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Chapter 1. Relevant theorems

§ 1. Relevant theorems of generalized harmonic analyses. We begin
with several notations definitions and theorems which we shallquote
from N. Wiener [13].

Definition 1. We shall say that f(x) belongs to the class W, if f(x)
18 measurable and

Loy - fw%idx<oo.

Definition 2. We shall say that f(x) belongs to the class S,, if f(x)
is measurable and exists

(1.02) o lim o f | f (@) |? dax .

It is clear that
1.03) - , S, CW,..

For any function f(x) of the cla‘ss“Wz, the Fourier-Wiener transform
s’(u) is defined, that is ' S ' '
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(1.04) A sf(u)—ljarg «72_[.[—1+f } (x)

) f@ s

Then we have by the Plancherel theorem [5] and the Wiener for-
mula [4, 117. :

Theorem A. Let f(x) be a function of the class S,. 'The'n
(1.05) hm—-f | f(w)[zdt_hm_l— f |87 (ute) =8/ (u—e)[F du

—’MU

in the sense that if ezthefr side of (1.05) exists, the other exists and has
the same value.

Definition 3. We shall say that f(x) belongs to the class S, if f(x)
is measurable and : :

(1.06) | ¢f(m)—11m——— f Fa+t) 7@ dt

rexists for every =x.

Definition 4. We shall say that f(x) belongs to the class S’, if f(x)
is measurable and ¢/(x) defined by (1.06) exists for e've'ry x and continuous
over (— oo, o),

Then we have

Theorem B. If f(x) belongs to the class S, then we have
_fme"“”|sf(u+s)—-sf(u—a)|2du.

—00

. €20

(1.07) ¢/ (@) =lim 1
o , 4re

Jor every x. Conversely let f(x) belong to the class W, and that the limit
of right hand side of (1. 07) emsts Jor every x. Then f(£) belongs to S
and (1.07) hlods. o

Theorem C. If f(x) belongs to the class S’, thew we have (1.07) for
every x. Conversely let f(x) belong to the class W, and that the limat of
right hand side of (1.07) exists for every x and continuous over (— oo, ).
Then f(x) belongs to S’ and (1.07) holds.

There is an important theorem due to N. W1ener

Theorem D. If f(x) belongs to the class S, 1t will belongs to the
class S’, when and only when

[f—A+fmJ | s’ (w+e)—s (u—e) |2 du=0.

1.08) lim Tim
( ) Al—glo sl->0 471'8



On the Hilbert Transform - 95

We add some theorems

Theorem E. If f(x) belongs to the class S’, then there emsts a real
and monotone increasing function A7(u) such that '

(1.09) ’ f('u,)__——— f we d A7(u)
for e’ve'rQ x and
(1.10) @) —A(0) =7 f ¢/(x) L1 gy

Jor every u.

Theorem F.. If f(x) belongs to the class S, then conclusions of
Theorem E are true for a.e. x in (1.09) and every u in (1.10).

Today we usually attain these theorems through S. Bochner’s re-
presentation theorem using the notion of positive definite of function
and Lévy’s inversion formula [8]. However N. Wiener’s original proof
is also useful. From (1.06) we get |

(1.11) | 16| = $4(0) |
and ¢/(x) belongs to the class W,. Therefore the Fourier-Wiener trans-
form of ¢/(x) is defined for a.e. . This is real value and can be defined
such as to be monotone increasing. We shall denote this by ¢/(x). Then
we get for the class S’ -

(1.12) ¢f<x>=%_ [ e dorw)

for every x and for the class S, (1.12) is true for a.e. . Furthermore
we get

(1.13) of(u)——/lf(u) = const.
except over a null set. There he also proved
Theorem G. If f(x) belongs to the class S, then we have

(1.14) o) =1im.[ ¥ +ﬁf”| $/(u-+e)— s/ (u—e) |* du |

— 00

over any finite range of u.

§ 2. Relevant theorems of generalized Hilbert transforms. For any
function of the class W,, the Hilbert transform does not necessarily exists
[7, p. 177]. The introduce of modified definition was asked for this class.
In compliance with this request, N. I. Achiezer [1, p. 128] 1ntroduced the
following. modified transform
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(2.01) H, f'-_—"f(x)z(x-{—i)'l.jli;rg.y%—; £ *(— i sign ) Ww)e' du
where ‘ _ _ ‘ '

; —_—1 3 ¥ 4 f(t) ~iut
(2.02) Y(w)=Lim. £ D iy,

The autor [7, chapter 4] also introduced another modified one from the
same idea which is equivalent for the class W,. This is defined by the
following formula ?

| _ = (x—l—z) = F(¢) dt
(2.03) H f=f(x)= J 3wt

There we proved that this modified tranform well conserves properties
which the original one has. These are :

Theorem H. Let f(x) belong to Wz.‘ Then its generalized Hilbert

transform Fi(x) exists for a.e. x and belongs to the same class and

(2.04) | Io e dx__jo; SO L 4o,
Theorem 1. Under the hypothesis of Theorem H.
(2.05) Hif— —f
Jor a.e. x.
Let us put
2.06 Cule, fl=2t1 [ ) _di
( ) (2, f) ori J tti iz
2.07 Pz, f)=2Tt (SO _ yat
(2.07) :(z ) ) i T
and
(2.08) e fym_ 2 (7SO (-0 dt /

‘ r J_ot4+1 (—x)P+y?
then between tkese formulds there is a relation
(2.09) 2C(z, f)=P.(z, f)+iP,(z, 1) .
Definition 5. $%0, o) s the class of analytic functzon f (2) in the
half-plane y>0 such that

(2.10) f If(x—l—zy) |2dx < - comst. (O<y< ).

Then we have furthermore
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Theorem J. Let g(x) belong to the class W,. If we put

(2.11) fi(®=2Cz9), z=z+iy
then we have _

(2.12) lim £,(2) =9(2)+(v)
Jor a.e. x as an angular limit. If we put

(2.13) Si(w)=9g(x)+1g:(x)
then we have o
(2.14) : - [1(R)=C\(z, fl)—Pl(z J1)

and fi(z)/(z+1) belongs to the class $*0, o).

Theorem K. Let fi(z) be an analytic function such that S1(®)/(z+1)
belongs to H*0, ). Then there exists

(2.15) lm fy(2) = fu(x)

as an angular limit and f,(x) belongs to the class Wz; If we write
(2.16) ‘ ‘ - RSfw) = g(x)

then - _

(2.17) 3 1(®) = g1(»)

and thus .

(2.18) | fi(x) = g(x)+1ig.() .

Furthermore fi(z) is represented by its Cauchy mtegral (2 06) and its
Pozsson integral (2. 07) respectively and we have

(2.19) . lim * 1 fi(&)—fi@)|* de=90.
v>0J 1422

§3. Unified theorems of generalized Fourier transforms and gene-.
ralized Hilbert transforms. Let g(x) belong to the class W,. Then g,(x)
also does to W, and the Fourier-Wiener transform of §,(x) can be defined.
We shall denote this by szl(u). Then in the previous paper [7, chap. 5]
we have proved _ '

Theorem. L. Let g(x) be real or complex valued function and belong
to the class W,. Then we have for any given positive mumber e>0,

(i) f |u|>e, then

(B.01) . sh(ute)—sh(u—e)=(—i sign u){s*(u+e)—s"(u—e)}
and ' :
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(ii) +f |u|<e, then
(3.02) s (u+e)—s'"(u—e)=1{s"(u+¢)—s'(u—e¢)}
+2ri(u—+e)+2ri(u-te),

where

3.03 o) =1.i "o e™—1 g
(8.09) i) 11533«/27; thi  —it
(3.04) - Hw=lim. "I gy

B>oo «/271 t+1

Here we remark that the limait ope'ration wn (3.03) 1s taken over the
interval (—e¢, €).

Theorem M. Let g(x) be real or complex valued function and belong
to the class W,. Let us put '
(3.05) fi(x) = g(2)+1g:(%)
and let us denote the Fourier-Wiener transform of fi(x) by s’:(u) then

we have for any given positive number >0,
(i) if |u|>e¢, then

(3.06) 871 (u+-¢e)—s" (u—e)=(1+sign u){s’(u +¢&)—s(uw—e)}
and |
(i) = if |u|<e, then
(3.07) s’(u+¢e)—s’(u—e)=2ir{(u+e)+2irj(u-+te),

where ri(u) and ri(u) are defined by (3.03) and (3.04) respectively.
Setting these results as the base of aruments we have

Theorem N. Let g(x) be real or complex 'va,lued Sfunction and belong
to the class S Let us suppose that

(K, 11m—21— |87 (ut-6)— s°(u—e) | du=0
’ €>0 4LE Ve

and
- (K;) there exists a constant a’ such that

hm—f 7 9@ e‘“”olt——‘/—_7?——0,"2
. >0 2g 2

B+°° x/2n: t-+1 )
Then 1ts generalzzed Hilbart transform of order 1, gl(x) does also to the
same class S, and we have

(3.08) hm—— f 1G.(8) [ dt =] a?|? —|—11m——— f 1g(t) |2 dt

du=0.
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and _
(3.09) lim wal s (u—+e)— s (u—e) |2 du
>0 4re
_—_|a0|2—|—11m————f |s'(u+e)—s'(u—e)|Pdu.
If ’g(x) .'is of real 'valued, then this limit equals to
(3.09) a?|? +11m— f |89(u+¢) —s9(u—e) | du .

