
VECTOR FIELDS AND SPACE FORMS

By

Toshiyuki MAEBASHI

The surface of rotation $R$ in an $(n+1)$-dimensional Euclidean space has
some remarkable intrinsic properties. Among them, the following two

$\sim are$ the most typical:
Property I. Let $G$ be the Lie group consisting of all isometries.

Then there exists a subgroup $H$ of $G$ of the type:
$Hx\in R[\dim H(x)=n-1]$ ,

provided that $H(x)$ denotes the orbit of $x$ .
Property II. There exists a vector field $V$ which either is parallel

or satisfies these three conditions:
(i) In case of the movement in the direction orthogonal to $V$, the

end point of $V$ is always fixed (intrinsically, with respect to
Levi-Civita parallelism of $R$ ).

(ii) The trajectories of ‘V are geodesics in regard to the induced
metric of $R$ .

(iii) $V$ admits a family of transversal hypersurfaces.
Remarks. It is worth noting that from the global point of view the

above mentioned vector field $V$ may generally have certain singularities,1)
particularly in case of $R$ being a closed hypersurface.

Property I and II give rise conversely to the interesting questions
of determing the global nature of Riemannian spaces possessing either
Property I or Property II respectively. Each of these questions propounds
quite a different problem than the other and the methods by means of
which these problems can be solved must differ very much from. each
other. In either case, however, results to be obtained will show that
the spaces in question have remarkable similarity to the surface of
rotation. Conversely speaking, to solve these problems is in a sense
nothing but to make clear this similarity which such spaces have.

In fact it is from this point of view that P. Mostert has dealt with
the former problem and determined it to a large extent [1]. It must

1) The word singularity means that $V$ may have not only $0$-points, but also a kind of
discontinuity.
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be added that T. Nagano has contributed to further investigation of
this problem and gained excellent and much sharper results [2].

But the latter problem has attracted little attention and hardly
any paper has been written from this point of view. One of the main
objectives of the present paper is to solve the latter problem (in a form
enlarged to a Finsler case).

On the other hand, the present author has proved that the vector
field described in Property II is reduced to a special kind of the torse-
forming vector field discovered by K. Yano (see [21]), where the torse-
forming vector field means on which describes a torse when developed
along a curve by the Levi-Civita parallelism [3] or [4].

Then our problem can be generalized in such a way as this: To
determine the global nature of Finsler spaces admitting a torse-forming
vector field with certain singularities.

Anyway our guide is the vector field admitted by the surface of
rotation; then ” the torse-forming vector field in the large “ should be
defined in such a fashion that it contains the vector field of the surface
of rotation seen in the light of the global theory.

Thus we have the following definition.
Definition: Let $M$ be a Finsler space, that is to say, a space whose

metric is given by $dx=L(x, dx)(x\in M)$ , where $L(x, dx)$ is a positively
homogeneous function of degree 1 with respect to $dx$ . Let

$g_{ij}(x, x^{\prime})\frac{1}{2}\frac{\partial^{2}L(x,x^{\prime})}{\partial x^{i}\partial x^{j}}$ , $A_{ijk}(x, x^{\prime})=\frac{\partial g_{ij}(x,x^{\prime})}{\partial x^{k}}$ .

The torse-forming vector field in the large $V$ is one satisfying the follow-
ing postulates:

(i) $V$ is a single-valued and C’-differentiable vector field over $K$,
provided that $K$ means a dense open set in $M$, that is to say: $K^{0}=K$

and $K^{-}=M$.
(ii) There exist two point-functions defined over $M$ such that, taking

a suitable coordinate neighborhood of $x$, we have in it
(0.1) $V_{i;j}=Ag_{ij}+BV_{i}V_{j}$ ,
(0.2) $A_{ijk}V^{k}=0^{2)}$

(iii) For \^every $y\in K^{c}$ we can find a neighborhood $U$ of $y$ in which
there exists a torse-forming vector fields in the local sense $W$ and an
appropriate point-function $F$ joined together by a relation:

2) This expression is obviouly unnecessary for a Riemannian case.
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(0.3) $W=FV$ in $U\cap K$ ,

provided that a torse-formin vector field in the local sense means one
satisfying a differential equation: $W_{i;j}=Cg_{ij}+DW_{i}W_{j}$ with a condition:
$A_{ijk}W^{k}=0$ for suitable point-functions $C$ and $D$ defined over $U$.

In addition to these postulates, one more postulate may be used in
order to prove some of the theorems in the present paper, namely:

(iv) A never vanishes at any O-point of $V$.
We shall see that this postulate guarantees the mutual isolation of

O-points.
Let $x$ be a non-O-point and $W(x)$ a maximal transversal hypersurface

passing through $x$ . Moreover, denote the number of the O-point of $V$ by
$N(V)$ . Then the complete answer to our generalized problem is as follws,
provided that $M$ is assumed to be complete.

Case $I$ : $N(V)=1$ .
In this case $M$ is homemorphic to the n-dimensional Euclidean space
$or$ to the n-dimensional projective space.
Case $\Pi$ ; $N(V)=2$ .
In this case $M$ is homeomorphic to the n-dimensional sphere.
Case III: $N(V)=0$ .
Let $g_{0}$ be an arbitrary translation on a trajectory $T$.
Then there exists a diffeomorphism $g$ on $M$ whose restriction to $T$

is $g_{0}$ and which satisfies
(0.4) $g\{W(x)\}=W\{g_{0}(x)\}$ $(x\in T)$ .

Furthermore if we assume Pustulate (iv), then $N(V)$ is always smaller
than or equal to 2. Therefore the above three cases include all the
possibilities. Moreover, in Cape I and II, the metric of $M$ is completely
determined and $M$ becomes Riemannian (see \S 5); and all the maximal
transversal submanifolds are conformal to a $(n-1)$-dimensional sphere.

The present paper is divided into two parts, the first one of which
is a preliminary on differential equations and the second one of wbich
is assigned to the proof of the above theorem and some others including

the ones on a generalization of certain theorems of W. Rinow [5] and on
the characterization of the spaces of constant curvature by the following
torse-forming vector field (in the large):

(0.5) $V_{i;j}=c_{1}(g_{ij}+V_{i}V_{j})_{j}A_{ijk}V^{k}=0$

in the case of positive constant curvature.
(0.6) $V_{i;j}=c_{2}(g_{ij}-V_{i}V_{j});A_{ijk}V^{k}=0$
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in the case of negative constant curvature.
(0.7) $V_{i;j}=c_{3}g_{ij}$ ;

$A_{ijk}V^{k}=0^{3)}4$

)in the case of a Euclidean space.
The present author would like to exprpss his gratitude heartily to

Professor Akitsugu Kawaguchi and Assistant Professor Yoshie Katsurada
for their patient guidance and constant encouragement.

Part I

Some Theorems on certain Types of Differential Equation

\S 1. The following conventions will be used throughout the present
paper.

Conventions. We denote the arc length. of a curve by $s$ , a vector
field by a bold letter, the inner product of $A$ and $B$ by $\langle A, B\rangle$ , the
openner of $K$ by $K^{0}$ , the closure of $K$ by $K^{-}$ , the complement of $K$ by
$K^{c}$ , neighborhoods of $x$ by $U(x),$ $V(x)$ , etc., and the distance with respect
to a manifold $W$ between $x$ and $y(x, y\in W)$ by dis $W(x, y)$ .

The following lemma is obvious from an intuitive point of view and
the strict proof is also given in a straight-forward way.

Lemma 1.1. Let $J$ be an arbitrary set in an n-dimensional Eucli-
dean space $E_{n}$ and $x_{0}$ a limiting point of J. Then we can choose a
suitable sequence $\{x_{i}\}_{1\leq i<+\infty}$ of $J$ such that there is a curve $x(s)$ satis-
fying the following conditions, where $0\leq s\leq L$ .

(i) A monotone decreasing sequence $\{s_{i}\}_{1\leq i<+\infty}$ can be taken in such
a way as this:
(1.1) $x_{0}=x(0)$ and $x_{i}=x(s_{i})(1=1,2, \cdots)$ ,

(ii) $x(s)$ is differentiable on $[0, L]$ (including $0$).
The lemma stated below also is necessary for the proof of Theorem

1.1.
Lemma 1.2. Let $\gamma:y=y(s)(0\leq s<+\infty)$ be a bounded differentiable

curve in $E_{n}$ having infinite length. Let $S_{r}^{n-1}$ be a concentric sphere of
center $y_{0}$ and radius $r$ and let $\theta(s)$ be the angle between $\gamma$ and $S_{r}^{-1}$ if

3) This case has been proved by S. Sasaki and M. Goto [6] as to the Riemannian space,
but our results include that the spaces concerned become simply-connected ones.

4) $c_{1},$ $c_{2}$ , and $c_{3}$ mean constants; $c_{1}$ and $c_{2}$ are intimately connected with the scalar
curvatures of the spaces and uniquely determined by these.
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$y(s)\in S_{r}^{n-1}$ . Assume $ y_{0}\not\in\gamma$ . Then there exists a sequence $\{s_{i}\}_{1\leq i<+\infty}$ such
that
(1.2) $\lim_{i\rightarrow+\infty}\theta(s_{i})\equiv 0$

$(mod. \pi)$ and $\lim_{i++\infty}s_{i}=+\infty$ .
Proof. Suppose that the lemma is false. Then we can find a posi-

tive number 6 such that
$\epsilon<\varliminf_{s\rightarrow+\infty}\theta(s)\leq\varlimsup_{s\neq+\infty}\theta(s)<\pi-\epsilon(mod. \pi)$ .

