POTENTIALS ON RIEMANN SURFACES

By

Zenjiro KURAMOCHI

The purpose of the present paper is to simplify and to extend the
almost all theorems contained.in the previous papers.” The potential theory
has been discussed in euclidean space. Recently it is discussed by many
authors under weaker conditions of the kernel K(x,y) of the potential U(x)

— f K(x,y)du#(y) in more general space S which is locally comp'act and

homogeneous and K(x,y) has not necessarily symmetry property, super-
harmonicity. On the other hand, the space in which we shall consider the

potential U(z)= f N(z,p) dp(p) is a Riemann surface with ideal boundary B,

which is locally euclidean in R and locally compact in R+ B and R+ B
is mot homogeneous by the existence of B. The kernel N(z, p) which will
be defined is harmonic in R and superharmonic in some sense in R+ B,
(B, is the part of B), N(z,p) has symmetry, lower semicontinuity in R+
B,, N(p,p)=<co. Further there may exist B,=B—B, where we cannot
distribute any true mass. In the above sense our space is not so re-
stricted. To construct potentials we make some preparations.

1. Let R be a Riemann surface with positive boundary and let R,
(n=0,1,2,--.) be its exhaustion with compact relative: boundaries oF,.
Let N,(z, p) be a positive function in R,— R, such that N,(z, p) is harmonic

in R,— R, except one point pe R,—R,, N,(z, p)=0 on oR,, a—a—Nn(z, p)=0
' n
on oR, and N,(z,p)+log|z—p| is harmonic in a neighbourhood of p. We

define the 5-integral D*(N,, (z,p), N,(2,p)) of N,,.(z, p) and N,(z, p) over
R,— R, as follows: ‘ .

Let v,(p) be a circular neighbourhood of p with respect to the local
parameter at p: v, (p)=FE[z2eR:|z—p|<r]. Put

Do oM 2 P Nuts D)= [ Noie D)= Ny, p) dst [ (N, iz, )

@Rp+dRy v, (D)

1) Z. Kuramochi: Mass distributions on the ideal boundaries of abstract Riemann
surfaces I, II, III. Osaka Math. Journ. 1956, 1957, 1958.
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+log |#—p ) >N, (z, p) ds= f (N, e ) 108 | 2= )2 N2, ) ds.
on 0 ‘ on :

We define D%, z,(N,..(z, p), Nz, p) as

lrl—-,I»Iol Dlxn-—Ro-—vT(p)( n+z(z9 p); Nn(z: p)):Zn- Un+z(p)’ ( 1 )
where U,W(p)—hm (N, (=, p)+log |z—p|). Similarly
Dz, - #o(No(2, D)) = D%, #(N,(2, p), N,(z, p))=2zU,(p). (2)

By the Green’s formula
Di-remssip(No& Py Noe (2 2)= f N,(z 2) =N, (z, p) ds

dERg+dRy
+ [ (Ni(z,p)+log|z—p])-2N,. (2, p) ds= f N,z )N, p)ds
20,(p) - 6R0+6Rw+our<p)
+ flog}z p[ N,m(z p) ds= f N, . (7, p)——N (2, p) ds
3v,(P) 3o+ Rp+dv,.(p)
+ logxz—pl—Nmi(z, P ds= [ N,.(, p)—N 2, ) ds
9v,.(p) ‘ 0 Rp

f(Mz+1(z p)-i-loglz—-pl)——N(z p) ds

] "r(p)

+ Jlog 12l (N, e P) = N, P =Dl (N (2, ), N2 )

9v4,.(P)
+ [ logla—p | LN, (e D~ NGz ) ds.
35,(p)

Since: N,(z, p)—N,. (2, p) is harmonic at P, f log!zfp]—ag?;(Nn(z, p)
N, .z, p))ds—>0 as r—0. Hence - ur(®) o
D5 N(2, ), N, (2, p))=lim D, _r,- uroo)(N (2, ), N,.:(z, p))

=D%,-2(N,. (2, ), N,(2, 20)) ‘ | (3)

By (1), (2), (8) and by D%, .. #(N,.(z, p))=D%,_x(N,..(z, p)) the f)—integral
D%,z (N, (2, p)— N,, (2, p)) is given as follows: |
0=Dz, rN,(2, p) — N,. (2, D)) = D%,_ 2 ( N,(2, D)) —2D%,_ 2, (N,(2, D), N,..(2, D))
+DRn—Ro( n+2(z p))<DRn"Ro(Nn(z p)) 2DRn—Ro( (z p) ’Il+L(z’ p))
+DRn+z'—Ro(Nn+z(z p)) 277-(U (p) Un«r—t(p))
On the other. hand, let G,(z,p) be the Green’s function of R, R Wlth
pole at peR, —R,. Then
G, (z ) <N,. (2, p) (7=0,1,2,-..) for n=>mn,.
This implies |
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 Im U, () =lim Gz, p)+log|e—p|)=L>—co (j=0,1,2,:+").
Hence Un(p) is decreasing w1th respect to » and 11m U, (p)>L Whence

{U.(p)} coverges. Therefore D(N,, (z, p)— N,(z, p))—»‘O, if » and 1—>o0 or
only n— oo, which implies that N, (2, p) coverges in mean. Further N, (z, p)
=0 on 9R, yields that {N,(z, p)} converges uniformly to a function N(z, p)

as n—>co. Clearly by the compactness of dR,, [ ———N(z p) ds=2r. We
dRy )
call N(z, p) the N-Green’s function of R—R, with polé at p.

Remark. If R is a Riemann surface with null-boundary, we see that
N(z, p) reduces to be the Green’s function of R—R,.

“After R. S. Martin we shall define the ideal boundary points as follows.
Let N(z, p) be the N-Green’s function of R— R, with pole at p. Consider
now a sequence of points {p,} of R— R, having no points of accumulation
in R—R,+0R, Since the function N(z, p,) (¢=1,2,---) forms, from some
7 on, a bounded sequence of harmonic functions—thus a normal family.
A sequence of these functions, therefore is covergent in every compact
part of R—R, to a positive harmonic function. A sequence {p,} of R—R,
having no point of accumulation in R— R,+6R,, for which the corresponding
N(z, p)’s have the property just mentioned, that is, {N(z,p)} coverges to a
harmonic function—will be called fundamental. If two fundamental
sequences determine the same limit function N(z, p), we say that they
are equivalent. Two fundamental sequences equivalent to a given one
determine an ideal boundary point of E. The set of all the ideal boundary
points of R will be denoted by B and the set R—R,+B by R—R, The
domain of definition of N(z, p) may now be extended by writing N(z, p)
=lim N(z, p;)(2¢e R—R,, pe B), where {p;} is any fundamental ' sequence
determining p. The fnnction N(z, p) is characteristic of the point p of
their corresponding N(z, p) as a function of 2. The function &(p,, »,) of

two points p, and p, in R—R, is defined as

N(z, p1) N(z, p,)
B 1+ N(z,p,) 1+N(zp) !
Evidently, 5(101, D)= 0 is equivalent to N(z, p;)=N(z, p,) for all points z
in R,—R, Therefore we have N(z, p)=N(z, p,) in R—R,, i.e. é(p,, p,)=0
implies p,=p, and it is clear that (p,, p,) satisfies the axioms of distance.
Therefore o(p,, p,) can be considered as the distance between two points

p, and p, of R—R,.

o(p,, P)=



8 - Z. Kuramochi

The topology (we call N-Martin’s topology) induced by this metric is
homeomorphic to the original topology, when it is restricted in R—R,.

Since N(z, p):peR—R, is also a normal family, both (R—R,)+oR,+ B
and B are closed and compact. For a fixed point z, N(z,p) is continuous
with respect to this metric (we denote it shortly by éd-continuous) as a

function of p in R—RO except at p.

2. Properties of the function N(z, b).

Lemma 1. a). Let G, be a compact or non compact domain in R— R,?
containing another domain G, Let U(z) be a function of C,-class® such
that D(U(z)) is finitely minimal Dirichlet integral (we abbreviate it by
M.D.I.) among all functions of C,-class with the same boundary value on
0G,. Then U(z) is also M.D.L. function in G, among all functions with
the same boundary value as U(z) on 98G,.

b). Let G be a domain as a) and let U(z) be a harmonic function
with M.D.I. over G with the boundary value ¢(2) on 0G. Then U(z) is
uniquely determined and U,(2)=> U(z) (we denote by = that U,(z) converges
and converges in mean to U(z)), where U,(2) is a harmonic function in

R, ~G such that U,(2)=U(z) on 8GmRn and Ea——Un(z)zo on oR,. Whence
inf Uz) < Uz) <sup U(z). If U(z)-:const, inf U(z) < U(z) <sup U@).
RE zed@

¢). . Let G be a domain. The necessary afnd sufficient condztwn Jor
a harmonic function U(z) to have M.D.L over G among all functions with
the value U(z) on oG s that D(U(z), C(z))=0 for every harmomnic function
C(z) such that C(z)=0 on dG and D(C(z))< .

d). Let U,z) (n=1,2,-.-) be a harmonic function in G~R, with
boundary value ¢,(z) on G~R, such that U,(z) has M.D.I. <M over R,~G.
If U (2)=>U(z), then U(z) has M.D.I. over G with ¢(z)=lim ¢,(z) on 8G.

Similarly let U,(z) be a harmonic function in G with boundary value
¢.(2) on oG such that U,(2) has M.D.I. over G. If U,(z)= U(z), then U(z)
has M.D.I. over G with boundary value ¢(2)=lim ¢,(2) on oG.

Proof of a). Assume that there exists another function B(z) of C,-
class such that B(z)= U(z) on an and D, (B(z)) <Dg,(U(2)). Put U*(z)=B(z)

2) In the present paper, we suppose that ¢G of a domain G consists of at most enumera-
bly infinite number of analytie curves clustering nowhere in R.

3) If U) is -continuous and has partial derivatives almost everywhere, we say that
U(z) € Ci-class.
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in G, and U*(x)=U(z) in G,—G,. Then D(U*(z))<D(U(z)). This con-
tradicts that U(z) has M.D.I. Hence we have a).

Proof of b). Let U,(z) (i=1,2) be a function of C,-class such that
U,(2)=¢(z) on 0G and has M.D.I. Then

D(U,(2)+e(Uy(2)— Ux(2))) = D(Uy(z)) for any e.
By considering =+¢ such that |¢| is sufficiently small, we have
D(U(z), U,(2)— U,(2))=0:7=1,2. Hence D(U,(z)— U,(z))=0, i.e.
U1(z) = Uz(z) .
Let U,?) (n=1,2,---) be a harmonic function in b). Then
DG/\Rn( U(Z) - Un(z)f Un(z)) = OJ
whence
Do U@) = Dorsen( Un(@)) = Do U(2) — U (2)) = 0
and Dg-z,(U,(2)) 1 L=D(U(2)). (4)
Similarly » '
| 0 =< Drpp( U, i(2) — Un(2)) = Darrn( U, i(2)) — Dinr,(Un(2))
= Doz, {Un.2)) — Dirr,(Un(2)) >0

as n—>oo and i—>oco-by (4). This implies U, (z):> U*(z).
Now by (4) and by Fatou’s lemma

Dirr, (U*(2) = hm D2, (U (7)) < D;(U(z)), for n=m.

Let m—>co. Then DG(U*(z))§DG(U(z)). Thus U*(z) has M.D.I. By the
assumption that U(z) has M.D.l.,, we have U*(z)=U(z).

Let U(z) be the function in b). Then by %Un(z)_—_o on R, inf U,(2)

=U,?) <sup U,z) is clear by the maximum principle, whence 1nf U(z)
ze da
=U(z) < sup U(z) Suppose U(z) == const.
Then also by the maximum principle we have
1na£ U(z) < U(z)<suap U(z).
zZ€ ze€ &
~ Proof of ¢). Suppose, U(z) has M.D.I. Since U(z)+¢C(2)=U(?) on oG,
D(U(z)+C(2)) = D(U(2)) +2¢ D(U(z), C(2)) + ¢’ D(C(2)) = D(U(2))
for any &. We see that D(U(z),C(z))=0 in considering ==y for ¢ such
that |r| is sufficiently small. '
Conversely, assume D(C(z), U(2))=0. Let U'(z) be a harmonic function
such that U’(z)= U(z) on G and D(U’(z)) <. Then by putting C(z)=U(z)
— U'(2), we have D(U(z))=D(U(z), U'(2)) and D(U'(2))=D(U(2)). Now U’(z)
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is any function. Hence U(z) has M.D.I. Thus we have c).
Proof of d). At first we remark, by U,(z)= U(z),
Dy(U(®)) =1im Dyr,(U®)) = lim (lim Dy, ~o(U,(2))) < M.
Let C(2) be a harmonic function in G such that D(C(2))<c and C(z)=0
on 0G. Then
| Docsn-rnXU. (z), C(2)) | =4 DGA(Rn—Rm)( U (z))DG’\(R'n—Rn >(C(z))
=VMJDe iz 2,(CZ))>0 as m—>co. - - .(5)

Hence for any given positive number e, there exists a number m, such
that

| Donizon-rn(Un(2), C(2)) | <& for m =m,, fn>m0 (6)
Slnce U.z) has M.D.I. over G~R,, by ¢) Ds (U, (2),C(2)=0, we have
by (6)
| Do, (U, (2), C(2)) | <e. (7)
On the other hand, by U,(2)= U(z), for the same ¢ and the above number
m, there exists a number n,=n.,m) such that

| Do, (UR)— U,(2), C(2)) | <e¢, for n=mn, (8)
because ‘ | ’
| Doz, (U(2)— U,(2), C(2)) | = V¥ Dgz,(U(z)— U,(z))D(C(2)).
Thus
| Doz U (2), C(2)) | = | Donr, (U(z) — Un(2), C(2)) |
+| Donr,(U,(2), C(2)) | <2¢, m>my, n>ny(m).
Hence ‘

Dz, (U(z), C(z))—>0 as m—>co. : :
Whence by c) U(z) has M.D.I. over G with value <,o(z)_11m go,,(z) on G. The
latter part is proved similarly.
Theorem 1. a). Let N(z, p) be the N-Green’s function of R—R, with
pole pin R—R, Let G be a compact or non compact domain containing

». Then N(z,p) has M.D.l. over R—R,—G among all functions with the
same value as N(z, p) on. 0G+3R,, whence by b) of Lemma 1 N (z,p)

<sup N(zp) and lim V.,(p)=p, where Vy(p)=ElzeR: Nz, p)> M.
b). N(z, p) satzsﬁes
D(min (M, N(z, p))) <2zM for pe_I—B———RO. ,
Proof of a). Let G’ be a compact domain-with smooth boundary such
that G DG >p and that G’ is rectifiable. Since N{(z, p) is harmonic in R—R,



. ,
Patentials on Riemann Surfaces 11

—G, max N(z,p)<L<o. Let N, (z,p) be a harmonic function in R,— R,
ze 6G”

such that N,(z,p)=0 on JR,, %Nn(z, p)=0 on 0R, and N,(z,p) has a
logarithmic singularity at p». Then N,(z, p)=>N(z,p). Hence by the com-
pactness of 6G’ there exists a number 7, such that N,(z,p)<L-+e on
oG’ for mn=mn,, for any given positive number ¢. Let VZ,(p)=FE[z2c¢R:

N,(z,p)>L+¢]. Then by the maximum principle G':V,—j‘“(p) for n=mn,,

because %Nn(z, p)=0 on dR,. Since N,(z, p) is harmonic in R—R,— V2, .(p)

with continuous normal derivative on 8V 2, (p), Dirichlet integral of N,(z, p)
over R,—R,—V7z,(p) is finite. Hence there exists at least one harmonic
function A(z) such that the Dirichlet integral of A(z) over R—R,—VZ, (p)
is finite with A(z)= N,(2,p) on oR,+aoV2, (p)+oR, Let U(z) be a
harmonie function in R,—R,— V2. (p) such that U(z)=N,(z,p) on ok,
+0Vz..(p)+oR, and the Dirichlet integral of U(z) is finite. Now
D - ro-v3 , o p(Nu(2, D), No(2, p)— U(2))=0.
But U(z) is arbitrary, hence N,(z,p) has M.D.I. over R,—R o— V2. (p) and

Doy oMo )= [ Nier ) NoGer ) ds=(Lte) [N (e, )
wvp. (» B

S =2r(L +¢).

Hence by Lemma 1l.a) N,(z,p) has M.D.L (<27r(L+s)) over R,—R,—G
CR,—R,—G’ and over R—R,— V2. .(p) for n=n, by GOG DV,.(p). On
the other hand, N,(z, p)=>N(z, p). This implies by Lemma 1.c¢) that N(z, p)
has also M.D.I. over R—R,—G’ and over‘R—Ro——G, which is clearly
<2a(L+c¢). Next by Lemma 1.b)

N(z,p) = sup N(z, p)<L

ze R—Ro—G

i.e. E[zeR: N(z,p)>L]= L(p)CG’ Now G’ is arbitrary. Hence
v hm VM(p) . ,
Proof of b). Case 1. peR R Since R, —V,(p)—R, is compact for
sufficiently large number M by lim V,(p)=p, for any given positive number
M=c0

¢ and a number m, we can find a number n,=n.s, m) such that
R, —R,—V,(p)C E[z¢R: N,(z, p)<M+¢] for n=n,.
On the other hand, by Factou’s lemma
D, _z, (min (M, N(z, p))) = li_qr;n D(min (M—I— g, N,(z, ) = 2n(M+¢).

Let e->0 and then m—>o. Then
Diner, (min (M, N(z, p))) =2z M.
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Case 2.- peB. Let {p,} be a fundamental sequence determining p
and let V,(p,)=FE[2¢R: N(z,p,)>M7]. Then by case 1, Dy ro—v (N2, 0,))
=2zM for every M. On the other hand, N(z, p,)—N(z, p).. Hence by the
same manner as in case 1, we have by Fatou’s lemma

DR—Ro(min (M: N(z’ p))) =2zM.

3. Harmonic measure (H.M.) and capacities (C.P.) of the ideal
boundary (B~G,) determined by a domain G, with respect to a domain
G, G;CG;. '

So far as we dlscuss the ideal boundary, Wlthout loss of generahty,
we can suppose that "non compact domains have no intersection with R,.
In the following we assume G;~R,=0. Let w, ,,,(2)(®, ,.:(2)) be a function
in (G,~R,.;) such that w, ,.,(?)=we, ,.;(?)=1 in G;~(R,,;—R,) and is
haymonic in ‘Qn,n+i:(GIARrﬂ-i)_(G2/-\(Rn+i—~Rn))? W, nei(B) =0y, 1. (2)=0 on

G, ~R,.., wn,n+i(z):aiwn,w(z):o on oR, . ;~(G,—G,). Then by the maxi-

mum principle w, ,..(2) tw,(2) as i—>o and w,(2){w(z) as n—>oco. We call
w(z) the harmonic measure H.M. of the ideal boundary (G,~B) deter-
mined by G, relative G,. We denote it by w(G,~B, z, G,).
If there exists a constant M and a number %, such that
Doy, nii@n, nii(2)) =M

for every n>n0 and =0, then w,, ,Z+L(z):>cun(z) as 17—»oo and wn(z)=>(;)(z)
as n—>co, ] : .
In faCt9 Dgn, n+i(wn, ,n+i(z)’ wn,'h+i+j(z)): f wn n+z+](z) n n+i(z) dS
G i (Rnﬂ‘l‘“n)) on
8.
- f n Wy, n+a(z) dS—Dgn n+z(wn n+z(z))

(T~ (Bn+i—End) o
whence

OéD!?n,n+z‘((0n,n+i(z)_0)n,n+i+j(z)):D9n,n+i(wn,n+z‘(z))—”D9n,n,+z'(wn,n+z+j(z))
;/_Dgn,u+i+j(wn,n+i+j(z))—D9n,n+i(wn,n+i(z))- i
Whence Do, ,, (@, »..(?))1as t—>c. But =M. Hence
Dﬂn,n+i(wn,n+i+j(z) @y, n+z(z)) ,
= Doy niis O, nsiv (2)—Day, W(wn nei(@) 40 as >0, (9)
Thus o, ,.(2)=>w,(2) as 1—>co. :
Next similarly,

Dgn,n+i+j(wn,n+i+j(z)7 a)n+i,n+17+j<z)) = f wn n+1.(z) n+i,n+i+j<z) dS
‘ (B = Bp)~Ga)e on
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o P | 0
= f a_wn+i,n+i+j(z) dS = f 'a_nwn,+i,n+i+j(z) dS
AI((Bn+i—BRn)~G2) n 3((Rn+z‘+j—Rn+'i)"\Gz)
=D9n+i,n+i+j(wn+i,n+i+j(z))' (10)

Whence Do, ,.is (@n niis &)= @niiniis (B) =Dy nsis {@n nsir (2)+Day nais;
(wn+i,n+i+j(z))—2D9n,n+i+j(wn,n+i+j(z)! wn+i,n+i+j(z)) _S__D!?n,nn»rj(wn,nnw(z))
+Da,,,, n+z+;(wn+i,n+z‘+j(z))"‘2D9n,n+i+j(wn,n+i(z)v wn+i,n+i+j(z))'

Hence by (10) ’

O<D9'n n+z+_7(wn n+z+](z) Wy 4y, n+z+](z))
<D9n n+z+](wn,n+1+](z)) D9n+z,n\+z+;(wn+i,n+i+j(z))'
Let j—>c. Then by (9)

‘ 0= D21, (0,(2) — . (2)) < Da(0,(2))— Daw(ww(z»
where .anhim 2 nei=G— (G, ~(R—R))).
Hence Dg, (w,(2)) | =0 and
| D(w,(?)—w,.(2))—0 as n—oo.

Thus o,(2)=>w(z). We call D(w(z)) and «(z) the capacity and the capaci-
tary potential C.P. of (B~G,) relative G, and denote it by «w(B~G,, z, G,).

Let G, (+=384,--:) be non compact domains CG,. We consider H.M.
and C.P. of G, ~G,---~B. If G,~G,=0, we define w(G,~G,~B,z,G,)
=w(G;~G;~B,z,G,;)=0 133. We shall prove the following

Theorem 2. Let G’ be a compact or non compact domain such that
G'CG,, and G'~G,~(R—R,)=0 for a certain number n,.

P.H.1. Let V(z) be the mon megatively least harmonic functzon N
G’ such that V(2)=w(B~G,,z,G,) on 0G'. Then V(2)=w(B~G,,?,G,) in G.

P.C.1. Let V(z) be a harmonic function in G’ such that V(z)=w(B~G,,
z,G,) on G’ and V(z) has MD I. over G'. Then V(z)=w(B~G,, 7, G,) in
G'. ,

P.H.2. w(B~G,,z2G)>0 implies sup w(B~G,,z2,G)=1 for every n.

z e (Ga~(R—En))

P.C2. w(B~G,z,G)>0 tmplies sup w(B~Gy2,G,)=1 for every n.

ze (Ge~(R—Rp)) .