‘Theorem O. Let g(x) be a real valued function and belong to S,.
Let us suppose that conditions (K,) and (K,) are satisfied. Then f,(x)
defined by (8.05) also does to the same class S, and we have

(3.10) 11m——- f | £i() |2 dt
_hm___f |g(t)|2dt+11m———f |~1(t)|2dt

=la+2lim [ |g()[* dt

and 7
| i 1 |87 7 2
(3.11) lim j I 8 (u-l_a) —8 1(u_8) I du
e>0 4ze J |
=5 4re f |8°(u+6) —s"(u—g)[* du+lim 418 fmls‘y‘(u+8)—s‘7l(u—e)lfdu

—0

=|a’|? +11m—-[ |sg(u—|—s)—sg(u—-e)|2du

250

We observe that if g(x) is of real valued, then we have
(312) s (—u+te)—s'(—u—e)=s(u+¢e)—s'(u—¢) .
Theorem P. Let g(x) be a real or complex valued function and be-

long to the class S. Let us suppose that conditions (K,) and (K,) are
satisfied. Then g,(x) does also to the same class S and we have

~ T —
(3.13) @91 (x) =11:gl—211—7£ 51(x+‘t)§1(t) dt

=|a -+ $7(a)

=l|a? |24 1lim
! I + el—m 471-5

fooe"” |s?(u—+¢)—s'(u—e)|*du ,

—
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If g(x) is of .real valued, then this limit equals to

(3.13)’ [a"lz—{—lelrgl——— “cos uxls%u—ke)——-s”(u e)|Pdu .
Theorem Q Let g(x) be real or complex valued function and belong
to the class S’. Let us suppose that conditions (K,) and (K,) are satis-
fied. Then g,(x) does also to the same class S’ and we have (3.13). In
particular if g(x) is of real valued, this limit equals to (3. 13)’.
Now it is natural to ask the following proposition
- Let g(x) be a real valued function of the class S. Let us suppose
that conditions (K,) and (K,;) are satisfied. Then fi(x) defined by (8.05)
also does to the same class S and we have

1 — 11 1 ” F (1)
(814) ¢ (@=lim f Fiw+8)F(®) dt

=|a?|? —|—hm-———f les"(u—}—s)—sg(u——sﬂdu

€50

This is an open question (c.f. [7, chap. 5, Theorems 56 and 57]). But
we shall obtain '

Theorem 1. Let g(x) be a real valued function of the class S’. Let
us suppose that conditions (K,) and (K,) are satisfied. Then fi(x) defined
by (3.05) also does to the same class S’ and we have (3.14).

Proof of Theorem 1. It is enough to prove that the existence of
the following limit '

(3.15) lim—1 'fmcos mcI‘.sg(u—{—fs)—s"(u—s)|2 du
€>0 271'8 A : :

contains that of

(3.16) lim fmsin ux|s'(u+e)—s(u—e)|*du,

e>0 - 2r€ ;
and this is continuous at x=0. By the existence of Theorem D, it is
enough to prove that .

lim —1 'fAsihuxlsg(u—l—e)——s‘-’(u—e)lzdu

€50 271'8 5

exists for appropriate A’s belonging to an indefinitely increasing sequence.
This is obtained from Theorem G and the Paley-Wiener lemma ([10, pp.
134-57). The continuity of this limit function at =0 is obvious. '

Let f(x) be almost. periodic function in a sense of Besicovitch of



On the Hilbert Transform 101

order 2. We shall denote this by B,-almost periodicAfunction. Let us put
611 M fOD=lim f F@®dt.

Then this asserts that to every 7>>0 there corresponds a relatively dense
set of real number = such that

(3.18) | My(| fE+D)—f@® <.

It is equivalent that to every 7>0 there corresponds the Bochner-FeJer
polynomial

@19 o5, (®) = 3 dilc,e™
or .
(3.20) afmmz,---mp (x): Z(l_ﬁ’_><1_l22_|,> L. <1—-—Iip—l—)cne“h“
B1sBayrees bp n, Ny 7,
where ;
(3'21) } 7 Zn: J1 ﬁl+ Y2 ﬁ2+ c + s ABp ’
7, Ny n,
such that
(3.22) M(| £ (&) —o%,(0) |)<%.

Then we have in the previous paper [7, chap, 5].

Theorem R. Let g(x) be a real or complex valued measurable func-
tion over (— o, ). Let us suppose that the condition (K,) is satisfied.
Then the mnecessary and sufficient condition (K,) for 9,(x) to be B,-almost
periodic is that the condition (K,) is satisfied for the constant term of
9.(x). If the associated Fourier series of g(x) is

(3.23) : g(x) ~ > c,e’”
then
(3.24) g.(x) ~a'+>Y (—1sign 2,)c,e”™ ,

where the prime means that the summation does not conta'm the constant
term.

In almost periodic functions, the three function g(x), g,(x) and [fi(x)
can be approximated by the Bochner-Fejér sequence which are constructed
from the same base. Therefore if g(x) and fi(x) are both B,-almost
periodic, then g,(x) also does and we obtain

Theorem S. Let g(x) be a 7real valued measurable function over
7(——oo, ). Then the mecessary and sufficient condition for fi(x) to be
B,-almost periodic is that the condition (K,) is satisfied for the comstant
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term of G,(x). If the associated Fourier series of g(x) is presented by.
(3.23), then

(8.25) : Si@)~1ia? + 2> ¢, e,

in>0

Chapter 2. Generalized harmonic analyses in
the complex domain

4. Generalized harmonic analyses in the half-plane. Now Paley-
Wiener pointed out that every theory of harmonic analyses of functions
of arguments in the real domain has an associated theory of funections
of arguments complex domain. They proved the following

Theorem T. Let f(2) be analytic over a<=x=b and

A .
(4.01) J 1 @+in) P dy=0(4)

’ —A
untiformly in x over a=x="b. Let f(a+1y) and f(b+1iy) both belong to
S as a function of y. Then f(x+1y) belongs to S’ over a<x=<b as a
Sfuction of y. .

Their proof is very ingenious. We shall give a direct proof by our
method. Both depend the same sauce of idea. They proved in the
vertical strip domain but we consider firstly in the upper half-plane.

Let g(x) be real or complex valued measurable function of W,. . Let
us put ' '

(4.01) fi(z) = 2Cy(2, 9) .
Then by Theorems J and K, the Fourier-Wiener transform of f,(z) is

defined for every ¥ >0 as a function of x (z=x-+417y). We shall denote
this by s’*(u,y). Then we can state the following theorem

Theorem 2. Let g(x) be a real or complex valued fumnction and be-
long to W,. Then for any given positive number ¢, we have
(i) f |u|=>¢, then _
(4.03) ' s (u—+e¢, y)—s(u—g, ¥)
=(1+sign u)e " [{s"(u —e&) —s"(u—&)}+r%(u, ¥, €)]
where ‘
(4.04) lim -1 f |7(u, y, &) |2 du=0

€50 &
|ul>e

Jor every y=>0,

(ii) #f |u|<e, then
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(4.05) s’ (u+te, y)—8"(u—¢ v)
=2iri(u+¢)+2ir§(u+e)+ 2irf(u+-¢, v) ,
where ) ‘
(4.06) row)=1im.— [9B) =1 g
Boyoo 27r_B t+7 —t
1 g(t) —tut
4.07 9(u)=L.1 ut dt
(4.07) ry(u) 1m «/2—71- i e |
and
@09 |  lim-L f | e (u+s, y) It du=9
£50 & lul<s

for every y>0

Here we remark that in (4.07) the limit operatlon is taken over
(—¢ €).