On the other hand

$ds=\frac{|dr|}{|\sin\theta(s)|}$ consequently $\int ds=\frac{|d\gamma|}{|\sin\theta|}\leq\frac{1}{\sin\epsilon}\int|dr|$ .

Since $\int ds=+\infty,$ $\int|dr|$ likewise is infinite. It follows that we can

find sequences $\{s_{1}^{\prime}\}_{1\leq i<+\infty}(\nu=1,2)$ and $\{\gamma_{i}\}_{1\leq i<+\infty}$ such that $ s_{1}^{\prime}<s_{2}^{\prime}<\cdots\uparrow+\infty$

and $y(s_{2i+1}^{\prime}),$ $y(s_{2i}^{\prime})\in S_{r_{i}}^{n-1}(\nu=1,2;i=1,2, \cdots)$ , because of $\gamma$ being bounded.
Since a sphere is closed, we can $chQose$ a segment of $\gamma(s_{2i-1}^{\prime}\leq s\leq s_{2i})$ in
such a way as its end points are on $S_{r_{i}}^{n-1}$ and all the points other than
these are inside $S_{r}^{n_{i}-1}$ . We denote it by $\gamma_{i}$ and set: $ d_{i}=\min$ {dis $(y, y_{0})|$

$y\in\gamma_{i}\}$ . Since $\gamma_{i}$ is compact, $Ex_{i}\in\gamma_{i}$ [dis $(x_{i},$ $y_{0})=d_{i}$]. Let $x(s_{i})=x_{i}$ . Then
we can easily see that $\theta(s_{i})\equiv 0(mod. \pi)$ . This is contrary to the assump-

tion that the lemma is false.
Noting that $y_{0}$ has no restriction, we have the

Corollary. $ lf\lim$ –$s\star+\infty dyds$ exists for $\gamma$ in Lemma 1.2, then $\lim_{s++\infty}\frac{dy}{ds}=0$ .

Now consider a partial differential equation of the type:

(1.3) $\frac{\partial E}{\partial x^{i}}=F_{i}(x, E)(i=1,2, \cdots, n)$ .

where the vector-valued functions $F_{i}(x, E)(i=1,2, \cdots, n)$ are assumed to
be continuous with respect to $x$ and $E$ on the domain concerned.

Next we prove the following theorem which concerns itself with the
behavior of the solution of differential equations (1.3). This theorem is
of vital importance to our whole argument.

Theorem 1.1. Suppose that (1.3) has a solution with $x_{0}$ as its iso-
lated O-pointed. If $F_{\iota}(x_{0},0)(i=1,2, \cdots, n)$ are linearly independent, then

a $U(x_{0})Vx\in U(x_{0})[x\sim x_{0}]$ ,

provided that $x\sim x_{0}$ means that $x$ and $x_{0}$ can be joined together by some
2-differentiable trajectory of the solution.

Proof. The verification is divided into three parts. First it is shown:
that every trajectory tends to $x_{0}$ , secondly that it has finite length $\ln$ a
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suitable neighborhood of $x_{0}$ , and finally that it is differentiable at $x_{0}$ .
(I) There is a sphere $S^{n-1}$ of center $x_{0}$ such that for an arbitrary

point $x_{1}$ belonging to its interior we can find a trajectory $x(s)(0\leq s<L$ ,
where $L$ is a $p\gamma sitive$ number or $+\infty$ ) satisfying

$\sim)$

(1.4) $x(O)=x_{1}$ and $\lim_{s\rightarrow L}x(s)=x_{0}$ .
Assume that this is false. Then no matter how small positive

number $r$ is, there exists always a trajectory $\gamma_{r}$ for which one of the
following two cases arises namely:

(i) If we denote the curves obtained by dividing $\gamma_{r}$ into halves at
a suitable point by $\gamma_{r^{i}}^{1}$ and $\gamma^{2}$. respectively, then
(1’) either $\gamma_{s}^{1}$ or $\gamma_{r}^{2}$ is entirely inside $S_{r}^{n-1}$ and has at least two
limiting points (that is: vibrates) as $a$ tends to $+\infty$ or $-\infty$ .
or
(2) either $\gamma_{r}^{1}$ or $\gamma_{r}^{2}$ has a limit different from $x_{0}$ .
(ii) $\gamma_{r}$ has at least two points in common with $S_{r}^{n-1}$ .
Among these cases, (1) of (i) never arises. This is easily seen

from the corollary of Lemma 1.2. In Case of (1) of (i), we can find a
sequence $\{x_{i}^{\prime}\}_{1\leq i<+\infty}$ such that

$\langle E(x_{i}^{\prime}), x_{i}^{\prime}\rangle$

tends to $0$ as $ i\rightarrow+\infty$ and
$\overline{||E(x_{i})||||x_{i}^{\prime}||}$

$\lim_{i\rightarrow+\infty}x_{i}=x_{r}$ ( $x_{r}$ is a point inside $S_{r}^{n-1}$), where $x_{i}^{\prime}$ means the position vector
of $x_{i}^{\prime 5)}$ If $x_{r}\neq x_{0}$ , then we have
(1.3) $\langle E(x_{r}^{\prime}), x_{r}\rangle=0$ .
In Case (ii), we can also find a point $x_{r}$ satisfying (1.3).

After all, since $r$ is an arbitrary number, we have a sequence $\{x_{i}\}_{1\leq i<+\infty}$

such that

(1.4) $\lim_{i\rightarrow+\infty}\frac{\langle E(x_{i}^{\prime}),x_{i}\rangle}{||E(x_{i})||||x_{i}||}=0$ .
and
(1.5) $\lim_{i*+\infty}x_{i}=x_{0}$ .
(1.4) is rewritten in the form

(1.6) $\langle E(x_{i}),$
$\frac{x_{i}}{||x_{i}||}\rangle=o$ {dis $(x_{i},$ $x_{0})$ } ,

where $0$ means a infinitesimal number of higher order than dis $(x_{i}, x_{0})$ .
Due to Lemma 1.1 we can make a differentiable curve $x^{*}(\tau)$ such that

5) This kind of symbols will be used throughout the present paper.
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$x^{*}(O)=x_{0}$ $x_{i_{k}}=x^{*}(\tau_{k})(k=1,2, \cdots)$

for some monotone decreasing sequence $\{\tau_{k}\}_{1\leq k<+\infty}$ tending to $0$ provided
that $\{x_{i_{k}}\}_{1\leq k<+\infty}$ means a suitable subsequence of $\{x_{i}\}_{1\leq i<+\infty}$ .

For such a curve it follows from (1.6) that

(1.7) $0=\lim_{k-\succ+\infty}\langle\frac{E(x_{t_{k}})}{\tau_{i_{k}}},$ $\frac{x_{i_{k}}}{||x_{i_{k}}||}\rangle=\langle(\frac{dE}{d_{T}})_{\tau=0}(\frac{dx^{*}}{d_{T}})_{\tau=0}\rangle$ ,

and if we take. $F_{i}(x_{0},0)(i=1,2, \cdots, n)$ as coordinate axes, then it follows

$0=\langle(\frac{dX^{*}}{d_{T}})_{\tau=0},$ $(\frac{dX^{*}}{d_{T}})_{\tau=0}\rangle=1$ .

This is a contradiction.
Thus it has been proved that there exists a neighborhood of $x_{0}$ in

which a half of the trajectory passing through an arbitrary point tends
to $x_{0}$ in the above-stated sense.

(II) If we assume that a trajectory tending to $x_{0}$ has infinite length,
then by virtue of Lemma 1.2, there exists a sequence satisfying (1.4) and
(1.5). Therefore we can not help falling to a contradiction from the
same reason as above. Consequently all the trajectories are rectifiable
around $x_{0}$ .

(III) It still remain to prove that the trajectory is differentiable at
$x_{0}$ . Since it is rectifiable around $x_{0}$ as shown in (I) and (II), its length
can be measured with $x_{0}$ as the starting point. Let $S_{u}^{n-1}$ be the unit
sphere of center $\cdot$

$x_{0}$ and $\varphi$ be the mapping which, to every point $x\in E_{n}$ ,
assigns the radius vector of $S_{u}^{n-1}$ passing through it.

We shall first prove

(1.8) $\lim_{s-\succ 0}[\varphi\{x(s)\}-\frac{E\{x(s)\}}{||E\{x(s)\}||}]=0$ .