P.H.3. w(B~G,~G,, 2, G,)=0 for G;=FE[zeR: w(B~G,, 2,G,)<1—4d],
1>6>0. - |

P.C3. o(B~Gy;~G42,G)=0 for G,,:E’[zeR: o(B~G,y2,G,)<1—4d],
1>6>0.

We define HM.(C.P.) for.a set K in G, denoted by w(K,z2,G,) (w(K,2,G,))
such that w(K,z,G,) (o(K,z2,G,)) is harmonic in G,—K and w(K,z,G,)
=w(K,2,G)=0 on 3G, and w(K, 2z G,)=w(K,z,G)=1 on K except a set of
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capacity zero and nmon negatively least (has finitely M.D.1.). Then
PH4. A—5w(G}, 2, G)=w(B~G,2,G,) in G,—G; for Gi=E[zeG,:

w(B~G,,2,G)>1—0d]. . ) '
PC4. (1-0)w(G},2,G)=w(B~Gy2,G,) wn G,—G; for Gi=E[zeG,:

o(B~G,,2,G,)>1—4d]. : ‘
Let G, (k=38,4,---) be compact or non compact domains in G,. Then
P.H.5. Zw(BAGk, z,G,) Zw(B/\Z} G.,2,G))s

P.C.5. Zw(B/\Gk,z G1)>w(Br\Z G, 2, G).

P.H.6. '?/U(B/\GZ/‘\G,;, z,G)= w(BAGz, 2,G.): G is the domazn in P.H.A4.

P.C.6. «o(B~Gy~G},z,G)=w(B~G,2,G,); G; is the domain in P.C. 4.

P.C.7. If w(B~G,2,G,)>0, there exists an exceptional set E of
measure zero in the interval (0,1) such that if Le¢ E, then the niveau
curve* C,=FE[zeG,: w(Br\Gz,z G,)=L7] has the following property

f 9_w(B~G,,2,Gy) ds=Dg ((BGs, 2, G).

Proof of PH 1. Since w, ,.(2)=0 on G’maRnH,

wn n+i(z):‘§1— /. n, 'n+z(C) Gn+z(C! Z) dS

G/ ~Rp i

where GnH(C, z) is the Green s fynction of G'~R,,,.
Since O§—5—Gn+i(c, z)T%—G(C, z) and w, ,..(2)tw,(z) on ¢G’, we have by
n ‘

Lebesgue’s theorem

n(z)—— f wn(c)—G(C, 2) ds,

where G({,z) is the Green’s function of G'.
Next similarly wn(z)¢w(z) and

w(z) = hm w,(?)= 11m e f wn(C)——G(C, z) ds=—— hm wn(C)——G(C, z)ds
1
27‘: o

3G’

W(C)—G(C z) ds. (11)

On the other hand, clearly V(z)—hm V(z) where V. (z) is a harmonic

function in G’AR,,H such that V(z) w(z) on G'~R,,,; and V(z) 0 on
oR,.,~G’. Thus as above by (11)

4) We call a niveau curve with the property [aa—”m(z) ds=D(w(z)) a regular niveau
curve. c
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0
Vi _1 V, __——1 9. i ds=— —G(L,z)ds=w(z).
(2)=lim e fim L W) G =y f w(@) 5 G =u()
Hence we have P.H.1.

- Proof of P.C.1. Let w, ,.(2) be the function in the deﬁnltlon of C.P.
Now ’ ,
| Qn,n+iDG, fOI' n:—>_n07 Whence GlAQn,n+i:G/ARn+i fOI' n‘Z[n’O'
Since _w,,,., (=0 on 0R,,.~G' and D(w,, .. (N=M,

DE”\ann+r:((')n,n+i(z)7 C(Z)):O,
for any harmonic function C(z) such that C(z)=0 on dG’ and Dgu(C(z)) < co.
Hence by Lemma 1.c¢), @, ,,{2) has M.D.I. over G'~R,.;,. Now w, ,.(2)
=>w,(?) implies by Lemma 1.d) that »,(2) has M.D.I. over G'. Also by

w.(?)=>w(2) and by the latter part of Lemma 1.d) w(z) has M.D.I. over G'.
Thus we have P.C.1. :

Proof of PH.2. As G’ in the proof of P.H.1 take G’ G,—(G,~R)).
Then G' ~G,~(R—R,)=0. Put w(z)= (G2/\B ,G,). Fix n at present. Then
by P.H.1.

w(z)=lim V(2),

where V,(2) is a harmonic function in G'~ R, ; such that V‘(z) 0=w, ,.(2)
on oG,~R,,;,, V,()=w,,,(2)=0 on aRnH/-\(G —G’) and V(z) w(z)
<wn n+z(z) 1 on a((Rn+z n)"\G2)

Assume supw(z)<K<1l in G,~(R—R,). Then by the maximum
principle V(2)<Kw, ,.(?). Let i—>oo and then n—>o. Then

w(z)= Ku(2). |
Hence w(z)=0. This is a contradiction. Thus we have P.H.2.

Proof of P.C.2. Put w(z)=w(G;~B,2,G,). Assume o(?)<K<1 in
G:~(R—R,). «(z) has M.D.I. over G'=G,—(G.~R,). Hence by Lemma
1.b6) : ' '
S w(z)=1lim U(z),

T =00 .
where U,(2) is a harmonic function in G'~R,,,, such that U,(2)=0=w, ,.(2)
on aGl’\Rn-t»i) Ui(z)'_—w(z)<wn,n+i(z)=1 on a((Rn+z_—Rn)AG2) and aiUz(z)_:O

. _ n
0

:a7w"*"* [(z)on oR, ,~(G,—G’). Hence by the maximum principle and by

the assumption U(2)=Kw,, ,.(2).
Let i—>oc0 and then n—>o. Then w(z)<Kw(z).
Hence we have P.C.2.
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Proof of P.H.3. (P.C.3). H.M.(C.P.) of (G,~B)tas G,*1. Hencé
w(G,~G;~B, 2,G,)<w(G;~B,2,G,)(w(G;~G;~B, 2,G) <w(G.~B,z,G,)) and

sup w(G,~G;~B,z,G,) < sup w(qu-\B G) <1-—ad.

zE(Gz"\Ga) zeG5

sup o(Go~G;~B,2,G,) < supm(GzAB 2,G)=1—a.

ze (Ga~Gy)
Whence by PH2(PC2)
w(G,~Gs~B,2,G,)=0 and w(szGamB Gl) 0.

Proof of P.H.5(P.C.5). Let ! ,.(2) be a harmonic function in
G,—(G,~(R,.,—R,)) such that «f ,.,(2)=0 on dG,, @}, ,.,(2)=1 on I((G;—G,)
~(R,.,—R,)) and %w,, . {2)=0 on 9R,.,~(Gi—G.). Let w, ...(z) be a
harmomc funetion in G, —(ZG ~(R,.,—R,)) such that o, ,..(2)=0 on
0G1, 0, n.{(2)=1 on oG, ZG,C)/\(R,M R,) and 70)" nii(R)= O on oR,
—(G,—>G,). Then by the maximum principle

'° S0k, 1 #) Z 0,0 (2.
Let 7—>o and then n-—>>oo.k Then | .
S 0(Gi~B,2,G) Z 6(3)G~B,2,Gy).
Similarly we have P.H.5. ‘

Proof of 6). G:D(G,~G}) and G,=(G,~G,)®+(G,~G}). Hence by
P.C5 (B ~Gy~G},2,G)+6(B~Gy~Gs,2,G) = w(B~Gy,2,G )>w(Br\G2r‘\G
z,G,). But by P.C.2

@w(B~Gy~Gy,2,G,)=0, ‘whence
w(B/\Ggf\G,;,Z,Gl):a}(BmGz,z,Gl)‘.
Similarly we have P.H.6. |

Proof of P.C.7. Let w, ,.«?) be the functlon in the definition of
o(Gy~B,2,G,). Put Q*=E[2eG,: o(B~G,2,G,)<L] and QF ,.,=E[zeG,:
@, n.{2)<L]:0<L<1respectively. Let 2’ be a domain completely contained
in Q*. Since w, ,.(?)=>w.(?) and »,(2)=>w(B~G,,?,G,), there exist numbers
n, and %, for any given number m such that

(R,~2)CT Q% ..: for n=mn, and 7 =1,t(n,)).
*Then by Fatou’s lemma

Dyrrr, (0(B~Gy2,G)<Dgrr,(limlim w, ,,(2)<lim lim D% . .~z (@, ..{2))
n 7 n, (2 .

5) G means the closure of G with respect to N-Martin’s topology.
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<lim lim D, . (00, ar )=l lim [ @y 0 &), oi(2) ds = lim limn
3 n 4 n 7

n

L
00, n+d

L wwn v+(2) ds=L lim lim f —;—a)n,nw(z)ds:Llim lim D . (@ n.i(2))
) n n [

G ~Rn.q .
391bﬂ+z'

S LD, (o(B~Gs, 7, Gy),
because o, ,.(2)=>,(2) and 0,(2)=>w0(B~G,, 2, G,).

Let m->oo and then m—>oo. Then let 2" 4 QF, then
Dyir(0(B~Gy, 2, Gy)) = LD (0(G:~ B, 2, GY)).
Similarly ‘

Dg,_ot(w(B~G,2,G,) <(1—L)D¢(s(B~Go, 2,GY)).
On the other hand, 7
Do (w(B~Gy, 2,G,))=Dyr(0(B~Gs,2,G1))+ Do, g.(w(B~Gy, 2, Gy)).
Hence . '
D,(¢(B~Gy,2,G)=LD;(s(B~G,2,G,)) for 1>L>0. (12)

Let w.(z) be a harmonic function in Q*~R, such that w,(2)=L on
C.,=FE[z2¢G,: o(B~Gy,2,G,)=L], .nw,,(z) 0 on Q*~0R, and w,(2)=0 on
0G,. Since w(B~G,, 2,G,) has M.D.I. over QL by lemma 1.b) wl(z)=>
o(B~G,,2,G,) and by (12)

lim Dy2((#)) = Dyor(&(B~Gs, 2, G))=LDo((B~Gy, 2, G)).

Since ,—a—w’ (2)=0 on C, and iw,,(z)—»a_a)(z) by o’(z)=>w(z), where w(z)
on on on -

=w(B~G,2,G;). Then by Fatou’s lemma
f iw(z) ds < lim f iw,,(z) ds

CL"R'H

:f llm DgLﬁRn(wn(z)) == —I—_:D_QL((U(Z)) == Dgl(w(Z))-

Thus
A= f aiw(z) ds < Dg(w(z)) for every niveau curve C,. - (13)
n :
°L
Now we can take p-+ig=w(z)+7«(2) as the local parameter of every point
z in G, except at most enumerably infinite number of branch pomts of
p—l—zq, Where o(z) is the conjugate functlon of w(z) Then a——w(z) 1,
yY

—w(z) 0 and
0q
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Do (a(2))= [/ {<iw(z))2+<iw(z))2} dp dq = f [ f dq]dp% f A,dp, (14)

because dq#da ——a—&') ds—j—w ds Where ds is the hne element along C,.

08 on
Hence by (14) and (13)
| A, =D;(o(B~G,2,G,)) for almost L.
Thus we have P.C.6. '

Theorem 3. a). Let C/(j=1,2) be regular niveau curve of C.P. w(z)
(=(B~G,,2,Gy) such that w(z)=L,: 0<L,<L,<1 and f aiw(z)ds:p(w(z)).

L.
Since w(z) has M.D.I. over Q=E[zeG,: L,<w(z)<L,], wf,(z)=>w(z) as n—>oo,
where w(z) 18 a harmonic function in Q~R, such that ol(z)=w(z) on

IR~R, and Ea—w,’,(z):O on Q~0R,. Let A,(z) be a continuons function
n
on Cy, such that A,(2)—>A(z) as n—>co and M=A,(2)=0 for every n. Then

f A(z)———w(z) ds-—hm f An(z)——a}n(z) ds.

L/'\qz,

b). Let Un(z) be a harmonic function in Q~R, such that U,(z)=0
on C,, 0<U,(2)<N on C,, and _aiUn(z)zo on Q~aR,. If U z)—>Ulz), then

f A(z)-—— U(z) ds=lim An(z) ' U,(2) ds.

7
CLlf-\Rn

Proof of a). Assume that there exist a positive number § and in-
finitely many numbers n and 7 such that

-a—w,’,(z) ds>d6>0.
on \

Cr i~ (Bnsi—Rn)

Then by (L,—L,) f =0 (2) A5 =Dy -y, (. (2)),

LARnn .
f Coh@ds= [ Zo@ds— [ Ll (ads
cr ﬁRn CLJAR‘YH-Z n ‘L T (Rysi—LRn) n
<D,,,\R,,+i<w,m<z>>/<L —L)—d. (15)

On the other hand, {jz .(z)»a—ncu(z) on C,; and Dy x,,(0,.(2)) t Do(a(2))

=D ((2)) (L — L)
Then by Fatou’s lemma and by (15)
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| f quw(z)ozs— f <1i£n_a%a;;m(z))ds<1im f g%w,’m(z)ds-—b‘:Dgl(w(z))—ﬁ.

i
CLJ./\R” LJ/'\ n Ot ’\ n+i

Let n—>oo. Then g_‘”(z) ds < Dy ((2))—0.
This contradicts the regularlty of C, . Hence for any given positive number

g, there exists a number n, such that

0= [ Lol ()ds<-5 for i=0 and n=n,. (16)
n M

CLjf\(Rn+i"Icw)
At present fix m(=n,). Then by aiw;+i(z)—>—aa_w(z) and A4,(z)>A(z) on
: n "
CijRn, there exists a number 7, such that

f A @) a),,,ﬂ(z)ds—s< f A(z)——w(z)ds for i=i,  (17)

CLj~Fp CL;~Rm

By (16) and (17) .
f A(z)—w(z) ds = f A(z)_—w(z) ds = f Amﬂ(z) a),m(z) ds—e

Cr "‘Rm ‘L "\Rm

= f m+z(z) wm+7(z) ds— = f m+i(z)_”—wm+i(z) ds—e
CL AR, ‘r B R on
m+i m+ 3= Fom)

= A l2)— - wmﬂ(z) ds—2e.

°r G Bmad

Let ¢—>0. Then
f A(z)—w(z) ds=Tim f An(z)———wn(z) ds.

n
CL r\R-n

On the other hand by Fatou’s Lemma

f A(z)ainw(z) ds= f <1i:n Aﬁ(é)%mﬁ,@)) ds = lim f An(z)%wj,(z) ds.

Cr.

J L;
Hence
f A(z)—cu(z) ds=1lim f A (z)———cu (2) ds.
"op ~EBn
J
Proof of b) By the maximum principle Un(z)/ N(—w”(z—)—L—l. Hence

L,—L,
O§—£:Un(z):f%--é§— 7(z) on C,,, whence there exists a number 7, for
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any given positive number ¢ such that
L2‘_—L1

AN e for n=n, and 1=0. (18)

o= [ 9 U, (2)ds =
n

CLi~(Bp+i—Br)

Thus similarly as a) we have b).

4. Harmonic measures and capacity potentials of a closed set F and
of a decreasing sequence of compact or non compact domains.

Let F be a closed set in R—R, with respect to é-metric. Put F,,
=E[ze R: 6z, F) g%ﬂ Let w,,;,n(z)(wm,n(z)) be a function in (R,~G,) such
that w,, ,(?)(®,, ,(2)) is harmonic in (R,~G,)—(F,~Gy), W, (2)=0, (2)=1
on F,~Gs w, (2)=w0, .,(2)=0 on ¢G,~R, and wm,n(z)zg%wm,nzo on oR,

—(F,,~G,). Then w,, (2) 1 w,(2) as n—>co and w,(z) | w(z) as m—>oco. If
D(w,, .(2)) <M for a certain number m, and for every N=0, 0y (2)=>0,,(2) as
n—>oo and w,(2)=>w(z) as m—>~. We denote w(z) and w(z) by w(F'~Gy,2,G,)
and «(F~G, 2,G,) respectively. Let {V,} (m=1,2,--.) be a decreasing
sequence of compact or non compact domains. We define HM. w({V,}
~Gy,2,G,) and C.P. «({V,}~G42,G,) of {Vm}mGz as H.M. and C.P. of F~G,
by replacing V,~G, instead of F,~G,. We proved the properties of
H.M.(C.P.) only by the fact that w, ,..(2) 1 w,(2) and w,(z) } wW(2) (@, ,.«(2)
= w,(2) and 0,(2)=>®(z)). Hence these H.M.’s-and C.P.’s have all the properties
stated before. In this paper we denote by P.H.N.(C.P.N.) (N=1,2,---17)
the properties of the above H.M.’s and C.P.’s respectively

If Gz=R—R, and G;~F, ~R,=0or G,~V, ~R,=0, by the Dirichlet
principle . :

D(w,, .(2))<D(@(z)) for m=m, and n=0, |
where @(2) is a harmonic function in R,— R, such that @(z)=0 on oR, and
o(2)=1 on oR,. In this case, we omit E— R, and denote it by w(G.~F,z)
(0(G,~F, 2)) simply. ‘ ' |

5. Superharmonic function in R—R,.

Let G be a compact or non compact domain in R—R,. If U(z) is
continuous in G except a closed set of capacity zero and U(z) has partial
derivatives almost everywhere in G, we call U(z) a C,-class function.

Let U(z) be a positive function of C;-class in G and continuous on
oG except a set of capacity zero such that U(z)=0 on oR,~G (may be
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void) and D,(min (M, U(z))) <o for 0 <M < oco. Let ,,U"(z) be a harmonic
function in G such that .;U"(z)=min (M, U(z)) on oG and ,;U™(z) has
M.D.I. < D(min (M, U(z))) over G. Then .;U"(z) is uniquely determined by
Lemma 1.a). ,U%2)% as M4t . Put ,,U(2) :Lim cU(2). If oo U(z)
= U(z), we call U(z) a harmonic function in G with boundary value U(z)
on 9G. Let U(z) be a positive function of C,-class in R—R, such that
U(z)=0 on oR, and D(min (M, U(z))< oo for M<oco. Let D be a compact
or non compact domain in R—R, Let ,UY) be a function such that
2UM(z)=min (M, U(z)) on 9D+D and ,U"(z) is harmonic in R—R,—D
with ,U"(z)=0 on 0R, (may be void). Put U(z)_hm U"(z). If ,U(z)
< U(z) for every domain D such that oD is compact, we say that U(z)
is superharmonic in R—R, From this definition, if U(z) is superharmonic
in R—R, and if U(z) is continuous in an open compact set G in R—R,, U(z)
is superharmonic in G (in ordinary sense). | ’

Lemma 2. a). ]*M[aximum principle. Let U,(z) (1=1,2) be a harmonic
Sfunction in a compact or non compact domain G such that U,(z) = Uy(z)
on 0G. Then

U (z) = Uy(z).

b). Let U(z) be a harmonic function in G such that M= U(z)-on aG

Then
UR)Y=M in G.

¢). Let D be a compact or non compact domain in R—RO. Let U(z)
be a positive function of. C;-class in R—R, such that U(z)=0 on oR, and
D(mln (M, U(z))) < oo for M< oo and ,U(z) < U(z). Then

D(min (M, ,U(z))) =< D(min (M, U(z))).

Proof of a). Let ,UX(z) be a harmonic function in G ~R, such that

JUM2)=min (M, U(z)) on 0G~R, and _é% UX(z)=0 on 0R,~G. Then ,U}(2)

=,UX(z). Let m—>oo and then M-—>c. Then
liMm lim ,UX(2)=U,(z) = Uy(?)=1lim lim ,UY(2).
Similarly we have g). ' s |
Proof of c). \
E[zeR: ,UXz)<M]1="0" ,0"
=E[2eR: ,U@z)<M]DQ*=E[2e R: Uz)<M] as L—>oo.
Suppose L=M. ,U*(z) has M.D.I. over R— R,— D with value min (U(z), L)
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on 0R,+0D. This implies by Lemma 1.a) that ,U%=z) has also M.D.I.
over *QY—D with value ,U*(z)=M=min (M, U(z)) on ¢*Q”—D and with
value ,U*(z)=min (M, pU#))=U(z) on 0D~*Q", by ,U"(2)<U(z), i.e. ,Uz)
=min (M, U(z)) on ¢(R—R,—*Q"— D).
Hence Drgu_p(min (M, ,U%(2))) = Drgr_p(min (M, U(z))).
On the other hand, ,U*(z)=min (L, U(z)) in D and by M<L

D y(min (M, ,U™(z)))=Dp(min (M, L, U(z)))= Dp(min (M, U(z)))
and M= ,U%z)=<U(z) in R—R,—D—*Q", whence min(M, ,Uz))=
min(M, U(z))=M in R—R,—*Q" and

Dy ro-p-tou(min (M, ,UX2)))=Dpg_g,-»-Lo#(min (M, U(z)))=0. |
Thus  Dryu(min(M, ,U*(2)))=Dx_g,(min (M, ,U™(2))) < Dx_ z, (min (M, U(z)))
=Dju(min (M, U(2))).

Let U(z) be a positive function of C)-class and U(z)=0 on /R, If
pU(z) exists (,U(z) has M.D.I. <o over R—R;—D and ,U(z)=U(z) on D)
for any compact or non compact domain such that 4D is compact and
sup U(z)<oo and if ,U(z) < U(z), we say that U(z) is superharmonic in

%€ aD
R—R, in the weak sense.

Theorem 4. a). Let U(z) be a positive function of C,-class with U(z)
=0 on dR, and D(min (M, U(z)))<c. Let D be a domain (compact or
non compact) and G be a domazn with compact oG. If U(z)< U(z) and

cUR)=ZU(z), then
(pU(R)=,U(2).

Therefore if U(z) is superharmonic (,U(z) < U(z) for any domain
G with compact 0G) and U(z)< U(z) Ko UR)N=,U(2), te. yU(2) is super-
harmonic in R—R,.