Lemma 2,. We have

(4.09) 1‘}_,1(2 «/;n fA 2 sitn & g-iut gt =27 xe(u)

where y.(u) is the characteristic function on (—¢, &).
Lemma 2,. We have

(4.10) Lim L [T g Qtsignw) oo i
A-»o0 4'/ 77.' 8§—2 2 »

where z=x-+1y, y=>0.
From these two lemmas we get
- Lemma 2;. We have

. . A 3 —iut
(4.11) Lim. L [*2sinet e 50 ot tiy, y>0)
A->o0 4/271' t S§—2Z2
277: ,L'e—i(s—iy)u ei(s-ifj)e_e.—i(s—iy)e u>8
- i(s—1y)
= JE}E ie-i(s—iy)u ei(s—'ig.,/)u_e.—i(s—iy)e , _séués
1(s—1y)
L 0, :' u<—s.
Lemma 2,. Under the hypotheses of Theorem 2, if we put
4.12) b= { 9(®), of |t|=B
' Iz 0, if |t|>B,

then for any given positive number ¢, we get
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(1) 4f |u|>e¢, then
(4.13) Lim. L ‘Cie, gB)-ZM ~iut gt

A -»oc0

(1+Slgn u) f g eu‘:(s zy)__;e—ie(s (472 e—iu(s—iy) ds
Us—1y)
(ii) 2f |u|<e, then

(4.14) Lim. T f C.(z, gB)M ~iut g
) A>oo
1 B gl -inu __ g-its- ipe -1 g i fB g(s) ds
VZL 1)y ¢ e ER) e *

These four lemmas are proved in the previous paper [7, éhap. 5].
Proof of Theorem 2. (i) the case of |u|>e. We decompose the
kernel of integral of right-hand side of (4.18) as follows

eiE— 1Y) ___ p-iels—iw . 2 sin es eigs(esy_l) _ e—iES(e—Ey__l)

i(s—1y) s—1y W(s—1y) i(s— 1)
_2sines | iy 2sines  e™(e7—1) e *(e27—1)
8 s—1Y s 1(s—1iy) (s—1y)
_ 2sines '

+Koi(8, ¥, &)+ Ko(s, ¥, ) — Kos(s, ¥, €), say.

Let us put
me@—hm—~fg@m@y&WWWs (i=1,2,8).

Then as for 7{§(u),

1 (? g(s) 2sines e ds

rm(u) (2y) Li 1.m. .
oo 27: s—uy s

and applying the Plancherel theorem, we get

l/1|"' 1(u, y,8)|2du<sf‘ 9(s) 2<2Sinss>2ds
© s—iy s

<4¢ [T1IOF g
o s*+y*

Yur>e

Thus we get
‘ 1 . g ’ 2 - —_
(4.15) = [ 1749, 9 du=0(),

for every y>0, as e—>0. Next for r§(w),
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7”8'2(% y’,s):(esy 1) 1 1 m 1 ? g(S) e—i(u—e)s dS
\ o {2nJ s—iy :

and applying the Plancherel theorem again we get

- f |78, v, ) | du < (=1) “lg@) P g

ful>e s J, Y
If we remark that ¢*—1=0(¢) as ¢—>0, we get
@a16) = 178, , 92 du=0).
( ful>e
for every y>0, as e—0. By the similar manner
@i = [ 174, 9) F du=00).
; lul>e

Thus if we put

(4.18) ”'g(u) = 'rgl(u) '+'T32(u) + 78 (u)
and if we remark that '
(4.19) Lim. Cy(z, 9) 52 =C,(z, 9) 220 EL

which is guaranteed by Theorems J and K, then from (4.15) ~ (4.18) the
first part of Theorem 2 is established. '

(ii) the case |u|<e. We rewrite the kernel of 1ntegral of right-hand
side of (4.14) as follows "

ei(é—-iy)n____ e—i(s—iyﬁe

e—i(s.—iy)u R ’I:
1(s—1y) ! , s+1
_ eisu_e—isu e—isu ‘ ,i {ei(s-iy)?_e—i(s-iz/)e e—i(s—i'y)u_eisu_e_iseé—isu}»
18 _ s+ 1(s—1Yy) 18
. . . : —¢s—1i & - —18(u+®
_ '} . e z(u+a.)s__1 + % .e—-i(u+a)s {6 (s .y)(u+e. _1 _e su+. _1}
s+1  —18 s+1 —i(s—1Yy) —18
=1K,(s, u+s)+zK2(s u+s)+Ka(s ute, y), say.

Then we get ‘ ‘
. 1 B
fr“{(u-}—s):lj;m.EI g(s)KI(s, u+s) ds

'r"(u—}—s)-—llm‘——f g(s)Kz(s u-+e¢) ds |

and if we get
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ri(ute, y)=lim. = F "0 K (s, ute,y)ds
then the remaining part to prove is

(4.20) | lim—1 f |r3(u+s ¥) [Edu=0.
>0 2¢ DR

For this purpose we decompose K,(s, u+e, Y) as follows

- iy l_e—i(u{s)s —ge twHBs__ go—itutrs-ip
Ky(s, u+¢e,y)= ( _ ) ,

is(s—13).
_ y(l_e—i(u+8)$) (1__6-uy)e_i(u+g)s
s(s—1y) (s—1y)

and we put

T§(u+s, y): _i(l_e_uy) L.im. 1 j‘B, » g(s) e tur®s o

B> S—1y
B ~i(u+88
—l—zyllm 1 9(s) e 1ds
Borw 27r_B s—1Y —18

= —irt(u-te, y)+irh(ute, y) .
Then applying the Plancherel theorem to 7%(u) we get

L[ inrenrdns A=e™ (" loOk g,

¢ |e] <€ ’ € —o0 S +y

and
(4.21) 1 f | r6(u+¢,9) [P du=0(),
[]<g
for every >0, as e—>0.
_As for 7%(u) we can write

ré(u-+e, y)= yf dvlmm N/ln sgfz e~ dg

and if we put

A _ ' 1 g(S) —tvs
(4.22) gl(v) Li ;ffj «/271 e e " ds.

Then we get
:f | 7%, (u ¢, y)lzdu<yf|f gl('u)dv|du

lu|<e

< 2ey? f | 6,() | dw



On the Hilbert Transform 107

and

4.23) 1 f | Po(ute, y) | du=0(e)

- fee] <2
for every y>0 as £—>0. Thus we obtain (4 20) from (4.21) and (4.23)
and the second half-part of Theorem 2 is established.

Using this results as the base of arguments we shall obtain follow-
ing theorems.

Theorem 3. Let g(x) be a real valued function of S,. Let us sup-
pose that : '

(K, | lim

€->0

fz| $(u—+e)—s"(u—e) |* du=0
e J,

(K,) there exists a comstant a’ such that

lim—2 [ Lim. i [*96) g-suigs— /T g0 du=0
>0 4re B>eo «/271' S"l‘*’b Vo2
and
(Lo) ' 1 f | s?(v+¢€)—s(v—e) |*dv
£>0

exists over any finite range of u.

Then fi(z) (z=xz+1y, y>0) defined by (4.02) belongs to S, for every y>0
as a function of ¥ and we have

(4:24) hm——— f Fi2) Fdt (z=a+iy, y>0)

:la"lz—i—lim—fwl e {s'(u+e)—s(u—e)}|*du .
» €50 7€ A )

Lemma 3,. Let g(x) be a real-valued measurable function of W..
Then

(4.25) | L [ Irture [ du=o(e)

as €—>0.

Proof of Lemma 8. This is obtained by the same arguments which
we obtain (4.23).

We shall quote the lemma due to Paley-Wiener [10, pp. 134-5].
This is

- Lemma 3, (Paley erner) Let Sfi(x) be a family of Junctions which
are measurable and square integrable. Let
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(4.26) - l.i.m. J(x) = f(x)

over any finite range of x. Let “us suppose that f(x) are monotone
Then we can deﬁwzte tts limit function f(x) such that

(4.27) | lim f(@) = f(x)
Sfor a.e. x.
'From Lemmas 3, and 3, we get 1mmediately

Lemma 3;. Let g(x) be a real valued function of W, Let (L) be
satisfied. Then we can define such that

(L) : 18155126\/2 f | s*(u+e)—s'(u— s)Izdu

exists for appropriate A’s belongs to an indefinitely znofreasing sequence,

Lemma 3,. Let g(x) be a real-ualued function of So; Let us suppose
that the condition (L,) is satisfied. Then there exists

(4.28) . lim-1- f e "y{s"(u—l—e)—s"(u )} |2 du

€>0 7€

Jor every y>0.

Proof of Lemma 3,. From the fact that g(x) belongs to S,, there
exists - "

(4.29) lim 1 foo'l sg(u+e)—sg(u;a) |z du
« e>0 4re o
and A
(4.30) . ggggzmv[|ewww+o—ﬂw O} Pdu

. L e~24v
- =Ilim lim
Aro >0 278

‘[+§m+a—ww—okmb

-— 00

=0.
Therefore it is sufficient -to prove‘ that the following limit
(4.31) hm—-—— |e “y{sg(u-l—e) —s(u—e)} |Pdu
’ >0 &

exists for appropriate A’s belonging to an 1ndeﬁn1te1y increasing sequence.
‘That is obtained from Lemma 3.

