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Let $R$ be a universally continuous semi-ordered linear space. A
functional $m(a)(a\in R)$ is said to be a modularl) on $R$ if it satisfies the
following modular conditions:

(1) $ 0\leqq m(a)\leqq\infty$ for all $a\in R$ ;
(2) if $m(\xi a)=0$ for all $\xi>0$ , then $a=0$ ;
(3) for any $a\in R$ there exists $a>0$ such that $ m(aa)<\infty$ ;
(4) for every $a\in R,$ $m(\xi a)$ is a convex function of $\xi$ ;
(5) $|a|\leqq|b|$ implies $m(a)\leqq m(b)$ ;

(6) $a\wedge b=\backslash 0$ implies $m(a+b)=m(a)+m(b)$ ;
(7) $0\leqq a_{l}\uparrow aRC-.4$ implies $m(a)=\sup_{R\in\Lambda}m(a_{\lambda})$ .

In $R$ , we define functionals $||a||,$ $\Vert|a\Vert|(a\in R)$ as follows

$||a||=\inf_{\xi>0}\frac{1+m(\tilde{\sigma}a)}{\xi}$ . $\Vert|a|_{1}^{1}|=\inf_{m(\text{\’{e}} a)\leq 1}\frac{1}{|\xi|}$ .

Then it is easily seen that both $||a||$ and $\Vert|a\Vert|$ are norms on $R$ and
$||_{1}|a\Vert|\leqq||a||\leqq 2\Vert|a\Vert|$ for all $a\in R$ . $||a||$ is said to be the first norm by $m$

and $\Vert|a\Vert|$ is said to be the second norm by $m$ . Let $\overline{R}^{m}$ be the modular
conjugate space of $R$ and $\overline{m}$ be the conjugate modular of $m^{2)}$ then we
can introduce the norms by $\overline{m}$ as above. It is known that if $R$ is semi-
regular, ,the first norm by the conjugate modular $\overline{m}$ is the coniugate
norm of the second norm by $m$ and the second norm by the conjugate
modular $\overline{m}$ is the conjugate norm of the first norm by $m$. Since $||a||$

and $\Vert|a\Vert|$ are semi-continuous by (7), they are reflexive norms (cf. [7]).
If a modular $m$ is of $L_{p}$-type, $i$ . $e.,$ $m(\xi x)=\xi^{p}m(x)$ for all $x\in R,$ $\xi\geqq 0$ ,

1) We owe the notations and the terminologies using here to the book: H. NAKANO [3].
2) The conjugate modular $\overline{m}$ is defined as $m(\overline{a})=\sup_{x\in R}\{\overline{a}(x)-m(x)\}$ for every $\overline{a}\in\overline{R}^{m}$ ,

where $\overline{R}^{m}$ is the space of the modular bounded universally continuous linear functionals
on $R$ .
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then w\‘e have $\frac{||x||}{||_{1}^{1},x|||}=p^{\frac{1}{p}}q^{\frac{1}{q}}$ for all $0\neq x\in R$ , where $ 1\leqq p<\infty$ and $\frac{1}{p}+$

$\frac{1}{q}=1$ (In the case of $p=1$ , we have $\frac{||x||}{|||x|||}=1$). The converse of this

is studied by S. YAMAMURO [5] and I. AMEMIYA [1]. They proved that
if the ratios of two norms are constant for all $0\neq x\in R$ , it is of $L_{p}$-type
essentially. So in the general case, the ratios of two norms are not
constant.

A modular $m$ is said to be bounded if there exist real numbers
$ 1<p_{1}\leq p_{\wedge},<\infty$ , such that

$\xi^{p_{1}}m(x)\leqq m(\xi x)\leqq\xi^{l_{2}}m(x)$

for all $\xi\geqq 1$ and $x\in R$ . In [6], S. YAMAMURO obtained that if a modular
$m$ on $R$ is bounded then we have

$||x||\geqq\gamma\Vert|x\Vert|$

for all $x\in R$ , where $r>1$ is a fixed constant.
In this paper we investigate the case when the two norms by a

modular $m$ satisfy

$\inf_{0\neq x\in R}\frac{||x||}{|||x|||}=\gamma>1$ $(*)$ .
(In this case we say that the norms have property $(*)$ throughout this
paper).