If U(z) is superharmonic in R—R, (,U(z)<U(z) and cU(R)<U(z) for
any domains D and G with compact 6D and 3G, 2U(2) s also super-
harmonic in R,—R.

a’). If U(z) is superharmonic in R—R, in the weak sense and if
DU(z) and ,U(z) are defined ( sup U(z)< o), then s(p U(z)) 18 defined and

ze (3 D+3@)
b U())=,U(2),
where aD_ and oG are compact.

b). Let U(z) be superharmonic in R—R,, then for any domains D,
and D, with compact relative boundaries
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00, U(R)) =, U(2) =<, U(2) : D; C D.,.
b). Let U(z) be superharmonic in R—R, in the weak sense. Then
Jor any domains D, and D, with compact relative boundary such that
sup UR)< > (t=1,2), we have
00, U(2)) =5, U(2) = p,U(2) : D, C D.
¢). Let U(z) be superharmonic in R—R, and put D,=D~R,. Then
hm 2, U(R)=,U(2), ‘
¢). Let U(z) be superharmonic R—R, in the weak sense. Suppose
D,DD.,DOD,., D,=D~R, (n=12,---). and sup U(z)<oo. Then ., U(z)+t

z€dD’p

U*(2)<U(2). If ,U"(z) exists for every M < oo, then U*(z)=Ilim ,U™(z).
- —_— M=oo
d). Let U(z) be superharmonic in R—R, Then ,U(z)=<U(z) for
compact or mon compact domain D.
_e). Let U(z) be superharmonic in R—R,. Then ,U(z) is superharmonic
in R—R, for a compact or non compact domain D.

f). Let U(z) be superharmonic in R— R Then Sfor compact or non
compact domains D, and D,: D,DD,

p:(0,U(2)) = p,U(2) =, U(2).
g9). Let Uy z) (n=1,2,.--) be a superharmonic function in I_i’—R0
and U,(2)—U(z) in every compact domain in R—R, If D(min (M, U(z)))
<oo for M<oo, then U(z) is superharmonic in R—R,.
g). Let Uy(2) (n=1,2,---) be superharmonic in R—R, in the weak
sense such that sup U,(z)<<co. If Un(z)—>U(z) wnm R—R, and zf 2U®®)

z2€ oD
exists, U(z) 1s superharmonic in the 'weak sense.

h). Let Uyuz) (n=12,-.-) be supe'rharmonw in R— R, such that U,(2)

18 continuous in R—R, and U,(z) * U(z). If U(z) is finite in R—R, and

D(min (M, U(z))) < oo for M < co, then for compact or non compact domain D
p(lim Un(z))_DU(z)_hm U.(?).

7). Let U(z) and V(z) be superharmonic in R—R, Then for a
compact or non compact domain D
' pU(2)+pV(2)=p(U(2)+ V(2)),
V(2)=U(z) implies ,V(2)=,U(?),
C(L,U(z))=,(CU(2)) for C=0.
7). Let D, and D, be two compact or mon compact domains. Then
1+ 0, U(R) = p, U(2) + 5, U(). |
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| k). min (M U(z)) and min (U(2), V(z)) are superharmonic in R—R,.
Proof of a) Since lel_n’l $U(z)= D’U(Vz) on G, for any given numbers M and
¢ there exists a number L, such that L0>M and e+ °U(z)>m1n (M, »U(?))
on 0G.
In fact, assume that there exists a sequence {z,} on dG such that
2 U(z)=min (M, ,U(z,))—d,: 8,>0
for infinitely many numbers L, such that. lim L.:oo,

, Since 0G is compact, there exists a pomt z2* such that z; ->z*, where
{2} is a subsequence of {z?}. Then two cases occur. :

Case 1. zeoD. In this case 0D is composed of analytic curves and
every point of 0D is regular for Dirichlet problem. Now ,U¥(z)=min (M, U(z))
on o0D. Hence

llm U(z§)>11m (m1n (L, U(z’)))>11m U"(z})=min (M, U(z;)) for L, =M.

Case 2. 2¢dG—D. In this case, there exists a neighbourhood u(z*)
of z* such that v(2*)~D=0. ,U%(z):i=1,2,--- are harmonic in v(z*) and
7U(z) * pU(2) uniformly in u(z*), whence lim ,U"(z;) = min (M, ,U(z*)).
Cases 1 and 2 are contradinctions. Hence _z
- e+3°U(z)=min (M, ,U(z)) on aG.
Let ,V™z) be a harmonic function in R—R,—G such that ,V%z)
=min (M, ,U(z))) on G+dR,. This can be defined by D(min (M, U,(2)))
<D(min (M, U(z))) <o by Lemma 2.c¢). By the assumption: U(z)=,U(z)
and U(z)=U,(z), which imply

2U(z)=min (M, U(z))=min (M, 2U(R)=sV"2) on aG

Both ,U*(z) and ;V*(z) have M.D.I. over R—R,—G. Hence by the maximum
principle
U)=,U"(2)=,V*(z) in R—R,—QG..
Whence o
2UXz)=min(L, ,U(z))=min (L, U(z))

>min(M, ,U"(2))=%V(2)=,V"(z)—¢ on D—G.
On the other hand, ¢+ 5U(z)=min (M, ,U(z)—¢) on oG for L=L,, and both
«V*¥(z) and UL(z) have M.D.I. over R—R,—D—G.
Hence by the maximum principle

2UN(2)=;V*(2)—e in R—R—G— D for L=L,.

Let L—>o and then M—c and then ¢—>0. Then
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U(z)—hmGVM(z)“hm pU(2)=4¢(,U(z)) in R—R,—D—G.
UM(2)=cV"(2) by U(z)=» U(z) in R—R,—G, Whence by the maximum
principle
LUXZ)=min (U(z), L)=,U"(2)=,V*(z) on D—G.
Next ,U(z)=min (M, ,U(z))=,V™(z) on G. .
Let L—>oc and then M—co. Then ,U(2)=4(»U(z)) on D+G.
Thus pU(2)=6(» U(2)).
The latter part of a) is proved at once by the definition of superharmoni-
city in R—R,. |
Proof of a’). By the assumption ,U(z) and ,U(z) exist and
Dy _g,-o(pU(2))< > and DR—Ro;G(GU(z_))<OO'
Put T'(z)=min (,U(z), ;U(2)). Then
2U() |

) e [0 ), 20 |2

whence Dx_po-o-o{T(R)=Dr_ r,-aleU2))+ D gy-p(pU(2)) < oo.

By T(z)—GU(z) in D—@, because ,U(z)=U(z)=,U(z) in D,
D, _o(T(2))=D(cU(2)) < .

Hence Dy_po-o(T(2)) << oo,

On the other hand, ‘

T(2)=,U(z)=U(z)=»U(z) on D~3G by sU(x)=U(z)=,U(z) in D~G,
T(2)=,U(z) on 6G—D by ,U(z)<U(z)=,U(z) on G,
hence T(z)=,U(z) on dR,+0G and Dy_z,-o(T(2))<oo.

Hence there exists a harmonic function H(z) in. R—R,—G such that H(z)
has M.D.I. (=<D;_z, o(T(2)<x) over R—R,—G and H(z)=,U(z) on
6G+0oR,. Thus ,(,U(x)) (=H(z) in R—R,—G and =,U(z) in G) is defined.
Now as above

aGaUy(Z)D

{HLUE)=,U(z) on 0R,+6D+oG
and by the maximum principle
«(U@)=,U(z) in R—R,—G—D.
{LUR)=,U(2) in G and ;(,U(z))=,U()=<U(2)=,U(2) in D.
Thus ,
| RUOERIOR

Proof of b). ,,U*z) has M.D.I. over R—R,—D;, Whence by Lemma

1.a) ,,U%z) has M.D.I. over R—R,—D, with value ,U%2) in D,+0R,,
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i.e. ,,U*(z) is harmonic in R—R,—D,. |

Let V%(z) be a harmonic function in R— R,— D, such that Vi(z)=,,U*(2)
on D,+6R,. Then by the maximum principle V*(z)=, U%(z).
Hence 1:”2 VL(z)zkirp” 0, UH(2)=,,U(2).

Let W*(z) be a harmonic function in R—R,—D, with WX(z)=
min (L, DlU(z)) on D,+3R, Then by min (L, ,,U(2))=,,U¥z) on R,+D,
and by the maximum principle W%(2)=V*(z). Let L—oo.

Then o0, U@)=lim WX(z)=lim V*(2)= ,, U(2).
On the other hand, by ) ,, U(?) is superharmonlc, whence ,,(,, U(2))<,,U(2).
Thus
. Dz(D1 U(z)):lh U(Z).
Next from U(z)=, U(z),
U(z)_pz(m U(2))=p,U(z).

Proof of b'). Dg_py (0, URN<Dp_p,-0,(p,U(2))< o, whence as above

we have
2. U(R)=15,(5, U(2))=p,U(2).

Proof of ¢). D,=D~R, is compact, ,,U(z) increases to a function
U*(z)(= U(z)) as m—>oc by b). By lemma 2.¢) D(min (M, ,, U(2)) =<
D(min (M,U(z)))<co. min (M, ,,U(z)) is harmonic or a constant M in
R—R,—D and =min (M, U(z)) in D,. Hence by Fatou’s lemma

Dr_ go-p(min (M, U*(2))<lim D (min (M, ,,U(2))) < D(min (M, U(z))) < oo.

By the superharmonlmty o}— U(z) :,U"=<U(z) on oD and has M.D.I. over
R—R,—D by (R—R,—D)C(R—R,—D,), whence by the maximum principle
DnUM(z)nglalprian”’(z)gM in R—R,—D,.

By Lemma 1. a) ,,U*(z) has M.D.I. over R—R,—D with value <min (M, U(z))
on D+3R,. ~On the other hand, ,U"(z) has M.D.I. over R—R,—D with
value mln(M U(2)) (=5,U"(z)) on D. Hence by the maximum principle
2UM(2)=,,U"z) in R—R,—D.

Clearly min (M, U(z))=,U"(z)=,,U"(z) in D. Let M—>c and then n—>co.

Then v
2U(R)=U*(z)=I1im ,,U(z). , (19)

Since Dyz_g(,U*(2)) <o, for any given positive number >0, there
exists a number n, such that D, ., (,U*(z))<e for n=n, Now ,,U"(z)
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=min (M, U(z))'zl,U”(z) on D,+06R, and »,U"(z) has M.D.I. over R—R,—D,.
Hence A
Dy ro-2al0aUM(2)=Dr - ry-p.{nU™(2))
=Dg_pe-poUM2)+Dp_p, (5 UM(2)) =D r_ g, o(p U™(2))+e¢.
2. U"(2) 1 as n—>oo. Put VM(z):liEn 0, UY(2) (Z1lim ,,U(z)=U*(z)). (20)
Then V¥(2)=,U"z) on D and ,,U%z) is harmonic in R—R,—D, and
further derivatives of ,,U"(z)— those of V*(z). Hence

Dy re-o(VH(2)=Uim Dy_,_ (5, U"(2)) = Dg_g,-(prU"(2))+e.

Let ¢>0. Then V¥(2) hasﬂ M.D.I. over R—R,— D, because ,U"(z)(=V*(z)
on 0D) has M.D.I. Hence by Lemma 1.b)
V*(2)=,U"2z) in R—R,. (21)
By 5.U"(2)=5,U(z) and by (20), (19) and (21)
pU()=1im ,U"(z)=1im V*(z)=lim(lim ,, U*(2)) <lim ,, U(z) = U*(2) < , U(2).
M=oc0 M=c0 M n n

Thus we have ¢). ¢’) is proved similarly. ,
Progf of d). If 6D is compact, it is clear by definition. If 8D is
not compact put D,=D~R,. Then by c¢)
U(z)—hm 0, U(2)= U(2).

- Proof of e). If oD is compact this case reduces to the case of
Theorem 4. a). Suppose that ¢D is non compact. Let G be a domain such that
oG is compact. Then by Lemma 2. b) D (min (M, ,U(z))) < D(min (M U(z))) <o
and by d) ,U(z)<U(z). Hence by a)

G(DU(Z))ZDU(z)‘

Thus ,U(z) is superharmonic in R—R,. |

Proof of f). »,U"z)has M.D.I. over R— R,— D,(D(R— R,— D)), whence

(0, U(2)) = 5,(5, U™(2)) =5, U™(2).
Let M—oco. Then ,,(,,U(2))=,,U(z). On the other hand, ,, U(z) is super-
harmonic by e), whence ,,(,,U(2)) < ,,U(z) by d). Hence ,,(,, U(z))=,,U(z)
and by DlU(z)<U(z) we have also
22 U(R) = 5,(5, U(2)) = 0. U(?).

Thus we have f).

Proof of g). It is sufficient to show ,U(z)< U(z) for domain whose
relative boundary 9D is compact. Suppose that D is compact. Since ,U(z)
:lij[n pU"(2), for any given positive number ¢, there exists a number M,

such that (see a)) v
2U(R)=,U"z)+¢ for M=M,.
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Now by UX(z)—>U"(z) on oD, there exists a number n,(M) by the maximum
principle such that

[DU,{"(z)—DUM(z)l<s ‘in R~R0fD;ngn0(M).

Hence ,U(2)=<,U™(2)+e¢=,UXz)+2¢<min (M, Un(z))—l—2é in R—R,—D.
Let n—>o and then ¢—0. Then ,U(z)<U(z) in R—R,—D and ,U(z)
:U(z)Qin D. Thus U(z) is superharmonic in R—R,. ¢’) is proved simi-
larly.

“Proof of h). Put D,=D~R,. Then oD, is compact. By U(z)=U,(2),

- o U@ =0,UL(2).

Let m—>co. Then ,U(2)=,U,(2) and ,U(z)=lim ,U,(2).
Conversely, since Uy(z)=Ilim ,, A U(z), there ex?s:s a number m such that

Upy(z)<,,U(z)+¢e. Next by c¢) for any given positive number ¢, since 3D,
is compact and U,(2)—>U(2) on 0D, there exists a number n(m) such that

2UR)<,, UR)+e<,,U(2)+2:=,U,(2)+2
_ in R—R,—D, (D(R—R,—D)) for n>n(m)
In D,, ,U(R)= U(z)—-llm U, (z)—-hm 2 Un (z)<11m U.(z).
Let ¢—>0. Then U(z)<11m U(z)
Thus we have h).

Proof of 1) and j) are clear by the definition and by the maximum
pr1nc1p1e '

Proof of k). Put T(z)=min (U(z), V(z)). Then

! 0T(z) oU(z)| |aV(z) |\ |90T(z) ] oU(z) )

ox ox ox |/ oy oy | )

ElzeR: T(z)<M]=FE[zeR: U(z)<M]+E’[zeR V(z)<M1].
Hence D(mln(M T(z)))=<D(min (M, U(z)))+D(m1n (M, V(z))) <o for every
M< o,
Let G be a compact or non compact domain in R—R,. Then T(2)<U(z)

oV(z)
oy

s

_S_max(

’

and <V(z) on 0G. Hence by the maximum principle
' ¢ T(2)=min (;U(2), ¢ V(2))=min (U(z), V(2)=T(2).
Thus 7T(z) is superharmonic in R—R,. The latter part is proved similarly.

6. Integral representation of Eaperharmonic functions.
Theorem 5. a). C.P.’s w(B~G,2), o(F,z), o({V},2) and N(z,p): pcR
—R, and fN(z, p) dp(p): dp(p)=0 are superharmonic in E—R,.
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b). Let U(z) be a positive superharmonic function in E'——Ro with

U(z)=0 on 0R,. Let F be a closed set in R—R, Put szE[ze R: 8(z, F)

é_%] Then F,, is a compact or non compact closed domain. By Theorem

4. ), 7, UR)\. Let FU(z)_.hm rnU(R). Then U(z) is represented by a
non mnegative mass d@stmbutzon on F such that RU(z)= f N(z, p) du(p)

for ze R—R,.

b). Let U(z) be a positive superharmonic function in R—R, in the
weak sense with U(z)=0 on oR, Let G, ., be a domain such that K, ,

CGon T Ky 01 and sup U(z)< oo, where K s a closed set in R— Ro,

233Gm,n
Km:E[zeR: 3z, K)§—ﬂ—®-1 and K, ,=K,~R(n=12,--). Such Gm,n can

be choseri by that U(z) is continuous except a set of capacity zero. Then
limi lim G,, ,=K and by a') of Theorem 4 lim lim ., ,U(z) exists. Put . U(z)

=limlim, ,U(z). Then U(z) i3 represented by a mass distribution on
K. Hence U(z) is superharmonic in R—R, by a). If Uz) is super-
harmonic in the weak sense and harmonic in R—R,—F, then U(z)= U(?)

= f N(z, p) dp(p) by puttzng K=F+B. Therefore U(z) is superharmonic

by a) and in this case there is no distinction between superhar'monwzty

and the superharmonicity in the wealk sense.
Proof of a). Put F,,=F,~R, Let v,,(2)=oF,,,z) ie. C.P.of
F,(0,.(2)=1on F, ., 0,.(2)=0 on R, and v, (2) has M.D.I. over R— R,
F,.). Let R be a subset of R, such that R,CR;, Ri~F, ,=0 for
m=m, and oR; is compact relative’ boundary. Let @(z) be a- harmonic
function in R{—R, such that @(2)=0 on aR and =1 on oR;. Then by
the Dirichlet principle

D(w,, (2))=<D(@(z)) for m=m, and n=0,
whence .
| D(min (M, w,, (z)))<oo for every M. | (22)
Let D be a domain in R—R, with compact relative boundary. Then
2@y (R)=0,, .(2) on (6D~CF',, ,)+0R, and ,0,.(2)<l=w, (2)on F, ,~CD.
Now both ,(®, .(?)) and o, .(2) have M.D.I. over R—R—F, ,—D. Hence
by the fknaximum principle : . .
20 (D) S0 n(2) (23)
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Hence by (22) and (23) ,, () is superharmonic in R—R,. Now @, .(z)
=w,(2) and 0, (2)=>w(z), whence w(F,z2)=w(2) is superharmonic in R—R,
by Theorem 4.g). For other C.P.s we can prove similarly. We show that
N(z, p) is superharmonic in R—R,. D(min (M, N(z, p)))<2zM by Theorem
1.0). Next let D be a domain Wlth compact relative boundary ¢D. Put
V. (p)= E[zeR Nz, )>M:|

Case 1. peD. In this case V,(p)C D for sufficiently large M by
Theorem 1.a). Since N(z, p) has M.D.I. over R—R,— V ,(p) D(R— R,— D),
»N(z, p) =N(z, p). . '

Case 2. p¢D: N(z, D)=p.v,m»N(z p) by case 1. Let M>sup N(z, p).

ze€dD

Then ,N(z,p) has M.D.I. over R— R,— D, whence by the maximum principle
Nz, p)<M in R—R,—D— VM(p). »N(z, p) and ,HVM(Z,,N(z, ») have M.D.I.
over R—R—V ,(p)—D. Hence by the maximum prineiple
»N(z, p)éznvm(p)N(z, D) =N(z, p) in R—R,—V,(p)—D,

because ,N(z, )=y, VM(p)N(zt p) on 6D4oV ,(p)+oR,.
And N(z, p)=M=,N(2, p) in V,(p) and ,N(z, p)=N(z, p) in D. Hence N(z, p)
gDN(z’ D).

Case 3. pedD. In this case ,N¥(z,p)=M on V,(p)~CD.” Hence as
in case 2

oN(2, 0)=p.v N2, P)=N(2,p) in R—R—D-—V,(p).
Let M—oc. Then V,(p)—>pecdD and ,N(z, p)—llm »N¥(z, p)<N(z p) in R
—R,—D. Now ,N(z,p)=N(z,p) in D. Hence N(z P)XN(z,p). Thus by
case 1,2 and 3 N(z, p) is supperharmonic in R—R, for pe R—R,.
Next suppose N(z,p)=Ilim N(z,p,): pe B and p,c R—R,, where {p,} is
; : ‘
a fundamental sequence. Then by the superharmonicity of N(z, p,), N(z, )

is superharmonic in R—R, by Theorem 4.g) and by D(min (M, N(z, p)))
<2zM.

Let V(z)=fN(z, p)dp(p). Since N(z,p) is continuous (for fixed z)
with respect to p, the approximation to V(z) is done in every compact
domain in R—R, by Vn(z)—-ZcN(z p):¢c;>0, Zc_jd,u(p) p,e R—R,

(n= 1 2,000
Since N(z, p,)= o at p,, there exists a neighbourhood » of > p, such

5) CD means the complementary set of D.
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that >1¢,N(z,p,)>N in v for any given large number N. Now N(z, p,)
has M.D.I. over R—R,—v. Hence V,(z) has M.D.I. over 2, (CR—R,—v)
for M<N: Q,=E[zeR: V,(2)>M], whence V(z)=>V,(z) as m— oo, where
Vi(z) is a harmonic function in (R,,— R,)~2, such that V(2)=0 on oR,,

V(2)=M on 9Qy~R,, and iv,zn(z)zo on 9R,. Hence

D, (V. (z))_hm D,,M(Vm(z))—hm M f ——V"‘(z) ds_Mllm f——V’”(z) ds

a0 ﬂ[an

_Mf_ She,N(z, p,) ds=2zM S e,

0k,
NOW V.(2) > V(z), whence
D(min (M, V(2)))< lim D(min (V,(2), M))=2zM f du(p). (24)

Clearly V,(2)=,(V.(2)) for any domain D with compact oD in R—R,.
Hence V,(2) is superharmonic in R—R,. Now V.(2)—>V(z). Hence by (24)
and by the superharmonicity of V,(z), V(z) is superharmonic in E— R, by
Theorem 4. g).

.Proof of b). Let F) be a closed set such that every point of oF),
is regular for Dirichlet problem, U(z) is continuous on-9F,, and F,,C F,
CF,, m=1,2,--.). Put F, =F,~R,. Now U(z) is superharmonic (in
ordinary sense) at every point of F',. Hence it can be proved by the
method of F. Riesz-Frostmann that the functional

J)=5 1 | N p) (o) due)— - f U(z) dpu(2)

is minimized by a unique mass distribution g, , on F; ., among all non

negative mass distributions. The function V(z) given by -21— f N(z,p) dp,, (p)
x :

is equal to U(z) on F), and U(z)=V(z) on oF,,, by the regularity of
oF, .. V(z) is continuous (=U(z)) on 9F},. Since F,, , is compact, the
continuity principle of the potential in euclidean space is valid, whence

V(z) is continuous in R—R,— —F, ,+oF, , Put K=F,, K and K,=FE|zcR:
oz, K)y<— 7 :l Since K 1s closed and compact, U(z)— V(z) and U(z)—U(z)

are uniformly continuous in R— R, — K. Hence for any given positive number
¢, there exists a number [, such that :

| U()—V(2) |<e and | U(z)—x U(z)|<s on aKl ,
by U(z)—V(2)=0=U(z)— xU(z) on /K.
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We can find a sequence V,(?)= iﬁlciN(z, p) (m=1,2,-..) such that

the total mass of V ,(z)= Em]c and Vm(z)—>V(z) in R—R,—K, and every
pole p, of V,(z) is contained in K (l> 20). Since V,(2)—>V(2), there exists
a number m, such that
| V,.(2)—V(z)|<e on 0K, for m=m,.

