MODULARS ON SEMI-ORDERED LINEAR SPACES |
By
Michiyo MIYAKAWA and ’Hidegorﬁi ‘NAKANO

In an earlier paper [1], one of the authors defined modulars on
linear spaces and discussed their properties: a functional m(x) on a
linear space R is said to be a modular on R, if

1) m@=0;
" 2) m(—a)=m(a) for every a€R;
8) for any a€ R we can find a positive number a such that

m(@aa) < + oo ; _
4) m(¢a) = 0 for every positive number & implies a=0;
5) a+f =1, a, =0 implies for every a,b€ER
| m(aa+pb) < am(a)+Bmd);

6) m(a)= s;ézpjm(&a) for every a € R. '

For universally continuous semi-ordered linear spaces R, modulars
were considered with adding conditions: 7) |a] <|[b] implies m(a)<=m(b),
8) la| ~16|=0 implies m(a+b=m(@)+m®), and 9) 0=aalic,@ implies
m(a) = sup m(a,). (cf. [2]) '

In this paper we shall discuss modulars on lattice ordered linear
spaces only with adding condition 7).

§ 1. Modulars on linear spaces

Firstly we shall give a rough sketch of the properties of modulars
on linear spaces which are obtained in [1] and [3], and will be used
in this paper. Let m(zx) (x€ R) be a modular on a linear space R. A
linear functional #(x) (x € R) on R is said to be modular bounded, if we
can find positive numbers a, 8 such that

a Z(x) < B+m(x) for every € R.

) The totality of modular bounded linear functionals on R also builds
a linear space which will be called the modular associated space of R and
denoted by B. For each a € R, putting
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- (@)= sup {@(@)—m()}

we obtain a modular % on R, which will be called the conjugate modular
of m. Then we have the reflexive relation:

< #Am(a) = sup (3(@)—m®)} @EeR)
Putting ‘ - |
' , 1 A _
(1) / lell = inf -2 (@e R)

we obtain a norm on R, which will be called the second norm of m.
Concerning the second norm, we have

m(x) < ||| if |zfl=1,
m@ =l i fel=1.
Putting |
lal] = sup | %(a) ] . (a€R),

we also obtain another norm on R, which will be called the first norm
of m. Between the first and the second norms there is the relation:

lzll = Nl < 2=l (x € R).
The first norm also may be deﬁned as
(2) » el = ienj) ﬁ%@ (w.\6 R).

For the first and the second norm of the conjugate modular m we
have o

|zl = sup |Z@)|, [l = sup |Z()|
£t E)ist (xER, ﬁER» X
1% = sup Iw(x)l Izl = sup | ()] "

[Hafll= (=1

A linear functional % on R is modular bounded 1f and only if % is
norm bounded, taht is, :

suplx(x)|<+oo | (xER).

ACHES!
A sequence z,€R (u:1, 2,--) 1s sald to be modular convergent to x€ R,
if | k .
lim m(&@, —x) = 0 for every £>0.
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With this definition we have that a sequence z,€R (v=1, 2,---) is modular
convergent to x€R if and only if it is norm convergent, that is,

{iﬂ le,—=|| = 0.
A modular m on R is said to be complete, if
- lim mE@,—x,) =0 for every £>0
. VY, >0 . .
implies the modular convergence of the sequence z,€eR (»=1,2,--).
With this definition, a modular 7 on R is complete if and only if the
first or second norm of m is complete. The conjugate modular = of

any modular m on R is always complete on E.
From the postulate 5) we conclude easily forO0<e=<1

L e el 1+e
(3) m@=me)+ T M+t Toe m( e @—).

§ 2. Monotone modulars

Let R be a lattice ordered linear space. A modular m on R is
said to be monotone if |x] <|y| implies m(x)<m(y). With this definition
we have obviously by the formulas (1) and (2) in §1 that if a modular
m on R is monotone, then both the first and the second norm of m are
monotone too, that is, |z| <[y| implies |z <|lyl| and ||| =]y .

A modular m on R is said to be upper semi-continuous, if m is monotone
and 0=z, icav implies :

- m(x) = supm(x,). .
AcA
Theorem 2.1. If a modular m on R is upper semi-continuous, then the
second norm of m is semi-continuous, that is, 0=x,;11c,x tmplies sup |z, =|x].
AEA
Proof. 1f 0=<z;1ic,x and sup ||z,)|<||z]|, then we ean find a positive
AeA
number a such that -
- sup flazyf|< 1 <|fax] .
N AeA
Thus we have for such « _ '
Sau/? m(ax,) =1 < m(ax), 0=<ax,licsax.
5
Therefore we obtain our assertion.