‘ Proof of Theorem 3. Combining these lemmas and the Wiener for-
mula we get Theorem 3 immediately.

Theorem 4. Let g(x) be a real valued measurable SJumnection of | S.
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Let us suppose that condition (K,) and (K,) of Theorem 4 are satisfied.
Then fi(z) (z=z+1y) defined by (4.02) belongs to S’ for every y>0 as a
Junction of x, and we have

@82 gl y=lim_ f Fe+2)R) dt

—|a? Plim 2 [ e | e ¥ s(ute) — s (u—e)} |* du
£>0 7TTE
0

where z=t+1y, y=>0.

Lemma 4. Let g(x) be a real valued Sunction of S.. Then the con-
dition (L,) is satisfied. »

Proof of Lemma 4,. Since g(x) is of real valued we get the relation
(8.12) and the condition (L,) is deduced from Theorem G.

Lemma. 4,. Under the hypothesis of Lemm 4,, we get for any real
or complex numbe'r w such as |w|=1, ’
'(4.33) lim——— J f (2—|—we‘””—|—we’“”)|s”(u—{—s)—s"(u e) |2du

2ey2r

€50

exists for every x a,nd appropriate A’s belonging to anm imefinitely in-
creasing sequence.
Proof of Lemma 4. This is obtained from Lemmas 3; and 4,.

Lemma 4,. Under the hypothesis of Lemma' 4, the following limat
(4.34) 11m—— f (2 we- "5 1 ') | e~ *V{s9(u+ &) —s"(u—e)} |2 du

exists for every y>0 and efvefry x.

Proof of Lemma 4,. This is obtained from Lemma 4, by*the same
arguments which we attain Lemma 3, from Lemma 3,.

Proof of Theorem 4. Let s'(u,y) be the Fourier-Wiener transform
of fi(2) defined by (4.02). Then from Theorem 2 and conditions (K,) and
(K;) we get for any real or complex number w such as |w|=1,

__Lux+,b'_v"e’iu$) | 8f1(u+8’ y)_sfi(u_e, y) |2 du

(4.85)
€0

—hm———— (2+we et wetr) | e” ”“{s"(u—{—s)—s"(u &)} du

€>0 TTE&

+|a”|2+11m——f (2+we*** +we ) du

for every ¥>0 and every x. The existence of thls 11m1t is guaranteed
by Lemma 4;,. Therefore '
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(4.36) 11m-——~ f |f1(z+x)+Wf1(z)I2dt (z=t+1iy, y>0)

exists and equals to (4.85) (c.f. [18, p. 158]). Here if we put w==z=1,
=+1 and taking the linear combination of these formulas approprlately
we get (4.32). We get therefore that f,(z) belongs to S. Now that f(2)
belongs to S’ is obtained from Theorem D. Because we get from the
first half part of Theorem 2,

- [Af‘AﬂLfval Sf‘(u%, y)—s"(u—¢, y) " du

dre

— 00

H/\

_l_fw| e v {s'(u-+¢e)—s'(u—e} |*du

—2Ay

H/\

f | s?(u+¢e)—s'(u—e) |2 du .
This reads
(4.837)  lim Iim

A>o0 €50 e

U_AJFwa'S”‘(H% y)—s"(u—s, y) |*du=0.

Thus Theorem 4 is proved completely.
We shall add two more theorems for the sake of completeness which
are obtained combining Theorems J, K, 3 and 4.

Theorem 5. Let fi(2) (z=2+1y) be an analytic fumction in y>0
such that fi(2)/(z-+1) belong to $*0, ). Let the real part of its limit
Sunction g(x) be real valued, belong to S, and satisfy the conditions (K,),
(K;) and (L,). Then fi(z) belongs to S, for every y>0 as a function of
x and (4.24) is true.

Theorem 6. Let Ji(?) (2=x+1y) be an analytic function in y=>0
such that f,(2)/(z+1) belong to ©*0, «). Let the real part of its limit
Sunction g(x) be real valued, belong to S and satisfy the conditions (K,)
and (K;). Then fi(z) belongs to S’ for every y=>0 as a functwn of x
and (4.32) is true.

Combining Theorems J and 2 we get immediately.

Theorem 7. Let g(x) be real or complex valued measurable function
of W,. Let us put fi(x)=g(x)+1g9,(x). Let s’ (u) be the Fourier-Wiener
transform of fi(x). Then we have for any given positive number e,
(i) if |u|>e, then ’

(4.38) s (u+-¢, y)—s"(u—e, y)
=e " (u+¢e)—s"(u—e)}+ (1 +sign wye "ri(u, v, €) ,
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where the remainder term ri(u) satisfies

(4.39) 131??5 f | 78, , &) |2 du=0

Sor every y>0, o

(i) if |u|<e, then

(4.40) : s (u+te, y)—s(u—e, y)
={s""(u+e)—s""(u—e)}+2iri(u+e,y),

where the remainder term r{(u) satisfies

(4.41) : llm— | r4(u+te, ) 2P du=0.

g->0
Tul<e

Then corresponding to Theorems 3, 4, 5 and 6 we get the following

Theorem 8. Let g(x) be real or complex valued measurable function.
Let fi(x) defined by g(x)+1ig,(x) belong to S,. Let us suppose that

(L%) : Li.m. fu|sf1(v—|—s)——sfl(v—s) |2 dv

1
e 26427 J

exists over amy finite range of u. Then fi(z) (z=x+1y) defined by
2C,(z, g) belongs to S, for every y=>0 as a function of x and we have

(4.42) hm— f | fi(2) |? dw

=lim
g->0 47[6

f | e s’ (u+e)—s"(u—e)} |>du .

Theorem 9. Let g(x) be a real or complex valued measurable func-
tion. Let f,(x) belong to S. Then f,(z) belongs to S’ for every y>0 as
a function of x and we have

(4.43) N e y>—hm—— f fer i@ dt  (e=t+iy)

=lim
>0 47[5

fof'e"”y | e"“y{sfl(u+s)—sfl(u—s)} |2du .

Theorem 10. Let f,(z) (z=x+1y) be an analytic function such that
J1(2)/(z+1) belong to H?. Let us suppose that its limit function f,(x) satisfy
the condition (Lj). Then fi(z) belongs to S’ for e've'ry ¥y >0 as a function
of x and we have (4. 42).

Theorem 11. 'Let f,(?) (z=x-+1y) be an analytic functzon such that
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f1(®)/(z+1) belong to . Let us suppose that its limit function fi(x) belong
to S. Then f,(z2) belongs to S’ for every y>0 as a functzon of x and
we have (4.43).

We observe that

s (ut6)— s (Uu—e)=0  if u<—c¢,

A}

and the conditioh (L) asserts in fact the existence of the following limit

Lim. 28~/_f | 8 (v4-€)—s"(v—e) P dv .
We also observe that conditions (K;) and (K,;) are contained into the
part of (—e¢, &) of s*(u) and do not appear.

5. Generalized harmonic analyses in the strip domain. The purpose
of this section is to establish the parallel theory with the previous sec-
tion in the strip domain. Let us begin with the following theorem

Theorem 12.  Let f(?) (z=x+1y) be analytw in the strip domain
a<y<b and satisfy

G.01) I L (fi;'f/)‘z dw< constant. (a<y<b),

Then we can_ find the boundary funciions at y=a and b. If we denote
these by f(x+w) and f(x-1b) frespectwely Then we hwve

(i)
(5.02) lim f(@-+iy)=F@+ia)
(5.08) C lim feti)=f(atid)

as an angular limit.
(ii) f(x+za) and f(x+1b) both belong to W, and

(5.04) " lim = | f(z+iy)— fle+ia)[? das—0
. y->a+—°° 1+(L' . |
(5.05) im [C1f@E—f@+iB [ g o
Yy>b— 1 _{_xz

(iii) f(2) is represented as the difference of analytic functions y>a and
y<b restectively. That 1s, for any real number c such as -
(5.06) c<a<b, ‘

we have
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L z—dc [~ f(t-+ia) dt
(5.07) r&=% J ttila—c) (t+ia—z)
_z—ic (= f(x4ib) dt
271 J_ t+i(b—c) (t+ib—z)
=f*(z,0)—f (2, b) - say.

Then f*(z,a)/(z—1ic) and f~(z,b)/(z—1ic) belongs to the class H? over y>a
and y<b respectively.

To prove this theorem we also quote another lemma due to Paley-
Wiener [10, p. 5].