Hence '

| eU(R)—V,.(2) | <| cU()— U(2) | +| UR) = V(2) [ +| V(2) = V ,(2) | <3¢ on 9K,

=U(®) (=£,U(2) and V..(2) have MD I. over R—R,—K,, whence by the
maximum principle |

| cU()—,V()|<8 in R—R,—R,. _

Let m—>oo and then e>0. Then U(z)=V(z) in R—R,—K,, whence . U(z)
=V() in R—R,—F), n, where the total mass of ., ,U(z) is given by

1 [ U(z) ds <__ f 9 U(z) ds for every n and m. Since N(z,p) is

F,
277: on i

a contmuous functlon of pe R—R, for fixed z and the total mass of ¢, , is
less than —L- f 9 _Uz)ds by rnnUD=rnURZUG), {1y} has an weak

limit g¢,, on F’ as n—>oo. Hence ;, U(z)_—— f N(z, ) d,am(p) and by letting
m>eo, pUGE)=—— 1 [ N(z, p) di(o). |

Proof of\b). The former part is proved similarly, and the latter
part is easily proved by taking account of the fact that U(z)=j,U(2),

because R—R,—K,, is compact, where szE’[ze R: &(z, (F+B)) g%ﬂ .

Theorem 6. a). Let A be a closed set of capacity zero. If U(z) 1s
positively Eﬁperhafrmonic in R—R, and harmonic in R—R,—A with
U(z) 0 on OR,. Then U(z)— ,U(z) 18 superharmonic and

o UR)=,.U®).

_ b). Let {A,} (m=12,---) be a sequence of decreasing domain such
that w({A,},2)=0. If U(z) is positively superharmonic in R—R, and
harmonic in R—R,— A, with U(z)=0 on oR,. Then U(z)—hm 4, U(?) s
superharmonic in R R, and llm AmU(z)-—hm Am(hm 4, U(%)).

Proof. Let G be a domaln in R—R, such that oG 1is compact and
sup U(z)<N<oo Put

ze @

U(2)=:U(x)+V(2).
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Then V(2)=0 on dR,+4G and V(z) is superharmonic in R—R,—G.
In fact, V(2)=0 on 0R,+0G. V(z)<M implies U(z)<M~+N in R—R,

- —@G, because ;U(z)<N in R—R,—G by the maximum principle. Hence
E[2e R—R,—G:V(2) <M ]=Q%C Q¥*¥=E[2¢ R—R,—G : U(z) <M+N1].
Hence D(min (M, V(2)))=D,x(V(2)) <D gy+(U(2)—; U(2)) = Do 2+5(U(2))

+Dr_ry-c(c U(2)) +2VD o+ 3(U(2), ¢ U(R)) = L(M) < oo (25)

Let Q be a domain in R— R, (not necesarily 2~G=0). Let ,V*(z,G)
be a function in R—R,—G—Q such that ,V*(z,G)=0=V(2) on dR,+0G,
2V¥z,G)=min (M, V(z)) on 92, ,V*(z,G) is harmonic in R—R,—G—Q
and ,V"(z,G) has M.D.I. over R— R,—G—£, which can be defined by (25).

Put Q'=E[zeQ: Ui)>M-+N]. Then U()=M+N on 42" and U(z)
=M+N on 92—Q'. Now U()<N on 0G, whence by the maximum
principle

UR)<N in R—R,—G. (26)
e o0 UM Y (2)=min (M + N, U(z))=M+ N and &15(;U(z))=
min (M+N, ;U(2))=,U()<N by (26) on (2~02')—G, whence
e U () =18 U@R) =M+ N—,U(r) =M=,V"(2,G) on (02" ~2)—G.
¢+ 2 U ¥(2)=min (M+ N, U(z))= U(z) and %15(,U(2)) =min (M+ N, . U(z))
=,U(2) on 02— 0Q'—G, whence ‘
e+ UM (@)~ 15 UR)=U()—:U(z)=,V"(2,G) on 02—02'—G.
6o U (@) =U(@)=%15(cU(@)=cU(2) on 6G and 4, U"""(2)—615(:U(2))
=0=,V"(2,G) on oG, whence ' ’ '
6+2 UMY (@)— 855 U(R)=,V¥(2,G) on 6R,+0G+02.
Now ¢, ,U" "(z), %%, U(z)) and ,V™(2,G) are harmonic in R—R,—G—2.
Hence by the maximum principle ' ‘
e UMY (@) =815 U()=,V"(2,G) in R—R,—G—Q0.
On the other hand, since U(z)<N in R—R,—G,
#aUR)=06.0(cU®R)=sU() in R—R,—G by G+2DG.
" By UR)=4. U 7(z) .

V(@) =U@)—cU@) =0, U "(2) — 515 U@)=, V"2, G) in R—R,—G—Q.
Let M—>co. Then V(2)=,V(2,G) in R—R,—G—. Put ,V(z,G)=V(2) in Q.
Then V(2)=,V(z,G) in R—R,—G. Thus by (25) V(z) is superharmonic in
R—R,—G.
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Let D be a domain with compact 6D in R—R, such that sup U(z)

ze€ dD

<L < oo. Then ,U(?) has M.D.I. over R— R —D (<D(min (L, U(z)))), whence
pU(2) has also M.D.I. over R—R,—G—D. Put V(z,G)=U(z)—, U(z) and
2 V(z, G)-_hm o V¥(z, G).

Since ,U(R)—+(,U(2))=0=,V(2,G) on G—D-+4R,, ‘
pUR)—s(,U(2)—,rV(2,G)=0 on 6G—D+9R,. (27)
Since ,V(2,G)=U(z)—,U(z)=V(z) on dD—G and since U(z)—DU(z)
on dD—G,
DU(z)—a(DU(z))—DV(z, G)=U(2)— (o U(2))— V()= Ul()
—e(pU(2)—(U(2)— ¢ U(2)) = U(2) —s(, U(2)) on aD—G. (28)
Since ,U(2)—s(U(z))—»V(2,G) is harmonic in R—R,—G—D and has
M.D.I. <o over R—R,—G—D (because ,U(2), ;(,U(?)) and ,V(z,G) have
M.D.I. <> over R—R,—G—D), we have by (27) and (28)

T(z, D, G)=,U(2)—c(,U(2))—pV(2,G) in R—R—G~—D, (29)
where T(z,D,G) is a —h_::trmon_ic function in R— R,—G— D such that T(z,D,G)
=0 on O0R;+0G—D and T(2,D,G)=,U()—;U®R)—rV(z,G)=,U(z)
—¢(pU(2))=0 on 6D—G. Let w(D,z) be C.P. of D. Then since Nw(D, z)
=T(z,D,G)=0 on 0R,+0G and by (28) T(z,D,G)=,U(z)—:(,U(z))<;U(z)
<N=Nuw(D,2z) on 0D—G, where N=sup U(z). Now T(z,D,G) and o(D, 2)

ze d@

have M.D.I. over. R—R,—G—D, whence by the Maximum principle
T(z, D, G)=<Nuw(D, z).
Put D A}, ,=A, ~R,, where A, is a domain such that Am+1CA’ cA4,,

Am:E[zeR: (2, A)éﬁ] and sup U(z)<oo Jor every m and n.
m

z€dAm.n
Then 4, ,U(2) 1 4+, U(2) and ., U(?) | ,U(2). Slnce V(2) is superharmonic
in R— R,—G, .,.V(zG) 4 4+, V(2,G and ., V(G| .V(z,G). Whence
T(z, AL, ., G)—>T(2, A, G) and T(z, A, G)->T(z,A,G). Now by the assump-
tion 0<T(z, A,G)<Nw(4,2)=0. _
Thus U@ =6,U@)+.V(G) in R—R—G—A., (30)
By .V(2,G)<V(2) (since V(?) is superharmonic in R—R,—G) and ,(,U(z))
=sU(z) (because ,U(2)=<U(2)) and by U(z)=;U(2)+ V(z), we have by (30)
U@ —.U@)=(U(R)— (LU +(V()— . V(z, G)=cURR)— (. U(2). (31)
Now cU@)—e(,U(?)), ¢U(2) and ,;(,U(2)) have M.D.I. (< 4D(min (N, U(2)))):
N =>sup U(z)) over R—R,—G. Hence by the maximum prineiple

z€ oG
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s U@)— (L U(2)) = o(U(2) — . U(2)).

By (31) U()— . U()=s(U(?)— ,U(?)) in R—R,—G—A. (32)
Put U(z)— ,U(z)=,U(z)—c(,U®) in G. Then |

U()— UR)=,(U(z)—,U@) in R—R,—A. (33)
But G is any compact domain such that sup U(2)<oco. Hence K(2)=U()

z€ d& .
— . U(z) is superharmonic in the weak sense by (33). Whence K(z) 1s

superharmonic in R—R, by Theorem 5.b).
By (30) and (29) and by putting D=A/,, and by letting n—>oo,
U@ — U2 = 6 U@) — (L U@) + (4, V(2 @) — 1 V(z, @)+ T(2, AL, G)
= 6(1, U(®) — (L UR) = (4, U(?) — 4 U(2)) (similarly as (31)),
because ., V(z,G)=,V(z,G) and T(z, A;,, G)=0.

Put G__Am,m_Amm\Rn such that A, DA, (i.e. m"<m) and sup U(z)

z€ 04’ m,n

< oo. Then

i U@ — 2 U@ = 41 w4 UR) — s U@) = st (a2 U@ — . o1 U(2)).  (33)
By the superharmonlclty of .. U(z) and ,U(z), because ,U(z) is limit of
4rmU(2),

il arm U@ Y 4 (4, UR)) and 4, (1 UR) 1 4, (4 U(2)) as n—>oo.
On the other hand, since A/, and A/, can be considered as domains. Then
by Theorem 4. f) ., (4, U(®)=..,U(z). Hence by (33") we have by letting
NnN—> 0

: U@ = wn (UR).

Let m'->co. Then A(AU(z)):_ .U(z). On the other hand, ,U(z) is super-

harmonic (because ,U(z) is the limit of superharmonic functions ,.,U(2)),
whence L(,U(2))=<,U(z). Thus :

A(A_U(z)) =.U(?).
b) is proved similarly. .
Theorem 7. a). Let A be a closed set in R—R,. Then o(4,2)=

A(o(4, 2)= [ Nz p) du(p) for w(A,=)=0.
A
b). w(p,_z)_—_O for pe R—R,. If p is an ideal boundary point such
that w(p,z)>0, then
o(p, 2)=KN(z, p), K>0.
We call such a point a singular boundary point and denote by B the
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set of singular boundafry pornts.

0. v(P=E|2cR: dap)<=|. Then .,
(=,N(z,p)) as n-—>oo. ‘Put S(v.(p))= f 9 oy V(7 D) ds and  ¢(p)=

3]?0

lim 4(o(p).  Then §(p)= f 0 N(z,p)ds and ¢(p)=1 for pe R—R,+B;

3R
dan further ¢(p) 1 or O for peR R,.

#(v,.(p)) is lower semicontinuous with respect to d-metric. Denote by
B, and B, the set of points p of B for which ¢(p)=0 and ¢(p)=1 re-
spectively. Then by b) B¢C B, B=B,+ B, and B, 18 an F, set or void.

d). B, is an F, set of capacity zero, whence B,C B,. '

e). If U(z) is given by fN(z, p) du(p) ((p)=0), then 5, U(z)=0.

). If Uz) s posztwely ha'rmonw in R—R, F wzth U(z) 0 on dR,
and superharmonic in R—R,,

U@)= [N, p) du(o)

B+F

N(z,p) § and has limit

where F is a closed in R—R,.

Proof of a). Put An.—.E[zeE: 3z, A) gi} Then by Theorem 2, P.C.1
w(A, z)_llm 4,0(A,7), whence w(A4,2)= ,0(A,z). Next by Theorem 5.0) ,w(A4,%2)
= f NGz, ») dsx(p).

Proof of b). By Theorem 1,a) lim V,(p)=p and N(z,p) has M.D.I.
M=o00
over R—R,—V,(p) for pc R—R,. Hence by the maximum principle
wo(p, D=0(Vu(p), z)gﬂ@—.

M
Let M—>o. Then w(p,z)=0. v
Put p=A4 in a). Then du(p) is a pomt mass, Whence we have at
once b). ‘

Proof of ¢). .nmN(7, D) is —sEperharmonic in R—R,, Wher'lcer N(z, p)
_llm smeyN(2, p) and since R, is compact ¢(p) f 11m—~u,,(p)N(z p)ds
on

—-hmf

R— R (p) because N-Martin’s topology is homeomorphic in R—R, to

—uncmN(z D) ds—hm ¢(un(p)) N(z, p): pe R— R has MD I. over
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the original topology, v, (p)>p and sup N(z,p)<co, whence .,qN(z, D)

z € 0vpn(p)
:N(z,p). Hence ,N(z, p)=N(z, p) and ¢(p)=1. For pe B, N(z, p)=Kw(p,?)
K, w(p,2)=,N(z,p): K>0 by b). Hence o(p)=1. ‘We consider the case:
o(p,2)=0 and peB. In this case p is closed and of capacity zero. Hence
by Theorem 6, ,N(z, p)=,(,N(z,p)). But ,N(z, p) has a point mass at p,
ie. N(z,p)=9(D)N(z, p). ,(,N(z, p))=9¢*),N, p)=3(p)N(z,p). Hence 4(p)
=0 or =1. The set I, is defined as the set (possible void) of all points

of R—R, such that ¢(i)m(p)):,,_1_ fai,,m(p)N(z, D) ds§i(this means ¢(p)

=0). Then B,=UIl,. By deﬁnltlon Y\ ¢ p)_hm smem~radN (2, D). Hence

m>1
for any given positive number ¢, there exists a number n, such that

PouPI~ R =5 f 2 om NG D) 5

2_27f o N P) ds—e=¢v.(p))—e for n=n,.

Suppose p,—>p. Then N(z, ».)—>N(z, p) uniformly on compact o n(p)~R,)
and v,(p,)~R,>v,.(D)~R,. Now ,, wr-z N2 ;) and , ~z,N(2, p) are
determined by the values of N(z, p;,) and of N(z,p) on d(v,(p»,)~R,) and
on (v, (p)~R,) respectively. Hence '

hm 0 1m(D; )N(z P )>11m v ~EnIN () D) = o~ NV (2, D).

=00

Thus’ li_msb(um(pi))zlgr_l P(n(P)~R,)=¢(v,(p))—e, whence by letting >0,
i=oc0 3

li_r_n_qS(u;n(pi))gqi(um(p)). Therefore ¢(v,(p,)) is lower semicontinuous with

respect to p and by é@.(p)) | #(p) &(p) is also lower semicontinuous,
whence 7, is closed and B, is an F, set.
Proof of d). The set [, being closed and compact, may be covered

by a finite number of its closed subsets whose diameteres are less than
% It is sufficient by P.C.5 to prove d) for any closed subset A of I',
whose diameter is less than % Assume Cap (A)>0. Then (4, 2)=_,0(4, 2)

——fN(z, D) dy(p) On the other hand since Aa)(A z)—hm llm @ 4o (45 2)

m

(Agmn_Az,,pR and A, _El:zeR 3z, A)<

], for any given positive
2m

number ¢, there exist numbers m and =» such that

Cap (4)= f A ds= f s 0 4,2) ds+e.
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Now w(A4,z) can be approximated on A,,, by a sequence of functions

Vi(z)= El ¢.N(z,p;): p,cA(l=1,2--). Then by Fatou’s lemma

Cap(A)—e_S_f—a—Agm (A, z)ds<11mf i Vi(2) ds

dRy

=lim | zc 2 son N ) ds < lim f mch(z, ) ds
_f——w(A 2) ds=Cap (4),

because Aszum(pi):E[ze R: &z, pi)g-—l—] for every p,c¢ A implies

f o 42N (2, p,)ds = f —?—m@pN(z, D,) ds._<=—1— f iN(z, p;) ds.
on e on - 2aRoan

Ry
Let ¢—>0. Then Cap (A)_S_% Cap (A).. Hence Cap (4)=0, Cap (ij:O and

o(By,2)=0 by P.C.5. Since w(p,z)>0 for pe B;. Hence B,C B,.
Proof of e). Let A be a closed subset of /', whose diameter <—1”;

By Theorem 5, b) AU(z) f N(z, p) du(p). Hence ,U(z) can be expressed by

a limit of hnear forms V(z) ch(z, D) p;eA (l—l 2,--+). Hence as
above

— 0

f O (U@ ds= f %A,n(AU(z)) ds<lim f V(z)ds<? f aan U(z)ds
IRy R, o (34)
On the other hand, by Theorem 6. a) ,U(z)=,(,U(z)). Hence by (34) ,U(z)
—0, ,, U()=0 and ,,U(z)=0. |

Proof of f). Since U(z) is harmonic in R—F,—F;, where F,f,:[zgﬁ:
8z, F.+B)§_1_], U(2)=,. U(z). Hence by Theorem 5.b) U(z)= f N(z, p) d(p).

m

: __  F+B
7. Canonical mass distributions. Let U(z) the superharmonic fune-

tion in R—R,. Let UX(z) be a function in R— R, such that UX(z)=U(z) in
R,—R, and UX(z) is harmonic in R—R,. Then U(z)=lim UX(z) in R—R,.
Clearly U, +(2)=z,U(2). Hence UX(z) is representable b;r'a uniquely deter-
mined mass distribution g#,(p) on R,—R, because E,,—RO is compact. |

Operation ,[U(z)]*. Let D be a compact or non compact domain in
R—R, Let , [U(z)]* be a function in R—R, such that | U (z)—5,[UR)]*
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is harmonic in’ D,=D~R, and superphemonic in R—R, and further
».LU(R)]* 1s harmonic in R—R,—D,, D”[U(z)]*z() on o0R, and super-
harmonic in R—R, Such , [U(z)]* is uniquely determined. In fact, let
L.(p) be the restriction of /ln(p) on D~R,. Then

2l U@I*= [ NGz, p) dutrn().

Now ,2,(p) = t£.(P) — 1£,(P) is also a positive mass distribution, which implies
that UZ*(2)—,,[U(z)]* is superharmonic in R—R, Let {n'} be a sub-
sequence of {n} such that , [U(z)]* converges uniformly in R— R, Put
pLU(R)]*=1im ,,, [U(z)]*. L[U(z)]* depends on D and the subsequence
).

Theorem 7.- Let D, and D, be two domains and {n’} be a subsequence
such that both e LUR)]* and 5, ., [U(R)]* converge uniformly 'm R—R,.
Then

Q). oo [U@T* = p[UR T+l UE)7.

b). p[CU(z)]*=C,[U(2)]* for any constant C=0.

o). oLUR)I*=,U()=U(2).

d). Both ,[U(z)]* and U(z)——D[U(z)]* are superha'rmonw in R—R,.
e). 5 [URI*=5[LU(R)]* for D,CD..

). »[UR)I* s representable by a mass d@stmbutw’n on D, where D

18 the closure of D.
g9). Let peR—R,, Then N(z, p):lim o LN, D)1* for every v,(p).

Let Bf be the set of points of R—R, such that llm vm L N(Z, )] =0 for

every sequence Ny <MNp<Ny+ . Then by the above fact Bf ~(R—R,)=0
and by ¢) ,,mN(z, p)g,,m(m[N(z, p)]*, whence Bf D B,*

B). wl@1*=0 for U@= [ N, p(du).
Bo ’
Proof of a), b), d) and e) is clear by the definition.
Proof of ¢). ,U()=1lim, U(z): D,=D~R, Now U(z)=,,U(2)
>,.[U#)]* on D, and both ,, U(?) and ,,[U(z)]* are harmonic in R—R,

—D, whence by the maximum principle , [U(2)]*=,,U(z). Hence
SLUR)]*=1lim ,, [ U(z)]*<lim ,,U(z)=, U(?).

Proof of f). ,,LUR)]* and U¥®)—,,[U()]* are representable by

6) By,=B.* will be proved in Theorem 9.
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positive mass distributions ,z, and =t —1ttn On R, ~D and R,~CD
respectively. But the total masses of ,#, and ,x, are bounded =<
f ——U(z)ds. We can find a subsequence {n'} of {n} such that both {l,un} and

IRy

{-¢t.} have weak limits #t on D~R and ,z on CD~R respectively. Clearly
by (n'}C {n}, U= [ N,p)dp(): u=yps-top, o[ UE)]*= [ NGz, p) dpu(p) and
U(Z.)—D[U(Z)]*=fN(z, p) dzp(p). Hence ,[U(2)]* and U(z)—,[U(2)]* are

superharmonic in R—R,.
| Proof of g). Since pe R—R,, there exists a number n, for any given
neighbourhood v,(p) of p such that v,(p)CR,—R, for n=n, Then N(z, p)

has M.D.I. over R—R,, whence N(z,p) is harmonic in R—R, and N¥(z, p)
=N(z,p) in R—R,. In this case Nj}(z, vp):fN(z p) dp(p) and ,, ., [ N(z,p)]*

=N,*(z, p)=N(z, p) for n>n0 Hence p[N(z, p)]*= N(z p) and B"‘r\(R R,)
=0.
- Proof of h) 2,U(2)=0 implies &) by c).
Theorem 8. FEwvery positive superharmonic function in R— R, such
that U(z)=0 on oR, is representable by a positive mass distribution p on

R—R,+ B, such that
Uz)= f N(z, p)du(p) for ze R—R,.

We call such a canonical mass distribution.

Remark. It seems that Theorem 8 can be improved to the following:
U(z) is representable by a mass distribution on R—R,+ B¥ : Bf =B— B}
C B—B,=B,. But in Theorem 9 it is proved that Bf=B, Hence the
above two are equal. :

- Proof. Suppose V(z)= f N(z, p) du(p). Then by Theorem7 e) 5 V(z)=0

e

and by c¢) of Theorent 7 FmV(z) 0. This implies hm rmml V(2)]*=0, where
Fm,,_E[zeR o(z, m)/——] Let z, be a point in R—R, Then for any
n

given positive number ¢, there exists a number n,(m) such that
rm,n.[V(zo):l*érm,nV(zo)éz—em for n=mny(m).

For each m select I', (=1, ,) in this fashion. Put C,= ﬁm. Then C,,h
4 =1
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is closed and increases as m — oo. Denote by A, and A, the closure
of the of the complement of C, in B and R—R, respectively. Then the
distance between A, and I', (I",, is contained in B, by the definition of

I',) is at least —(1—) Thus {A4,}, which forms a decreasing sequence, has
nim |

an intersection A which is closed and, having no points in common with
any I, is a subset of B,. Now

cm[V(z)]*\(mV(z)<2r V()< 22 ie<e for z=z,.

Observing A, +C,,=B, we obtain for a subsequence {n} of {n} such that
am~crw [ V()]* —>1,[V(2)]* as n'>c,”

where 5m—C ~B and A, /\B——ff and A,, is a closed domain in I?—R‘O.

1LV I =:[V(®]*=V()=1,[V()]* +c.LV(E]Y

whence V(2)=3,[V(z)]*=V(z)—e for z=z,.