As showed above, a bounded modular $m$ has that property $(*)$ , but
the converse of this is not true in general.

In \S 1 we prove that if the norms by a modular $m$ satisfy the
property $(*)$ then it is uniformly finite and uniformly increasing, pro-
vided that $R$ has no atomic element (Theorem 1. 1). And we obtain
conversely that if a modular $m$ is uniformly finite and uniformly in-
creasing then the norms by $m$ have the property $(*)$ (Theorem 1.4).
Thus, we can see that if $R$ has no atomic element, then the property
$(*)$ is equivalent to uniform finiteness and uniform increasingness of
modular $m$. Theorem 1.2 shows that uniform simpleness of a modular $m$

implies uniform finiteness, in the case when $R$ has no atomic element.
Finally some special cases, where the property $(*)$ is equivalent to
boundedness of modular are discussed.

In \S 2 we define uniform p-properties, that is, uniformly p-finite,
p-increasing, p-simple and p-monotone modulars, to determine the degrees
of uniform finiteness, increasingness and etc.. Theorems 2.1 and 2.2
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show that there exist the conjugate relations between uniformly p-finite

modular and uniformly q-increasing modular, where $1<p<\infty,$ $\frac{1}{p}+\frac{1}{q}$

$=1$ . On the other hand, Theorems 2.3 and 2.4 show the similar relations
between uniformly p-simple modular and uniformly q-monotone
modular. In the case when $R$ has no atomic element, we have more
preceisely than in \S 1, that if a modular $m$ is uniformly p-simple it is
uniformly p-finite (Theorem 2.5). There is a modular which is uniformly
finite but not uniformly p-finite for any $ 1\leqq p<\infty$ .

In \S 3 we prove that if the norms by modular $m$ have the property
$(*)$ then $\gamma$ (which appears in $(*)$ ) determines the degrees of uniform
finiteness and uniform increasingness of $m$ . Truely, in the case when
$R$ has no atomic element, we obtain that if the norms by a modular
$m$ have the property $(*),$ $m$ is uniformly p-increasing and uniformly

q-finite, where $p,$ $q$ are positive numbers such that $r=p^{\frac{1}{p}\div}q,$
$\frac{1}{p}+\frac{1}{q}$

$=1,$ $p\leqq q$ (Theorem 3.1). The converse of this is not true in general.
We show an example of this fact at the end of this paper.

\S 1. Let $R$ be a modulared semi-ordered linear space with a
modular $m$ .

A modular $m$ is said to be uniformly finite, if
$\sup_{m(x)\leqq 1}m(\xi x)<\infty$ for all $\xi>0$ .

A modular $m$ is said to be uniformly increasing, if

$\lim_{\xi\rightarrow\infty}\inf_{m(x)\Rightarrow>1}\frac{m(\xi x)}{\xi}=+\infty$

In [4; Theorems 5.2, 5.3] it is shown that if a modular $m$ is uni-
formly finite, then the conjugate modular $\overline{m}$ of $m$ is uniformly in-
creasing and if a modular $m$ is uniformly increasing then the conjugate
modular $\overline{m}$ is uniformly finite.

Now we shall prove the following
Theorem 1. 1. Suppose $R$ has no atomic element. If the norms by a

modular $m$ have the property $(*)$ , then $m$ is $unif\sigma rmJy$ finite and uniformly
increasing.

Proof. 1). Let $\gamma$ be a number, in the sequel, such that $r=\inf_{0*x\in R}\frac{||x||}{|_{1}^{1}|x|||}$ .
Then we have

$\inf_{0\approx\overline{x}\in fi^{m}}\frac{||\overline{x}||}{|||\overline{x}||!}=\gamma$
$(,*’)$ .
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In fact we have for every $\overline{x}\in\overline{R}^{m}$

$\Vert|\overline{x}\Vert|=\sup_{||x||\leqq 1}|\overline{x}(x)|\leqq\sup_{r||(x|((}|\overline{x}(x)|=\frac{1}{\gamma}||\overline{x}||$ .