In order to verify the above, assume it is false. Then we can find
a positive number $\epsilon$ satisfying this:

(1.9) $\Vert\varphi\{x(s_{i}^{\prime})\}-\frac{E\{x(s_{i}^{\prime\prime})\}}{||E\{x(s_{i}^{\prime})\}||}\Vert\geq\epsilon$ $(i=1,2, \cdots)$ ,

provided that $\{s_{i}^{\prime\prime}\}_{1\leq i<+\infty}$ is a suitable sequence tending to $0$ . The identity

$\Vert\varphi\{x(s_{i}^{\prime\prime})\}-\frac{E\{x(s_{i}^{\prime\prime})\}}{||E\{x(s_{i}^{\prime})\}||}\Vert^{2}=2-2\langle\varphi\{x(s_{i}^{\prime\prime})\},$ $\frac{E\{x(s_{i}^{\prime\prime})\}}{||E\{x(s_{i}^{\prime})\}||}\rangle$

implies

(1.10) $1-\frac{\epsilon^{2}}{2}\geq\langle\varphi\{x(s_{i}^{\prime\prime})\},$
$\frac{E\{x(s_{i}^{\prime\prime})\}}{||E\{x(s_{i})\}||}\rangle$ .
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On the other hand, by the use of Lemma 1.1, we can find a differentiable
curve $x^{*}(\tau)(0\leq\tau\leq 1)$ such that $x^{*}(\tau_{k})=x(s_{i_{k}}^{\prime\prime})(k=1,2, \cdots)$ and $x^{*}(O)=x_{0}$

for an appropriate subsequence $\{s_{i_{k}}^{\prime\prime}\}_{1\leq k<+\infty}$ of $\{s_{i}^{\prime\prime}\}_{1\leq i<+\infty}$ , where $\tau$ denotes
the arc length of $x^{*}$ . Then from (1.10), we have

(1.11) $(1-\frac{\epsilon^{2}}{2})\frac{||E\{x^{*}(\tau_{k})\}||}{\tau_{k}}\geq\langle’\varphi\{x^{*}(\tau_{k})\}, \frac{E\{x^{*}(\tau_{k})\}}{\tau_{k}}\rangle$ .

There is no loss of generality in assuming $\{F_{i}(x_{0},0)\}_{1\leq i\leq n}$ forms the basis
of $E_{n}$ . Then the following holds,

$\lim_{k\rightarrow\infty}\frac{E\{x^{*}(\tau_{k})\}}{\tau_{k}}=\{\frac{dE\{x(\tau)\}}{d_{\mathcal{T}}}\}_{\tau=0}=\sum_{i=1}^{n}F_{i}(x_{0},0)\frac{dx^{i}}{d_{\mathcal{T}}}=(\frac{dx^{*}}{d_{T}})_{\tau=0}$ .

By means of this and (1.11), we have

$(1-\frac{\epsilon^{2}}{2})=(1-\frac{\epsilon^{2}}{2})\Vert\frac{dx^{*}}{d_{T}}\Vert=(1-\frac{\epsilon^{2}}{2})\Vert\lim_{k,\infty}\frac{E\{x^{*}(\tau_{k})\}}{\tau_{k}}\Vert$

$\geqq\langle\lim_{k,\infty}\varphi\{x^{*}(\tau_{k})\},$ $\lim_{k\infty}\frac{E\{x^{*}(\tau_{k})\}}{\tau_{k}}\rangle=||\frac{dx^{*}}{d_{T}}\Vert_{r=0}^{2}=1$ .

This contradiction completes the proof of (1.8).
Now assume that the trajectory $x(s)$ is not differentiable at $s=0$ .

Then there exist two unit vectors $r_{1}$ and $r_{2}$ such that

(1.12) $|im\varphi\{x(s_{i})\}=r_{1}$ and $\lim_{i+\infty}\varphi\{x(s_{i}^{\prime})\}=r_{2}$ ,

for suitable sequences tending to $0\{s_{i}\}_{1\leq i<+\infty}$ and $\{s_{i}^{\prime}\}_{1\leq i<+\infty}$ . According

to Lemma 1.1, there exist a differentiable curve $x^{\prime}(\tau)(0\leq\tau\leq 1)$ and a
suitable sequence $\{\tau_{k}\}_{1\leq k<+\infty}$ tending to $0$ such that

’ (1.18) $x’(\tau_{2k- 1})=x(s_{i_{k}})$ and $x’(\tau_{2k})=x(s_{i_{k}})$ ,

where $\{s_{i_{k}}\}_{1\leq k<+\infty}$ and $\{s_{i_{k}}^{\prime}\}_{1\leq*<+\infty}$ means appropriate subsequences of $\{s_{i}\}_{1\leq i<+\infty}$

and $\{s_{i}^{\prime}\}_{1\leq i<+\infty}$ respectively, and $\tau$ denotes the arc length. Then given an
arbitrary positive positive number 6, we can find an integer $k_{0}$ such that

for $k\geq k_{0},$ $\Vert(\frac{dx^{\prime}}{d_{T}})_{\tau=0}-\varphi\{(x^{\prime}(\tau_{k})\}\Vert\langle\frac{\epsilon}{6}$ . Hence for such $k$ ,

(1.14) $||\varphi\{x’(\tau_{2k- 1})\}-\varphi\{x^{\prime}(\tau_{2k})\}||\langle\frac{\epsilon}{3}$ .
On the other hand, (1.12) implies

(1.15) $||\varphi\{x(\tau_{2k- 1})\}-r_{1}||\langle\frac{\epsilon}{3}$ and $||\varphi\{(\tau_{2k})\}-,*2||\langle\frac{\epsilon}{8}$

for a sufficiently large integer $k$ . From (1.14) and (1.15) we have
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$|1^{\gamma_{1}-r_{2}||\leq||\varphi\{\tau_{2k-1})\}-\varphi\{x(\tau_{2k})\}||+||\varphi\{x(\tau_{2k- 1})\}-r_{1}||}$

$+||\varphi\{x_{2k}(\tau_{2k})\}-r_{2}||<\epsilon$ .
Since 6 is arbitrary, $r_{1}=r_{2}$ . This contradiction shows that the trajectory
is differentiable at $s=0$ .

As a corollary to Theorem 1.1, we have the
Theorem 1.2. Let $f$ be a function defined on a manifold M. If

$x_{0}$ is an isolated non-degenerate critical point 6) of $f$, then every trajec-
tory of grad $f$ converges to $x_{0}$ and it is differentiable at $x_{0}$ .

Remark. Theorem 1.2 is well-known in the theory of variation. It
is a direct result of the fact that a function of Class $C^{2}$ is expressed
in a so-called normal coordinate system $(\overline{x}_{1},\overline{x}_{2}, \cdots,\overline{x}_{n})$ in this form:
$f=\pm\overline{x}_{1}^{2}\pm\overline{x}_{2}^{2}\pm\cdots\pm\overline{x}_{n}^{2}$ . It is interesting to note that a torse-forming vector
field is not necessarily able to be expressed as a gradient of a function
in a domain including a O-point. Hence it is clear that Theorem 1.2
does not serve the passing need of the present paper at all. Besides
Theorem 1.1 will be useful, for example, in examining the space which
has a non-linear connection admitting a parallel vector field [11].

\S 2. In this section we shall deal with some problems concerning

a non-linear ordinary equation of the type: $\frac{dy}{dt}=A(t)+B(t)y^{2}$ . We be-
gin by proving the following theorem which means that a solution cf
this equation can be extended all over the whole $t\triangleleft ine$ uniquely if it
can take $\pm\infty$ also as its values.

Theorem 2.1. Let $A(t),$ $B(t)$ be eontinuous functions defined on
$-\infty<t<+\infty$ , a non-linear ordinary differential equation

(2.1) $\frac{dy}{dt}=A(t)+B(t)y^{2}$

has a solution $y(t)$ with values in an interval $[-\infty, +\infty]$ (containing
$\pm\infty)$ and defined on $-\infty<t<+\infty$ . This solution is unique if its initial
condition is given and it is continuous with respect to the non-separated
topology introduced into $[-\infty, +\infty]$ .

Proof. We can find the unique solution with an arbitrary value
$y(O)$ as its initial condition and defined on a certain interval $(-b, a)$ .
We may consider $(-b, a)$ as the maximum interval on which the solution

6) This means
det $(\frac{\partial_{2}f}{\partial\overline{x}_{i}\theta\overline{x}_{j}})_{i=1,2,\ldots,a}\not\simeq 0j=1,2,\ldots,a$ and grad $f=0$ at $x_{0}$ .

7) The non-separated topology means that which $+\infty$ and $-\infty$ have the same neigh-
borhoods in respect to.
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can be defined. Let us assume $ a\neq+\infty$ . It is easily seen that the solution
$y(t)$ either vibrates between $t^{\frac{\lim}{\rightarrow a-}}0y(t)$ and $\varlimsup_{t’ a-0}y(t)$ or converges to $\pm\infty$

as $t\rightarrow a-0$ .
(1) The former case. Let $[c, d]$ be a subinterval of $(\varliminf_{t-,a-0}y(t)$ ,

$\varlimsup_{t\rightarrow a-0}y(t))$ . By use of the continuity of $y(t)$ , there is a monotone increas-

ing sequence $\{t_{i}\}_{1\leq i<+\infty}$ such that $\lim_{i\rightarrow+\infty}t_{i}=a,$
$y(t_{2i- 1})=c$ and $y(t_{2i})=d$ . Due

to the mean value theorem, we can find a sequence $\{t_{i}^{\prime}\}_{1\leq i<+\infty}$ such that

$t_{2i- 1}<t_{i}^{\prime}<t_{2i}$ and $\{\frac{d}{dt}y(t)\}_{t=t_{t}},=\frac{d-c}{t_{2i}-t_{2i- 1}}$ . Moreover we easily see that

another condition $c\leq y(t_{i})\leq d$ may be added before-hand. For this sequence

we have $\lim_{i-\succ+\infty}\{\frac{d}{dt}y(t)\}_{t=t_{t}},=+\infty$ . On the other hand, from (2.1)

$\lim_{i\rightarrow+\infty}\{\frac{d}{dt}y(t)\}_{t=t_{i}},\leqq|A(a)|+|B(a)|\varlimsup_{i\rightarrow+\infty}y(t_{i}^{\prime})^{2}=|A(a)|+|B(a)|$ max $(c^{2}, d^{2})$ .

