ON THE MAXIMAL SPECTRALITY
By

Takasi ITO

Let R be a Hilbert space "and B a totally‘additive set class in an
abstract space #. Asystem of proiection operators E(?)(@€®) in R is

called a spectmlzty" in Ron B if 1) E@+E@)=1, and (2) & (Z (l>
=¢L_J’E(¢'¢). We say a spectrality E @) (¢'E§B) is maximal (due to Prof.

Naxkano’s suggestion) if

1) for any finite measure » on ¥ we can find an element x€R
such that v(@)=|E @)|’ (@€eB), and

2) M is a simple ring, where R is a closed projection operator
ring® generated .by {E(2); ¢€B}.

RN, is simple® if and only if for any- prOJect1on operator P that is
commutative to it we have Pe S%E

~ In this paper we shall show that for any given £ and B we can

construct a Hilbert space R and a maximal spectrality E (¢)(@€®B) in
R on B, and moreover R and FE (&) (P€B) are determined uniquely
within an unitary isomorphism (Theorem 1). Conversely for any given
R we can find £ and 8 for which there exists a discrefe maximal
spectrality in R on 8. But it is known in Weckenx (1] that if the
dimension of R is cotinuum, there exists in R a maximal spectrality
on the Borel sets in the real line. If R is separable, we can prove
that there is no maximal spectrality other than a discrete one (Theorem 2).

‘Theorem 1. For any given £ and B we can construct a Hilbert space
R and a maximal spectrality E(¢)(@€PB) in R. Furthermore such R and
E(@)(2ePB) are determined uniquely within unitary isomorphism.

The method of the proof is essentialy same as in [1], so we give
an outline only, about details refer [1] or Nakano [2] Chap. V.

Let My be the totality of finite measures on B. From the property
of Ms as a Boolian lattice and Maximal theorem we can find a maximal

1) ecf. [2] §28.
2) cf. [2] §14.
3) cf. [2] §20.
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system m,€EMy(A€ M) such that (i) m, L ma (Axd), that is, if vefRy is
absolutely continuous about m, and m,. then »=0, (ii) for any vE Mgy

we can write v(@) = L,uu((L) (@€PB) for suitable countable measures

i, €Mz, pa, My, t= 1 2,---(ua, is absolutely continuous about m,,).
Putting R= L, @Lz(ml) and E(@){f.}={%sSf1}, where {f,} is an element

of R, [, EL”(m ) (A€, and X, a characteristic function of @, we obtain
a spectrality E(@)(@€®) in R. This spectrality is maximal. Because
by the definition of m, (A€ 4) it is almost evident that the condition 1)
of the maximality is satisfied. The condition 2) and the uniqueness of
R and E(¢)(@efB) are obtained by the following facts. Denoting by
[#]z, (@€ R) the projection operator of the subspace generated by {F(d)x;
2€B}, then [z];, R is unitary isomorphic to L’(m,), where m,€ My,
m.(Q)=|E(@)x|*(@€B). Let Cray, be the cover® of [x]s,, then Crugs,
=Cryiz,, is equivalent to m,>m,. And R is simple if and only if
[])e, [¥]e,=0 and Cruar,=Crs, imply x=y=0.

Let R be any Hilbert space and a, (1€A) a complete orthonormal
system in R.

Putting ' Q=4 and

B={&; @2 and at most countable or @31, and ¢¢ at most countable},
where 4, is a fixed index, and for @€ E(¢) is the projection operator
of the subspace generated by {a,; A€@}, then obviously 3B is a totally
additive set class and E (@) (¢€B) is a spectrality in R on 8. We remark
that if R is separable, $=24. A projection operator P belongs to Ry
if and only if P is the projection operator of the subspace generated
by {a,; 2€S} for a subset S=4. For x€R [x]:, is the projection oper-
ator of the subspace generated by {a,; (v,a,)>0}, hence [x]; €Rz.
Therefore R, is simple ([2]th 20. 3). Next for any ve Ry we put
2={; v(§{A) 20, 2324,} 2,=9—L,, then 2,34 and at most countable,
and we put x= %ﬂ/ v({2}) ax +Vv(82) &, then for 0B

| & (&)xl* =M_Z;; V({R})IIE((I))%I\I“’+v(!22)IIE'(¢’)aMIP
= 2 y({x})+-p(g)nE((p)a,L’uﬂ:u((phg])ﬂ((pmg‘,):u(@

because v .Qm(ﬁ)—;(!,?o) or Q accordmg to ([‘a) or cpaxo, hence m,=v.
Therefore this spectrality is maximal. We call this spectrality discrete. ,

Theorem 2. In a separable Hilbert space o spectrality s maximal iof

4) cf. [2] §14.
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and only if it is discrete. v _
 Proof. Let E(¢)(@€®B) be a maximal spectrality in a separable
Hilbert space R. As R is separable, by Maximal theorem there are
€,€R n=1,2,--- such that [e,]s,_[€,]r,=0 n2m) and tx le.)e,=1 If we
n=1

o 1

put e=3 L c,, then we have [ele,= U [euln, =1 ([2]th. 145). If

E ()e=0, then E(@)=KE@)[el:, =[F(@)e]z,=0, and hence ¢=% from
the condition 1) of a maximal spectrality. From the separability of
R we can take out ¢,€Bn=1,2,--- such that {E@,)e; n=1,2,.--} is
dense in {F(®)e; ¢€B}. Putting

w{aﬂ} = 74 @2 (,=1 or—1), &3»=¢, or & according to 5,,:1. or —1, then
n=1

2

evidently {5,}>={0,} implies ¥, Yoy =9 and we have {25!’{8"}:-.9.
3.}
Next if Zis,359p, then V5,3 Is an atomic element in B, because if

Visy=? O€PB, then
B @5,y —Del'= | E(¥(5,4)e—E@)e|*=5>0
for any positive number >0 (0<e<d) we can find ¢, such that

|E(@)e—E(@,)el*<e. For such n, we have 4, =—1, for if 4, =1, then
@n,=¥¢5,y, therefore :

e > |E@.)e—E @)l Z |EW;,,)e—E@el'=5>¢,

and it is a contradiction. Therefore 4, =—1, and hence <@, so
|E@,)e—E @)l = |[E(@,)el*+ | E@)el*<e,

hence |[|E(@)e||’<e, since € is arbitrary, E(&)e=0, namely ¢=¢. As R

is separable, we have R,={E(¢); €B}, and hence E(¥,;, ;) is atomic

in Rz and the simplicity of RNz we obtain that E(¥;, ) K has one or

zero dimension. From the above mentioned FE(¢)(@€B) is a discrete

spectrality. q.e.d.

Finally I thank Prof. Nakaxo for his many suggestions.

Refereces

[1] F.J. WECKEN: Unitdrinvariant selbstadjungierter operatoren, Math. Ann. (1939).

‘[2] H. NAKANO: Spectral theory in the Hilbert space, Tokyo Math. Book Series,
Vol. IV. (1958).