Since the norms $||x||,$
$\Vert|x\Vert^{1^{\prime}}$

. are reflexive, we obtain $(*^{J})$ .
2). If $m$ is not uniformly finite, then there exists a number $\xi_{0}\geqq 1$

such that

$\sup_{m(x)\leqq 1}m(\xi x)<+\infty$ for all $\xi<\xi_{0}$ ,

$\sup_{m(il)\leqq l}m(\eta x)=+\infty$ for all $\eta>\xi_{0}$ .
Since $r>1$ , we obtain a number $a$ such that $1>a>0$ and $\alpha\gamma$ – $1>0$ , and
we can find also $\epsilon>0$ such that $a(\xi_{0}+\epsilon)<\xi_{0}$ .
Then by the definition of $\xi_{0}$ , we can find a sequence of elements $\{x_{n}\}$

$(n=1,2, \cdots)$ such that

$m(x_{n})\leqq 1,$ $m(a(\xi_{0}+\epsilon)x_{n})\leqq k,$ $m((\xi_{0}+\epsilon)x_{n})\geqq n$ $(n=1,2, \cdots)$ ,

where $k$ is a fixed positive number.
Since $R$ has no atomic element, we can obtain also a sequence

of projectors $\{[p_{n}]\}(n=1,2, \cdots)$ such that

$m(a(\xi_{0}+e)[p_{n}]x_{n})\leqq\frac{k}{n}$ , $m((\xi_{0}+e)[p_{n}]x_{n})\geqq 1$ .

Putting $y_{n}=(\xi_{0}+e)[p_{n}]x_{n}$ , we have

$m(y_{n})\geqq 1$ , $m(ay_{n})\leqq\frac{k}{n}$ $(n=1,2, \cdots)$ .

This implies $\lim_{n\rightarrow\infty}\frac{1+m(ay_{n})}{a}=\frac{1}{a}<\gamma$ and contradicts $(*)$ , because on

the other hand, we have $\Vert|y_{n}\Vert|\geqq 1$ and $||y_{n}||\leqq\frac{1+m(ay_{n})}{a}$ for all $n\geqq 1$ .
Then by 1) $\overline{m}$ is also uniformly finite, thus $m$ is uniformly In-

creasing3). This completes the proof.
In the proof of the theorem above, we have shown that if a

modular $m$ is not uniformly finite, then there exists a sequence of
elements $y_{n}$ such that

3) We note here that $m=(x)=\sup_{\overline{x}\subseteq\partial^{m}}\{\overline{x}(x)-m(x)\}\leqq m(’.r1$ for all $x\in R$ by virtue of the de-

finition of conjugate modular. If $R$ is semi-regular, then modular $m$ is reflexive; $i.e$ .
$m(x)=m=(x)=\sup_{\overline{x}\subseteq\overline{R}^{m}}\{\overline{x}(x)-m(x)\}$ for all $x\in R$ ([3]; \S 39).
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$m(y_{n})\geqq 1$ , $\lim_{n\rightarrow\infty}m(\xi y_{n})=0$ $(n=1,2, \cdots)$

for some $\xi>0$ . Then the sequence $\{y_{n}\}(n=1,2, \cdots)$ is conditionally
modular convergent to $0$ , but it is not modular convergent. A modular
$m$ is said to be uniformly simple if conditionally modular convergence
coincides with modular convergence, $i,$ $e.,$ $\lim_{n\rightarrow\infty}m(x_{n})=0$ implies $\lim_{n\rightarrow\infty}m(\hat{\sigma}x_{ll})$

$=0$ for every $\xi\geqq 0$ .
Thus we have
Theorem 1. 2. Suppose that $R$ has no atomic element. If a modular

$m$ is uniformly simple, then’it is uniformly finite.
The conjugate property to uniform simpleness of modular is uni-

form monotoneness.4) Therefore we obtain also
Theorem 1.3. Suppose that $R$ has no atomic element. If a modular

$m$ is uniformly monotone, then it is uniformly increaszng.

The converse part of Theorem 1.1 is always true (without the
assumption tbat $R$ has no atomic element). That is, we obtain

Theorem 1.4. If a modular $mis$ unifcrmly $finite$ and uniformly in-
creasing, then the norms by $m$ have the property $(*)$ .