Lemma 12, (Paley-Wiener). Let f(s-41t) be a function of the com-
plex variable s=o-+1t, which is a/nalytw n and on the boundary of the
strip —i=o=py, and let

(5.08) f | fo+it) Pdt<const. (—i<o=<p).

Then we get ._w | :
_1 S(e+1y) F(—2+1y)

(5.09) f(s)_zﬂ_jo; S dy ﬁf Pt ay.

This lemma can be stated under somewhat relaxed condition. We state
this in the horizontall strip domain.

. Lemma 12,. Let f(z) be function of the complex variable z=x+1y
which is analytic in the strip a<y<b and let

(5.10) f C|f@iy) Pda<const.  (a<y<b).

— 00

Then we can find two functions f(x,a) and f(x,b) which belong to L,
and f(z) is represented as follows.

, 1 i dt
G11)  f&)= f( B e fo° Pl

. Proof of Lemma 12,. From Lemma 12, for any given positive
number £¢>0, we get ~

f(z):-z—%fwf(t+ia+ie) t dt

+ia-+4+1e—z

dt
t+1b—ie—z -

1 o o .
—zﬂi._/;f(t—i—zb—ze)

1 oot
Zni_j; F(t-ia-tie) —

— 1 ff(t—{—zb——u-:) —I— (e)
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Here taking an appropriate sequence (g,) tending to 0 and applying the
F. Riesz theorem (c.f. S. Banach [2, p. 130]) to the above formula, we
find f(t, @) and f(t,b) in L, as the weak limit and we get (5.11)

Lemma 12,. Under the hypothe.ées of Theorem 12, we can find two
Ffunctions f(x,a) and f(x,b) which belong to W, and f(z) is represented
as follows .'

fomrzie (TS0 dt_s—io [t fGD _dt

271 t+i(a—c) t+ia—z 2ri J_ t+i(b—c) t+ib—2z

Proof of Lemma 12,. Taking any real number ¢ such as c<a<b
and applying Lemma 12, to f(z)/z—1c then we get Lemma 12, immediately.

Proof of Theorem 12. From Lemma 12; f(2) is represented as
the difference of analytlc functlon over ¥y>a and y<b respectively. If
we write these as follows

: fR=r"(2a)—5(20).
Then f*(z, a)/(z—ic) and f~(z, b)/(z—1c) belong to the class H? over y>a
and y<b respectively. Therefore applying the results of §2, there exist
boundary function of f(z) in the strong sense. If we denote these to
f(x+1ia) and f(x+1b), then these belong to W, and (5. 04) and (5.05) are.
satisfied. Thus we get
(5.12) fz,a)=f(x+1a) and f(x, b)= f(w—l—zb)
for a.e. . The remaining parts are obvious.

Let us write '

(5.13) Fi@+ia)=

c—ic [ f(t+ia) dt.
t+i(a—c) x—t

© f(t+1ib) dt
t+i(b—c) x—t

Then we get from (5. 07) and (5.12) as follows
(5.15). | f(x—l—m)——{f(x—i—m)-l—'z,fl(x—i—w)} f- (x+m b)

(5.14) Fi@+in)=2

(5.16) f@+ib)=r" (1, a)+——{f(90+’bb) f(ﬂH—@b)}

respectively. Now f(x+1ia), filz+1ia) and f*(2, a) all belong to W, as a
function of . Thus the Fowier-Wiener transform of these are difined.
We shall denote these to s’(u, a), s’ 7i(u, a) and s’ (u, ) respectlvely Then
repeating the same arguments as Theorem 2 we get

Theorem 13. Under the hypotheses of Theorem 12, for any given
positive number e, we get for every y>a, |
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(1) f |u|>e, then
(5.17) s (u+te, y)—s" (u—se, y)

= <1+S;gn ) o-w-ou[ g/ (ute, a)— s (u—e, A} +74u, ¥, a, ¢, &)]
where
(5.18) lim—L- f |7, ¥, 4, ¢, &) |* du=0
e>0 2e AT

(ii) of |u|<e, then
(5.19) s (u+te y)—s" (u—e, y)
=ir{(u+e, a)+irf(ute, a)+irj(uts, v, a,c),

where
.1 [P f(t+ia) e m—1 .
5.20 ! ,a)=(a—c) l.im.— , - :
( ) J Tf(u“*‘s a) (a C) 11:-}2.,\/271-_}3 t_{_@(a_—c) —at
1 B fit+ia)  _iw
5.21 1 o a)=L.i : dt
G.21) . riute, o) B’ V2rJ, t+i(a—c) ¢
(5.22) lim 2 [ ri(ute,v) P du=0.
£-3>0 23 Tl <e

Similarly we shall denote the Fourier-Wiener transform f(t+1b)
fl(t—l—zb) and f~(z,b) in Theorem 12 by s’(u,b), sfl(u, b) and s (u,y) re-
‘spectlvely Then we get

Theorem 14. Under the hypotheses of Theorem 12, for anmy given
positive number e, we get for every y<b
(i) f |u|>¢, then

(5.23) . s (u,+-s¢, y)—sf (u—c¢, y) |
=(— 1>(L-%gn—”) e®- e[ s/ (u+e, b)—sf(u &, B} +7i(u, 9, b, c, s)],
where ’
. 1
(5.24) im— | |ri(w,y,b,c e l|?du=0
e>0 2¢ i£<s

(ii) if |u|<e, then

(56.25) s (ute, y)—s (u—e, y)
=ir{(u—e, b)+irj(u—e, b)+irf(u—s, ¥, 6,0,
where : ~




116 , S. Koizumi

o1 [P f(t4ib) e w1

5. f(u—e, B)=(b—¢) Lim. i :
F 26) ri(u—e, b)=(b—-c) 1m V2=) Tio—o) v

' 1 % fE+1b) _su
5.27) f(u—e, b)=L.i S tut gy
(5.27) riu—eb) Bre V2rJ_ t+i(b—c) ¢
and
(5.28) lei:‘(r)l—% f | i(u—e, y, b, ¢) |2du=0.

|lu|<e.
For the proof of this theorem, 1nstead of Lemma 2,, we use the
followings

Lemma 14,. We have

(5‘29) 1 im. 1 A e—iut dt :(.._.1)’i (l_sign u) e-iu(s-f-'i’_lj)/
. A>o0 J Tl' s—7% 2

where Z2=x—1y, y>0. ‘
From Lemma 2 and 14,, we get

Lemma 14,. We have

: ' 3 —tut o ’ )

(5.30) Lim._L [“2sinet €™ 5 G _y—iy, y>0)
' 4> §27 ) t s—Z v :

O. ’ ’ : u=>e

: L ) IS HIWE__ gits+imu ) , ) )

—_ /27f ,Le—z(s+1,y)n _ - , —séuée
v : (s +1Y) : .

ei(s+iy)e__e—z'(s+iy)€

— 271_ ,l:e—i_(m-iy)u

i) , | U< —e.

In the last we shall denote by s’(u, ¥y) the Fourier-Wiener transform
of f(z). If we interprete f(x+7a) and f(x++b) into the right-hand side
of (5.08) and (5.09) respectively, then from Theorems 18 and 14, elementary
but somewhat complicated calculations lead the followings :

Theorem 15. Under the hypotheses of Theorem 12 fo'r any g'wen

positive number ¢, and every y such as a<y<b, we have

(i) ’Lf |u]>¢, then ;

(5.81) o - s'(u+te, y)—s (u—e, ) - |
=e Y V*s/(u+te¢, a)—s(u—e¢, a)}+0,(u, y, a, b, ¢, €) ,

where | _

(532) C lim-L f | 8o(, 9, @, B, ¢,.6) | du=0.

e>0 2¢
[ >e
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(ii) f |ul<e, then ‘

(5.88) - s/(ute, y)—s'(u—e, ) 1
=i{s/(u+e, a)—s'(u—e, )} +d(u, ¥, a, b, ¢, ),

where o -

(5.34) lim-L [ o, a,b,c,) [ du=0.

ex0 2¢
lul<e

Theorem 16. Under the hypotheses of Theorem 12, for any positive
number &, and every y such as a<y<b, we have
(i) if |u|>s, then _ _
(5.35) C sf(ute, y)—s'(u—e, y)
| B :_cf(b_y)u{sf(u*_sr b)—s‘f(u——s, b)}+770(u’ Y, a, b, ¢, 8) ’
where ' o ' ' ' o
(5.36)  liml f | 70(u, ¥, @, b, ¢, €) [P du=0 . .
- ' ;
: ] <e ' . ,
(ii) +f |u]|<e, then -
(5.37), 8(ute, y)—s(u—s,y)
—.——'{sf(u—l—s, b)—sf(u_s, b)}+7]1(u7 Y, a, b’ c, 5) ’
where o
(5.38) ’ lim L f I m(w, ¥, a, b, ¢, &) |2 du=0.
' g0 &
: . ] <e '
Now we get immediately ‘the following theorem