. Now V(2)—z,[V(2)]* and z,[V(¢)]* are harmonic in R—R, super-
harmonic in R—R, and are represel;xtable by positive mass distributions

¢, and g over (C,,~B) and 4, respectively. = Let {n”} be a subsequence
of [n’'] such that ., oz, [V()]*>2,.[V(@]*. Then z,,[V(Z)]* is re-

presentable by /.., over A,., and , [V(z,)]* <e. Proceeding in this way,
by e) of Theorem 7 7, [V(2)]* | 2[V(2)]* and el V@)I* 12 [V(2)]*, where

[ V(zy)1*<e by .,[V(z)]< Z? {#f} and {g} (m=1,2,-.-) have weak
: i=1
limits ¢/ and ¢ over B~C(=3C,,) and A=~ A4, CB, respectively. Hence
V(zo)< [V(z0)]*+e,
where 3 [V(z)] * and V(2)—z[V(2)]* are superharmonic in R—R, and re-

presentable by z(=¢’) and ,p"’(=p"") respectively.
Let 4" be the restriction of ,¢”” on B; and put

V@)= f NGz, ) d(u" 11" ))-
Then 0= Vl(z)<V(z)——A[V(z)]*<s for z=z, and V(iz)—, V()=
f N(z, p)d(ef+.")(p). Put p*=p' +,p" and p**=p"" —p'".
B,

Repeat the process (used for V(z)) for V,(z), writting V. (2)=V,(z)
+(V(2)—V(2)), where V.(2) and V,(2)— V,(z) are representable by positive

"7 CRw means the complementary set of Rn»-.
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mass distributions ,¢** and ,#* on B, and B, respectively such that
Vé(zo)'<-§—.

Proceeding in this way,

Vn(z) Vn+1(z) (Vn(z) Vn+ 1(2))y ]

where V,,,(?) and V ,(2)—V,..(?) are representable by p051t1ve mass dis-
tributions ,¢** and ,¢* over B, and B, respectively such that V,.,(z,)

<-% . Then
2'n

V()=V(@)—Via)+ X (V.()— V,i(2)
and V(z) is represented by a positive mass distribution yzf‘,mu* over B,.
. n=1
Let U(z)-— f N(z, p) du(p). Let ¢’ be the restriction of 4 over B,.

R—Ro+B

Then ;e can be replaced by another dlstrlbutlon over (in putting V(z)
= f N(z, )dp(p)) B, without any change of U(z). Hence we have the
B : .

theorem. ' A
8. N-minimal functions and N-minimal points. Let U(z) be a

positively superharmonic function in R— R, with U(z)=0 on oR, If
U(z)=V(2)=0 implies V(2)=KU(z) (0=K=1) for every function V(z) such
that both U(z)—V(z) and V(z) are positively superharmonlc in R— R,, U(z)
is called N-minimal function.

Theorem. 9. a). Let U(z) be a N-minimal function such that, U(z)

=fN(z,p)d/x(p). Then U(z) is a multiple. of some N(z,p):pe(R—R,

A
+ B,)~A.
b). N(z,p) s N-minimal or not according as ¢é(p)= 1 or =0, t.e.
pe R—R,+ B, or peB,. .
c). Let Vy,(p)=E[zeR: N(z,p)>M7] and un(p):El:ze}_B: 5(z,p)<—1—]
andsuppose pe R—R,+B,. Then n
Nz, 0)=v ,jpr~omwN(Zs D) =0 rn N(2, D) for M < sup N(z,p), i.e.

ze R—Ry
N(z, p)=Ma(V (D), 2) in B—R,— V().
d). For any given number M < sup N(z,p), the're exists a number n
. ze A—Ry
such that

(B~u,(p))TVy(p) - for pe R—R,+B,.



Potentials on Riemann Surfaces : 43

e). B¥=B,.
Proof of a). Suppose, U(z) is N-minimal and U(z)= f N(z, p) du(p).

Assume, p is not a point mass. Then for any positive mass distribution
¢ such that 0<g' <p, f Nz, p) dp(p) and f N(z, p) d(z— )(p) are multiples

of U(z) by the N-minimality of U(z), because these are superharmonic in

R—R,. Since p is not a point mass, we can find two closed sets A4, and
A, such that A,C A (¢=1,2), dist(4,, A,)>0 and the restriction of ¢ on
A, is positive (¢=1,2). Let {A,,} be a decreasing sequence of closed
subsets of A, such that A,,—>p, as n—>, p, , (restriction of zon 4, ,)>0

and that the potential of ¢, , is a multip‘le of U(z). Put g, ,= i Then

. da”ei,n
from {g,,} we can find weak limits g, (¢=1,2) of unity at p,eA4 and
NGz, p)= [ Nz, p) d7i(p) =KUE) = [ Np)dpu(m)=N(zp): K=—— 27—
0
| $ f 9 U)ds

AR,

This contradicts do(p,, p2)>d1st (A,, A;)>0. Hence g is a point mass at pc A4
and U(z):]—v(z,—m. Next we show pe (R—R,+ B,). Assume U(z)=K'N(z, p):

K'>0 and peB,. .Every positive superharmonic function in E—RO is re-
presentable by a canonical mass distribution 2 on R—R,+ B, by Theorem 8

such that U(z)=K'N(z, p):fN(z, »)dp(p). By the minimality of U(z) ¢ is
B ' ‘

also a point mass at ge B,+R—R,. Now we have also N(z, p)=N(z,q): qe B,
+R—R,, peB,. This is a contradiction. Hence U(z)=K N(z, p) pe(R—R,
+Bl)"\A

Proof of b). We show that N(z,p): pc R —Ro—f—B1 is N—mmlmal. Suppose
that there exists a function U(z) such that U(z)>0 and that both U(z)
and N(z, p)— U(z) are superharmonic in R—R,. Then

N(z, p) = ,N(z, p)=,U(2)+,V () = U(2)+ V(2) = N(z, p),
where V(z)=N(z, p)— U(z). '
2UR)=U(2) and V (2) =V (z), we have U(z)=,U(2) and V(z)=,V ().

But by b) of Theorem 5, ,U(z)=K,N(z, p) and ,V(2)=K,N(z, p). Hence
N(z,p) is N-minimal. Thus by a) N(z,p) is N-minimal if and only if
pe R—R+B,. Hence we have b).

Proof of ¢). For peR— R + B,, ,N(z, p) = N(z; p). Hence N(z, p)=
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2N D) =0, N (E, P)=N(2, p). We show , v N(2, ) =N(z, D). '
Case 1. pe R—R,+ B,— Bg. In this case we remark sup N(z, p)=oco

ze R—Ry

In fact, assume N(z,p) <M and pe R— R,+ B,— B,. Then N(z, p)SMw(um(p),z).
Let m —>oo. Then N(z,p)=Mw(p,z)=0. This contradicts pe R—R,+ B,
—B Hence sup N(z, p)= .

ze R

Put hm oV mmr~onnyN(Z D)=N'(z, p). Then by v,(0) D(.(0)~CV x(p))

N'(z, p) has no mass except at p. Hence N'(z,p)=KN(z,p) (0=K=<1).
But sup N(z, p)=c and sup N'(z, p)=<M imply K=0 and N'(z, p)=0. Hence

ze R

pN(z’ p) == pN(z’ p) —i—N’(Z, p) = hnm (VM<p)f'wn(p)N(z! p)_l_CVM(p)ﬂvn(p)N(zr p))
= lim VM(p)f\un(p)N(z9 p)ghm v.,,(p)N(z9 p) :'pl\f(z’ p) = N(zy p)-

Therefore N(z, p)=,N(z, p)= }yglg v wom~pIN(Z, D) = }nlzrg v e V(2 p)gvM(p)N(z, p)‘

<N(z,p). Now ,,,,N(zp) has MD.I.<2zM over R—R,—V,(z) and
N(z, p)=M on oV ,(p). Hence N(z, p)=Mw(V (p),2) in R—R,—V ,(p).

Case 2. peB,. In this case by Theorem 7,b) N(z, p)=Kw(p,2). Hence
o @0, 2)=0(p,2) by P.C.1 and ,, 0(p, 2)=w(p,2): M<1 by P.C4. On
the other hand, ;,pmunw@(®) 2) Fcv yiprvnm@(D; 2) = ,0(P, 2) = (D, 2).

Let v,(p)—>». Then by P.C.3 ¢y ,,m~p@(0,2)=0. Hence w(p,2)=y,,,@(p,?)
= o@D, 2)=0(p,2). Thus we have c).

Proof of d). Let q,eR—R,—V,(p) and let M" be a number such
that M <M"” <sup N(z,p). Now by ¢) N(z, p)=M"w(V y-(p),2). Hence by

ze R

P.C.6 there exists a regular niveau curve CM,_E’[zeR N(z, p)=M"] such
that M <M’ <M"” and

f 9 Nz, p)ds= f MV y(p), 2) ds= f 9 Nz, p)ds=2x.

Cy’ Cyr

Let N,(z,9;) be a harmonic function in R,—E,—q; such that Nn(z, q,)

=0 on oR,, —a@—N(z, q,)=0 on oR, and has a logarithmic singularity at
" .

q,:9,c R—R,—V,(p). Then by the definition of N(z,q,), N,(z,q,)=>N(z,q,)

as n—>oo. Let N/(z,p) be a harmonic function in R,—R,—V,.(p) such
that N/(z, p)=0 on 8R, Ni(z, p)=M’ on -V, (p)=C, and _,aa_N,:(z, 2)=0

on oR,. Then since N(z, p)=M w(V y.(p),2) has M.D.l. over R—R,— VM(p)
N/(z, p)=>N(z,p) as n—>oo. By the Green’s formula

f Nz, qi)—a—n—N,xz, p)ds=2zN(4,p) by 0.¢Vu(D).

Cy



Potentials on Riemann Surfaces ) 45

Since C,- is regular and N,(z,q,) is uniformly bounded on C,, by ti‘eR—Ro
—Vu(®): Viup) TV y(p), ‘(.by Theorem 6) we have by letting n— oo,

M>_1 f N(z,¢)-2~N(z, p) ds=N(q, p) by ;¢ V(D). (34)
2r G on

Assume that d) is false. Then there exists a sequence of points {g;} such

that q,eCV,(p)~(R—R,) and (p, q,)—>0. Let M<M*<M .and put &=

2n<1—%>§0. By the regularity of C,- there exists a number n, such

that ‘
——a-N(z, p)ds=2r—e, for n=mn,.
) Cys/~Rp n .
If N(z,q)>M* on R, ~C,,, ,
[ Nea) NG v ds=Mr@a—e)=M. (35)
n S .
Cpmr~Rpy,

But N(q,, p) <M for q,¢V,(p). Hence (34) contradicts (85). Hence N(z,q,)
£ZM* on Cy,~R, and there exists at least one point z; on Cy»~R, such
that N(z,q)<M*<M'. Since R, ~C, is compact, there exists a point
% which is one of limiting points {z,}. Now N(z,q)<lim N(Z,q,) < M*,
' i=o00
where g=limgq,. On the other hand, N(z,q)=M'=N(z, p) by l.i_m o(p,q,)=0
(6(p, @) =0 is equivalent to N(z, q)=N(z,p)) and by zeC,,. This is a contra-
diction. Hence we have d).

Proof of e). By g) of Theorem 7, B,C B¥. We show B—B,=B,C B
—Bf. Let peB,. Let Nj(z,p) be a function in R—R, such that N.*(z, p)
=N(z,p) in R,—R, and N;(z, p) has M.D.I. over R—R,. Clearly N}(z, p)
= »_r,IN(%, p) and N}(z, p) is superharmonic in R—R,. Then since peB,,
Nj}(z, p)=N(z,p) is harmonic in R,—R, and N}j}(z, p) is represented by
a mass distribution on oR,. | _

Hence 8n Na(z, )1* =N (2, p), where .B,=R—R, and n>m.
NOW Bm’\v;(‘p) [N,,,*(Z, p)] * +BmAC’vl(p) [Nn* (z’ p)] * =BmN'n*(z’ p) :Nn*.(z’ p)'S)
Let {n’} be a subsequence of {n} such that 5, [N (2, p)] converges
uniformly. Then by letting n’— o, '

B LV D) I* - 5o [N(2, 2)1* = N(2, D)= 5o LIV(2, D) I+

Bm’\'ll(p)[N’n(zi p)]* and Bm"\Cul(p)['N,(zv p)]* ha've masses <1#n a‘nd 2#7; on

8) Cu,(p) means the complementary set of v (p).
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v,(p)~0R, and CUl(p)f\aR respectively and {,¢,} and {,u,.] have weak
limits ,¢# and ,¢ on B~5,(p) and B~Cuv(p) respectlvely and g, [ N(2, »)1*

= [Nz, ) dus(p) 20d 3 [Nz, )]*= [ Nz, D)desi(p). Simee by the as-
sumption N(z,p) is N-minimal, whence z,,~,,,[ N(2, p]* and z,,~c.,cp [ N(z, 0)1*
are N-minimal and =K,N(z, p) (i=1, 2), because N(z, D) — o, IV(Z, D)1,
Bm~o L IN(2, D)] are superharmonic by Theorem 7.d). Assume By LIV(2,0)]*
=K,N(z,p)>0.. Then by a) of Theorem 9 pe(B~Cy(p)). On the other
hand pev,(p). This is a contradiction. Hence K,=0 and z,,~,,,[ N(z, 0)]*
=N(z, p) for every v(p). Now {n’} is any subsequence of {n} such that
B~y [ Va(2, D)1 converges, hence ,,,,[ N, (7, p)]* — N(z,p) as n—>oo for
every v(p). Whence pe B—Bf. Hence B,DB¥ and B,=Bjy.
Theorem 10. Put V,(p)=FE[zeR: N(z,p)>M] for pe R—R,+ B,.

Then V,(p) may consist of at most an enume'rably infinite number of
domains D, (1=1,2,.--).

a). Dg_gyvn(N(Z, D))= 2n~M and min (M, N(z, p))=Mw(V ,,(p), 2).
b). Let D, be a component of V,(p). Then D, contains a subset D
of Vu(p) for M<M < sup N(z, p). : v
ze R .
c). Let U(z) be a positive superharmonic function with U(z)=0 on
oR, and let C,,=oV, (p) (1=1,2,---) be a regular niveau curve of N(z,p):

pe R— R,+ B, such that f—ai—N(z, p)ds=2x. Then for M,<M,_,
: | g, "
mean (U(z) on Cy )=—1 f U(z)-2_N(z, p) ds .
' ZECM. an

<1 f U(z)iN(z, ») ds:'mean(U(z) on Cy ...
271- Cm;+1 ~

d). Let Cy, (1=12,-.-) and C be a regular curve of N(z,p): peR'
—R,+ B, such that M, M. Then

lim (mean (U(z) on C, ))=mean (U(z) on C,).
If Cy s mot regular, we define mean (U(z) on C,) by 11~m (mean U(z)
on C,,) where M, M and {C,,} are 'regulaf Then mean (U(z) on C,)
is defined for every M <sup N(z, p) and c) holds for every M.
Proof of a). By Theorem 9.c¢) we have Mw(V ,(p), é):min (M, N(z, p))
and N(z, p)=lim N/(z, p), where N/(z, p) is a harmonic function in R,—R,

—V u(D) ‘ such that NJ(z,p)=0 on R, N/)(z, p)=M on oV,(p) and
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2 N'z,p)=0 on B,—Vu(p). Clearly Di_s, vyir(N(z P)=
limDR_RO_VM(p)(N’(z,p)):lime aa N)(z, p)ds—Mhm f 9 ——N/(2,p)ds=

V()

M f —§—N(z, p)ds=2xM. On the other hand, by Fatous lemma
aR,

D(min (M, N(z, p))<11m D(N)(z, p))<2zM. Thus D(min (M, N(z, p)))=2xM.
Proof of b). Assume ‘that D,~V ,.(p)=0. Consider D(min (M, N(z, p))).
Put N'(z,p)=N(z,p) in R—R,—D, N'(z,p)=M in D,. Then since N(z, p)
is non constant in R—R,, Dz_gz, vuyn(N' (2, 0)) <Dg_po-vun(N(#, p)) and
N'(z,p)=N(z,p)=M' on oV ,.(p). This contradicts that N(z,p) has M.D.L
over R—R,—V,.(p) among all functions with value M’ on 4V ,{(p) and 0
on oR,. Hence we have b). _
‘ Proof of ¢). By a) N(z, p)=Mwo(Vy(p),z) in R—R,—Vy(p) for
every M <sup N(z,p), whence C, is regular for almost all constants
M’<sup N(z,p). i.e. f %N(z’ p)ds=2r. Let C,,,, be a regular niveau curve

AV (P
and let ¢y, ,,»U"(2) be a superharmonic function such that ova,, U (R)=

min (L, U(z)) on R—R,—V ., .»(p) and ovy,, U ()18 harmonic in V,,,, ().
Then v, U 2) 1 U(z) on Cy,,, as L1 o and Uz(z)=>ovy,, ,»U"(D) as
n—>oco in VMHI(p) where U (z) is a harmonic function in V,,,  (»)~R, such

that UZ(z)=min (L, U(2)) on 3V, (p)~R,and a—i{ UZ(z)=0 on 3R, ~Vy,. (D).

i+1

Let N,(z,p) be a harmonic function in R, ~(V,(p)—Vy,,,(p)) such that
N/(z,0)=M, on 3V(p), Nz p)=M.,; on aVy,,(p) and %N’(z p)=0 on
OR, ~(Vy(0)—Vu,, (). Then N](z, p)=>N(z, p)
Then f Nz, p)-2-UZ(z) ds= f Nz, p)——UL(z) ds=0
on
OV ~Bn Wy, (PI~Rn
Hence by the Green’s formula
UL(z)—N’(z pyds= f UL(z) Nz, p) ds.
(P)’\R'n aVMz‘ (P)~Rp
Then by Theorem 3.a) b)‘r letting n—> oo
S erunU@ J-N@pYds= [ cuynU@)- NGz, p) ds.
3V i @ Wy, ® "

By the superha_rmonicity of U(z) C,,Mi(p)UL(z)g U(z) in Vi (p) and
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thVM 2 UH2)=U(z) on 0V, (p) and hm GVMi(,,)UL(z)<U(z) on 9V, (p),
whence by lettlng L—>oo

f U(z)—N(z p)ds=lim f mM(p)UL(z)—_N(z ) ds

L=oco

Vo 3V 1 ;(P)

—=lim G,,Mi(p)UL(z)——N(z, p)ds< f U(2)-2_N(z, p) ds.
=y ® Var,, ¢ on
M, (P M, (@
Thus we have c).
3 : 9
Proof of d). By c¢) f U(z)2-N(z, p) ds=1lim f U(z) ——N(z, ) ds

aVM(p) oV ()

is clear. Since f U(z)—N(z P) ds-—hm lim min (L, U(z))——N(z,p)ds,

L=o00 m=o0 ..

AV y(® OV y(PI~Rp

for any given positive number ¢, there exist L, and n, such that

min (L, U(z))———N(z p)ds= fU(z)-—N(z,p) ds—e for n=n, and L>L
3V y(P)~En ' oV ()
Suppose. 2,60V 4, (p), 269V ,(p) and 2,—~>2. Then _GWN(% ) —>8—N(z, p) and
since min (L, U(?)) is continuous in R,—R,, U(z)—~U(z) in R,—R,.
Hence

li{m f U(2)N(z, p) ds=lim f U(z)——N(z ) ds

TR oVMlcp%Rn
a ’ .
> f min (L, U(z))——N(z p)ds> f U(z)-2- N(z, p) ds—e.
oV y (P)~R ) g77¢)) on
) M 7 M . , ’
Hence by letting e—0, lim f U(z)——N(Z, p)ds= f U(z)—Q—N(z, p) ds.
: vV pr..(0) YV an :
M@ B m(®

9. The value of a superharmonic function on B. Till now the value

of a superharmonic function is defined in R—R, only. We shall consider
it on the ideal boundary.

Let U(z) be a positive superharmonic function in R— R, with U(z)=
on 0R,. Then mean (U(z) on aV ,(p)) (if aV,(p) is not regular, we use d)
of Theorem 9)) + as M % sup N(z, p) for pe R—R,+ B,. We define the value
U(z) at pe R—R,+ B, by |
llm (mean (U(z) on aVM(p)) as M4 sup N(z, p).

It is clear, if U(z) 1is continuous or oo at a point ze R— —R,, this coincides
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with U(z). Next at pe B, we shall define the value of U(z).
For peB,, N p)= [ Nz p.)de(p),
B

where p(p,) is a canonical distribution and not necessarily uniquely deter-
mined. In this case we define U(p) by :

f U(p.)d(p.)-

This definition reduces to the former definition, if pe B,, because the ca-
nonical mass distributiou of N(z,p): pe R—R,+ B, must be a pomt mass

at p. Hence our definition is natural. If U(p)>—— f U<z)—67n—N(z' p)ds:
AV 3r(®)

pe R—R,+B,, we say that U(2) is superharmonic locally at a point p.
Theorem 11. a). N(p,q)=N(q, p) for p and qc R—R,.
b). N(p,p)=§ggN(z,p):peR—R+Bl-‘
¢). Let U(z) be a positive superharmonic function in R—R, with
U(z)=0 on R, (of course N(z, p) is a superharmonic function by Theorem

5.a). Then U(z) is lower semicontinuous in R—R, and U(z) is super-
harmonic locally at every point of R—R,+B,. There exists at least one
canonical distribution p by Theorem 8 such that

U(z)= f N(z,p)dpe(p).for ze R—R,,

R—Ry+B;
where the uniqueness of p is mot proved.
By the definition of the value of U(z) on B, U(z) s well defined at
any point pe R—R, and the value of U(z) at a poznt of B does not depend
on a particular distribution and

U@= [ NG p)dum)
. R—Ro+B
18 valid not only in R—R, but also on B.