This inequality is contrary to the preceding. This shows that $y(t)$ does
not vibrate as $t$ converges to $a$ from the left hand.

(2) The latter ease. A differential equation

(2.2) $\frac{dz}{dt}=B(t)+A(t)z^{2}$

has a solution $z(t)$ with $z(a)=0$ as its initial condition and defined as
$a-\epsilon\leq t<c$ where $\epsilon$ is a suitable positive number and $c$ means the maximum
value such that the solution can be obtained on $[a-\epsilon, c$). Because $y(t)$

may be assumed not to vanish on $a-\epsilon\leq t<a$ , consider a function $z^{*}(t)=$

$saedifferentia1equationas(2.2)-\frac{1}{my(t)}andrep1acey(t)in(2.1)by-\frac{1}{z^{*}(t),f}.Thenwegetexact1yIto11owsthatz(t)=z^{*}(t)----\frac{the1}{y(t)}$

for $a-\epsilon\leq t<a$ . We define $y(t)=-\frac{1}{z^{*}(t)}$ for $a\leq t<c$ .

The same problem as the above-stated occurs at $c$ and the procedure

in (2’) can be repeated. Now assume that we can not obtain $y(t)$ defined
on $(-b, +\infty)$ by the repetition of the above-mentioned procedures. Then
there is a monotone increasing sequence $\{a_{i}\}_{1\leq i<+\infty}$ such that $(a_{i}, a_{i+1})$ is
an interval which appears through these procedures and $\lim_{i\rightarrow+\infty}a_{i}\neq+\infty$ .

So it is obvious that $y(a_{2i- 1})=0$ and $ y(a_{2i})=\pm\infty$ . We may suppose that

$\lim_{t\rightarrow a_{2i}}y(t)=+\infty$ for an infinite number of $i$ . Then we have a sequence
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$\{a_{k}^{\prime}\}$ such that $a_{2i_{k}- 1}<a_{k}^{\prime}<a_{2i_{k}},$ $ 0\leq y(a_{k}^{\prime})\leq\alpha$ and $\{\frac{d}{dt}y(t)\}_{t=a_{k}^{\prime}}=\frac{\alpha}{a_{2t_{k}}-a_{2i_{k^{-}}1}}$ ,

where $\{a_{2i_{k}}\}_{1\leq k<+\infty}$ means a suItable subsequence of $\{a_{i}\}_{1\leq i<+\infty}$ and $\alpha$ an
arbitrary positive number independent of the index $k$ . This shows the
same kind of contradiction as (1’).

It is obvious that the solution thus obtained is unique.
Theorem 2.2. Let $A(t)$ and $B(t)$ be continuous functions defined on

an interval $[0, h]$ . In addition we assume $A(O)\neq 0$ . Now consider a
differentiable equation (2.1) and denote the solution with $y(O)=0$ as its

initial condition by $y(t)$ . Then $\frac{1}{t}e^{\int_{a}\frac{A(t)}{y(t)}dt}t$ converges to a definite value

different from $0$ as $t\rightarrow+0$ , where $a$ means a sufficiently small positive
number.

Proof.8) Since $A\neq 0$ in $[0, \epsilon]$ for a small positive number $\epsilon,$ $y(t)$

is never vanishes.
From (2.1), we have

$\frac{A(t)}{y(t)}=\frac{dy}{dt}-\frac{}{y}By$

Consequently

$\lim_{t\rightarrow+\infty}\frac{1}{t}e^{\int_{a}\frac{A(t)}{y(t)}dt}=\lim_{t-,+0}\frac{|y|}{t}\lim_{t++0}e^{-\int_{a}Bydt}tt$

$=|\frac{dy}{df}|_{t=0}e=A(0)ea_{Bydt}\omega$

Part II
Proofs of the Main Theorems and its AppIications

\S 3. The metric property will play hardly any r\^ole in our proving
the theorems stated in \S 4, almost all of which are based only upon a non-
metric property of a vector field in question. In other words, our theory
can be considered as an aPplicatiom of a certain much wider theory which
has no immediate connection with the metric property and can be used
in a much more extensive field of differential geometry.

8) This Proof was suggested by Dr. I. Amemiya and Dr. T. Shibata.
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From this point of view it is more convenient to treat of much
broader conservative force field than a torse-forming vector field in the
large. As one of them we take a pseudo-concurrent vector field, the
local theory of which substantially coincides with that of a torse-forming
vector field [21], but the global theory of which is very different from
that of a torse-forming vector field. A global example of that vector
field is given by the so-called Appollonius’ circles, whose radius vectors form
that vector field [21]. But it can not be said that we succeed in dealing
with this pseudo-concurrent vector field. In fact most of our theorems
are only concerned with the torse-forming vector field in the large. First
we define a pseudo-concurrent vector field as follows.

A pseudo-concurrent vector field in the large is a vector field given
by replacing (0.1) by the following (3.1) and letting $W$ in (0.3) mean a
pseudo-concurrent vector field in the local sense, that is one satisfying

(3.2).

(8.1) $V_{i;j}=Ag_{ij}+BV_{i}V_{j}+\sigma_{;\iota}V_{j}+\sigma_{;j}V_{i}$ ,

(3.2) W.; $j^{=Cg_{ij}+DW_{i}W_{J}+\rho_{;i}W_{J}+\rho_{:J}W_{i}}$ ,

where $\sigma$ means a point function defined over the space and $\rho$ one defined
in $U$.

The following theorem orginally given by S. Sasaki and K. Yano is
our starting point.

Theorem. Let $M$ be a Finsler space admitting a pseudo-concurrent
vector field. Then for every point $x$ but O-points there exists a neighor-
hood $U(x)$ and a coordinate mapping $\alpha$ defined over $U(x)$ such that the
image of $U(x)$ by $\alpha$ can be decomposed into the product of an open
intervel and- an $(n-l)$-dimensional cubic, each slice of the former being
a segment of a trajectory and each slice of the latter being an integral

manifold of (3.1).
In the present paper we call such a neighborhood $U(x)$ what satis-

fies Condition $\xi$ .
Let $N$ be the set of all the O-points. For $x\in K_{\cap}N^{c}$ let us consider

integral manifolds of $V$ con taining $x$ as neighborhoods of $x$, for $x\in K_{\cap}^{c}N^{c}$

integral manifolds $W$ of containing $x$ , and for $x\in Nx$ itself. Then we can
introduce a topology into $M$ by using them as basis (see [8] or [7] $p$ .
92\sim 93). We denote the component of $x$ with respect to this topology
by $W(x)$ . We can also define $T(x)$ in eactly the same way, which means
a maximal trajectory. Later on a symbol $T^{+}(x)$ will be used. That
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means the connected component. of $x$ in case that O-points has been
removed from $T(x)$ . Besides $W(x)$ or $T(x)$ is sometimes replaced by $W$

or $T$ unless there is any danger of confusion. We call a parameter of
$T$ which is compatible with the decomposition of Condition $\xi$ , canonical.
Henceforth $V$ means a pseudo-concurrent vector field in the large unless
stated otherwise.

The following theorem is easily seen.
Theorem 3.1. Let $X_{0}$ be an isolated O-point. Then

a $U(x_{0})Vx\in U(x_{0})[x\sim x_{0}]$ ,

Besides the segment Of a trajectory . joining $x$ with $x_{0}$ can be assumed
to be completely inside $U(x_{0})$ .

Furthermore we have the
Theorem 3.2. If $V$ satisfies Condision (iv), then all the O-poits of

$V$ are isolated.
Proof. Let $x_{0}$ be a limiting point of O-points of $V$. Then we can

choose a differentiable curve $x(s)$ in such a way as this:

(3.3) $x_{0}=x(0)$ and $x(s_{i})=0$-point $(i=1,2,\cdots)$ ,

where $\{s_{i}\}_{1\leq i<+\infty}$ means a sequence tending to $0$ (Lemma 1.1).
The following immediately follows from (3.3):

$0=\lim\frac{V\{x(s_{i})\}}{s_{i}}=\lim_{i-\succ+\infty}(\frac{dV}{ds})_{s=s_{l}}=\lim_{i++\infty}A\{x(s_{i})\}(\frac{dx}{ds})_{s=s}=A(x_{0})(\frac{dx}{ds})_{s=0}$

Hence $A(x_{0})=0$

This is contrary to the assumption.
\S 4. In this section we study the nature of $V$ satisfying $(i)-(iv)$ for

the most part.
Lemma 4.1. Let $x\neq a$ O-point. Then

(4.1) $x_{2}\in W(x_{1})\Rightarrow||V(x_{2})||=e^{\sigma(x_{2})-\rho(x_{1})}||V(x_{1})||$ .
Proof. In a coordinate neighborhood, we have

$||V(x^{\prime})||_{;J}=\{\frac{A(x^{\prime})}{||V(x’)||}+B(x’)||V(x’)||+\frac{\sigma(x^{\prime})_{;k}V^{k}}{||V(x’)||}\}V_{j}+||V(x^{\prime})||\sigma(x^{\prime})_{;j}$ .