A modular m on R is said to be lower semi-continuous, if m is monotone
and %3laec10, m(@,)<+co for every 1€4 implies inf m(x,)=0. If a
deA
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modular m on R is upper and lower semi-continuous s1multaneous]y,,
then m is said to be semi-continuous.

A modular m on R is said to be contmuous, 1f m is monotone and
Zalaeq 0 implies always 1nf m(xz) = 0.

T heorem 2. 2. Every contmuous modular s semi- contmuous

Proof. If a modular m on R is continuous, then m is obviously
lower semi- contlnuous by definition. Since 7 is monotone, we have for
0=xTaca® _ '

sup m(@,) < m(@).
¥y

On the other hand we have by the formula (3) for 0<e =1

m(l—_}_—e—x) <m<T*}j;xa>+%gm(m)+ —li—:m(“él?(x—xlD |

1+2¢ &’
=qre supm(xl)+ Trem ( 2(1‘-—(171)).

A

Since —1—2(2:;—901) 12¢40, we obtain by assumption
(S

1 1+2e
n(1¥e 2)S Tre supmi@).

Thls relation yields m(:c)<sup m(x), because sup m x) = mi(x) by
€>0

the postulate 6). Therefore.m is upper semi-continuous too.

Theorem 2.3. A monotone modular m on R is continuous, if and only
iof the first or the second nmorm of m is continuous: =%;laeq0 implies

inf {[z[]=0 or inf Hlfvlll—"—

Proof. 1t is obv1ous that 1nf HxaH—O is equ1valent to 1anx,LH{_

If m is continuous, then for ac;LLMAO we have 1@; 240 for every Y=
1,2,--, and hence we -can find 1,€4 (v=1,2, -) such that m(u, )<1

(v=1,2,:--). Then we have |jvx, [=<1, namely H(:vayﬂjg—L for every
14

v=1,2,---, and this relation yields inf lal]=0. Thus the second norm

of m is continuous.
Conversely, if the second norm of m is continuous, then for Talaca O
we can find 1,€4(v=1,2,---) such that |[vz, [|<1, and hence

m(@; )< Smb, ) <+
)%
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for every v=1,2,---. This relation yields ilnf m(aca):O‘. Thus m is
ea

continuous by deﬁnltlon
A monotone modular m on R is sald to be monotone complete, if

0= 2alaeas _ supm(x1)<+oo

implies the existence of Ux,. If m is monotone complete, then R
A€

must be unlversally continuous, because 0=<x;T:.,4, T»=% (A€ 1) implies
sup m(ax,) < + oo for some positive number a such that m(ax)< + co.
ReA

Theorem 2.4. A monotone modular m on R is monotone complete if cmd
only if the first or the second norm of m is monotone complete.
Proof. If supm(z;)<<a for some a>1, then we have
2€A .

1 1 ,
el << _ . <<
m( ” xl)_ " m(xa)h/l for every i€ 4

and hence sup H|anj|[§1, that is, sup |z, <a. Conversely if
, aeA a - Red

sup ||z, <a for some a>0, then we have
€A

sup m (%xl) =1.

ACA.

Therefore we can conclude our assertion.

Theorem 2.5. For any monotone modular m on R, its conjugate modular
m 1S upper semi-continuous and monotone complete.

Proof. The modular associated space B of R is always universally
continuous. (cf. [2]) The conjugate modular # is obviously monotone
by definition. If 0=<7%,12.,47%, then we have

m(T) = sxeuRpf {Z(@)—m(x)} = Sljeg {sup T, (x) —m(x)}

= sup {sup {;(@)—m@)}} = sup m ().

Thus 7 is upper semi-continuous. The first norm of m is the conjugate
norm of the second norm of m, and hence monotone complete. (cf [2])
Thus 7 is monotone complete by Theorem 2. 4. '

§3. Reflexivity of upper semi-continuous modulars .