- Proof of a). Case 1. p and q are contained in R—R,. In this cé,se,
vby the Green’s formula '

N(p, 9)=N(q, p).
Case 2. Onme of p and ¢ 1s contarned in R—R,.
Case. 2. a). - peR—R, and qe B,.
Then N(z,q) is harmonic infR—‘Ro and by the maximum principle V,(q)
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clusters at B as M 1 sup N(z; q). Hence we éan find a number M such
that p¢V,(q) and aV,(q) is regular. Then by (34)

Nw =2 [Nep)-LNe, o ds
v y(D
== lim J Ve Ne)ds=Na ), (30

T M—)M*
J74CD)

where M*=sup N(z, p).
ze R .
Case 2.b). peR—R, qeB, Then Nz, q)= f N(z, 4 d(a,): ¢ R—R,,

where ©(q;) : ¢;¢ B, is a canonical distribution of N(z q). Then by case 2, a)
N(qﬂ, »)=DN(p, q;) and by the definition of the value of N(z,q) at pe B,, we
have

N(@, p)= [ N(g, p) d(a,)= [ N(p, 4, du(a))=N(g, p) by pe R—R,,

Now N(p,q): pe R—R, and ge B is well defined and N(q, p)=N(p, q¢), hence
N(q, p) does not depend on a particular dlstrlbutlon £(q5)-
Case 3. peB and qeB.
Case 3.a) peB, and qeB,.
Let ¢ and e R—R,. Then by (36)
N, )=N,p) =5~ [ N2 Nepds tor 7¢Vu(p).  (30)

AV y(®

N )=Nop) =5 [ Nen-LNep)ds for 7eVip),  (38)
: vV y(»)
where aV,(p) is regular.
Since mean (N(z,q9) on aVM(p))zzi f N(¢, )—N(S, P) ds and since
T oV

V(q) clusters at B as M4 sup N(z, p), there exists a number M’ for any
given positive number ¢ such that ‘

mean (N(z,q) on 8VM(p))—s§—2}—- f N(E,q)—N(E, p)ds,

. 3V ()
where 9V (p) is the part of 9V, (p) outside of V,.(q) and 9V ,(q) is regular.
Suppose £€dV ,(p), then £¢V,.(q), whence
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NG ) =N@ == [ N8N, 0)ds.

3V y7 (@)
Accordingly we have

mean (N(z,0) on V@) —e= 5y [ ( [ Ne.o)-ZNG0)ds)-2 N, p)ds

GVM(;U) v pr7(0)
1
4r*

[ Nen-Zneo) ds)a—N( Q) ds. (39)

oV yr(@) 3V y(P)

By (37) and (38)

o [ NEn NG ) ds<2i [ NE =N p)ds

T 0¥ a T 3% o

=N, p)=N(p,7) for »¢V,(p)

o [ NenlNepds=— [ N&»-LNGp)ds

T
IV M(P) IV m (P

=N(7, p)=N(p,7) for 7¢V(p).
On the other hand,

mean (N(z, p) on oVu(@)=o— [ N(p,7)-2-N(z, ) ds.

T AV y7()

Hence by (37), (38) and (39)

1
~ 4r®

mean (N(z,p) on oV ,(p)) f N(, ) ——N(E, p) ds>——N(77, Q)ds

AV m7(q) 3V y(P)

§2—1— f N(y, p)—N (%, Q@) ds=mean (N(z, p) on oV ,.(q)).

AV yr(@d

Thus by letting ¢—0
mean (N(z,q) on aV ,(p))=<mean (N(z, p) on aV,,,(q))

Since the inverse inequality holds for the other pair of V,.(p) and V,..(q)
and since mean (N(z,q) on oV ,(p)) + N(p, q) and mean (N(z, p) on aV,(g)4
N(q, p) we have

| N(p,9)=N(p, 9).
Case 3, b) pe B, and qe B, or pe B, and ge B,. Without loss of gener-
ality we can suppose pe B, and qe B,. In this case N(z, q):fN(z, q;) dr(q;)
and similarly as in case 2,b) we have N(p, q)= N(q, p). Bt
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Case 4. peB,: N(z, p)= f Nz, p.) dp(p.) and qeBy: N(z,q)=
f N(z, q5) d;z(qﬁ), ©(p.) and pe(qﬁ) are canonical dlstrlbutlons By Case 3. a)

and b)
N(p, )= f N(p., o) dutp) = S f N(p., 9 diu(p.) ) dplay)

= f < f N(g, p.) dﬂ(pa)>d#(qﬂ) f N(gs p) dpx(95) = N(g, D).

By the second and 5-th terms we see that N(p, q) does not depend on parti-

cular distributions z(p.) and #(g;), whence N(q, p): peR—R,and geR—R,
is well defined and N(p,q)=DN(q,p) by Cases 1,2,3 and 4. .
Proof of b). By the deﬁnltlon of the value of N(z, p) at peR— RO—I—B

N(p, p):hm—l—— f N(z, )——N(z D) ds_hm M——sup N(z, p),
WA 2T oo
where M *=sup N(z, p).
Proof of c). At first we show that U(p):pe R—R,+ B, is well defined

and the representation U(z)— f N(z, p) du(p) is valid not only in R— R,

R—Ro+B;

but also in R—R,.
Case 1. peR—R,+B; and U(z) is glven by

[ Newp)duw) in R=R, @9
R—-Ry+B; )

(#. is not uniquely determined).

Since f N(z, p)a—?n—N(z, q)ds? as M*% suI?N(z, q), the order of the
Wy ‘e

integration can be changed. Hence
U(p)= lim -1 f U(2)-2_N(z, p) ds
M>M* 21 ' on
AV y(»

=tim L [ ([ N p)duw))-L-NG. p)ds

M>M* 2
3V y(p) R—Ro+ By

— L [ (1m [ Nep)L Nepds)dpw)= [ Neww)duw).

r u>Mx
R—Ro+B, \#7{¢)) R—R+B; (40)

By the second term we see‘tha;t U(p): pe B,, depends on the behaviour of
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U(z) in R—R, and does not depend on a particular distribution g(p.).
U(p) is uniquely determined and by (40) the representation (39) is also
valid on B,. ‘

Case 2. peB,: Nz p)= f N(z, p) dp(p). In this case by (40) U(n)
5 |

Zf N(p, p.) du(p.) for pe B,+R—R, and by the definition of U(p) at pe B,

R—Ro +Bl

U= [ Uwduwd= [ ( [ Nowr) dete) )dum)

R—Ry+B By R—Ro+B;
= [ ( [ Nw,p)dew) )du@y= [ Nwp) ).
R—Ro+B; B R—Ro+B;

We see that by the second term U(p) does not depend on ¢, and by the last
term it does not depend on z,. Hence U(p) is uniquely determined. Hence
(39) is valid also on B,. Thus the representation is valid not only in R

— R, but also on R—R,.

Next we show that U(z) is lower semicontinuous in R—R,.

1). N(z, p) is lower semicontinuous in R—R, for pc R—R+B,.

Let {z,} be a sequence in R—R, such that 8(z,, 2,)—>0. Then lim N(z,, p)
= N(zy, p)- | , N

Proof of. 1). By b) N(z;, p)=N(p, 2) and N(z,, p)=N(p, z,). Hence it is
sufficient to show LiigN(p, 2,)=N(p, 2,). Since N(p,2,)=

1 im f N, 2,)-2
2% MM - on

exist numbers M, and m, such that

N(,p)ds, for any given positive number ¢, there

N(p, zo)_e__g_zl_ f NG, zo)—aa——N(C,p) ds for M*>M=M, and m=m,,
AV y(o>)~Romy

where. M *=sup N(z, p) and aV,(p) is regular.

ze R

3(z,,2,)—0 implies that N(, 2,)~>N(,2,) in R—R, and N(C,2,) converges
uniformly to N({,z,) on R,. Hence ’ '

el 2 _ 1y c oy
N z)—e=—o— [ NEa)2=NEp)ds=—lim [ N 2) NG, p) ds

OV yy (@)~ Ry an T v M('P)"\R,n
<1 jim ( lim f N, 2)-2-N(C, p) ds> —1lim N(p, 2.).
27 —i \M>um+ on —

3VM(JD)
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Let e=>0. Then N(p,z,) = lim N(p,2,). Hence N(z,p) < lim N(z,, p) and
K3 . (1 .

N(z, p) is lower semicontinuous in R— R, for pe R—R,+ B,.
2). U(z) is lower semicontinuous in R—R, (of course N(z,p): pe B,
is a superharmonic function, hence N(z, p) is lower semicontinuous).

Proof of 2). By (39), (40) and others the representatién U(z)= f N(z, p,)
du(p,): p.e R—Ry,+B, is valid in R—R,. R—Ro+By

Let {2} be a sequence such that 0(24,20)—>0: 2, 24¢ R—R,. Then. by
Fatou’s lemma )

lim [ NG, p)dep)z [ lim NGz, p.) du(p.).

7 =00

R—Ry+B; . R—Ro+B,

‘N(z, p.) is lower semicontinuous. Hence

lim Uz)=lim [ Nz, p.) dp(n.)
¢ ¢ R—Ry+B;
= [ lim NG, p)dpp)= [ New ) dew)=U).
’ R— Ro-}-Bl R—Ro+R;
Thus U(z) is lower semicontinuous in R—R, :
- It is clear that U(z) is superharmonic locally at pe R— R+ B, by the
definition of the value U(z) at R—R,+ B,.

We have discussed the capacitary potentials of (G~B), of F and of
that determined by a sequence of decreasing domain and obtained some
properties. Now the method to define the value, on B, of superharmonlc
functlons is established. We consider the behaviour ‘of C. P’s and we shall
prove some classical theorems which hold in euclidean space.

10. Capacitary potentials of closed sets, F, sets and of F,, sets.
Theorem 12. a). Let pe R— R,+B,— Bg, then w(p,z)=0 and sup N(z,p)
=oo. Then ,
11;_1,2, ¥ sm~con N (2, p) =0 for every v,(p).

Let C, be a regular niveau curve of N(z,p). Then

lim f iN(z p) ds=2x.
M >co an
C M~vn(P)

b). Let w(F,?2) be C.P. of a closed set F in R—R, of posztwe capaczty
Then ‘ sup w(F, z)=1.

ze F
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¢). (P.C.7). Let o(F,z) be C.P. of a closed set F' of positive capacity.
Then w(F,z)=1 except at most an F, set of capacity zero.

d). Let G(z,p) peR, be the Green’s function of a Riemann surface
R=|JR, with positive boundary. Then G(z, p)=0 on B except at most an

F, set of capacity zero.

e). (P.C.8). Let F:F~0R,=0 be a closed set of positive capacity:
w(F,2)>0. Let Q2 be the component of R— R,—F containing oR, as its
boundary. Then E[z2e2~CG,: o(F,z)=1] does mot contain a closed set

of positive capacity: G,=FK [ze R: oz, F) < —1—}
, n

Proof of a). Assume N(z,p)<M. Then —%ﬁ)—gw(VM(p), z). Hence

—N—(Z’—m—gw(p, 2)=0. This is a contradiction. Hence sup N(z, p)=co. By
. ' ze R

M
VM(mN(zr p)=N(z,p) in R—E,—V,(p), o(Vy(p),2)= min'(M]’WN(z’ D))

lim o(V ,(p), 2)=0. Hence by Theorem 6. b) N(z, p) — N'(z,p) is superharmonic,
M .

and

where N'(z, p)=lim v, (py~conmyN(%, ») and N’(z, p) is represented by a mass
M=oc
distribution over V,(p)~Cuv,(p) by Theorem 5.b). If N'(z,p)>0, N'(z, p)=
KN(z, p) by the minimality of N(z, p), because N'(z, p) and N(z, p)— N'(z, p)
are superharmonic. Hence KN(z,p) must be a point mass over Cu,(p)
by Theorem 9.a), whence N(z,p)=N(z,q): qeCv,(p) by f —aa—N(z, p)ds
' n
R,
= f %N(z, q)ds. But N(z, p)=N(z,q) implies p=¢q. This is a contradic-
" .
3R ,
tion. Hence N'(z, p)=0.
Let ®,(2) be a harmonic function in R,,—R,—(V ,(p)~Cv,(p)) such

that w,(2)=0 on R, w,(2)=1 on a(V ,(p)~Cv,(p))~R,, and aiwm(z)zo on
. n
oR,,—(Vu(p) ~Cv,(p)). Then o,(2)=>w(Vy(p)~Cv.(p),2) as m—>o. Hence
by Fatou’s lemma and by the compactness of R, fg—w(VM(p)mCun(p), z)) ds
; n

Ry

—1im [ 1 [ 2 R -
_113nna ! 2 () ds=lim f 2 y(2) ds= f LoV (D) ~Co, (1), ) ds

AV (@)~ Con(p)~Rp, OV y(P)~Con(p))
0
=z [ ZoVu@)~Cu@)2)ds. (41)
3V y (PI~Cvalp) "

By (Vu®@)~Cv, ()T Vy(p) and N(z,p)=M on Cv,(p)~V,(p), by the
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maximum principle
Mo(V u(P)~Con(p), 2) =v ym~conmrN(2, 0) = N(2, D)
in B—R,—(Vy(p)~Cv,(p)). \ (42)
On the other hand, '
Mo VM(p)f\CUn(p)» ) = M= VM(p)AOUW(p)N(zi p)=N(z, p)
on oV (p)~Cv,(p). - - (43)
Hence by (41) and (43) ’

%Mw<VM<p>Ac»n<p>, N2 yrrcunwNE, D)

'Z—%—N(z’ p)=0 on oV, (p)~Cv,(p). - (44)
Hence by (41) and (43)
[ MV () ~Co(0), 2) = 2y oronwN (@ ) ds
dRy 3V y(@I~Con(p)
= [ ZnNends | - (45)
OV yr(0)~Con(p) )
— 9
Assume lim f ——N(z,p) ds>05,>0. Then by (45)
M=oco on )
3V 3 (P)~Cvn(p) -

Tim f —Mw(VM@)Acun(p), 2) ds=0, and [im Ma(V(p)~Cou(p), >0,

Whence by (42) N'(z, p)_hm v yw~cineN (2, 0)>0. This contradicts N'(z, p)
=0. Hence - :

im f 9 N(z,p)ds=0 and lim f 9_N(z,p) ds=2n
=0 n M=co on
3V 3y (P)~Con(p) 3VM(P)"‘Un(P)

by the regularity of oV ,(p). Thus we have a).
Proof of b). Let Fm:E[zeﬁ . 3z, F)gi]. Then F=~F, and F,

can be considered as a non compact domain. Hence sup w(F 2)=1 by P. C 2.
2e R

But our assertion is not so trivial. If F has a closed subset F” of posi-

tive capacity in R—R,, our assertion is clear. If F has a point pe¢ Bj,

1=w(p, p)<sup w(z, F)=1 by Theorem 10,b). Hence we can suppose with-
zeF

out loss of generality that FF*C B and FF~Bs=0 and Cap (F')>0. Since B,
is a set of capacity zero, F has at least one point peB,—B; Assume
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o(F,2)<K<1on F. By the definition o(F, p):?l—lim f o(F, z)a—an—N(z, p)ds
T M

"7V o

for pe B,—B,. Hence by a)

o(F, p)=—1_lim f o(F, 2)-9_N(z, p) ds.
27 M= 3V 1 DI ~on(D) on

Let Gg,,=E[2¢R: o(F,z)<K+5]:6>0 and 1> K+6> K.. Then by o(F, 2)
<K on F, there exists a positive constant ¢, such that

)

lim | — N(z,p)ds>2re, and 0<g,<— (46)
M=% 3¥ wBIG g 4 g~on(®) on K+3o

In fact, if Tim f 9 N(z, p)ds>2r(1—e,),

M= 3V Y (DI~CG gz, 5~vn(D) on

o(F, p)gm< 1 f o(F,7)~ N(z,p)ds+i f o(F, z)——N(z,p)ds)

==\ 27 aVM(p)noaKHAuncp) 2n oV y(PI~Gx Hm,,(p)
2_1_HE( f o(F, z)——N(z, ) ds>> (K+5) 27(1—ey)> K.
21 - IV Y (DACC g , s~onlD)

This contradicts w(F, p)<K. Hence (46) holds for every un(p) Now by
P.C.8, &(Gg.,~F,2)=0 for K+dé<1, ie. limwo(Gg,;~F,,2)=0, where

M =00

F, E’l:zeR o(z, F)<—:l Choose a subsequence m,, My:-+ of 1,2,-..
such that a)(GKw‘f\Fmi, z) <_21T for z=2, (¢=1,2,---). Then |

*(z)*zw(GK+6/\ mgr Z)<OO,

and w*(z) is superharmonic by Theorem 4. %) and w*(2)=1, for ze(iﬁ F,.~Gg.s)
=1
~R—R,), hence w*(z)—>c as z—>peF inside of Gx.,.
Let pe R—R,+B,—Bs. Then

w*(p)=1imzi f *(z)-——N(z p)ds
Mre &x Wy -
1 N :
=1 0*(2)——N(z, p)ds=1,&,,
27 M= on

Ay (PI~Gx , 5~on(P)

for un(p)CFm

This ‘holds for every un(p) Hence let i,—>c. Then w*(p)=c. Now
by the lower semicontinuity of w*(z), w*(2)—>o as z—>pe(F~(R—E,+ B,
— By)) not only inside of Gg., but also w*(z)—>c only if z—>p.
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B, is a sum of closed sets of capacity zero. We can construct as

above a superharmonic function w**(z) such that lim w**(z)=oo. ' Hence
z>pe By

lim s(w*(z)+w**(z))— o for any e>0. Put 4, =E[zeR: s(w*(2)+w**(2))<2].

z2>pecF

Then 4. is closed and 4.~F=0, which implies dist (4., F)>d.>0 and
C4,DF. Put F,,=E[zcR: oz, F]1=d.]. Let ,u(z) be C.P. of F,(DF).
Then s(w*(z)+w**(z))>dsw(z)>w(F z). Let e—>0. Then w(F,2)=0. This is

a contradiction. Hence sup w(F, z)= 1
ze F

Proof of ¢). Let w(E,z) be C.P. of E,czE'[zeF: w(F,z)gl—-]%-]
(k=1,2,-:-). Then o(E,,2)=w(F,z), whence sup (F,, z)_s_l—%<1. Hence
R—Rg

by b) E, is of capacity zero. Then E=-—FE, is an F, set of capacity zero,
because K, is closed by the semicontinuity of «(F),z).

Proof of d). Let w,(2) be a superharmonic function in R—R, such
that ,(2)=1 in R—R,, ©,(?)=0 on 6R, and w,(z) is harmonic in R,—R,.
Then lim w,(2)=w(B,z). Now G(z2,p)<N<o in R—R,. Hence by the
maximum principle 0<G(z,p) < N1—w(B,z2)). On the other hand,
(1—w(B,2))=0 on B by c¢) except an F, set of capacity zero. Whence
we have at once d).

Proof of e). Assume o(F,z)=1 on a closed set F'* of positive capacity

in 0~CG,,: CGnO%E[zeI—% . oz, F)gi]. Clearly o(F,2)<1 in @ ~(R—R,)
no

by the maximum principle and F*C B.
o(F,2)= pmaF,2)=aw(F *,2)>0, (47)
1

N,
and. non constant in F~(R—R,) and dist (CF}, F*)>

Let Fi=E|zeR: oz F*)< ] Then F;CQ and o(F,z) is harmonic
1
0

mo(F* 2)= f N(z, p) dp(p) by Theorem 18. d)” and by Theorem 13. b)

Frx~(R—~Ro+B1)

By o(F*,2)=

CFnoa)(F y 2) <(U(F* Z)

Put V(2)=w(F'*,2) —cr;,0(F*,z). Then V(2)>0, V(2)=0 on dF* and D = (V(2))
< oo, QSince o(F,2) has M.D.I. over R—R,—F,* and ., 5, 0(F'*, 2) has M D.I.

over Fi¥. Hence V(z) has M.D.L over Fif— F*: F,;F:El:zel_%: 5(z,\F*)§i:|
and m>2n, whence m

9) Theorem 13. d) and a) will be proved independently soon. See p. 60.
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Fm+CFph, V(z)=V(2). .
Put G,=FE [ze Fx: V(z)>%] : 0=sup V(z). Let (G, 2, Fk) be C.P. of

Z€ Fpy

G; relative F¥, then (G, 2, Fy) has M.D.I. over Ff—G, among all func-
tions S(z) such that S(z)=0 on 9F;* and S(z)=1 on 4G, whence

(G ~F¥, 2, F*) < (G 2, F¥) and |
Dy (@(Gim i, 2, FA)S Dy (@G 2, F2)) = —-D(V(2).

Let V(2) be a harmonic function in F¥*—F* such that V(z)=
mih <%, V(z)) on oFt+oF¥. Then also D ( I7(z)):<‘DF;;°( V(z)). V(z),V(z) and
W(Gs~F,z, F) are harmonic in F—(Fi~Gy) and V(2)+o(Gon Fi¥, 2, FX
=1=V(z) on G;~oF), V(2)+o(G,~FX 2, FX)>=V() on CG,~oF;}* and
V(2)+ (G, ~F*, 2, FX)=V(2)=0 on dF;%. Hence by the maximum principle

V(@) +o(Go~F¥, 2, FX)=V(2). ,
It lim o(Gs~Ft, 2, F5)=0, then ¥(2)=V(z) and sup V(z)=§>a-zs39 V(z).

This is a contradiction. Hence
lim (G, ~F}, 2z, F¥)=w(G;~F*, 2, F)=>0. - (48)

Let Cy: 0<M<1 be a regular niveau curve of w(G,~F*,z, F¥). Then
f (G, ~F*, 2, F,:';)aiw(Gar\F*, 2, F¥)ds=D(w(Gs~F*, 2, F'¥)) as M—1.
7"
Cy ' )
By o(F,)=w(F*, 2)=u(G,~F*, 2, F}5),
lim f W(F,2) -2 (G~ F*, 2, FX) ds=D(w(Gy~F*, 2, FX)). (49)
M=1CM . on v
On the other hand, w(F, z) is non constant and harmonic in F by FrCo.
Hence ,(2) = w(F, z) as n— o, where w,(z) is a harmonic function in (R, ~ F.X
such that o,(2)=w(F,2) on dF*~R, and -aa—wn(z):o on FX~0R,.
"
Put G*=FE[2zeR: M,<o(G;~F*, 2, F¥)<<M,]. Then o(G;~F*,z F¥

has M.D.I. over G**. Hence @,(2) =>w(G,~F*,z, F}¥) in G2, where &,(2) is a
harmonic function in B, ~G"* such that &,(z)=M, on C,~R,: C,=E[zc F}:

o(G,~F*, 2, F¥)=M,] and ai?i)n(z)=0 on G*?~0R,. We suppose that C,
n
and C, are regular.
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Now f ) 5)n(z)—a—wn(z) ds=M, f i,co,,(z) ds=0. Hence by the Green’s
- Cp.~R on O C . ~R on
M~ EBn M~ Bn ,

formula -

f 'wn(z)a_i_z)n(@ ds—= f 'wn(z)ainzon(z) ds.

OM]_AR” C'Mgr\}?,n

By the regularity of C,, and by Theorem 3, a).. By letting n—> oo,

f o(F, 2)-2 (G, ~F*, 2, F¥) ds= f o(F, 2)-2—(Gy~F*, 2, F¥) ds.
o on g g on
M1 ) M2
On Cy,~R, o(F,2z)<1 by the non constancy of o(F,z) in F;, hence there
exists a positive constant ¢, such that

f o(F, 2)-2 (G~ F*, 2, FX)ds< f 9 (G ~F*, 2, F%)—5,

K on oY on

My My

= D((Gy~F*, 2, F£))— 5,

Let M,—>1. Then '

lim [ o(F, z)—a—a—w(G;mF*, 2, F%)ds < D(a(Gs~F*, 2, F¥))—8,.  (50)
.