Proof. If the property $(*)$ is not satisfied, then we can find $x_{n}\geqq 0$

$(n=1,2, \cdots)$ such that

$1\leqq||x_{n}||<1+\frac{1}{n}$ , $\Vert|x\Vert|=m(x_{n})=1$ $(n=1,2, \cdots)$ .
And we can find also $\xi_{n}>0$ such that

$1+m(\xi_{n}x_{n})<(1+\frac{1}{n})\xi_{n}$

for all $n\geqq 1$ by the definition of the first norm.
Considering a subsequence of $\{\xi_{n}\}$ , it is sufficient for us to investi-

gate only the following cases.
1) In this case, $\{\dot{\sigma}_{n}\}$ satisfies $0<\xi_{n}\leqq 1$ for all $n\geqq 1$ . If $\xi_{n}\leqq\xi_{0}<1$

$(n=1,2, \cdots)$ for some $\xi_{0}<1$ , then we obtain

$(1+\frac{1}{n})>\frac{1+m(\xi_{n}x_{n})}{\xi_{n}}\geqq\frac{1}{\xi_{0}}>1$ $(n=1,2, \cdots)$ .

This is a contradiction. Now without a loss of a generality, we may
14) A modular $m$ is said to be uniformly monotone, if $\lim$ – $\sup m(\xi x)=0$ .

$\xi\rightarrow 0\xi$
$m(x)\leq 1$
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assume that

$\xi_{n}\uparrow 1$ , $1-\xi_{n}<\frac{1}{n}$ $(n=1,2, \cdots)$ .
Since we have

$m(\xi_{n}x_{n})<(1+\frac{1}{n})\xi_{n}-1\leqq\frac{1}{n}$

and $m(\xi x)$ is a non-decreasing convex function of $\xi\geqq 0$ , we obtain

$m((1+(1-\xi_{n}))x_{n})\geqq 1+\frac{n-1}{n}$ $(n=1,2, \cdots)$ ,

and furthermore
$m((1+n(1-\xi_{n}))x_{n})\geqq 1+(n-1)$ $(n=1,2, \cdots)$ .

This implies

$\sup_{m(x)\leqq 1}m(2x)\geqq\sup_{n=1,2}\ldots m(2x_{n})\geqq\sup_{n\rightarrow 1,2}..(1+(n-1))=+’\infty$ ,

which contradicts that $m$ is uniformly finite.
2). In this case, $\{\xi_{n}\}(n=1,2, \cdots)$ satisfies $1\leqq\xi_{n}$ for all $n\geqq 1$ . By

definition of $\{\xi_{n}\}$ , we have

$1+\frac{1}{n}\geqq\frac{1+m(\xi_{n}x_{n})}{\xi_{n}}\geqq\frac{1}{\xi_{n}}+1$ for all $n\geqq 1$ .

This implies $n\leqq\xi_{n}$ for all $n\geqq 1$ . Therefore we may assume $\xi_{n}\uparrow+\infty$

$(n=1,2, \cdots)$ , so we obtain

$\lim_{\epsilon\rightarrow\infty}\inf_{m(x)\geqq 1}\frac{m(\xi x)}{\xi}\leqq\lim_{n\rightarrow\infty}\frac{m(\xi_{n}x_{n})}{\xi_{n}}\leqq\lim_{n\rightarrow\infty}(1+\frac{1}{n})=1$ ,

which contradicts that $m$ is uniformly increasing. This completes the
proof.

In the case when $a$ modular $m$ on $R$ is of unique spectra ([3];

\S 54), the property $(*)$ implies boundedness of $m$ . In fact we have

Theorem 1.5. If a modular $m$ on $R$ is of unique spectra, then
boundedness of $m$ is $equivalent$ to the property $(*)$ .

The proof is easily obtained by simple calculations, so it is omitted.
In the case of the constant modular $(\lfloor 3]; \S 55)$ , the property (ee)

dose not imply simpleness of $m$ , and even in the case of the simple
constant modular it dose not generally imply the boundedness of $m$

(the examples are easily obtained). Only in the particular case, we have

$\sim$.
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Theorem 1.6. If a modular $m$ on $R$ is constant, monotone complete
and $R$ has neither complete constant element nor atomic element, then the
property $(*)$ is equivaZent to bcrundedness of $m$ .

Proof. By Theorem 1.1 $m$ is finite, then $m$ is upper bounded by
Theorem 55.10 in [3]. Since $\overline{m}$ is constant and has no complete constant
element [3; \S 55], $\overline{\overline{m}}$ is also upper bounded, that is, $m$ is lower bounded.
Thus $m$ is a bounded modular on $R$ .