Now we suppose that R is a univetsally continuous linear space
and m is a monotone modular on R. The totality of universally con-
tinuous linear functionals on R, which are modular bounded, is called
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the modular conjugate space of R and denoted by E. R is a normal
manifold of the modular associated space R of R. If m is continuous,
then the second norm of m also is continuous by Theorem 2.3, and
hence B=R. ‘

Theorem 3.1. If R is semi-regular and m is upper semzi-continuous, then
m 18 reflexive, that is, we have for every x € R ‘

m(x) = sup {Z (x)—m(x)}
TER :
Proof. For any O0xacP and »v=1,2, --, putting
my () = inf Max {m(y) 2v|al(|2])} for ze[a]R,

Izl =1y 1+l
we obtain a monotone modular m, on [@] R. Indeed we see easily that
m, satisfies the all postulates except for 4). If m,(x)=0 and x€[a]R,
then we can find 0<y,, 2, €R(«=1,2,---) such that .

(@l =vp+zn, Max {m(), 2|0l @} = o
and putting u, =U 2, (#v=1,2,---), we have
pzp
v|al (uy) = 22‘_‘}_0  (e=1,2,--)

and hence 2”]d|<ﬁ up,>—0. This relation yields ﬂ u,,—~0 that is,
%u!,2,0. Thus we have |x|—wu,1,2,|2| and ‘

m(ix|—u,u)gm(yp)§% (t=1,2,--).

Therefore we obtain m(x)=0, because m is upper semi-continuous by
assumption, and we conclude that m,(2)=0 and z € [@]R implies m(x)=0.
Consequently the postulate 4) also is satisfied.

The modular m, on [@]R is continuous for every »=1,2,.--, because
we have obviously

m(x)'<2A”|Cil(|x[) o for every xe[d]R

Thus the modular associated space R, of [@]R by m, coincides with the
modular conjugate space of [@]JR by m, and hence R, is included in
the modular conjugate space B of R by , because we have obviously

m, () = mx) - for every z€ [@]R.
Therefore we have for every z€ [@] R
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m,(x) = sup {F(x)—m,(2)} = sup {z(z)— m(z)} ,

TER v

because we have for wER,,
m(z) = sup {%(z)—m @} < sup {F(@)—m.,@)} =n,().
On the other hand we have
l,,iﬂ m,(x) = m@x) = . for every z€[a]R.

Because, for any x€ [&]R we can find 0<y,,z2,€R(v=1,2,---) such that

x| =y, +2,, m(yu)ém,,(x)+% , 2”|a|(z,,)<mv(x)+ __2]_'3 .
Then putting w,=uUz,(»=1,2,--'), we conclude %,],2,0 and
ozy

m (ol —w,) Sm@,) <m, @+ 5, Sm@+ 5,

as obtained above. This relation yields m(x) =1im m (x). Therefore
we conclude

m@) < sup {#@)—m(@}  for every we€[alR.

Since R is semi-regular by assumption, we have [a]xTuGEw and hence
we obtain furthermore

m(x) <sup {zZ(x)—m(Z)} for every z€R.
. ZER
On the other hand it is obvious by definition
| m(x)=sup {Z(@x)—m (@)} = for every z€ R.
TER

Thus we conclude our assertion.
Recalling Theorem 2.4, we obtain immediately

Theorem 3.2. If R is semi-regular and m is upper semi-continuous and
monotone complete, then R is reflexive and the modular conjugate space of R
by m coincides with the conjugate space of R.

§4. Semi-additive modulars

A modular m on a lattice ordered linear space R is said to be
upper semi-additive, if m is monotone and

m(a+b)=m(a)+m(b) for 0<a,beR.

Theorem 4.1. If an upper semi-additive modular m is wupper semi-
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continuous, then m s lower semi-continuous, and hence semi-continuous.
Proof. For «3]aca0, m(x)<+0(A€4) we have

m(xa)<m(xa) m(x,, ——xa) . for xag_xh,
because m is upper semi-additive by assumption. Since
. xao"‘xahagzloxao
and m is upper semi-continuous by assumption, we have

sup'1 Mm@, —%2) = m(x,) .
x/1<x
Thus we obtain m ()24 0.
A modular m on R is said to be lower semi- addv,twe, if m is monotone

and
ma~b) < m(q)+m(b) for 0<a,bER.