It is easy to obtain (4.1) from this equation.
Corollary. Let $V$ be a torse-forming vector fietd in the large. Then

$||V||$ is constant over $W$.
Theorem 4.1. If $M$ is complete, then $W$ also is complete, provided



Vector Fields and Space $Fo\gamma ms$ ?5

that to be complete means that any Cauchy sequence converges to a de-

finite point.

Proof. Let $\{x_{i}\}_{1\leq i<+\infty}\subset W$ be a Cauchy sequence of $W$ with respect
to the induced metric. That is:

(4.2) $V\epsilon>0Hi_{0}$ [ $i,$ $ j\geq i_{0}\Rightarrow$ dis $W(x_{i},$ $ x_{j})<\epsilon$].

Since dis $W(x_{i}, x_{j})\geq dis(x_{i}, x_{j}),$ $\{x_{i}\}$ is a Cauchy sequence of $M$ as well.
Consequently $Hx\in M,\lim_{i\rightarrow+\infty}x_{i}=x$ where this convergence means one with

respect to the topology of $M$. On the other hand, from (4.1) we have

$|1V(x)||=\lim_{i++od}e^{\sigma(x_{i})-\sigma(x_{1})}||V(x_{1})||=e^{\sigma(x)-\sigma(x_{1})}\}|V(x_{1})||$ .

This shows $V(x)\neq 0$ . Hence there exists a neighborhood of $x$ satisfying
satisfying condition $\xi$ . We denote it by $U(x)$ . $U(x)$ is homeomorphic
to $I\times R^{n-1}$ , where $I$ is the open interval $(-1,1)$ and $R^{n-1}$ is a cubic of
center $0$ and length 2, where $0$ means the origin of $E_{n- 1}$ . Describe a
sphere of center $0$ and radius $\not\in$, and describe another sphere of the
same center and radius $\neq$ , in $E_{n- 1}$ , let them be denoted by $S^{n-2}$ and
$S^{*n-2}$ respectively. Let the interval $(-\epsilon, \epsilon)$ be denoted by $I_{\epsilon}$ , where $\epsilon$

is an arbitrary positive number. Then $I_{\overline{e}}=[-\epsilon, \epsilon]$ . Denote a coordinate
mapping on $U(x)$ by $\alpha$ . Set $X_{1}=I_{8}^{-}\times S^{n-2}$ and $X_{2}=I_{\overline{\epsilon}}\times S^{*n-2}$ . Then
$\alpha^{-1}(X_{1})$ and $\alpha^{-1}(X_{2})$ are closed and bounded.
Moreover $\alpha^{-1}(X_{1})_{\cap}\alpha^{-1}(X_{2})\neq\phi$ . Hence dis $\{\alpha^{-1}(X_{1}), \alpha 1(X_{2})\}=d_{0}>0$ .
On the other hand, a $i_{0}^{\prime}[i,$ $ j\geq i_{0}^{\prime}\Rightarrow$ dis $W(x_{i}, x_{j})<d_{0}$ and $x_{i},$

$ x_{j}\in\alpha^{-1}\{I_{\epsilon}\times$ the
interior of $S^{*n-2}$}]. Denote the connected component of $x_{i},$ $x_{j}$ with respect
to the relative topology of $W_{\cap}U(x)$ induced by the topology of $W$ by
$W_{i},$ $W_{j}$ respectively. Let us choose $t_{i}$ such that $W_{i}=\alpha^{-1}[\{t_{i}\}\times R^{n- 1}]$ and

$t_{i}\in I_{\epsilon}$ .
Now assume $W_{i}\neq W_{j}$ . Then $ W_{i\cap}W_{j}=\phi$ . Therefore $W_{j}\subset the$ ex-

terior of $\alpha^{-1}’[\{t_{i}\}\times S^{n-2}]$ with respect to $W(x_{i})$ . Of course, $x_{i}\in the$ interior
of $\alpha^{-1}[\{t_{i}\}\times S^{*n-2}]$ with respect to $W(x_{i})$ . It follows that an arbitrary

curve $\gamma$ which joins $x_{i}$ with $x_{j}$ can not help meeting $\alpha^{-1}[\{t_{i}\}\times S^{*n-2}]$

and $\alpha^{-1}[\{t_{i}\}\times S^{n-2}]$ . Consequently, the length of $\gamma\geq the$ distance (with

respect to $M$ ) between a $- 1(X_{1})$ and $\alpha^{-1}(X_{2})$ (that is; $d_{0}$).
Therefore

(4.3) dis $W(x_{i}, x_{j})\geq d_{0}$ .
This is contrary to (4.2).
Hence we have $W_{i}=W_{j}$ . This means that if $i\geq i_{0}^{\prime},$

$x_{i}$ belongs to the
common component $W_{i_{0}}^{\prime}$ . Then
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$x=\lim x_{i}\in W_{i^{\prime}0^{\cap}}^{-}V(x)=W_{\iota_{0}}^{r}\subset W$

Namely, every Cauchy sequence of $W$ has limit in $W$.
Theorem 4.2. Let $T$ be a trajectory passing through a $0$-point $T(0)$

of V. Then
(4.4) $\lim_{t\rightarrow 0}W_{t}=T(0)$ ,

where $W_{t}$ means $W\{T(t)\}$ . Strictly speaking, (4.4) means
(4.4) $VU\ni T(0)H\delta>0[\delta>|t|\Rightarrow W_{t}\subset U]$ .

Proof. Let us suppose that (4.4) is false. Let $S_{r}^{*n-1}=[x|$ dis $(x, x_{0})$

$=r]$ for an arbitrary positive number $r$ , let In $ S_{r}^{*n- 1}\equiv$ [ $x|$ dis $\{x,$ $T(0)\}<r$],
and let Out $ S_{r}^{*n-1}\equiv$ [ $x|$ dis $\{x,$ $T(O)\}>r$]. Since (4.4’) is false, for a suitable
positive number $r$ and a suitable sequence $\{t_{i}\}_{1\leq i<+\infty}$ , of positIve terms
we have

$\lim t_{k}=0$ and $T(t_{i})\in InS_{r}^{*n-1}$ and $W_{t_{i}}$ ([ In $S_{r}^{*n-1}$ ,

where $ i=1,2,\cdots$ Then either of the following holds,
(4.4) $ W_{t_{i^{\cap}}}S_{r}^{*n-1}\neq\phi$ ,
or
(4.5) $W_{t_{i^{\cap}}}$ Out $ S_{r}^{*n-1}\neq\phi$ . $(i=1,2,\cdots)$

By means of the arc-connecticity of $W_{t_{i}}$ , (4.5) can be reduced to (4.4).
Then we can select an element $x_{i}$ from $W_{t_{i\cap}}S_{\gamma}^{*n-1}$ for $ i=1,2,\cdots$ The
sequence $\{x_{i}\}_{1\leq i<+\infty}$ has a limit $x$ on $S_{r}^{*n-1}$ .

There exist a subsequence $\{x_{i_{k}}\}_{1\leq k<+\infty}$ of $\{x_{i}\}$ such that $\lim_{k\rightarrow\infty}x_{i_{k}}=x$ .
Consequently using Lemma 4.1, we have

$|IV(x)||=\lim e^{\sigma(x)-\sigma\{T(t_{J})\}}i_{kk}||V\{T(t_{i_{k}})\}||$

$=e^{\sigma(x)-\sigma\{T(0)\}}||V\{T(0)\}||=0$ .
This shows a contradiction. Thus our theorem has been proved.

Corollary. Let $x_{0}$ be $a$ O-point of a Pseudo-concurrent vector field.
Then

a $W[W_{\cap}T^{+}\neq\phi\Rightarrow T\ni x_{0}]$ .
Proof. Let $U(x_{0})$ be such a neighborhood as stated in Theorem 3.1.

Take $W$ contained in $U(x_{0})$ . The existence of such $W$ is guaranteed by
the above theorem. It is clear that this $W$ is.one to suit our Purpose.

Lemma 4.2. Let $W\in x_{1},$ $x_{8}$ . Join $x_{1}$ to $x_{2}$ by a curve $\gamma$ on $ W(\gamma$ :
$x=x(\tau),$ $0\leq\tau\leq 1$). Then taking a suitalbe positive number, the following
hold.
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(i) $ t_{0}-\epsilon\leq t\leq t_{0}+\epsilon\Rightarrow T\{x(\tau)\}_{\cap}W_{t}\neq\phi$

(ii) There exists one and only one way of choosing $x_{t}(\tau)$ from
$T\{x(\tau)\}_{\cap}W_{t}$ in such a fashion that $x_{t}(\tau)$ describes a continuous
curve as $\tau$ varies from $0$ to 1,
where $t$ means a canonical parameter of $T(x_{1})$ and $W_{t}$ means
$W\{T(x_{1})(t)\}$ .