\S 2. In this section we investigate the degrees of uniform proper-
ties of modulars.

Set for $\xi\geqq 1$

$f(\xi)=\sup_{m(x)\leqq 1}m(\xi x)$ and $g(\xi)=\inf_{m\geqq 1}m(\xi x)$ ,

then $f(\xi)$ and $g(\xi)$ are defined in $[1, \infty$ ) and non-decreasing functions.
In the following, let $p$ be a number such that $ 1<p<(\infty$ .

Definition 2. 1. A modular $m$ on $R$ is said to be $un^{i}\dot{b}formlyp- fi\dot{m}te$

if there exist $r>0$ and $\xi_{0}\geqq 1$ such that
$f(\xi)\leqq\gamma\xi^{p}$ for all $\xi\geqq\xi_{0}$ .

Definition 2. 2. A modular $m$ on $R$ is said to be $unif\sigma rmly$ p-
increasing, if there exist $r>0$ and $\xi\geqq 1$ such that

$g(\xi)\geqq\gamma\xi^{p}$ for all $\xi\geqq\xi_{0}$ .
It is easily seen that if $m$ is uniformly p-finite, it is also uniformly

p’-finite for $p\leqq p^{\prime}$ , and if $m$ is uniformly p-increasing it is also uni-
formly p”-Increasing for $1\leqq p^{\prime\prime}\leqq p$.

In the sequel, we set $q=\frac{p}{p-1}$ Now we have

Theorem 2. 1. If a modular $m$ is uniformly p-finite, then the conjugate
modular $\overline{m}$ of $m$ is uniformly q-increasing.

Proof. We have by the assumption for some $\rho_{0}\geqq 1,$ $r>0$ ,

$f(\xi)\leqq\gamma\xi^{p}$ $(\tilde{\sigma}\geqq\rho_{0}\geqq 1).\cdot$

If $\overline{m}(\overline{x})\geqq 1$ , $\overline{x}\in\overline{R}^{m}$ and $0<a<1$ , we can find $x_{0}$ such that $\overline{x}(x_{0})>a$ ,
$m(x_{0})\leqq 1$ . For such $x_{0}$ , we have by the definition of conjugate modular

$\overline{m}(\lambda\overline{x})\geqq\lambda\overline{x}(\rho x_{0})-m(\rho x_{0})\geqq a\lambda\rho-r\rho^{p}$

for all $\rho\geqq\rho_{0}$ . This implies

$\overline{m}(\lambda\overline{x})\geqq\sup_{\rho\supseteqq\rho_{0}}\{al\rho-\gamma\rho^{\rho}\}$
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for all $\overline{x}\in\overline{R}^{m}$ such that $\overline{m}(\overline{x})\geqq 1$ .
Then we have for $\lambda\geqq\lambda_{0}=\frac{\gamma p}{a}\rho_{0}^{\frac{p}{q}}$ ,

$\overline{m}(\lambda\overline{x})\geqq\frac{\gamma p}{q}(\frac{\alpha}{p\gamma})^{q}\lambda^{q}$ .
Hence the conjugate modular $\overline{m}$ is uniformly q-increasing modular by
definition.

Theorem 2. 2. If a modular $m$ is uniformly $p- increas\dot{m}g$ , then the
conjugate modular $\overline{m}$ of $m$ is uniformly q-fimte.

Proof. By the assumption we have for some $r$ and $\rho_{0}$

$m(x)\geqq 1$ implies $m(Px)\geqq\gamma\rho^{p}$ for $\rho\geqq\rho_{0}$ .
Set $\lambda_{0}={\rm Max}(\frac{r}{2}\rho_{0}^{p-1},1)$ and for $\lambda\geqq\lambda_{0}$ we define $\rho=\rho(\lambda)$ such that

$\rho(\lambda)=(\frac{2}{r}\lambda)^{\frac{q}{p}}$ . Then we have $\rho\geqq p_{0}$ . Thus we obtain $\frac{m(\rho x)}{\rho}\geqq\gamma\rho^{p-I}=2\lambda$ .
If $\overline{x}\in\overline{R}^{m},\overline{m}(\overline{x})\leqq 1$ and $ 1\leqq m(x)<+\infty$ , then there is $\xi>0$ such that