A modular m on R is said to be additive, if m is upper and lower
semi-additive simultaneously. Additive modulars are discussed in detail
already in [2]. When R is universally contlnuous, if a modular m- on
R is upper semi- contmuous and

m(a+b) =m(a)+m(b) for a~b=0,
then m is additive. (ef. [2]) |

Theo'rem 4.2. The conjugate modulars of the upper semi-additive modulars
are lower semi-additive, and the conjugate modulars of the lower semi-additive
modulars are upper semi-additive.

Proof. 1f a modular m on R is upp.er semi—additive, then for the
conjugate modular 7 of m and the modular associated space R of R
we have by definition for 0<%, 7€ R

m(@)+m(y) = sup {T(x)+7(y) —m@)—m@)}

= sup {z§;1p {Z(@)+7 (@)} —m(2)}

= sup {%V?(z)—m(z)} =m ('95\“?) ’

and hence 7 is lower semi-additive by definition. If m is lower semi-
additive, then we have by deﬁmtmn for 0<%, 5€R

m(@)+mG) = sup {a“(x)+?(y) m (@) —m(y)}

< sup {m(wvy)+y(xvy)—m(xvy)}

. Oxyr



Modulars on Semi-ordered Linear Spaces I 49

= sup {TR)+7R)—m@E)} = mE@+7),

and hence # is upper semi-additive by definition.

\ §, 5. Bimodulars

Let R, S be two lattice ordered linear spaces. A functional M(z, y)
(x€R, yes) is said to be a bimodular, if M (x,y) is an additive upper
semi-continuous modular on R. for every fixed 0xy€S,

M@, | +1v) =M@, y)+ M@, w),
Mz, By) = |B| M(x, y),

and for any x€ R we can find a positive number a such that

_ M (az, y)< + oo for every ye€S.
A bimodular Mz, y) (x€R, y€S) is said to be finite, if
Mz, y)< + oo for every z€ R, y€S.

If S is a normed space and-complete, then putting
‘ m(x)—supM(x,y) (x€R, yes),
we obtain a modular m on R. This modular m is said to be a norm-
modular of M by the norm of S.

Theorem 5.1. Ewvery norm-modular of a bimodular M(x,y) (x€R, y€S)
is lower semi-additive and upper semi-continuous.

 Proof. For 0=z, x,€R we have by definition

m(@,-w) = sup M(x,~@., )
b s?p M(x,, y)+ sup M (., y) = m(x.)+m(x,)
ES! _

because M(x,~x,,y) < M(x,,y)+ M., y). Thus the norm-modular m is
lower semi-additive.  For 0=<x;1:c,« we have by definition

m(x) = sup M, y) = sup {sup Mz, )}

llyll= llyfls

= sup {sup M(@,, )} = sup m(z,) .
AcA  Jyilsl - ke

Thus the norm- modular m 1s upper semi-continuous by definition.

Theorem 5.2. If a bimodular M(z, y) (xe R, yES) is ﬁmte, then the norm-
modular of M is finite.

Proof. For each z€R, since M(x,y)< + oo by assumption, putting
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x@) =M@y )—M@xy)  @ES)
we obtain a positive linear functional x on S. Since the norm of S is

complete by assumption, this linear functional  on S is norm bounded,
and hence '

sup M(x, Y) < + oo : for every z€R.
llyli£1 .

L]

Thus the norm-modular of M is finite by definition.
For an additive complete modular ms on S, putting

m(x) = sup {M(x, y)—ms¥)} (x€ R)

we obtain a monotone modular m on R. This modular m on R 1s sald
to be the double-modular of M by mg.

Theorem 5.3. FEvery double-modular of a bzmodulav' Mz, y) (x€R, yES)
s upper semi-additive and semi-continuous.
Proof. For 0=uwx, x.€R we have by definition

m (@, +a:) = sup { M@+, Y)—ms(y) }
= sup {M (@, )+ M (2, y) —ms(y)}

= sup {M(x,, Y1)+ M (2, y2)— ms(?/x‘“?/v)}

0<y1 yze

= sup { M@, y)+ M (2., o) —ms(y)—ms ()} = m(x,)+m(x.),

0=y,,v,€8
because ‘
M(xl +x2r ?/) 2 M(xll y)+M(x2; y) ’
MU~ Ye) = ms(Y) +ms(Ye)

Thus the double modular m is upper semi- addltlve For 0=z, Taen ™
we have by definition A D
m(x) = sup {sup {M(x,, y)—ms(y')}} = sup m(z,).
yes Aea : . : aecA

Thus m is upper semi- continuous. Recalling Theorem 4. 1, we conclude
therefore that m is semi-continuous.