Proof. Denote the neighborhood of Condition $\xi$ by $U_{\xi}$ . For an
arbitrary point $ x\in\gamma$ , set $r_{x}=\sup\{\delta|HU(x)[\delta\geq dis(x, y)\Rightarrow y\in U_{\xi}(x)]\}$ . Assign
a sphere $S^{n-1}(x)$ of center $x$ and radius $r_{x}$ to $x$ .

Lemma 4.3. Let $r$ be $\inf_{x\in\gamma}\gamma_{x}$ . Then $r\neq 0$ .
Proof of $Lem$, ma 4.3. Assume $r=0$ . Then there exists a sequence

$\{r_{i1\}}i\}_{1\leq i<+\infty}$ such that $\lim_{\infty}r_{x}=0$ . $\{x_{i}\}_{1\leq i<+\infty}$ has a limiting point. Let it
be denoted by $x_{3}$ . Then there exists a subsequence $\{x_{i_{k}}\}_{1\leq k<+\infty}$ of $\{x_{i}\}$

converging to $x_{3}$ . For this subsequence,

(4.6) $ Hk_{0}[k\geq k_{0}\Rightarrow$ dis $(x_{3}, x_{i_{k}})<\frac{r_{x_{8}}}{2}\overline{\rfloor}$ .

Hence if dis $(x_{i_{k}}, x)\leq\frac{r_{x_{\theta}}}{2}$ for $k\geq k_{0}$ , then dis $(x_{8}, x)<r_{x_{\theta}}$ . Therefore $k\geq k_{0}$

there exists $U_{\xi}$ such that if dis $(x, x_{i_{k}})\leq\frac{\gamma_{x_{8}}}{3}\Rightarrow U_{\xi}\ni x$ . It follows that

(4.7) $r_{i_{A}}\geq\frac{r_{3}}{2}$ for $k\geq k_{0}$ .
(4.7) is contrary to (4.6).

Proof of Lemma 4.2 continued. Define $F=$ {$ y|Ex\in\gamma$ , dis $(x,$ $y)\leq r$}
and $\sigma_{0}=\inf_{x\in F}\sigma(x)$ . Notice that $\sigma_{0}=-\infty$ because $\inf_{x\in F}=\min_{x\in F}$ . Setting $T_{\tau}=T$

$\{x(\tau)\}$ , introduce a canonical parameter $t_{\tau}$ into T. in such a way as $T.(O)$

$=x(\tau)$ . Then for a sufficiently small positive number $\epsilon$, if $\epsilon>t_{1}>0$, we
have

(4.8) dis $\{x_{1}, T_{1}(t_{1})\}<r$ and $\int_{0}^{t_{1}}e^{\sigma}ds<\frac{r}{2}e^{\sigma_{0}}$ .

Fix $t_{1}$ , and denote $W\{T_{1}(t_{1})\}$ by $W^{*}$ . Consider a positive number $\delta$

satisfying the following condition:
$0\leq\tau\leq\delta=$

(i) $Hx_{f}^{*}\in W_{\cap}^{*}T_{\tau}$ . (Define $x^{*}(\tau)=x_{f}^{*}$ ).
(ii) $\gamma^{*}:$ $x=x^{*}(\tau)$ is a continuous curve.
(iii) Setting $x^{*}(\tau)=T_{\tau}(t_{f})$
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$\int_{\tau_{\tau}^{0}}t_{t}e^{\sigma}ds=\int_{\tau_{1}^{0}}t_{1}e^{\sigma}ds$

.

(iv) dis $\{x(\tau), T_{r}(u)\}<r$ for $0\leq u\leq t.$ .
Lemma 4.4. Let $\tau_{0}$ be the supremum of such $\delta$ . Then $\tau_{0}=1$ .
Proof of Lemma 4.4. First assume that $\tau_{0}$ does not have the above

property of $\delta$ . Then $\tau_{0}>0$ . For a sufficiently small positive number $\epsilon^{\prime}$ ,
if $\tau_{0}-\epsilon’<\tau<\tau_{0},$ $\tau$ has the property of $\delta$ and we may assume dis $\{x(\tau_{\alpha})$ ,
$x(\tau)\}<\frac{\gamma}{2}$ . Hence, from (4.8),

$e^{\sigma_{0}}\int_{r_{\tau}^{0}}t_{\tau}ds\leq[Tq^{\sigma}ds=\int^{t_{1}}e^{\sigma}ds\leq\frac{\gamma}{2}e^{\sigma_{0}}$
,

Hence
$\int_{\tau_{\tau}^{0}}t_{t}ds\leq\frac{r}{2}$

.

Therefore if $0\leq t_{r}^{*}\leq t_{f}$ ,

dis $\{x(\tau_{0}), T_{\tau}(t_{\tau}^{*})\}\leq dis\{x(\tau_{0}), x(\tau)\}+dis\{x(\tau), T_{\tau}(t_{\tau}^{*})\}$

$<\frac{r}{2}+\int_{\tau_{\tau}^{0}}t_{\tau}ds<r$
.

Consequently,
(4.9) ZET $U_{\text{\’{e}}}\{x(\tau_{0})\}[0\leq t_{\tau}^{*}\leq t_{\tau}\Rightarrow T_{\tau}(t_{\tau}^{*})\in U_{\xi}\{x(\tau_{0})\}]$ .
Let $W^{\prime}$ be a component of $T.(t.)$ with respect to the relative topology
of $W\{T_{\tau}(t_{r})\}_{\cap}U_{\text{\’{e}}}\{x(\tau_{0})\}$ induced by the topology of $W\{T.(t.)\}$ . Then $W^{\prime}$

$\subset W^{*}$ .
Let $W_{\cap}^{\prime}T_{\tau_{0}}=T_{\tau_{0}}(t_{\tau_{0}})$ . Then $T_{\tau_{0}}(t_{\tau_{0}})\in W_{\cap}^{*}T_{\tau_{0}}$ and $\lim_{\tau-\succ\tau_{0}}x^{*}(\tau)=T_{\tau_{0}}(t_{r_{0}})$

and moreover,

$\int_{\tau_{\tau_{0}}^{0}}t_{\tau_{0}}e^{\sigma}ds=\int_{\tau_{\tau}^{0}}t_{t}ds=\int_{\tau_{1}^{0}}t_{1}e^{\sigma}ds$

.

This shows that $\tau_{0}$ has the property of $\delta$ . This is contrary to our as-
sumption.

Next assume $\tau_{0}<1$ . According to (4.4), $U_{\xi}\{x(\tau_{0})\}\ni T_{\tau_{0}}(t_{\tau_{0}})$ . It follows
that if $\tau_{0}<\tau\leq\tau_{0}+\epsilon^{\prime}$ for a sufficiently small positive number $\epsilon’$ , then
$T\{x(\tau)\}$ meets $W[T\{x(\tau_{0})\}]$ and $\tau$ itself has the property of $\delta$ . This
shows a contradiction. Therefore $\tau_{0}=1$ .

Thus together with Lemma 4.2 has been proved.

Lemma 4.5. Let $M$ be a complete space. Let $V$ be a torse-forming
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vector field. Let $T(x_{0})\ni x_{1}$ and $W(x_{0})\ni y_{0}$ . Join $x_{0}$ with $y_{0}$ by a curve $\gamma$

on $W(x_{0})(\gamma:x=x(\tau)(0\leq\tau\leq 1);x_{0}=x(O), y_{0}=x(1))$ . Denote $T\{x(\tau)\}$ by $T_{f}$

and $W\{T(s)\}$ by $W_{s}$ , where $x_{0}=T(0)$ and $x_{1}=T(s_{0})$ are assumed. Then
assuming the arc length of T. is measured from $W(x_{0})$ , we have

(4.10) $T_{\tau}(s)\in W_{s}$ $(0\leq s\leq s_{0} ; 0\leq\tau\leq 1)$ .
Especially

(4.11) $T_{1}(s_{0})\in W_{s_{0}}$ .
Proof. Let $\mathfrak{l}\delta_{0}$ be the supremum of such a number $\delta$ that if $s_{0}$ is

replaced by $\delta$ in the statement of Lemma 4.5, this lemma holds. Let
$\{s_{i}\}_{1\leq i<+\infty}$ be a monotone increasing sequence tending to $\delta_{0}$ as $ i\rightarrow+\infty$ .
Since dis $\{T.(s_{i}), T.(s_{j})\}\leq the$ length of the segment $T(s_{i}, s_{j})=|s_{j}-s_{i}|$ ,
$T(s_{i}, s_{j})\rightarrow 0$ as $i,$ $j\rightarrow 0$ . Therefore $\{T_{\tau}(s_{i})\}_{1\leq i<+\infty}$ form a Cauchy sequence
of $M$. Hence $Hx_{f}\in M[\lim T_{\tau}(s_{i})=x_{\tau}]$ . Notice that $V(x.)\neq 0$ . In fact
$||V\{T_{r}(s_{i})\}||\rightarrow||V\{T(\delta_{0})\}||\neq 0$ as $ i\rightarrow+\infty$ . Thus we have found that $T_{f}(\delta_{0})$

exists because of $M$ being complete. It is obvious that this convergence
is uniform. If follows that $T_{\tau}(\delta_{0})$ is a continuous curve with respect to
$\tau$ . Moreover, it is clear that this curve is on $W_{\delta_{0}}$ . It follows from
Lemma 4.2 that $\delta_{0}=s_{0}$ or $\delta_{0}$ is not the supremum. Thus $\delta_{0}$ must be
equal to $s_{0}$ .