$m(\frac{1}{\xi}x)=1$ , $0<\frac{1}{\xi}<1$

and hence by the definition of the conjugate modular $\overline{m}(\overline{x})$ we obtain

$\overline{x}(\frac{1}{\xi}x)\leqq\overline{m}(\overline{x})+m(\frac{1}{\xi}x)\leqq 2$ .
For such $\xi$ , if $\xi\geqq\rho(\lambda)$ , then we have

$\lambda\overline{x}(x)-m(x)=\xi\{\lambda\overline{x}(\frac{1}{\xi}x)-\frac{1}{\xi}m(\xi\frac{1}{\xi}x)\}\leqq 0$ ,

and if $0<\xi\leqq\rho(\lambda)$ , then we have

$\lambda\overline{x}(x)-m(x)\leqq\xi\lambda\overline{x}(\frac{1}{\xi}x)\leqq 2\rho\lambda=2\lambda(\frac{2}{r}\lambda)^{\frac{q}{p}}$

If $\overline{m}(\overline{x})\leqq 1,$ $m(x)\leqq 1$ , we have also
$\lambda\overline{x}(x)-m(x)\leqq\lambda(\overline{m}(\overline{x})+m(x))-m(x)\leqq 2\lambda$ .

Therefore we obtaInconsequently-
$\overline{m}(\lambda\overline{x})\leqq 2\lambda\rho=\gamma_{0}\lambda^{q}$ for all $\lambda\geqq\lambda_{0}$

where $r_{0}=2^{q}(\frac{1}{r})^{\frac{q}{\mathfrak{g})}}$ . Hence the conjugate modular $\overline{m}$ is uniformly q-
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finite modular.
As similarly as uniformly p-finite modulars, we can define uniformly

p-simple and uniformly p-monotone modular. In order to define them,
we set for $0\leqq\xi\leqq 1$

$\varphi(\xi)=\sup_{m(x)\leqq 1}m(\xi x)$ , $\psi(\xi)=\inf_{m(x)\geqq 1}m(\xi x)$ .
Then $\varphi(\xi),$ $\psi(\xi)$ are defined in $[0,1]$ and finite non-decreasing functions.

Definition 2. 3. A modular $m$ on $R$ is said to be uniformly $ p\rightarrow$

simple if there exist $r>0$ , and $0<\xi_{0}\leqq 1$ , such that
$\psi(\xi)\geqq r\xi^{p}$ for all $0\leqq\xi\leqq\xi_{0}$ .

Definition 2.4. A modular $m$ on $R$ is said to be uniformly p-
monotone, if there exist $r>0$ and $0<\xi_{0}\leqq 1$ , such that

$\varphi(\xi)\leqq\gamma\xi^{p}$ for all $0\leqq\xi\leqq\xi_{0}$ .
It is easily seen that if $m$ is uniformly p-simple, it is also uniformly

p’-simple for $p\leqq p^{\prime}$ , and if $m$ is uniformly p-monotone, it is also uni-
formly p”-monotone for $1\leqq p^{\prime\prime}\leqq p$ .

Concerning uniformly p-simple and uniformly q-monotone modulars
there exist the conjugate relations, in fact we have

Theorem 2. 3. If a modular $m$ on $R$ is uniformly p-mmotone, then the
$ conjug\alpha t\ell$ modular $\overline{m}$ of $m$ is uniformly q-simple.

Theorem 2.4. If a modular $m$ on $R$ is uniformly p-simple, then the
cmiugate modular $\overline{m}$ of $m$ is uniformly q-monotone.

The proofs of these theorems are analogous to those of Theorems
4.9, 4.10 in [4] and of Theorems 2.1, 2.2, so it is omitted.

Concerning uniform simpleness and uniform finiteness we proved
in Theorem 2.2 that uniform simpleness implies uniform finiteness,
provided that $R$ has no atomic element. On uniformly p-simple modular
we obtain more precisely

Theorem 2.5. Let $R$ has no atomic element. If a modular $m$ on $R$ is
uniformly p-simple, then it is uniformly $p- fi\dot{m}te$.