Theorem (Palley-.Wiener). Undervthe hypotheses of Theorem 12, we
have for every y such as a<y<b, :

639 limo - [Tl )= —e ) |

_e—(y—;a)14{sf(u+8, a)_..sf(u——s, a)} _l2 du=0
and | :

(5.40) lim —1
- &0 4xe

[ s te v)—s'w—e, )}

 — e gl (u+g, b)—s/(u—e, b)} |2Pdu=0.
Corresponding to Theorem 3, we gét )
Theorem 17. Let f(z) (x=x-+1y) be analytic over a<y<b and satisfy
(5.01). Let its boundary functions f(x-+1ia), f(x+1b) both belong to the
class S,. Let us suppose that
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1 f |s(v+-e, a)—sf('v——e a)]zdv

47:8 4
(L)

sf('u—I—s, b)—s’(v—e, b) |* dv

0

exist over any ﬁmte range of w. Under these assumptzons Jor any Y
such as a<y<b, f(z) belongs to the class S, and we have

(5.41) ~ hm-— f | fo+iv) | do

fwl Sf.(%-l-s, y)—s(u—e y) | du

— 00

——hm f |e—<v—a>u{sf<u+e, &) —s/(u—e, )} |* du

€>0

=lim
€50 47[8

f | @45 (u+-e, b)—s (w—s, )} | du.

Similarly correspondlng to Theorem 4, we get

Theorem (Paley-Wiener). Let f(z) (2=x+1y) be analytic over a<y.
<b and satisfy (5.01). Let its boundary functions f(x-+1ia) and f(x+1b)
both belong to the class S. Then for any Yy such as a<y<b, f(z) belongs
to the class S’ and we have . :

—_ 0

r S
f 1 . YN
(5.42) #/(x, y)=lim f f(t+zy+w)f(t+zy) dt
—1 7wz | ot (s ol —e ) 2
_1813)1 o —j; e | s/(u+te, y)—s (u—e, y) P du
=1lim fwe““’ | e~V ®us/ (u-te, a)—s/(u—e, a)} > du
>0 4rxe Yo ) .
—13 ® Tux D=Pufaf —of ___ 2
___18131 i f e |e {s (u—{—‘s, b)—s/(u—e, b)}] du .

Proof of theorem. From (5.39) and (5.40) we get
- -4 o
(5.44)  lim Tm—1- +f ]1sf(u+e,y)—sf(u—s,y) I du=0.
A

4> £50 . 4de L.

Therefore it is sufficient to show that the fellowing limit

fAe“” | 8" (u+e, y)——-sf(u—'s, Y) |2 du

lim
>0 47T€
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exists and equals to

A
lim 1 eir® I e-(y«a)u{sf(u_i_e, a)__sf(u——s, a)} l2 du
e>0 4re Y 4 ‘

for all A’s belonging to an appropriate increasing sequence indefinitely.
This is obvious since f(x-+1ia) belongs to the class S. The last relation -
of (5.42) is also derived by the similar manner from the fact that f (x+1b)
belongs to the class S. That f(2) belong to the class S’ is obtained from
(5.43) and Theorem D. Thus the proof is completed.

6. Analytic almost periodic functions of the Besicovitch class. As
an application of the results of preceding sections, we shall prove some

‘theorems for almost periodic function. Firstly corresponding to Theorem
R we shall prove

Theorem 18. Let g(x) be a real valued measurable function defined
on (—o, ). Let g(x) be Bjy-almost periodic and satisfy the conditions
(K,) and (K,). Then fi(z) defined by 2Ci(z,9) 28 also B,-almost periodic
for every y>0 as a function of x. If the associated Fourier series of
g(x) s

. (6.01) l g(w) Z a’ eiz,na:
then :
(6.02) f1(z) ~ w" +35Y (1+s1gn 2,)0, €7

where the prime means that the summation does not contain the constant
term.

Proof of Theorem 18. From Lemma 2,, we get

(6.03) Lim. = f iar ZSIREL o-cuidp — i 2 agxs(u)

4—)004/ 7[

Since g(x) is Bz-almost periodic, for any arbitarily small positive number
», there corresponds the Bochner-Fejér polynomial

(6.04) 0%,(%) = SV dEa,e
such that

1 _ 2
(6.05) 71!1_3’{10—2—,1? Ig(t) 0% (t)l dt<7y.

Here we remark that ¢%(t) does not contant term from the fact that
the condition (K,) is satisfied. Let us fix this polynomial and let us put

(6.06) o (2)=>) (1+sign 2,)d7ae  (z=x+1y, ¥y>0).
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Furthérmore let us denote by s°(u, Y) and s °(w), the Fourier-Wiener
transform of ¢%:(2) and ¢%(x) respectively. Then by (6.03) we get

(6.07) s'(u+te, y)—s(u—e, y)=>" (1+sign 1,)d2a,e "y .(u—2,)
(6.08) s (u+e)—s"(u—e) =S dZa,y(u—2,) .
If we observe that | ' ’
(67— ™" )xe(u—2,) =0{e™ (1 — ™)y (u—2,)}

S =0(&) - x(u—21,), &—>0.
Then we get if |u|>e¢, ' :
(6.09) ‘ s’(u+te,y)—s(u—ce, y)

=(14sign w)e “Y{s"(u+¢)—s° (u——e)}+0(s) OV x(u—2,).
On the other hand if |u|<e, since o' (2) does not cotain costant term,
we get

(6.10) | lelrgl 2 f | s*(u+e, y)—s° (u & Y) Pdu=0.

From (4.05) of Theorem 2 and the condition (K,) we get
6.11)  lim_1 f | (" (ute, ¥)— 8" (u—e, y)}— 2 a |* du=0 .
€50 477:8 Yoo

Thus from (6.09) to (6.11) we obtain

(6.12) . lsll’gl - f [ {s"(u-¢, y)-'-sfl(u sy)}
— 2z @' —{s°(x+¢, y) —s"(u—s, ’y)} |?du
——181:?—— ]e‘y“[{sq(u—I—S)—S”(u e} —{s"(u+e)—s"(u— 6)}]f2du
‘<1813512 f | (s°(u+€) — " (u— s)} {s*(ute)—s"(u— s)}[zdu

Thus we obtain

(6.13) ;iﬂi | @) —liar+ o4 *(z)}lzdt (z=t+1y, y>0)

<11m__ f | 9(t)—o%(t) > dt .

Hence by (6.05) (6.18) we have the required result

_ . 1 T 7 s g
(6.14) lim - f AR {'Lag-}—g-ap(z)}' Fdt<y.

-
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The B,-almost periodicity of fi(2) is thus established. The remaining
part is obvious (c.f. also [7, chap. 5, p. 217]).

We now consider analytic almost periodic funections in strip domain.
Firstly we obtain from Theorems 14 and 15,

Theorem 19. Under the hypotheses of Theo'rem 12 for any gwen
positive number €>0 and every y such as a<y<b we get
(i) f |u|>e, then
(6.15) e“y‘“’“{sf(u+e, a)—sf(u g, a)}
- (b ﬂ)u{sf(u+8’ b)_sf(u 8’ b)}+$0(u’ y’ a’ b’ c’ s) b

where _

(6.16) k lim——l—— f | &(u, v, .a, b,ce)Pdu=0
o =0 2¢ lul <e

and

(ii) f Jul<e, then

6.17) . sf(u—l—e a)—s'(u—e, a)- .

=s'(u-te, b)—sf(u g, b)+&,(u, vy, a, b e,
where
(6.18) lim -2 f |&u, ¥, a, b, ¢, &) |* du=0.
' 0 26 lu] <

From this we have :
Theorem 20. Let f(2) (z= x-—]—'z,y) be analytic over a<y<b and

fw | fety) |* dx < const. (a<y<b).
14+a®

Let its boundary functions f(x+1ia) and f (x+1b) both B,-almost periodic.
Let their associatied Fourier series be ' '

— 00

(6.19) - -  fletia) ~ a,+3) a,emeio
.(6.20) |  flxib) ~ b+ S b eimT i

Then we have - '

(6.21) ‘ ' a, = b,

and, ‘ \

(6.22) - A=t 0,=b, (n=1,2,---).

" As a simple application of the Wiener formula we get

Lemma 20,. Let f(x) be any function of the class W,. We shall
denote by s’(u) the Fourier-Wiener transform of f(x). Let f(x) be B,-
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almost periodic and its associated Fourier series be

(6.23) f(@)~ e+ 3 et

Then we have for any real number 21

(6.24) o 1811151 5 ~/2 f {s/(u+¢e)—s’(u—e)} du
J— - — 1At
=lim - f f@eds.
In particular we have \ _
(6.25) Lim 28:\1/2 f " (s ute)—s/u—g}du=c, (n=12:).