Let $\mathfrak{M}^{\prime}$ and $\mathfrak{M}^{\prime\prime}$ be partitions of topological spaces $M^{\prime}$ and $M^{\prime\prime}$ re-
spectively. Let us suppose that for every $x^{\prime}\in M^{\prime}\mathfrak{M}^{\prime}$ has a neighborhood
$U(x’)$ in $M$ ’ with the condition that $U(x’)_{\cap}\pi^{\prime}$ contains at most one
element for every $\pi^{\prime}\in \mathfrak{M}$

’ and that for every $x^{\prime}’\in M^{\prime\prime}\mathfrak{M}^{\prime\prime}$ has an analogous
neighborhood $U(x^{\prime\prime})$ in $M^{\prime\prime}$ .

Definition. A mapping $\varphi$ of $\mathfrak{M}^{\prime}$ into $\mathfrak{M}$
“ is called locally homeo-

morphic if it satisfies the following condition:
If we take suitable neighborhoods $V(x^{\prime})\subset U(x^{\prime})$ and $V(x^{\prime\prime})\subset U(x^{\prime\prime})$ ,

the mapping $\varphi^{*}$ which is defined by means of. $\varphi^{*}=P^{\gamma-1}\circ\varphi\circ P$
’ is a

topological mapping of $V(x^{\prime})$ into $V(x^{\prime\prime})$ , where $P^{\prime}$ and $P^{\prime\prime}$ are the
partition mappings of $\mathfrak{M}^{\prime}$ and $\mathfrak{M}^{\prime\prime}$ .

We call $\varphi$ a local homeomorphism of $M^{\prime}$ into $M^{\prime\prime}$ .
Theorem 4.3. Let $M$ be a space. Let $V$ be a torse-forming vector

field in the large with isolated O-points only. Then for arbitrary non-
O-points $x_{1}$ and $x_{2}$ , there exists a local homeomorphism of $W(x_{1})$ onto
$W(x_{2})$ canonically.

Proof. Denote the join of $W$ for which there exists a certain $T$

satisfying $ T_{\cap}W(x_{1})\neq\phi$ and $ T_{\cap}W\neq\phi$ by $M_{1}$ , and denote the join of $W$
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not satisfying the above condition by $M_{2}$ . Then $M-N=M_{1}^{\cup}M_{2}$ , where
$N$ means the set of all O-points. of $V$. It is abvious that $M_{1}$ and $M_{2}$

are open. On the other hand, $N$ is an isolated set. Hence $M-N$ is con-
nected. It follows that $ M_{1}=\phi$ or $ M_{2}=\phi$ . Since $M_{1}=\phi,$ $ M_{2}=\phi$ . Consequently
no matter what $x_{2}$ is, there exists a certain $T$ such that $T_{\nearrow},$ $ W(x_{1})\neq\emptyset$

and $ T_{\cap}W(x_{2})\neq\phi$ . Thus we can prove the theorem from Lemma 4.5.
Corollary. Let $x_{1}$ and $x_{2}$ be elements of $T_{\cap}^{+}W.$ Let $x_{1}^{\prime}$ be an element

of $ T+W^{\prime}\cap\cdot$ Then there \’exist $x_{2}^{\prime}\in\tau^{\prime}+\cap W^{\prime}$ and $x_{3}\in T_{\cap}^{+}W^{\prime}$ such that

(4.12) the length of $T^{\prime}+(x_{1}^{\prime}, x_{2}^{\prime})=\left\{\begin{array}{l}T^{+}(x_{1}, x_{2})\\or\\T^{+}(x_{1}, x_{2})\pm 2\\T^{+}(x_{1}, x_{3})\end{array}\right.$

Proof. Due to Theorem 4.2, $ T_{\cap}^{+}W^{\prime}\neq\phi$ . Let $x_{3}$ be its element.
Then using Lemma 4.2, we have the length of $T^{+}(x_{3}, x_{2})=the$ length of
$T^{+}(x^{\prime}, x_{3}^{\prime})$ for some $x_{3}^{\prime}\in T_{\cap}^{\prime}+W$, and, the length of $T^{+}(x_{1}, x_{3})=the$ length
of $T^{r_{+}}(x_{3}^{\prime}, x_{2}^{\prime})$ for some $x^{\prime}\in T’+W^{\prime}$ . Hence

the length of $T^{\prime}+(x_{1}^{\prime}, x_{2}^{\prime})=the$ length of $T^{\prime}+(x_{1}^{\prime}, x_{3}^{\prime})\pm the$ length of
$T^{\prime}+(x_{3}^{\prime}, x_{2}^{\prime})=the$ length of $T^{+}(x_{s}, x_{2})\pm the$ length of $T^{+}(x_{1}, x_{2})$

$=\{orofofT^{+}(x_{1},x_{2})T^{+}(x_{1},x_{2})\pm 2$

the length of $T^{+}(x_{1}, x_{3})$

Theorem 4.4. Let $V$ be a torse-forming vector fiel $tf$ satisfying Con-
dition (iv). Let $x_{0}$ be a $0$-point of V. Then for an arbitrary trajectory
$T,$ $T\ni x_{0}$ .

Proof. Consider a neighborhood $U(x_{0})$ mentioned in Theorem 4.2
(which is moreover assumed to be included in such a neighborhood as
stated in Theorem 3.1.) By virtue of Theorem 4.3, $ T_{\cap}W(x)\neq\phi$ . Con-
sequently $T\ni x_{0}$ (Theorem 3.1).

Theorem 4.5 Let $\chi(W, T^{+})$ be the intersection number of $W$ and $T^{+}$ .
Then $\chi(W, T^{\vdash})$ does not depend on $T^{+}$ , provided that $V$ has at least one
O-point.

Proof. Let $x_{1}\in W_{\cap}T^{+}$ and $x_{1}^{\prime}\in W_{\cap}T^{J+}$ . Then to each $x\in W_{\cap}T^{+}$ we
can assign the point of $ T’+W\cap$ which is determined through the pro-
cedure stated in Lemma 4.2. This mapping becomes a 1-1 correspondence
between $T_{\leftrightarrow}^{+}W$ and $T_{\cap}^{J+}W$. Thus the number of the elements of $T_{\cap}^{+}W$

coincides with that of $T_{\cap}^{\prime}+W$. Namely: $\chi(W, T^{+})=\chi(W, T^{\prime}+)$ .
Lemma 4.6. In a $neighbo\gamma hood$ of an isolated O-point all $W$ are

regularly imbedded.
9) From this reason we write $x(W)$ instead of $x(W, T)$ , when the vector field has $0$-point.

10) The intersection number means the number of the points at which $W$ and $T^{+}$ meet.
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Proof. Otherwise there exists a coordinate neighborhood:
$0<x^{i}<d$ ( $d$ : a positive number)

such that $x^{n}=const.\equiv x_{k}^{n}def(k=1,2, \cdots)$ express portions $\cdot$ of the same $W$,
where we assume $\lim_{\star k\infty}x_{k}^{n}=x_{1}^{n}$ . By virtue of Theorem 4.1, 1 $V||=const.$ ,

if $x\in W$. Hence $\frac{\partial||V||}{\partial x^{n}}=\lim_{k\Rightarrow\infty}\frac{\Delta||V||}{x_{k}^{n}-x_{1}^{n}}=0$ . Therefore $(\frac{\partial||V||}{ds})_{x=x_{1}}=0$ , where
$x_{1}$ means a point having $x_{1}^{n}$ as its n-th coordinate. On the other hand,

neighborhood of a O-point, $\frac{d||V||}{ds}\neq 0$ . This is a contradiction.

Lemma 4.7. In a neighborhood of $a$ O-point, all $W$ contained in it
are compact.

Proof. This is evident, because a submanifOld which is bounded,
complete, and regularly imbedded is compact.