Proof. It is known already that $m$ is uniformly finite. If it is
not uniformly p-finite, then there exists a sequence of real numbers
$\xi_{n}\geqq 0(n=1,2, \cdots)$ such that

$+\infty>f(\xi_{n})>n\xi_{n}^{p},$ $\xi_{n}\uparrow+\infty$ $(n=1,2, \cdots)$ .
And by dePnition of $f(\xi)$ , we can choose a sequence of elements $\{x_{n}\}$

$(n=1,2, \cdots)$ such that
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$m(\xi_{n}x_{n})>n\xi_{n}^{p}$ , $m(x_{n})=1$ $(n=1,2, \cdots)$ .
Here, we can assume without a loss of generality that

$m(\xi_{n}x_{n})=N_{n}$

where $N_{n}$ is a natural number, for every $n\geqq 1$ . Because, if there are
$r>0$ and $\xi_{0}\geqq 1$ satisfying $m(\xi x)\leqq\gamma\xi^{p}$ for every $\xi\geqq\xi_{0}$ such that $m(\xi x)$ is
a natural number, then we have $m(\xi x)\leqq(\gamma+1)\xi^{p}$ for all $\xi\geqq\xi_{0}$ . This
shows that $m$ is uniformly p-finite.

Then we can find a sequence of projectors $\{[p_{n}]\}(n=1,2, \cdots)$ by

orthogonal decompositions of $x_{n}(n=1,2, \cdots)$ such that

$m([p_{n}]\xi_{n}x_{n})=1$ , $m([p_{n}]x_{n})<\frac{1}{n\xi_{n}^{p}}$ $(n=1,2, \cdots)$ ,

since $m(\xi_{n}^{\prime}x_{n})$ is natural number for all $n\geqq 1$ . Set $y_{n}=[p_{n}]\xi_{n}x_{n}$ and $\eta_{n}=$

$\underline{1}$ for every $n\geqq 1$ , then we have $m(y_{n})=1$ and $m(\eta_{n}y_{n})<\frac{\eta_{n}^{p}}{n}$ . Since
$\xi_{n}$

$\lim_{n\rightarrow\infty}\eta_{n}=0$ , we show that $m$ is not uniformly p-simple. Thus the proof

is completed.
Corresponding to Theorem 2.5 we have
Theorem 2. 6. Let $R$ have no atomic element. If a modular $m$ on $R$

is umformly $p- m\sigma noWne$ , then it is uniformly p-increas’ing.
It will be conjectured that if a modular $m$ is uniformly finite,

then it is uniformly p-finite for some $ 1<p<+\infty$ . But the following
example shows that it is not true.

Example. Set
$\phi(u)=\left\{\begin{array}{ll}\frac{1}{2}u & u\leq 2\\e^{u-2} & u>2\end{array}\right.$

and consider $ORr\lrcorner ICZ$ sequence space $l_{\Phi}$ . Then $l_{(p}$ is uniformly finite as
easily seen, but not uniformly p-Pnite for any $ 1<p<\infty$ . This example

shows at the same time that there exists a modular $m$ which is uniformly
increasing but not uniformly p-increasing for any $ 1<p<\infty$ .

I. $AMF_{\lrcorner}\Lambda IIYA$ proved in [2] that if a modular $m$ on $R$ is monotone
complete and finite, then $m$ is semi-upper bounded, $i.e.,$ $m(2x)\leq\gamma m(x)$

for every $x$ such that $ m(x)\geqq\epsilon$ for some fixed $r,$ $e>0$ , provided that $R$

has no atomic element. Applying this result, it is seen that the above
conjecture is affirmative, in the case when $m$ is monotone complete

and $R$ has no atomic element. In fact we have
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Theorem 2. 7. $Sup\mu se$ that $R$ has no atomic element and $m$ is mmotone
complete. If $m$ is uniformly fimte (finite) then it is uniformly $p- fi\dot{m}te$ for
some $p>1$ .

\S 3. To any $\gamma$ such that $1<r\leqq 2$ , there exist a unique pair of
positive numbers $(p, q)$ satisfying the following

1) $\gamma=pq\div\frac{1}{q}$

2) $\frac{1}{p}+\frac{1}{q}=1$

3) $ 1<_{p\leq 2\leq q}\neq$ .
This correspondence is unique and it is easily seen that if $r_{n}$ is con-
vergent increasingly to 2, then the corresponding $p_{n}(q_{n})$ is also convergent
increasingly (decreasingly) to 2.