Ma>1
Cs

(49) contradicts (50). Hence w(F*;z)#O. Thus we have e)

'Let U(2) be a positive superharmonic function in R—R, Then by
Theorem 8 there exists a canonical mass distribution g of which the
uniqueness is not proved. But we shall prove the following '

Theorem 13. a). Let U(z) be a positive superharmonic function m

R—R, such that U(z)= f N(z, p)du(p). Then U(z)=U(z).
FA(R-Ro+By) ‘

“b). Let U(2) be a superharmonic function in a) and let F' be a closed

set such that dist (F,F’)>0. Then
N ~U(R) <, U(z)=U(z).

c‘). Let U(z) be a positive superharmonic function in R—R, and

let F be a closed set such that U(z)=U(z). Then U(z) is represented by a

canonical mass. distribution’® on F such that U(z)= f N(z, p) du(p)
FPA~(R—Rg+By)
and any canonical distribution has mo mass on CF.

10) If =0 on B,, u is called canonical.
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d). Let U(z) be a function in a). Let F be the kernel of a canonical
mass distribution. Then the kernel of any other canonical mass distri-
bution is also F. -

e). As a corollary of ¢) o(F, z):» f N(z, p) du(p).

. FA(R—Ro+B;)

Proof of a). By .,»N(2, p)=N(z,p) for pe R—R,+ B, and v,(p)CF,,:

szE[zeI_e : (=, F)g%]. Whence #N(z, p)= N(z, p). Hehce we have at
once a). : _
Proof of b). Assume g, U(z)=U(2): F;,—_-E[zeﬁ . oz, F’)g%] for
every n. We cover F by a finite number of closed discs %}1', 82,- . -81.0 with
diameter <%’. " Put p=p,+p.+ - - -+, Where p, is the restriction of 1
on &.—g%j. Now by the superharmonicity of f N(z, p) du(p)

U@ =3 ( [ N p) den()=33 [N, p) di(m)=U(e)

and - vo f N, 2) dir(2)) £ [Nz p) die() for every i.
Hence F,n<fN(z, D) dyi(p)>:fN(z, p)dy (p)=0 for every 1.

Hence there exists at least.one g, and &, .‘ such that f N(z, p) dy,(p)
= F,,,< f N(z p) d,ai(p)>>0. We denote them &' and p' respectively. As

above we choose §® and p? such that §*C ", diameter of §2<2—12 and

};ﬂ(fN(z, D) d;z“’(p)):fN(z, p) dp¥(p)>0, where p¢*(p) is the restriction of
& e ,
¢ on §2. In this way we can find a sequence §' D F>*--- and ”—1, —”i, .

o m, Mm,
such that Og"':pe\(R—R0+Bl)»—'\F, where m, is the total mass of p'.
Because if every sequence {F'~JF:~-.--=peB, ¢ has no mass outside of
B,. This contradicts that g is canonical. '

Now (—l—fN(z, D) d,ui(p)> =f~1—N(z, p)dpi(p). We can find an weak limit
FINM,; m;

¢* of {_/i} on ﬁ%i;p¢30 such that fN(z, P) d#*(P)Zlimf 1 4N(z, p) dp(p)
m; i . . Sm m,

1
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i’

=N(z,p), where {7
By pe(R—R,+B,)~F

lim [N, ) d<
m.

/=00

>(p)=N(z, p) is minimal. (51)

i’

On the other hand by <
F’

[N dn @)=
f ——N(z, p) dn¥(p) is represented by mass ‘¢* on F by Theorem 6. a)

Hence lim p” f N{(z, p) dyr”(p) is represented by an weak limit "p* of { } on
2’ >0 7', m? )

F’ ie. lim fN(z p)d pi(p)= fN(z p)d'1*(p). By (51) fN(z p)d’ p*(p)
>0 My

[id B’
(=N(z,p)) is minimal, whence by Theorem 9,a) '#* is a point mass at
qe F' ~(R—R,+ B,). Hence N(z,p)=N(z,q) and peF and qec F’. This is

a contradiction. Hence ( f N(z, p) dﬂ(p)>< f N(z, p) du(p).
F’Fr-\(R——Ro+Bl) F~(R—Ry+B;)

Proof of ¢). Since ,U(z)= U(z), by Theorem 6, a) U(z):fN(z, p) du(p).

Let ¢* be a canonical distribution of z (¢#* may be positive over R—R,
—F") and let p¢*' be the restriction of g* on F. Then p*—p* is also
canonical and g*—p¢*' =0 on F and =0 on CF. Assume p*—p*'>0.*' Then
there exists a closed set F’ in CF such that the restriction p*”’ of p*
on F'>0 and dist (F, F'")>0.

V@)= ([N ) e 0)+ [N ») dr —p)@)) = UG),
([Nep @)= [N D dp o)
and (NG, ) (" —*")(p) ) = [ NGz, 2) d* — ")),

Whence ( f Nz, p)dp"(p) ) = f N(z, p) du*"(p). (52)

(62) contradicts b) by dist (F, F')>>0 and ,u*”(p) is canonical. Hence ©*
—p*' =0 and any canonical distribution has no mass on CF. Hence

Ue)= [ Nz p)dup).

F~(R—FEo+By) !
Proof of d). Let p, (1=1,2) be a canonical mass distribution of U(z)
whose kernel is F,. Then by a) ,,U(z)=U(z). Hence by ¢) r, has no mass
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outside of F;, whence F,DF,. Similarly F,DF, Hence F,=F,.
Proof of e). w(F,z)=,wo(F,z2) by P.C.1, whence we have e) by c).
Let A be an F, set such that A=—F,, F,CF,--- and F, is closed.
We define w(A,z) by lim w(F,, z). Then by Theorem 4. %) w(A4,z) is super-
harmonic in R—R,. " .
Theorem 14. @) P.C.l. w(A,2)=, w(A,z): AM:E[zeE : oz, A)gi].
m
b). P.C4. w(A4, 2)=¢,0(A,2)=(1—-08)w(G;, 2) in CG;:Gy;=E[ze R: w(A,z)
>1—4]. :

¢). P.CT. If w(A, 2)>0, w(A,2)=1 on A except at moét'an F, set of
capacity zero.

Let H be an F,; set: H=(A, A, DA, DA, - and A, is an F, set.
We define w(H,z) by limw(4,, 7). - Then o(H,z) is also superharmonic in

R—R, by Theorem 4, h).
d). w(4,,z)=>w(H,2) as n—>oo.

¢). P.CA o(H, 2)=,, oH,z): A,,,,,,:E[zeﬁ: 5(z,An)§—1—].
m

). PCA oH,2)=0,,0(H,2): G,,=E[2R: w(An,z)>1—i].
m
9). PCT. If o(H,2)>0, ,w(ILz):(l-—i%(Gm,z) in CG,:G, =
m

E’[zeR: o(H, z)>1-—i:] and sup o(H,2)=1 and sup w(H,z)=1.
m < H v

%€ Gy 2

Proof of a). Put Fn,,',L:E[zeTe L 8z, Fn)gi} Then F,,CA,. Now
' m

by P.C.1. o(F,2)=,,o(F,, 2)=,, o(F,, 2)=w(F,, 2).
Hence o(4,z)= 4,04, 2)=1lim ,, o(F,,2)=lim o(F,, 2)=w(A4, 2).

Proof of b) Put Gn,;,zE[z'eE: o(F,, z)>1——i]. Then G, ,CG,.
m

Hén e as above we have b). v
roof of c¢). If w(A,2)>0, there exists a number 7, such that w(F,,z)
>0 for n=mn, Then by P.C.7. (Theorem 12, ¢)) sup o(4, 2z)=sup w(F,, z)=1.
ze A Z2€ Fn

Put Lsz[zeA:w(A, z)§1—-1_]. Then L, E{zan:w(Fn, z)§1—-—1—}
- m n m

Now FE [ze F, : w(F, z)gl——l—] is an F, set of capacity zero. Hence > L
m ,

is an F, set of capacity zero and we have c¢).
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Proof of d),e) and f).  Since g, 0(A,,2)=w0(d4,,2) by b), o,,(2)=>
w(A,, 2), where w, (2) is a harmonic function in (R —R,—G,, ,) such that
On&) =04y, 2) o0 (3G (Bi— R)+3Fs and 00, (2)=0 on OR,—Go.
DRL—RO—Gn,m(wn,L(z)r wn+i,l(z)): f n Z(z) n+i,l(z) dS

.
Gn, m~ (R —Ryg)

_ _L> 8 d —(1__1_>_§’_ (2) d
—(1 an n+z l(z) 8 m anwn+z,l(z)ds

M7 a6m,m
0
= f W, +i,'l(z)'5n_wn+ 1,1(%) _ds =Dx;-ry-6nsi,m(On+1,1(2))-
3Gn+i,m

Since o, (2)=>w(A4,,?) and ,.; (R)=>0(4,.,?),

D ry-6nm(@(An, )y (A4 2))=Dr_ry—cn., m(w(Anm 2)).
Let m—> . Then D(w(A,.;?2)=D(w(4,z2), (4, z)) and D(w(A,, ?)
—w(4,.:,2)=D(w(A,, 2))—D(w(A4,.; 7)), whence D(w(A4,,2)){ =0 as n—>oo.
Hence w(4.,,2)=>w(H,z). Now w(4,,72) has M.D.L. over (R—R,—A, ,) by a)
‘and over R—R,—G, ., by b). Hence by Lemma 1.d) «(H,2) has M.D.L
over R—R,—A,,, and over R—R,—G, ,. Thus we have ¢ and f).

Proof of 9). By b) a(dy, 2)=(1=")0(Gym2) in B—Ri—Gyn: G
:E[zeﬁ: (A, 2)> 1———]

Let my, my- - - “be a sequence such that m,<m,<m,---, li’x)n m'nzoo.'
Then by A Z)An+1 . and m, <mn+1
G, _E[ N [zeR oA,z e
For simplicity put Gn,m-:G,’,. Then w(A4,, z);( — >a)(G,',, z) in R—R,
—G). Hence n’
w(H, z)-hm w(A4,, z)—llm (G, 2). (53)
By G.DOG... DG, s+, (G, z)=> a functlon which is equal to w(H, z) by

(63). Hence w(H,z) is C.P. o({G}}, z) defined by a decreasing sequence of
domains {G.}. Hence w(H,z) has properties from P.C.1. to P.C.6. and we
have (54) and (55). Hence

If w(H,2z)>0, sup (H,2)=1 for every n. - (54)

w(I{,z)=<1—%>w(Gm,z) in R—R,—G%:G:=E [zeR: o(H, z)>1f—%:|.
| (55)
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Next we show sup w(H,2)=1, if w(H, z)>0.

ze H
By ¢) w(4,,z)=1 on A, except an F, set of capacity zero, hence
w(A,~CG})=0 and A,~CG. is an F', set of capaclty zero which we denote
by F/» Hence A,CG,+F/* and

H=[14,C(NG+>F"), - (56)

where G, is an open set by the semicontinuity of (4, z).
1

Put CG;‘;—_—E[zeR: o(H, z)g_l——]. Then by (53)
m
w(H~CG* z)<11m w(G’/-\CG:,z)<w( {GL}, 2) =w(H, 2)

and sup ({GL~CG2), 2) < sup w(H, z)<1—_1_<1

z€ OG*~G'p 2 e CG¥,

Where o({GL,~CG}}, z) is C. P defined by sequence {GL,~CG}}:n=1,2,-
Hence by P.C.2. o({G,~CG}}, 2)=0 i.e. limlim w(G,~CG%, z)=0. (57)
Let n,, n,--- be a sequence such that f -;—w(G,’,iACGZ‘,, z) ds;—zl-i—. , Then
. n )
aRy :

*(z)— Zw(G’ ACG:,“,, z) is superharmonic and w*(2)<c> and
Zw(G,’,i/«.CG,’f,, 2)=1, in QO(G,,/\CGZ’Z). | (68)
It H>p 1pe B, then w(H,z)= w(p, z),. a_)(H, p)gw(p, p)=1 by Theorem
10,b). In this case our assertion is trivial. Hence we can suppose that
H~Bs=0. Let pe RfR0+BI—BS be a point in ﬁG;. Then Elelg N(z,p)=co

and N(z, p)' is N-minimal. Let V,(p) be a neighbourhood of p such that
Vu(p)=E[2eR: N(z,p)>M] and 0V,(p) is a regular niveau curve.

Assume sup w(H,z)< K<1—-2. Then HCCG,. Let vy (p)= E[ze R:
ze H m

o(z, p) < 1 ,] such that v,(p)CG,,. Such vu,(p) can be chosen, because G,
m

n

is open by the semicohtinuity of w(A4,,z). 'By the definition of the value
of a superharmonic functions at a point in R—Ro—i—B — By

o(H,p)=—1_lim f o(H, z)—-—N(z, )ds<(1—£>
2 : m
aVM(‘IJ)"U'ni(ZO) )
by Theorem 12,a). This implies
im [ Nz p)ds=2re,>0 by lim [ LNGpds=2n.
Yy o on ’ .

M=co M > oo
IV (DI~ om (PI~CG¥ip, 3V (D ~vn (D)
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Now by (68) w*(z)=1, in (G, r\CG’:‘,‘,)D(U,z () ~CG3), whence

w*(p)g—l— f (u*(z)——N(z, p) ds=¢&t,.
T OV pr (D)~ vn (P)~NCG* an
Let 2,—>. Then w*(p)=o. Now m*(z) is. lower semicontinuous, hence

w(z)—>o as z—>pe(R—R,+ B, BS)A((']G )~CG¥,

On the other hand, S} F/"+ B, is an F, set of capac1ty zero, whence
we can construct a superharmonic function w**(z) such that w**(2)—>c as
2= pe(SF"+B,). Put w***(z)—a)*(z)—l—a)**(z) Then sw***(z)-—>oo as —>z
peﬂc((ﬂG )~CGs+>F"+ B,y) by (56) and by HCC’G for any given

positive number &. Put 4,=E[zeR: 0***(2)=<2]. Then 4, is closed and
dist (4., H)>d.>0, because if it were not so ew***(2)=2 on at least a
point of H by the lower semicontinuity of w***(z). Hence sw***(2) = w(H, 2).
Let ¢>0. Then w(H,z)=0. This is a contradiction. Hence if «(H,z)=:0,
sup w(H, z)=1.

ze H

11. Maximum principle‘s.’

Theorem 15. a) Let U(z) be a positive superharmonic function in
R—R, such that U(z)=0 on oR, which is represented by a canonical mass
distribution y‘suchvthat U(z)= f N(z, p) du(p). Le't’F be the kermel of p.

If U(z)=<M at points on which the mass is distributed (this implies U(z) =M
on F by the lower semicontinuity of U(z)) and if ;z 0 on Bj (set of
singular points), then

0
~ L s
JU(z)a U(z)ds__Zfodp,

where C,=FE[ze R: U(z)=21]. _

v b). Let U(z) be a positive superharmonic function such that U(z)=0
on oR, Put Gy, =E[zeR: U(z)>M,] :l'iim M;=co. Put U’(z):liim e, U(2).
Then U’(z) is represented by a canonical mass distribution p on ﬂ—G—Mi.
Let Fbe the kernel of p. Then if U'(x)>0, sup U'(:)=eo. ’

¢). Let U(z) be a positive superharmonic function in R—R, with
U(z)=0 on R, and let p be its canonical mass distribution whose kermnel
is F. If U()>0 and Cap(F)=0, sup U(z)= o
ze ¥V

d). Let U(z) be a positive superharmonic function in R— R, with
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U(z)=on \aR and let p be its canonical mass distribution whose kernel
iws F. If UR)ZM on F, then

U(2) < Mo(F, 2).
Proofofa) Let U(2)= Zc N(z,p,) such that pJe(FA(R R,+ B,— By)):

¢;>0 and Zc._total mass of 78 Put Vip)=E[zeR: ¢;N(z, p;)>2] such
that an(pj) is regular. Such Vip,) exists, since sup N(z, p)—oo for
pe R—R,+B,—Bs;. Then Zc N(z,p]) has M.D.I. over R—R, ZVx(p])
whence U,(z) has M.D.I. over R— E,— E Vip,). Put D, ,=E[zeR: U(2)>4].

Then D,,D3Vi(p, and Ufz) has M.D.L over R—R,—D,, ie. U(2)
=w(D,,2z) in R—R,—D,, whence we can find a domain D, ,=FE[zeR:
U,(z)>2"] such that 2>1">0 and D, , is a regular niveau curve of U(?).

Let ¢p, ,U(?) be a harmonic function in CD, , with CDZ,JU(z):U(z) on
oD, ;+0R, Then

U(z)gcm,’z.U(z):JIHizn cow,:UM(2) and ¢p, ,UM(2)=1im Ul(2),
“where UX(z) is a harmoﬁic—;unction in D, ,~(R,—R,) sgch that U}(z)=
min (M, U(z)) on oD, ;,~(R,—R,) and ——UM(z) 0 on oR,~D, ,.

Let N,(z,p;) be a harmonic functlon in (Dy ,— Vl(pj))ﬂ(Rn R, such
that N,(z, 2)=N(z p,) on a(D,—Vi(p)~(B,— ;) and -2-N,(z,p,)=0 on
OR,~(Dy ;—Vip;)). Then N,z p;)=>N(zp,) in D, ,—V(p,) and Uy(z)

=échn(z, p;)=A on 8D, and U(2)=cpr,:U"(z) as n—>oo in Dy,
By the Green’s formula :

, o - )
UM(Z)—a—C N, (2, p;) ds= f ¢,;N.(z, pj)a—nUfJ‘(z) ds:j=1,2,---,1

s

(3D ;7 5+3V (DD~ Bn @Dy 43V ;:(P))~Bnp
' 8
By f ¢,N.(z, pJ)——UM(z)ds~ f TUM(z)ds_ f 2_U(z) ds=0
AV (ppP~Rp 3V/1(PJ)’\RM aRn’“Vz(PJ) n
we have

f UM(z)—-cN(z pj) ds= f UM(z)———c N(z,p,)ds
Dy 4~En aVl(pJ)ARn .
T f 6,N.(z, p) LU ds. (59)
9Dy ~En '

By summing up (59) for 7=1,2,---,7 and by
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> f ¢,N.(2, pj)——fUM(z) ds=2 f 9 ym(z)yds=1 f aiU;:f(z) ds=0,

9Dy i~Rn aDys, q,f\an D74~ Ry
we have
f UM(z)— 2 ¢,N(2, p,) ds= z f U,f"(z)—éa——chn(z, p)ds.  (60)
3D1/ i~Ep %VJCPJ) . n

Put U,.(2)=31¢,N,(z,p,). Then U, ,()=il in R,—Ro— 1Vi(p,) by
¢;N,(2, p;,)<2 in R—R,—Vp)). :
Consider U, ,(?) in D,,—D;. Then U, ,(2)= min U, ,,(z) 7 on oD, ;,

a zE(D,V s~ Dag)

. :.2()=0 on 0D, ; and U,(2)=1i2 on 0D, ;. Then by the regularity of
n .

oD, ; and by Theorem 3,bd)

J UM(z)——Z‘c Ni2p)ds—> [ oo, U 2310,N(z, p))ds as n>co.

8Dy i~Bn 9D,/ g (61)
Similarly ¢,N,(z, p;)=max c¢,;N,(z,p;) on oV (p,), —a—n—Nn(z, »;,)=0 on oV (p,)

ze Dy’ i~V 2(p)
and

f UM(z)__N (2, p,) ds— f CDA,iUM(z)——N(z p)ds as n>oco. (62)
vV ()~ B Vi (pp .

In (60) let n—>co and then M—oo. ‘Then by (61) and (62)
[ oo ULV ds=3 [ Uen ()N p)ds.  (63)

aDy,i e
Assume U(z)<<M on F~(R—R,+B,). Then by the local superharmonicity
of U(z) at p;
M=U(p,)=lim -1 f U(z)——N(z p)ds=-1 f U(2)-2—N(z, p,) ds.
L=co 277,' : 2 : on
oV Lwp aV 3(») :

Hence by (63) and by ¢p,, iU(z):U(z) on 8D, ,, we have
f U(z)--—U(z) ds= f onr, .U(z)iU.(z) ds=<2x( z‘.c.) M. (64)

3D’ 4 aDyr 4

By the continuity of N(z, p) for fixed z with respect to p, there exists

a sequence of linear forms Ech(z, p;,)=U,(z) such that > c;=total mass
of U(z), p,eF and Uy (z)—>U(z) as i— in R,—R, uniformly for any

given number m. Now U(2)~U(z) implies aiUi(z)—){__U(z) in R,—R,

and 0D, ,=FE[zeR: U/(z)=2"] tends to yC E[zeR U(z)=21"]. Then by
Fatou’s lemma
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f U(z)——U(z)ds<11m f U(z)———U(z) ds

C iy ~Ryp, Dy i~Rip

<lim f U(z)aiUi(z)§27rM><(total mass of U(2)).
7 n
9Dy 4

Let m—oco. Then

f U(z)—a%U(z) ds<2zM X (total mass of U(z)).

Thus we have a). ‘
PrOof of b). Put Gy,=E[zeR: UR)>M;]: M, <M,,---, 1im'M.=oo.

Then G,, is open by the semlcontlnulty of U(z) and co(GMz z)<[’ﬂ(;). Let

M,—co. Then lim (G y,, 2)=0. Put lim 4, U(z)="U’(z). Then by Theorem
6,b) - '
' lim ¢, U'(2)=U'(2).

If sup U'(R)<M< o, U'(z) <Mo(G, ,2)—>0 as M,—~>oo. In this case our
ze R ’
assertion is trivial. We suppose sup U’(z)=o. Let g be the canonical
ze R -

mass distribution of U’(z). We show that-p has mo mass at any point
of Bs. Assume that U’(z) has a mass m at pe Bs. Then U’'(z)=maw(p, ?)