Theorem 5.4. Let mg be a complete, addztzve modular on S. For a bimo-
dular M (x,y) @€ R, y€S), denoting by m, the double-modular of M by ms and
by m,, the norm-modular of M by the first norm of Ms, then we howe

My (@) < m,, (2) for m,(x)=1,
my(x) = m,(x) Jor m,(x) =1,
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and the second norm of m, coincides with that of m.,,.
Proof. If M(x,y)<+co for every y€S, then putting

z(y) = M(x, y*)—M(x, y~) (y€S)

we obtain a positive linear functional z on S. Since the modular My
is completée by assumption, this linear functlonal x is modular bounded.
Thus we have by definition -

m, (@) = M), m,, (%) = mxm

for the conjugate modular #s of ms; and the second norm |[|z|| of, .
It M (ac y)= +co for ‘some y€S, then we have obviously by deﬁmtlon

my(x) = m,,(x) = + oo , |
Therefore we conclude that m,(xr) <1 implies mix)<m,(x), and that

m(x)=1 implies m,(x)=m,(x). Consequently the second norm of m,
coincides with that of m,. ) S

§6. Proper bimodular

Let m be an additive upper semi-continuous modular on a univer-
sally continuous -_semi-ordered linear space R, and & the proper space
of R. We denote by D, the totality of such dilatators T in R that

for any x€R we can ‘ﬁnd a positive number a for which
JOEL p)madpay < oo .
Then, putting ’
M. (x,T) :j(_'ﬂ p)m@ps)  @ER TeD,)
®

we obtain a bimodular M,. Here we see easily that D,, is a semi-
normal manifold of the dilatator space and 1€D,, because M, (z, 1)=m(x).
This bimodular M,, is said to be the proper bimodular of m.
For a semi-normal manifold D of D,, containing 1, and for a com-
plete norm ||T'|| (T€D) on D, putting
m,(x) = sup M, (x,T) (xe R),

)7 &1, TeD

we obtain a norm-modular m, of M, .

Theorem 6.1. If the modular m on R ts monotone complete, then every
norm-modular of the proper bimodular M, of m also is monotone complete.
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Proof. If 0=<wx,lics, SUD M, (®;)< + oo, then we have by deﬁnition
e .

sup m(x,) = sup M, (%1, 1) < + o
red ded -

and hence z, (A€4) is bounded, because m is monotone complete by
assumption. Therefore the norm-modular m, also is monotone complete.
For a complete, additive modular m,(T) (T'€D) on D, putting

md(x) = sup {M,, (x, T)—m»(T)} (x € Ry,

we obtain a double-modular m, of M,

Theorem 6. 2. Every double-modular of the proper bzmodular M, of m
also s additive.

Proof. 1f Mm(a:, T)<+oo for every T€D, then, putting
%(T) = j( ,P)m@ps)  (TED),
[+

we obtain a posxtlve llnear functional z(T') (T € D) on D . Furthermore if
x~y=0, M,(x, T)< +oco, M,(y, T)<+oo for every Te€D,.

then we also have z~y=0 considering both « and y linear functionals
on D, and hence

. Mop(X+Y) = #p(T)+ My (Y)
for the conjugate modular #, of m,, because m, is additive by assump-
tion. On the other hand we have by definition '
f mp(x)  if M,(x, 1)< +oo for every T €D,
| QIR if M,(x,T)=+co for some TE€ED,
Thus we conclude that x~y=0 implies m,(@+y)=m,(@)+m,(y). There-
fore the double-modular m, is additive. (cf. [2])

Theorem 6.8. If the modular m on R is monotone complete, then every
double-modular of the proper bimodular M, of m also is monotone complete.

Proof. For an additive complete modular m, on D, we can find
a positive number a such that m,(a)< + oo considering a« a dilatator in
R. If 0=Zx,11e4a and Slllg ma(®2)< + oo, then we have

mq(x) =

- supm(x,) =Lsup M, (x,, &)g—l—{sup my(x,)+mp(a)} < + oo,
e a e a = aed e ' .

and hence z, (A€A) is bounded, because m is monotone cemplete by



'Modulars on Semi-ordered Linear Spaces I ' 53

assumption. Therefore the double-modular m, also is monotone com-
plete by definition.
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