If the norms of modular $m$ have the property $(*)$ we can find a
pair of numbers such that $\gamma=p^{\frac{l}{p}\div}q$ . It is already seen that $m$ is uni-
formly finite and uniformly increasing, provided that $R$ has no atomic
element. Now we shall show that $(p, q)$ gives the degrees of uniform
finiteness and increasingness. In fact we can state

Theorem 3. 1. Suppose that $R$ has no atomic element. If the nvms by
a modular $m$ have the property $(*)$ , then $m$ is uniformly $p-\dot{m}$creoeing and
uniformly q-finite.

Proof. Set $a=(\frac{p}{q})^{\frac{l}{q}}$ , then $\gamma a$ – $1=a^{q}$ .
Thus we obtain by assumption,

$m(x)=1$ implies $m(ax)\geqq a^{q}$ .
If $m(x)=1+\frac{m}{n}$ (for natural numbers $m<n$), we can decompose orthogo-

nally $x=x_{1}+x_{2}\cdots+x_{n+m}$ such that

$m(x_{i})=m(x_{j})=\frac{1}{n}$ $(i, j=1,2, \cdots, n+m)$ .

The numbers of $i$ such that $m(ax_{i})<\alpha^{q}m(x_{i})$ are less than $n$ , because if
there exists $(|i_{1}, i_{2}, \cdots, i_{n})$ such that $m(ax_{i}\nu)>a^{q}m\alpha_{i}\nu)(\nu=1,2, \cdots, n)$ , then we
have $m(a\sum_{\nu=1}^{n}x_{i}\nu)<a^{q}m(\sum_{\nu=1}^{n}X_{i}\nu)$ and $m(_{\nu-1}\sum_{--}^{n}x_{i\nu})=1$ . This is a contra-
diction.

Thus there exists $\{i_{k}\}(k=1,2, \cdots, m)$ such that $m(\alpha x_{i_{k}})\geqq a^{q}m(x_{t_{k}})(k=$
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1, 2, $\cdots,$ $m$). Putting $y=\sum_{k=1}^{m}x_{i_{k}}$ we have $m(x-y)=1$ and

$m(ay)\geqq a^{q}m(y)$

$m(a(x-y))\geqq a^{q}m(x-y)$ .
Hence we obtain $m(ax)\geqq a^{q}m(x)$ . Generally, if $1\leqq m(x)<2$ , since $m(\xi x)$

i8 continuous function of $\xi$ , we have also
$m(\alpha x)\geqq a^{q}m(x)$ .

Since $m(x)$ is finite for all $x\in R$ and $R$ has no atomic element, we
have for $x$ such that $m(x)=1$

$m(a\xi x)\geqq a^{q}m(\xi x)$ for all $\xi\geqq 1$ .
Here, putting $\beta=\frac{1}{a}>1$ , we obtain

$m(\beta^{n}x)\leqq\beta^{q\cdot n}m(x)$ $(n=1,2, \cdots)$

for all $x$ such that $m(x)=1$ . From this we have
$m(\xi x)\leqq\beta^{q}\xi^{q}$ $\xi\geqq\beta$ ,

which shows that $m$ is uniformly q-finite. By Theorem 2.1 and $(*’)$ we
can see $m$ is uniformly p-Increasing.

Remark 1. The converse of the theorem is not true. For example,
set

$\phi(u)=\left\{\begin{array}{ll}u^{\frac{3}{2}} & u\leq 2\\\frac{1}{\sqrt{}\overline{2}}u^{2} & u>2.\end{array}\right.$

Then the $ORI_{I}ICZ$ space $L[0,1]\ddagger s$ uniformly 2-finite and uniformly 2-
increasing, but it is easily seen that there is an element such that
$\frac{||x||}{|\Vert x|\Vert}<2$ . And for any $1<a<2$ , we can get the example of modulared

space such that $m$ is uniformly 2-finite and uniformly 2-increasing but

the norms by $m$ do not satisfy $\inf_{x*0}\frac{||x||}{|\Vert x\Vert|}\geqq a$ .
Remark 2. If $R$ is a discrete modulared semi-ordered linear space,

the property $(*)$ dose not imply finiteness of $m$ , and even if in the case
where $m$ is finite, the property $(*)$ does not imply uniform finiteness
of $m$ . The examples are obtained easily. In this case the equivalent
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condition to the property $(*)$ is unknown.
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