+U"(z) and U’ (z) is also supperharmonic in R—R,. Hence
U'(2)=U'(2)= g, (U'(2) — ma(p, 2)) + ¢, (ma(D, 2)). (65)

Now ma(p,z)<m in R—R,, whence & w (M(D, z)‘)<mcu(GM,L_, z). Let M,—> .
Then o(G, ,2)=0. Hence 11m G, (mw(p, 2))=0 and

U'(2) = U'(z)—ma(p, 2)=lim ¢, (U'(z) —ma(p, z))—hm o, U (2)=U'(2). (66)
This is a contradiction. Hence U’(z) has no mass at any point pe Bg.
v, U'(2)=U'(2) is clear by definition. We show
5MiU’(z): f(z) Jor any M, < o,
where éMizE[zeR: U'()>M,].
By U(z)=U'(?), h_m w(ém» 2)=0. Let Ug, ,(2) be a harmonic function in
R—R,—(Gy,4Gy,): M,<M, such that Ug, 2)=U'(2) on 9R,+G.,+GCu,)
and UMi n, () has M.D.I. over R— R -——(GM +Gy ) Then by (53,5—|—GMJ.)DGMj
U/(z)> Uji M (z)>GM U'(2)=U'(2). (67)
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Let Uj, ,(2) be a harmonic function in R—Ry—(Gy,+Gy,): M,<M,
such that U%, .,()=U’(z) on 0R,+dGy,~Gy, and i‘Uj;"i w(2)=0 on
8GM GM and UM M(z) has M.D.I. over R—R —(GMi—i—G )

Then UM, . (z)=>(,M U’(z) as j—oo.
On the other hand both UM » () and Uigt »;(#) has M.D.L over R— R,—

(GMi—{—GM j). Hence by the maximum principle
| | Uszy u,(2)— Us, o )(2) | = Mu(Gy;, 2) >0 as j—>oco.
Hence by (67) | |
U'(2)=z,, U(z)——hm Uz, Mj(z)_hm Uz, Mj(z)—llm o, U(z)— U'(z).
Thus we have 7y, U R)=U'(2). ~ : (68)
Assume sup U'(z)=<M. Now =0 on Bs. Hence by a) f U ’(z) U’(z) ds

ze K
<2zM f d. On the other hand, by (68) U'(2)=Muw(G., z) in R—R, —G,

hence aGM is a regular niveau curve for almost every number M, and

[ O 2y ds= f 9 U(z)ds and lim U’(z)———U(z) ds= oo

Mi=00
o

This is a contradiction. Hence we have b)
Proof of ¢). If U(z)>0, clearly sup U(z)=o. Now by the assump-
. ze R

tion, since Cap(F)=0, ¢ has no mass at any point of B;. We show
cp,U(2)=U(z), where D,=E[zeR: U(z)<2]. Since by Theorem 13. a)
U(z)=,U(z). Now U(z) has M.D.I. < 272X (total mass of #) on D,—F,, F,

=E’[ze§ . oz, F)<—~1—:l Hence U, (2)=>U,(2) as n—oo and U,(z)= U(2)
as m—>oco, where U, ,,(z) is a harmonic functlon in (R, R)/\(D —F,)
such that U, ,(2)=U(z) on (a(DmeFm)»(R R))+0R, and —U,, (2)=0
on ¢R,~(D,—F,). Let U, .(z) be aharmonic function in (R,— R )/‘\(DZ—Fm)
such that U,, (2)=U(z) on ((06D;~CF,)~(R,—R,))+0R, and iU,f, n(z)zO
on (3F,~D,)+@R,~(D;—F,)). Then Ul .(2)=>ULz) and U,,’z(z)=>CDIU(z)
because ,,,U(z) has M.D.I. over D,. Now ‘
U, n(2)=Uy, .(2) on ((0D,—F,)~(R,—R)+3Ry),
| U, (2)— Ul (2)| <4 on 3E,~D, by U, .(2) and U, (2)<2 in D,—F,,
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and 22U, (2)=-2_U. .(2)=0 on 4R, ~D.~CF,,
on ’ on ’

Hence by the maximum principle

: U@ = U@ | <dwy(F, 2),
where o,(F,,2) is a harmonic function in R,— R,—F,, such that w,(F,;?)
=1 on F,, w,(F,, 2)=0 on oR, and %w’;(Fm’ 2)=0 on oR,—F,.
Let n—>o and then m—>o. Then

| U()—¢p,U(z) | <2w(F,2)=0 by Cap (F')=0.

Hence U(z) has M.D.I. over D, and ,,,U(z)=U(z), whence U(z)=w(CD,, z)
in D,. Hence for almost all 2 f 9 U(z)ds-f—a—-U(z) ds and hm U(z)
TU(z) ds = co. o o

Thus by a) sup U(z)= co.

ze F

Proof of d). Put G,,=E[zeR: UR)>M], M,<M,,---, liim Mi#m.

Then G, is open and «(G,, 2)=< _U]‘(l_z)_ Let M,—~oc. Then h'_m o(Gy,y 2)=0.

2

Put lim ¢, U(2)=U'(z). Then by Theorem 6.b) U(z)— U’(z) is superharmonic
in R R, and hm en(U'(2)=U'(z). Now the total mass of ,, U(z)
= f —U(z) ds Hence we can find an weak limit ¢" of the distribution

T 3o

p1iof {; » U(2)} on ﬂGM,,- Now ﬂGMi is of capacity zero, but we don’t know
that ﬂG—M_L. is of ca;)acity zero or not. Let ¢'* be the canohical distribution
of ¢/. Then by';MiU’(z):U’(z) by G, DGy, ¢'* has no mass outside of
ﬁ@M; and p¢'* is contained in ﬂG'— ~ Also U(z)— U’(z) has a canonical mass

distribution #"*>=0. Then #’*—I—,u”* is a canonical distribution of U(z).
=U'(2)+(U(z)—U’(2)). By Theorem 13.d) the kernel of g'*4p’* is con-
tained in F which is the kernel of the distribution g* of U(z), whence
the kernel F' of p'* is contained in . We show U’'(z)=0. In fact, by
the assumption sup U’(z)gSuE U(z)<<M. Hence by b)

U'(2)=0. j (69)
Gir.o=E[zeR: U(z)>M+a]:a>0is open and Fn:E[zeﬁz o(z, F)g%]
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is closed and Gy..,~F, is an F, set. Now U(R)=M+a in G,,, implies
U(2)=(M+a)s(Gy o ~Fy 2).
' Let m—>oco. Then U(z) = (M+a)e(Gy,, ~F,2), where F~G,.,=
lim(F,~G,,,) is an F,, set. :
" Assume w(G,,,~F,2)>0. Then by Theorem 14.g) sup w(GMMmF 2)
=1 on Gy, ,~F. - : Tt
Hence by U(z)>(M+a)a)(GM+ar\F 2), sup U(z)>M+a on F. This
contradicts U(z)<M on F. Hence
| Gy, ~F,2)=0. (70)
By (69) there exists a number N, such that GNU(z0)<s for any given
point z, and any given positive number ¢>0 for N> N,.
UR)=,Uz)<a+M on F ,~C(F,~Gy.,), UR=<N on 8F,~CG, and
U(g):GVU(z) on 0F,~G,. Hence by the maximum principle
U(2)=r,UR)=(a+M)a(F,, 2))+ NoXGy .o~ Foy 2)+46, U(2).
Let m—>c. Then by (70)
' PUR)=(a+M)w(F, z)+e for z=z,.
Let e—>0 and a—>O. Then ‘
UR)=7U() < Mw(F, z).
Thus we have d).

12. Mass distributions. In the sequel we consider Problem of Equili-
brium. It is important to summarize the properties of the space and
the kernel N(p, q).

1). The space R—R, is composed of a Riemann surface R—R, and
its ideal boundary B=DB,+ B, where B, and B, are the sets of N-minimal
points and of N-non minimal points respectively and B, is an F, set of
capacity zero. On B, we cannot distribute any true mass. A distribution
¢ on B, may be called a pseudo distribution in the sense that g can be
replaced (by Theorem 8) by a canonical distribution on R— RO—Q—B with-

out any change of U(x)= f N(z, p) du(p).
2). The kernel N(p,q) satisfies the following condltlons
a) N(p,q)=N(g,p):p and ge K—R,.

b) N(p,q) is harmonic with respect to p in R— R, for fixed geR—R,,
whence N(p,q) is continuous in wider sense (N(p,q) may be infinite at q)

with respect to p for fixed geR—R, and N(p,q) is continuous (with
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respect to s-metric) in R— R, with respect to ge R—R, for fixed pe R—R,.

¢) N(p,q) is lower semicontinuous in R—R, for fixed ge R—R,. But
it cannot be verified that N(p,q) is lower semicontinuous ‘in R— R, in
both arguments p and ¢ in R—R,. N

d) The potential U(z)= f N(z, p) dp(p) : #(p)=0 (in the following we

call U(z) the potential of a distribution p) is superharmonic in R—R,,
superharmonic locally at any point of R— R,+ B, and lower semicontinuous
in R—R,.

8) Maximum principle is valid. Let U(z) be the potential of a posi-
tive canonical mass distribution p. If U(z)<M on the kernel F of g,
U(z)<Mw(F,z) in R—R,, where o(F,z) is C.P. of F.

- 4) Function theoretic Equilibrium Problem can be solved: let F' be
a closed set of positive capacity. Then C.P. w(F,2)=1 on F except at
most an F, set of capacity zero and «(F,z) ecan be represented by a
cannonical mass distribution 2 whose kernel is contained in F.

FEnergy Integfr:al I(¢) of a mass distribution # on R—R, is defined as

1= [ [N, 0) duw) d@) = [ U(p) du(w).
é’apacity (potential theoretic) of a closed set in R——R-O is defined by

_—1———, where inf I(¢) is the infinimum of Energy Integrals of all posi-
inf I(y) ' neca . : ‘

reca

tive canonical mass distribution on F' of mass unity. If F~(R—R,+B,)

=0, we define éap (F)=0. |

Problem of Equilibrium.

"Theorem 16. a) Let p be a positive mass distribution\ and let p* be
its canonical mass distribution. Then I(p)=I(#*) and I(y) does mot
depend on a choice of particular distribution. ‘

b) Let F be a closed set such that éap (F')>0.. Then ékap (F)< 14
Cap (F'). If FCB, Cap (F)=0 and éap (F)=0 by definition. Hence by

. X
Theorem 13.a) Cap (F)>0 if and only if Cap (¥)>0.
¢) Let F be a closed set of positive capacity (clearly of positive
% . . e . . ey . - .
capacity by b)). Let {1} be a minimizing sequence of positive canonical
mass distributions on F of mass unity such that I(x,) | inf I(x). Let p be
reca

an weak limit of {1,}. Then u is also a positive canonical mass distri-
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bution on F of mass unity.
d) Let V=inf I(#). Then there exists a canonical mass dzstmbutwn

reca

¢ such that I(p)=1V. | ~

e) Let F be a closed set in R—R, of positive capacity. Let ¢ be a
positive canonical mass distribution on F such that I(x)=V. Then the
potential U(z) of p satisfies the following conditions:

1) U()=V on F except at most a set of capacity zero.

2) UR)=Vo(F,z) and I(x)=D(o(F,2))=V.

$) Cap (F)=Cap (F). |

Proof of a). Suppose p and ¢ are points in R—R,. Then N(z, p)
= f N(z, p.) dp,(p.) and N(z,q)= f N(z, q5) dt(a5), Where p,(p.) and. (g,

are canonical mass distributions of N(z, p) and N(z, q¢) respectively. Then
1= [ [N, 9 du(p) du@)= [ [ | N(po ) dpty(p2) dee(w) dix(@)
= f f f f N(P.r q5) A2, (9.) Ao (95) d(p) d(q)
= f f N(p. q5) f dpt(pa) d4(P) f dre,(g5) d(q)
= [ [N, a9 dep) dpa) =1,

For other distributions we have the same value, hence I(y) does not
depend on particular distributions. Thus we have a).

Proof of b). Let V be the infinimum of all positive canonical mass
distributions on F' of positive ecapacity of mass unity. Let {#,} be a
minimizing sequence of canonical distributions of mass unity on F' such

that I(¢,)=V+e,:¢,10. Put GOZT‘S—" Let n, be a number such that

= iOO for n=mn,. Let M; be the mass of the restriction ¢, of &, on

the set E[zeF: Un(‘z)§V—l—e(,], where U ,(z) is the potential of y,. Then
since I(¢,)=V+e¢,,

V+e, - 1

My =1—
v+ 13
2

’

because if the set E[zeF: U, (2)>V+¢,] has mass>ﬁ€_’

V4 50
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Ve =Kz [U.() dim)=(V+e) x({—*%)ﬂwsn).
| ; 4+ &
2

Let U/(2) be the potential of /J,’,.k Then U(z) <V +¢, on the kernel F'(CF')
of 1/,. Hence by the maximum principle Uj(2) = (V+e)w(F’, 2) <(V+s,)
o(F, z), whence

f% #(2) ds 1

V4g,= % s = 13 Hence by ——V;:so
f 9 o (F,2)ds CapUE) 10
oRe . ~
y>__10 and Cap (F)=—L <14 Cap (F).
— 143 Cap (F") Vv

Conversely if Cap(F)=>0, then o(F,2)= yo(F,2)= f N(z, p) dp*(p) by
F~(R—Ro+B1)

Theorem 13.¢). Now w(F,2)<1 on F and the total mass of p* is given
by M= f —Q—w(F, z)ds. Hence l; ; is a canonlcaldlstrlbutlon on F' of mass

Ry

unity and its Energy Integral <%, whence inf I(pe)~— V<?1YE_ and Cap (F")

‘HECA

=M=Cap(F). If F~(R—R,+B,)=0, i.e. FCB,, Cap (F')=0 by definition
and Cap(F)=0 by the fact that B, is an F, set of capacity zero. Thus
* .

Cap(F')>0 if and only if Cap (#)=>0.
Proof of ¢). R,= lj['m (see the proof of Theorem 7.a)), where I,
is closed and of capacity zero. Let I"m,izE’[z'ef{ :o(l,, z)g—l,—]. Then
- )

I, is closed and Cap([l’,;)—>0 as i— o for every m. Hence for any
given number ! there exists a number <(m,l) such that Cap ([, )<

—14—{;;717, where ——Il/,——_—éap (F"). Lat;/ {2} ba a minimizing sequence such
that I(y¢,)=V +e¢,:lime,=0 and en<—2~0—. Let M, be the mass of the

restriction g, of x on I',, ;. Then by Cap ([m)<14Cap (I7,,:) M, < Jm%, ,

2

. 2 21 \ ’ mz
because if ‘,)Jtng—z“/mT, %—Vgisnzl(pn)gI(pﬂ)gm>2V Put

Om,zizE[zeﬁz (L ; z)<%i\. Then O,, . is open'and E[:zef_f: ol ., z)
K _
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than ‘/_ﬁi . Let # be an ‘weak limit of {,}. Then it is known that the

mass of ¢ on any open set G (closed set F') is smaller (larger) than lim
(mass of I', on G) (—lfn— (mass of #, on F')). Hence the mass of g on

Wplom »; 18 smaller than Z 2‘/,,3, = 222“/2. Put Al:mglrm’“( <mU 0,, 2i>>'
2 2 - -
Then the mass of ¢ on 4, << +‘/2. Now BOC<ﬁA>. Let > . Then ¢ has
27 '

no mass on B, l.e. ¢ is a canonical distribution. Clearly by the closed-
ness of F' ¢ has mass unity on p.

Proof of d). Since it cannot be proved ‘that N(p,q) is lower semi-
continuous in f—'ﬂ—Ro in both arguments p and ¢ in K—R,, it is not so
clear that I(,u)gﬁ,r'g I(pen):ﬂ:lign t,. Let V be the infinimum of all
canonical mass distributions on a closed set F' of positive >ckapacity (Cap
(F')>0 by b)) of mass unity. Let V>a>0 and let ¢ be a canonical posi-

tive mass distribution of mass unity on F. Let ¢’ be the restriction of
¢ on the closed set E[2¢F: U(z)<V—a]:U(2) is the potential of ¢ and

let 1—M be the 'rhass of ¢/ :M=0. Then 1 ol o is a canonical distribution

v (=T

F of ity and it tntilﬁysz,( >
on F' of mass unity and its potentia (z.) (= P) 1—9n T 1-Mm

on the kernel of z/. Assume 9ﬁ<%. Then

()= fre(ie)ar@= [ duw= T =V

This contradicts the deﬁnl,tlon of V. Hence the mass M of any canonical
distribution of mass unity on E[zeF': U(z)>V —a] satisfies

M= g B (71)

Let {#,} be a minimizing sequence of canonical mass distributions on

F' of mass unity such that I(g,)=V-+¢,:¢,1 0. Then for any given posi-

tive number a< min (1, V) there exists a number n such that &,< min

4 . 4
Ala)=14+2V 4+, n<—2 . Then th -
<1, |4 e )) (0)=14+2V+ V Suppose ¢ VoA hen the po

tential U,(z) of p, satisfies the following conditions:
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1) The capacity of the closed set F*=FE[zeF:U(2)<V —2a]] <-— (72)

2) The mass of p, on F2*<.28a. , (73)
We shall prove 1) and 2). Let ¢ be the restriction of 2, on E[ze F': U,(z)

>V—a]: Un(z)sz(z, D) A, (p). | Then the mas M, of »#q',>—;—>0 by (71).

’
m".' Then 6,>>1 and the mass of —g—”-z
49 - n

1 %4
mass distribution of

o

Put ¢,= —. Let ¢* be the canonical

w(F?2,2): C: is the capacity of F;*. Then the

o
VCi
kernel of p* is contained in F' and the mass of ,u*z—%. Let o be a distri-
bution on F such that ¢=g* on F?*, =0 on 'E[zeF.: Vea>U,(2)=V—2]
4
and o= — % on E[z¢F: Uy 2)>V—al. Put Ua(z)sz(z, p)ds. Then

o(F2*,2). Henec I(o)

U | = [ N ) m)+de o) =U.)+

< ’ =<

= [10.@)l1do| = (V. + 5 e
1 1 1 2

-+ Cﬁa <7> V+€ + C2 < .?{/ —+ V2> +C(<2V—|— C2" < {“/ -+ ;;2>, because

o(F,2)<1 on I—B—RO and U,(2)<V —2a on the kernel of p*.

Assum c:;“\%. Then I(g)gzv+1+_§;.§A(a). Now p,+he is a positive

VC 2
)@ () + A PN STm) + e

%('V— %)

canonical distribution on F of mass unity for 0=<h<5$, (6,>>1). Hence
(¢ +ho)=V+7,:72,=0 and p,—e,=I(1,+ho)—I(1,)
. 32
—2h< )((V 20) — (V — a))+th(a):2h<-—%+hI(o)>, whence

—h <h1(a)—7)+en— hgz .

2
Put A= Then h<“7< 1 and p,+hoe is a positive canonical distri-

VA ()

bution on F' of mass unity. Now by I(¢)<A(a) and e, <———— al we have
' ViA(a)

7,<0. This contradicts that 7,=>0. Hence Cﬁ“év.

. .
Next by ¢) Cap (F*)<14 CX* <1T;1. Let ¢/ be the restriction of g, on FZ.

Assume mass M, of p.>+/28a. Then by 'Cﬁ“g% we have
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M2 m:
I(p)=1I(p,)= o >_—7 =2V,
() =1(pn) = Gap (F=) 140 |
This contradicts that I(g,)=V+e,<2V. Hence the mass of ¢, < 28a.
Thus we have 1) and 2).

Let a;>a,>- - - be a sequence such that 2"/a, | 0 as n—>c. Let m(n)

e

VA(a,)
to a, and denote it by ¢, newly. Then we have subsequence {¢,} of former
{¢,} such that

be the least integer satisfying ¢, < We make g, correspond

4 ' —
I()un): V+€n and sn<ﬁ“?—“_nj“: 2nJan i’ O as Mm—>oco.

Let M/, and M. be the masses of ¢, on the set E[zeF: U,(z)>V+2"/a,]
and on E[z2eF: U,(2)<V—2a,] respectively, where U,(2) is the potential
of u,. Then I/ <y28a,. Consider I(z,). Then

Vte=I(p)Z [ () du(0)= (V420 + (V—20) (1=, — ).

Whence ¢,>MY(2a,+2a,)—2a,+(2a,— V)V28a,. Hence

&, + 20, — (2a,, — V )¥28a,, _ 8V

M, < ol
2"/ a, +2a, 2"

Hence the mass of p, on E[zcF': V42" /a, > Un(z)]>1—%¥—. Let z;, be
the restriction of g, on E[zeF': U,(2)<V+2*Ja,] and put g} :—1—%}—,.
Then p¥ is also a canonical distribution on F of mass unity and I(yp¥)

=) V@A =TI =V 06,00 s mo>cn Hence (43) I
A

also a minimizing sequence of canonicnl mass distributions on F of mass
unity. On the other hand, U (z)= f N(z, p) dp*(p)<V+C, on the kernel
of p*. Hence by the maximum principle UX(z)<V+¢, in R—R,. Since

the total mass of {¢¥} is unity and N(z, p) is continuous in I_B—R(, with
respect to p for ze R—R,. Hence there exists a subsequence {¢*} of {¢*}

and an weak limit ¢#* of {#}} such that V=1lim (V+{,)=lim UX(2)=U*(2)
:fN(z, p)dp*(p):ze R—R,. Further by the semicontinuity of U*(z)

U*(2)<V in R—R,, whence I(¢*)<V. On the other hand, since p* is
also canonical by (¢), I(#*)=V. Thus p* is the required canonical mass
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distribution.
- Proof of e). Suppose p is a canonical distribution on F such that

I()=V. Put I(#)=V+e. Then e=0<

( for any given positive number
[24

a. Hence by (72) the potential U(z) of u=V on F except at most a set
of capacity zero. Assume U(z)>V at least one point p of the kernel of
¢. Then by the lower semicontinuity U(2)>V +¢c:6>0 in a neighbourhood
v(p) of p and the mass M of g in o(p)>0. Whence I(r)=M(V—+e)
+(1—M)V>V. This is a contradiction. Hence U(z)=V on the kernel

F'(CF) of pr. Whence by the maximum principle U()<V in E—R,.
Now U(z) is harmonic in R—R,—F', since #=0 on CF. Hence

UR)=Vo(F', 2)<Vo(F, 2).

Inverse inequality is proved as follows: put CG,, —=FE[zcR: U(z)<V e].

Then CG,_.~F is closed and of capacity zero (capac1ty zero), whence we
can construct a éﬂperharmonic function w**(z) such that »**(z) is conti-
nuous in R—R, and o**(z)—>w as z—->pec((CG,_.~F)+B,). Put U*(2)-
,:“""**(z)‘*" U(z): «a>0. Then U*(z2)=V on F. Put CGy_.=E[zeR: U*(2)
<V —¢]. Then by the lower semicontinuity of U*(z) dist (CG,_., F)>4,
~0. Let Fm:EI:zeI—i’: 5(z, F)g%]:;l;<5o. Let Gi.—=E[z¢ R: U*(z)
>V —¢]. Then G¢..DF,. Now U*(2) is superharmonic in R—R,, hence

U*(2)=(V—e)a(G¥_., 2)=(V —e)o(F,, 2)=(V —e)o(F, 2),
Let a—0 and then ¢—>0.. Then U(R)=w(F,z). Thus U(z)=w(F,z).

Next by f 0 U(R)ds=V f —w(F, z)ds we have at once

ARy

D(Vo(F, 2))=V* 1 —V and
fiw(F, z)ds
e on
Cap (F)= f %w(F, 2) ds=_11}_= p (F).
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