) = \nu(\mathscr{Q}) \;, \end{split}$$

because $\nu(\Omega_2 \sim \Phi) = \nu(\Omega_2)$ or 0 according to $\Phi \ni \lambda_0$ or $\Phi \not\ni \lambda_0$, hence $m_x = \nu$. Therefore this spectrality is maximal. We call this spectrality discrete.

Theorem 2. In a separable Hilbert space a spectrality is maximal if

⁴⁾ cf. [2] § 14.

and only if it is discrete.

Proof. Let $E(\emptyset)(\emptyset \in \mathfrak{B})$ be a maximal spectrality in a separable Hilbert space R. As R is separable, by Maximal theorem there are $e_n \in R$ $n=1,2,\cdots$ such that $[e_n]_{\mathfrak{R}_E}[e_m]_{\mathfrak{R}_E}=0$ $(n \succeq m)$ and $\bigcup_{n=1}^{\infty}[e_n]_{\mathfrak{R}_E}=I$. If we put $e=\sum\limits_{n=1}^{\infty}\frac{1}{2^n}e_n$, then we have $[e]_{\mathfrak{R}_E}=\bigcup\limits_{n=1}^{\infty}[e_n]_{\mathfrak{R}_E}=I$ ([2]th. 14.5). If $E(\emptyset)e=0$, then $E(\emptyset)=E(\emptyset)[e]_{\mathfrak{R}_E}=[E(\emptyset)e]_{\mathfrak{R}_E}=0$, and hence $\emptyset=\emptyset$ from the condition 1) of a maximal spectrality. From the separability of R we can take out $\emptyset_n\in\mathfrak{B}$ $n=1,2,\cdots$ such that $\{E(\emptyset_n)e\,;\,n=1,2,\cdots\}$ is dense in $\{E(\emptyset)e\,;\,\emptyset\in\mathfrak{B}\}$. Putting $\Psi_{\{\delta_n\}}=\prod\limits_{n=1}^{\infty}\emptyset_n^{\delta_n}(\delta_n=1 \text{ or }-1),\, \emptyset_n^{\delta_n}=\emptyset_n \text{ or }\emptyset_n^{C} \text{ according to }\delta_n=1 \text{ or }-1, \text{ then evidently }\{\delta_n\} \leftrightarrows \{\delta_n'\} \text{ implies }\Psi_{\{\delta_n\}}\Psi_{\{\delta_n'\}}=\emptyset, \text{ and we have }\sum\limits_{\{\delta_n\}}\Psi_{\{\delta_n\}}=\Omega.$ Next if $\Psi_{\{\delta_n\}} \leftrightarrows \phi$, then $\Psi_{\{\delta_n\}}$ is an atomic element in \mathfrak{B} , because if $\Psi_{\{\delta_n\}} \ncong \emptyset$, $\emptyset\in\mathfrak{B}$, then

$$||E(\Psi_{\{\delta_n\}} - \varPsi)e||^2 = ||E(\Psi_{\{\delta_n\}})e - E(\varPsi)e||^2 = \delta > 0$$

for any positive number $\varepsilon>0$ $(0<\varepsilon<\delta)$ we can find \mathscr{Q}_{n_0} such that $||E(\mathscr{Q})e-E(\mathscr{Q}_{n_0})e||^2<\varepsilon$. For such n_0 we have $\delta_{n_0}=-1$, for if $\delta_{n_0}=1$, then $\mathscr{Q}_{n_0} \geq \mathscr{V}_{\{\delta_{n}\}}$, therefore

$$\epsilon>||E(arPhi_{n_0})e\!-\!E(arPhi)e||^2\geqq||E(arPhi_{\{\delta_{n}\}})e\!-\!E(arPhi)e||^2\!=\delta\!>\!\epsilon$$
 ,

and it is a contradiction. Therefore $\delta_{n_0} = -1$, and hence $\emptyset \subseteq \mathscr{Q}_{n_0}^{\mathcal{C}}$, so

$$||E(arPhi_{n_0})e\!-\!E(arPhi)e||^2\!=||E(arPhi_{n_0})e||^2\!\dotplus||E(arPhi)e||^2\!<\!arepsilon$$
 ,

hence $||E(\emptyset)e||^2 < \varepsilon$, since ε is arbitrary, $E(\emptyset)e=0$, namely $\emptyset=\phi$. As R is separable, we have $\Re_E = \{E(\emptyset); \emptyset \in \mathfrak{B}\}$, and hence $E(\Psi_{\{\delta_n\}})$ is atomic in \Re_E , and the simplicity of \Re_E , we obtain that $E(\Psi_{\{\delta_n\}})$ R has one or zero dimension. From the above mentioned $E(\emptyset)$ $(\emptyset \in \mathfrak{B})$ is a discrete spectrality. q. e. d.

Finally I thank Prof. NAKANO for his many suggestions.

Refereces

- [1] F. J. WECKEN: Unitarinvariant selbstadjungierter operatoren, Math. Ann. (1939).
- [2] H. NAKANO: Spectral theory in the Hilbert space, Tokyo Math. Book Series, Vol. IV. (1953).