If we observe that from (6 16) and (6 18) we get for any real number

130,
1 A+e
’—f So(u, y; a; b; C, 8) du:o(l)
2e J | |
and

é—lesl(u, Y, a, b, c, &) du=o0(1)

as ¢—>0 respectively. Then we obtain immediately Theorem 20. From
this theorem we understand that f(x+4a) and f(x-+14b) can be approxi-
mated by the Bochner sequences which are constrlcted from the same
base. Now we can prove the following

Theorem 21. Under the hypotheses of Theorem 20, f(z) is also

B,-almost periodic and zf we - denote 1ts associated Fourier series as
' follows

(6.26) | f@R)~c,+X e (z=x+iy).
Then we have

(6.27) ' ey =a;=2b,

(6.28) - Va= 2= plyy  Ca=0,=b, (n=1,2,-..).

Proof of Theorem 21. The proof can be done by running on the line
of Theorem R. But we consider the positive part and negative part of
spectrum separately. Since f(x-+ia) and f(x+1b) are both B,-almost
periodic, for any given positive number 7, there correspond the Bochner-
Fejér polynomials

(6.29) . g%p(ay, a) =a, +Z dfaneizn(x+ ia)
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(6.30) | gfbp(x, b)=b,+>] dZb, eiinta+ib>
where a,=b,, such that

(6.31) . hm-——— f | f(t+1,a)—on(t a) [pdt<y
6.32) | 11m—— f | FE+ib)—oh (¢, B) [Fdt<7

respectlvely Here we observe that oi(t, @) and o%(t, b) are constructed
from the same base and so in (6.29) and (6.30) we can take the same dj.
Let us fix these polynomials. Let us put : '

(6.33) ng(w, y) =c, +Z dfcneiz”cm iy
where . ,
(6.34') : | | ¢, = a, = b,
and ' .
(635) c ___{a'n’ if 4,>0
‘ b, , if 2,<0.

Let us denote by s’(u, a), s’(u,b) and s°(u, ), the Fourier- Wlener trans-

form of o%(x,a), oh(x,b) and o%(x,y) respectively. Then we have for
sufficiently small positive number ¢,
(a) if u>e¢, then

(6.36) s’(u+te y)—s(u—ey)
=e~U-{s(ute, a)—s’(x—e, a)}+0(e) Z x(u—2,)
(b) if u<—s, then :
(6.87) | s"(u+e, y)—s(u—e, y)
== vs°(u+¢, b)—s'(u—¢, b)}+O(e) 7X§OX8(M;2n) )

where y.(u) is the characteristic function over (—¢, ¢) and the summations

are taken over the A, containing in polynomlals to be ﬁxed respectively,
(e) if —e<u<e, then ‘

(6.38) - s'(ute, y)—s(u—e, y)
| | = (ute, Q) —s(u—e, @) =2 coxsw):fz?aoxe(u) |
by Lemma 2, and (6.34).
On the other hand from (6.31) and (6. 32) we get

.(6.39) lim— 1 f [{s/(x+¢, a)—s(u—¢, a)}

£€->0

—{s"(ute, @)—s"(u—e, @)} [Fdu<y
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(6.40) - 133"‘0‘4—;‘ f | (s"(ute, b)—s/(u—¢, B}
—{s°(u-+¢,b)—s° (u—s O} 2du<y.

Therefore from (5.81) of ZTheorem 14, (6 86) and (6.39) we get

(641) hm——f | {8’ (u+¢, y)—s/(u—rce, y)}
. >0 4rxe
—{s"(u+e, y)—s’ (u—e, y)} |* du

=Tk [l e =g, o)
| r—{s.(u—{—s a)—s’(u—e, a)} ]| du
<1513§1 o fwl {s/(u+e, a)—s/(u—e¢, a)}

-0

—{s°(u+¢, @) —s'(u—c¢, a)} |Pdu<y.
Similarly from (5.835) of Theorem 15, (6.37) and (6.40) we get

642)  Tm 1 f {sf<u+e ¥)—su— ~&,9)}
~{s"(uts, ¥)—s(u—s, y)} [*du<y.

In the last we have

f | {s7(ute, ) —s"(u—g,))
—{s*(u+e, y)—s’(u——e N} Edu=0.
Because the left-hand side of (6.43) does not surpass than the followmg

649 Tml

y)—sf(u —¢&, ¥}

>0

-——{sf(u—l—s a)—s’(u—e, a)} 2 du

—|—2311m’———— ]{sf(u+a, a)—s’(u—e, a)}

€->0

—{s’(u+e¢, a)—s'(u— e, a)}|2du

+23Iim 1 f}{s(u—l—e Y)—s’(u—e, y)}

g->0

—{s°(u+e¢,a)—s’(u—s¢, a)} | du,

and here the first term of right-hand side vanish by (5.83) of Theorem
15, the second term vanish by (6.89) and third term vanish by (6.38).
Thus we get (6.34). Therefore we obtain
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(6.44) lim — f 8" (e, y) — s’ (w—¢, ¥)}
e>0 4re J_
| —{s"(u+¢,y)—s"(u—e, Y} * du<2y
or
(6:45) 11m——— f | f(t+zy)——aBp(t v)[Pdi<2y.

The B,-almost periodicity of f(z) is proved. The remaining part is to
prove (6.28) and this is obtained from (6.35) or an application of Lemma
20, to Theorems 14 and 15.

| 7. Analytic almost periodic functions of the Bohr-Stepanoff class.
We take part in almost periodic function in a sense of Stepanoff of order
1. This asserts that to every ¢>0 there corresponds a relatlvely dense
set of real number r such that
(7.01) | sup [ 1D —()|di<s.

—ooLx <L 00
x

Then E. H. Linfoot [9] proved the following

Theorem U. If fo'r two different wvalues of o, o, of o, the series
SNapert (s=g-+1t) is the Fourier series of the Sr-almost periodic func-
tion, then for o,<o<o, it is the Dirichlet series of an analytic function,
in (o4, 05) and uniformly almost periodic in [oy, o;]. ‘

Here (o, 0,) denotes the open strip domain o,< o<, and the symbol
[0, 0;] means every strip interior to (g, ;). The uniformly almost
periodicity of Bohr’s sense in [g,, 0,] asserts that to every &>0 there
corresponds a relatively dense set of real number ¢ such that

(7.03) | f(s+1i2)—f(s)|<e

for every s in [o,, 0.]. Concerning to this we shall prove the followmg
theorem in a half-plane. :

Theorem 22. Let g(x) be a real or complex valued measurable func-
tion of W, Let fi(x) defined by g(x)+1ig,(x) be S;-almost periodic. Then
fi(z) defined by Ci(z,f1) is uniformly almost periodic in O<y<o. If
the associated Fourier series with fy(x) 1s ‘

(7.04) \ - fi@) ~ ey + 21 enetnT
then | - ,
(7.05) - F(@) ~cy+ >l cetn . (z+z+7y)

Lemma 221; We have
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1 . e 1 Y —dut - ye—‘lule—lyuie—iux
7.06 JS—— ut dt — v ‘
oo ® _fw T8 G—af+9" '+ (y+1)°
and in particular | :
(7.07) if Y _ 14y
mJ 1+ (t—2)+y> @+ (y+1)*
Lemma 22,. We vha'ue ’
eiuz’ ’bl/>0
(7.08) Z"*“’b y2 . eiux dt = 4’ 1, wu=0
where z:x—l—@y. | . , ,
Lemma 22,. If we put
(7.09) p(t)= ao-l—z a, e“ ¢ (2,>0, n=1,2,---, N)
then we have
7.10 —_&+1 [ p@®) ¥
( ) pl(z) T J t+’b (t_x)2+y2
=ay+2>] a6’ (z=2+1y).

Lemma 22,. Under the hypotheses. of Theorem 22, we have

(7.10)° 1f(2) ]<z¢zn a +y) _sup f LD | de .

