SOME REMARKS ON CARTAN-BRAUER-HUA THEOREM ${ }^{1)}$

By

Kazuo Kishimoto

Concerning Cartan-Brauer-Hua theorem, T. Nagahara and H. Tominaga proved the following [3, Lemma 3.5]:

Let U be a ring with 1 , and B a two-sided simple subring of U containing 1. If A is a division subring of U containing 1 such that B is invariant relative to all inner automorphisms determined by nonzero elements of A, then either $A \subseteq B$ or $A \subseteq V_{U}(B)$.

In what follows, by making use of the same method as in the proof of this fact, we shall present a slight generalization of [3, Lemma 3.5] (Theorem 1) and an extension of [2, Theorem 7.13.1 (2)] (Theorem 2). And finally, we shall prove that Theorem 2 is still valid for inner automorphisms provided A is a simple ring (Theorem 3). Throughout the present note, a ring will mean a ring with the identity element 1, and a subring one with this identity element.

Our first theorem containing [3, Lemma 3.5] can be stated as follows:
Theorem 1. Let U be a ring, and A and B a subring of U satisfying minimum condition for right ideals and a two-sided simple subring of U respectively. If for each $a \in A$ and $b \in B$ there exists an element $b_{1} \in B$ such that $a b=b_{1} a$, then either $A \subseteq B$ or $A \subseteq V_{U}(B)$.

Proof. To be easily seen from the proof of [3, Lemma 3.5], it suffices to prove that $A=\left(A_{\frown} \mathrm{B}\right) \smile V_{A}(B)$. Let a be an arbitrary element of A . If a and 1 are linearly left independent over B, then for each $b \in B, a b$ $=b_{1} a$ and $(a+1) b=b_{2}(a+1)$ yield $\left(b_{1}-b_{2}\right) a+\left(b-b_{2}\right)=0$, whence it follows $b_{1}=b_{2}=b$. Consequently, we obtain $a \in V_{A}(B)$. If, on the other hand, a and 1 are linearly dependent, then there holds $d_{1} a=d_{2}$ for some non-zero $d_{1} \in B$. In case $d_{2} \neq 0$, since B is two-sided simple, we obtain $d a=1$ for some $d \in B$. And so, recalling that A satisfies minimum condition for right ideals, one will readily see that a is a regular element of A. And then, $a B=B a=B$ will yield at once $a \in B$. In case $d_{2}=0$ too, since $d_{1}(a+1)=d_{1}$ $\neq 0$, we obtain $a+1 \in B$. Thus, in either case, a is contained in B. We have proved tnerefore $A=\left(A_{\frown} B\right) \smile V_{A}(B)$.

Combining our method with the one employed in the proof of [2,

[^0]Theorem 7.13.1 (2)], we can obtain the following:
Theorem 2. ${ }^{2)}$ Let U be a ring and B a two-sided simple subring of U. If B is not of characteristic 2 and A is a subring of U such that B is invariant relative to all inner derivations determined by elements of A, then either $A \subseteq B$ or $A \subseteq V_{U}(B)$.

Proof. Let a be an arbitrary element of A. For any element $b \in B$, we set $[b, a]=b a-a b=b_{1},[[b, a] a]=b_{2},\left[b, a^{2}\right]=b_{3}$ where b_{1}, b_{2} and b_{3} are in B. Then, one will easily see that $2 b_{1} a=2\left(b a^{2}-a b a\right)=b_{2}+b_{3} \in B$. And, if a and 1 are linearly left independent over B, we obtain $b_{1}=0$. This means obviously that $a \in V_{A}(B)$. On the other hand, if a and 1 are linearly dependent: $b^{*} a-b^{* *}=0$ with non-zero $b^{*} \in B$, then noting that B is twosided simple, it will be easy to see that $a \in A \frown B$. We have proved therefore $A=(A \frown B) \smile V_{A}(B)$. Now, the rest of the proof is the same with the latter half of the proof of [3, Lemma 3.5].

Finally, we shall present the following:
Theorem 3. Let U be a ring and B a two-sided simple subring of U. If B is not of characteristic 2 , and A a simple subring of U such that B is invariant relative to all inner automorphisms determined by regular elements of A, then either $A \subseteq B$ or $A \subseteq V_{U}(B)$.

Proof. Let K be the prime field of A (which is evidently contained in the center of B), and let a be an arbitrary α-biregular element ${ }^{3}$ of A ($0 \neq \alpha \in K$). If a and 1 are linearly left independent over B, then for an arbitrary $b \in B, a b=b^{*} a$ and $(a-\alpha) b=b^{* *}(a-\alpha)$ yield at once $\left(b^{*}-b^{* *}\right) a$ $+\alpha\left(b^{* *}-b\right)=0$, whence it follows $b^{*}=b^{* *}=b$. Hence we obtain $a \in V_{A}(B)$. On the other hand, if a and 1 are linearly dependent, then it will be easy to see that $a \in B$. Since each element of A is a sum of biregular elements by [1], the fact proved above will show that B is invariant relative to all inner derivations determined by elements of A. Hence, our assertion is a direct consequence of Theorem 2.

References

[1] A. Hattori: On invariant subrings, Jap., J. Math., 21 (1951), 121-129.
[2] N. Jacobson: Structure of rings, Providence (1956).
[3] T. Nagahara and H. Tominaga: On Galois and locally Galois extensions of simple rings, Math. J. Okayama Univ., 10 (1961) to appear.

Department of Mathematics, Hokkaido University
(Received October 6, 1960)

[^1]
[^0]: 1) The author wishes to express his gratitude to Prof. G. Azumaya for his kind guidance.
[^1]: 2) This theorem is essentially due to Dr. H. Tominaga who kindly permitted us to cite it here. We are indebted to him for his helpful suggestions and advices.
 3) Cf. [1].