Proof of Lemma 224 We have »

lz-H! " f(@t)] y
[fi(2) | = _Z_m” JI+e (tf_x)z_‘_yz v

If x—}-ngtéx—l—n—i—l and n<—2 or n=>1, then

1 1 < 2 - 2
V48 7 V14(@+n)? T V1+(@+n+1)F T V142
and ' ’
2 - ¥ . 4y < 4
t—x)?+y*  n*+y* (4149 (t—x)*+y*
Thus we get ' ' :

(S

S 35 [ e e [0l
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o > 1 y dt 241
= .
=i fw HF Goopie ) Ol

By Lemma 22,, the ,Iast formular equals to

1 * 2 %‘ 2+1
8~/2—zgiy—.),— sup [ LA de.
2+

—ocoL 0
If n=—1 or 0, then x—1<it<x-+1 and we get

Y Y 1
< <=
1+y*  (t—2)*+y° ¥

and that : |
o 'fl(t)l ydt - 2 }_ 241 Al d
), Vite Geae S dise v -2 POl
8(1+y2) @+l 1 y 41
=—"3F T dt )| dt
A ll VI8 (t—a)2+y? _SE}LWM 7@

Combining these estimations we get (7.11). We notice that the order
of y of multiple constant seems to be not the best possible one but for
our purpose we do not require the further details.

Proof of Theorem 22. By Theorem K, f,(2) defined by (4.02) can be
represented by its Poisson integral of order 1, that is

. ' L (" J dt

712 ; 2 :z+@ fl(t) Yy .

(T.12) (@) e s

Theh uniform almost periodicity is proved as follows. Since f; 1(}t) is S;-
almost periodic, for any positive number 7 there corresponds a trigono-
metrical polynomial »(¢t), which does not contain the negative spectrum,
such as ' ' '

(7.13) | sup [ | fut)—p®) | dt<y.

—ooLxr<oo

Then by Lemmé, 22, and 22,
polynomial and

119 A@-p@|=AW) _sup_ [T 1AO—p0) [d=A@).

x

p,(2) defined by (7.10) is also trigonometrical

That is fi(2) is approximated by trigonometrical polynomial in arbitrary
scale. Thus the uniform almost periodicity of fi(2) is proved. If we
take as p(t) the Bochner-Fejér polynomial then (7.14) reads (7.05) im-
mediately. Thus the Theorem 22 is established completely.
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Correction. Added on June 1, 1960.

(1) On. the Hilbert transform I, Journ. Faculrt Sci. Hokkaido
Univ. 14 (1959), 153-224. ,

1. p. 157. In Lemma A,, we add the following condition
(2.16), ~ [efDde<KE  (n=1,2,-)
P-4

2. pp. 158-159. In Theorems A, B and C, the proposition
“In pa/rtwular the operation T can be uniquely extended to the
whole space” '
is replaced by ‘
“In particular if the operation T 18 linear, then it can be uniquely
extended to the whole space”. . o
3. p. 158. In Theorem A, we assume that ¢(u) is a continuous in-
creasing function with #(0)=0. This can be relaxed as follows.
The ¢(u) is a continuous function and satisfies
(i), é(u)=>0 for all u=>0 and $(0)=0
(1), ¢(u) increase at the meighbourhood of u=0 and u=co
and . ' S
(i)s n the intermediate interval ¢(u) is of bounded variation.
Typical case of ¢(u) is ‘
d(u)=u’(1+log* u)*,
where p>1 and a is any real number.
4. p. 200. The f(x) in the left-hand side of (14.22) is replaced by f (ac)

5. p. 209. The
. . T
o : .
lim [ loo e
in the right-hand side of (17. 04)~ is replaced by
| 11m f |g(t)|? dt

6. Recentely the author receieved some papers from Prof. H. Kober.
In these, there are important studies related to the Hilbert ‘transform.
These are published about the year 1941 to 1946. The author thanks to
him, -
The basic theorem of this arguments are as follows. _ :
Theorem ([ 15, p. 440, Lemma. 2]). Let w=(1—2)(¢+2)"'. Then the
Sunction f(z) belongs to 9, if, and only if, the function (14+w) *?¢(w)



On the Hilbert Transform 129

belongs to H,, where ¢(w)=F'(2).

Theorem ([14, p. 50, Corollary 2]). The sequence

{1 %(1—t)"(e+¢t)~ "1} (n=0, =1, =2,--.)
18 a complete orthogonal and normal system with respect to
' L?(— o0, o) (1=<p< ).

7. p. 181, Lemma 22,. Let F'({) be defined on a Jordan curve C in
the complex plane. Various writers have treated the problem of re-
presenting F'({) in the form F'({)=F,Q)+ F,(); F,() (j=1, 2) are required
to be the limit-functions of functions F,(2) (#=x+1y; 2—>{, { on C) which
are analytic in the interior or exterior of C, respectively.

H. Kober treated of the case C=(— 0, o) and F(x)(A+x?) ‘e L,(—
). For this purpose, he introduced the modiﬁed Hilbert transform

RF=R(F(8); x)——l—PVf F(t)(t - tzil)dt

Concerning to this, he proved the following three lemmas and applied
to the solution of the generalied Stieltjes problem.

Theorem ([ 16, pp. 415-6, Lemma 9]). If (z+1)"'F(2)e9, or (z+7§)‘2
F(2)e9,, respectively, then

s 1 = F@dt R
Fl)=—_ = F(z)__——f F()( - —t_H)dt

for y>0, while the tntegrals vanish identwally Sfor y<O.

Theorem ([ 16, p. 416, Lemma 107). The function (t-+2)~'F(t) (7=1,2)
18 the limit-function of an element of ., if, and only if, (A+|t])~F(t)
eLl(——oo ) and QF=iF or QF= W(F'—a,), respectively, where

Q= .—1f A+t F(t) dt

and —
Theorem ([16, p. 415, Lemma 110). If (i) Q+|t)7F@) (4=1,2)
and (ii) (1+|x|)'OF or (1422~ 'RF; respectively, belong to L,(— oo, ),
then .
HF=—F(x) (j=1) or 8K2F=—F(x)+a, (7=2).
Here _ ; |
(i) The last formular of first Theorem is just of ours (c.f. p. 192,
(13.03)). ,
(ii) The first part of last Theorem is also obtained from our theorem
(c.f. p. 194, Theorem 40).
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(2) On the Hilbert transform II.

8. p. 112, Theorem 12. Let a ond b be finite real numbers (a<b) and

0<p=<c. Let S be the region —oo<x<co, a<y<b, and let S,(a,d) be

the set of functions which are analytic in S and satisfy the condition
F@+inll,=A4, (a<y<bd),

where A, does not depend on y.

Then the H. Kober [17, p. 24, Theorem 13] also proved the completely
analosous results as those of E. Hille-J. D. Tamarkin in the half-plane.
The method of his proof is based the approximation by integral functions
in the complex domain as similar to his previous papers. If we apply
this theorem to the funection f(z)/(z+1ic) (c<a<b) then we get our Theo-
rem 12 and moreover some new results.

References

[1] N.I. AcHIEZER, Vorlesungen tiiber Approx1mat10nstheor1e, Berlin (1953)

2] S. BaNAcH, Théorie opérations lindaires, Warsaw (1932).

[8] A.S. BESICOVITCH, Almost periodic functions, New York (1954). .

[4] S. BocHNER-G.H. HARDY, Notes on two theorems of Norbert Wiener, Journ.

London Math. Soc,, 1 (1926), 240-244.

[5] 'S. BocENER, Vorlesungen iiber Fouriersche Integrale, New York (1948).-

[6] S. Koizumi, On the singular integrals, V, VI, Proc. Japan Acad., 35 (1959), 1-6,
o 323-328. :

[7] S. Koizumi, On the Hilbert transform, Journ. Faculty Sci. Hokkaidé Univ. 16

(1959), 153-224. ' '

(8] P. Lftvy, Caleul des Probabilités (1925), 163-172.
[9] E.H. LiNrFooT, Generalization of two theorems of H. Bohr, Proc. London Math.
L Soc., 3 (1928), 177-182. - .
[10] R.E.A.C. PALEY-N. WIENER, Fourier transforms in the complex domain,
‘ American Math. Soc. Colloqu. Pub., Vol. 19 (1932), New York.
[11] N. WIENER, On a theorem of Bochner-Hardy, Journ. London Math., 2 (1928),
- 118-123. '
[12] N. WIENER, Generalized harmonic analyses, Acta Math., 55 (1930), 117-258.
[18] N. WIENER, Fourier integral and certain of its applications, (1958), New York.
[14] H. KOBER, A note on Hilbert transforms, Quaterly Journ. Math. 14 (1943), 49-54.
[15] H. KOBER, A note on approximation by rational functions, Bull. Amer. Math. Soc.,
49 (1943), 437-443.
[16] H. KoBER, On eomponents of a function and on Fourier transforms, Amer. Journ.
'~ Math., 68 (1946), 398-416..
[17] H.

KOBER, Approximation by integral functions in the complex- domaln, Trans.
Amer. Math. Soc., 56 (1944), 7-31. .

DEPARTMENT OF MATHEMATICS, TBE HOKKAIDO UNIVERSITX
SAPPORO, JAPAN