Lemma 4.8. If a torse-forming vector field in the large satisfies
Condition (iv) and $h(zs$ O-points, then $\chi(W)$ is equal to 1 or 2 for $W$

sufficiently close to $a$ O-point.
Proof. Let $x_{0}=T(0)$ be a O-point. Let $U(x_{0})$ be the intersection of

a neighborhood stated in Theorem 3.1 and one mentioned in Lemma 4.6.
Now assume that this lemma is false. Then there exists a monotone
decreasing sequence $\{s_{i}\}_{1\leq i<+\infty}$ such that $\chi[W\{T(s_{i})\}]\geq 3$ . Henceforth we
denote $W\{T(s_{i})\}$ by $W_{i}$ . Due to Theorem 4.2, we may consider $W_{i}\subset U(x_{0})$ .
Lemma 4.6 shows that $T_{\cap}^{+}W_{i}$ is a finite set. Then there exist
min $\{s|T^{+}(s)\in W_{i}\}(\equiv s_{i}^{(1)})def$ min $\{s|T^{+}(s)\in W_{i}, s>s_{i}^{(1)}\}(\equiv s_{i}^{(2)})def$ and max $\{s|T^{+}(s)$

def
$\in W_{i}\}(\equiv s_{i}^{(3)})$ . Let $T\{s_{i}^{(2)}-(s_{i}^{(1)}-s_{i+1}^{(1)})\}\in W_{i+1}$ . Then it is easily seen from the
corollary of Theorem 4.3 that $s_{i}^{(2)}-(s_{i}^{(1)}-s_{i+1}^{(1)})=s_{i+1}^{(2)}$ . Hence $s_{i}^{(2)}-s_{i}^{\zeta 1)}=s_{i+1}^{\zeta 2)}$

$-s_{i+1}^{(1)}$ . Let $T^{+}\{s_{i}^{(2)}-(s_{i}^{(1)}-s_{i+1}^{(1)})\}\not\in W_{i+1}$ . Then by virue of the above men-
tioned corollary again, we have $T^{+}\{s_{i}^{(2)}+(s_{i}^{C1)}-s_{i+1}^{(1)})\}\in W_{i+1}$ . In this case
$s_{l}^{(2)}+(s_{l}^{(1)}-s_{i+1}^{(1)})=s_{i+1}^{(2)}$ and $s_{i+1}^{(2)}-s_{i+1}^{(1)}=s_{i}^{(2)}-s_{i}^{(1)}+2(s_{i}^{(1)}-s_{i+1}^{(1)})$ . In either case
we have $s_{i+1}^{(2)}-s_{i+1}^{(1)}\geq s_{i}^{(2)}-s_{i}^{(1)}$ . Consequently we easily find $\sim VV(x_{0})Hi_{0}$

$[i>i_{0}\Rightarrow T^{+}(s_{i}^{\zeta 1)}, s_{i}^{(2)})\subset V(x_{0})],$
$11$ ) because $T$ is rectifiable around $x_{0}$ (see Theo-

rem 1.1). By use of this fact we have
(4.13) V $V(x_{0})Hi_{0}[i>i_{0}3T^{+}(s_{i}^{(2)}, s_{i}^{(3)})\subset V(x_{0})]$ .
Otherwise there exists a sequence $\{\gamma_{i}\}_{1\leq i<+\infty}$ of segments of $T$ such that
$\gamma_{i}$ is entirely contained inside $S_{i}^{n-1}$ excepting for its end points exactly
on $S_{i}^{n-1}$ , provided that $S_{i}^{n-1}(i=1,2, \cdots)$ are spheres of a radius tending
to $0$ . This contradicts the same argument as stated in (I) of the proof
of Theorem 1.1. Hence (4.13) holds. Set $ s_{i}^{(4)}=\max$ {$s|T^{+}(s)\in W_{i}$ and $s<s_{i}^{(3)}$}.
$\overline{11)}$The $symbol\sim$ means the negation of what follows.
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Then (4.13) still holds for the segment $T^{+}(s_{i}^{(4)}, s_{i}^{(3)})$ . It is seen from exactly
the same reason that $T^{+}(s)(s>s_{i}^{(3)})$ straightforwardly tends to $x_{0}$ .

Now let $m(s)=\max\{s’|T^{+}(s’)\in W\{T^{+}(s)\}\}$ . Assume that $m(s)$ is not
monotone increasing. Then since $m(s)$ is a continuous 1-1 mapping,
$m(s)$ is monotone-decreasing. On the other hand $T^{+}\{m(s)\}$ must tend to
$x_{0}$ as $s\rightarrow 0$ . This is a contradiction. Namely: $m(s)$ is monotone-increas-
ing and $\{s_{i}^{(3)}\}$ likewise does so. Hence we can find, by precisely the same
way, that $T^{+}(s_{i}^{\zeta 4)}, s_{i}^{(3)})$ has length not tending to $0$ . This is contrary to
(4.13), becausp $T$ is rectifiable around $x_{0}$ .

Lemma 4.9. Let $V$ be a torse-forming vector field in the large satis-
fying Condition (iv) and having O-points. Then $\chi(W)=1$ or 2.

Proof. $LeCx_{0}$ be one of the O-points of V. Suppose that the above
lemma is not true. Then there exists a transversal submanifold $W$ such
that $\chi(W)\geq 3$ . We may assume that $\chi(W)=3$ . In this case an arbitrary
$T^{+}$ meets $W$ three times. Let $T^{+}(s_{1}),$ $T^{+}(s_{2})$ , and $T^{+}(s_{3})$ be the points at
which $T^{+}$ meets $W$, provided that the arc length $s$ is measured from $x_{0}$ .
Let $s_{1}^{\prime}$ be a sufficiently small positive number. Then $\chi\{W(s_{1}^{\prime})\}=1$ or 2
(Lemma 4.6), where $W(s_{1}^{\prime})=W\{T^{+}(s_{1}^{\prime})\}$ . According to Lemma 4.5, we can
find such two points $T^{+}(s_{2}^{\prime}),$ $T^{+}(s_{3}^{\prime})\in W(s_{1}^{\prime})$ as this:
(4.14) $|s_{1}^{\prime}-s_{1}|=|s_{2}^{\prime}-s_{2}|=|s_{3}^{J}-s_{3}|$ .

Among these three points, two must coincide. For example assume
$T(s_{1}^{\prime})=T(s_{2}^{\prime})$ .
Then it follows from $s_{1}\neq s_{2}$ that $s_{2}=s_{1}^{\prime}-(s_{1}-s_{1}^{\prime})$ . Consequently $s_{1}^{\prime}\geq s_{1}-s_{1}^{\prime}$ .
This is contrary to the fact that $s_{1}^{\prime}$ is an arbitrary small positive number.
In the ca8e where $T^{+}(s_{3}^{\prime})=T^{+}(s_{2}^{\prime})$ etc., the same arguments hold.

Theorem 4.6. Let $V$ be a torse-forming vector field satisfying Con-
dition (iv) and having O-points. If there exists a $W$ such that $\chi(W)\geq 2,\cdot$

then
(i) there exists only one O-point.
(ii) $\chi(W)=2$ for all $W$ but one. 12)

Proof. Let $x_{0}$ and $s$ be the same symbols as used in the proof of
Lemma 4.9, denote $W\{T^{+}(s)\}$ by $W(s)$ briefly, and if $\chi(W(s))=2$ , define a
function $d(s)$ as the arc length of $T^{+}$ between the two points at which
$T^{+}$ meets $W(s)$ . Furthermore let $s_{0}$ be the upper limit of such a value

$\delta$ as the following conditions are fulfilled:

$\delta>s>0\Rightarrow\left\{\begin{array}{l}(4.15)\chi\{W(s)\}=2\\(4.16)d(s)=L-2s\end{array}\right.$

where $L$ is the whole length of $T^{+}$ .
$\overline{12)}$Of course, for the exceptional $W,$ $\chi(W)=1$ .
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Then the following lemma holds:
Lemma 4.10.

(4.17) $0<s_{0}\leq\frac{L}{2}$ .

Proof of Lemma 4.10. Let $\chi\{W(s_{1})\}\geq 2$ . Then $T^{+}(s_{2})\in W(s_{1})$ for some
$s_{2}>s_{1}$ . It is easily seen by considering $s_{1}$ and $s_{2}$ that $\chi(W(s))=2^{13)}$ for a
sufficiently small positive number $s$ owing to Lemma 4.5 and Lemma 4.8.
Besides (4.16) holds likewise. Hence $s_{0}>0$ .

On the other hand, (4.15) and (4.16) are not compatible for $s=\frac{L}{2}$ .
Hence $s_{0}\leq\frac{L}{2}$ . Thus we have (4.17).

Lemma 4.11. $\chi(W(s_{0}))=1$ .
Proof of Lemma 4.11. Assume that $\chi(W(s_{0}))\geq 2$ . Hence it follows

that $\chi(W(s_{0}))=2$ . It is evident that, if $s\rightarrow s_{0}(>0)$ is sufficiently small,
then $\chi(W(s))\geqq 2$ . Consequently $\chi(W(s))=2$ . If (4.16) does not hold for such
$s$ , then $d(s)=L-2s_{0}$ as we see easily from Lemma 4.2. On the other hand
$T^{+}[L-\{s_{0}-(s-s_{0})\}]\in W\{s_{0}-(s-s_{0})\}$ . Since $L-\{s_{0}-(s-s_{0})\}=s+L-2s_{0}$ ,
$T^{+}[L-\{s_{0}-(s-s_{0})\}]\in W(s)$ . This means that $W(s)=W\{s_{0}-(s-s_{0})\}$ meets
$T^{+}$ at least three times. This can not arise because of Lemma 4.9. Hence
(4.16) likewise holds for $s$ sufficiently close to $s_{0}$ . But this is contrary to
the definition of $s_{0}$ . Thus the above lemma has been proved. What
remains for us is to prove the

Lemma 4.12.

(4.18) $s_{0}=\frac{L}{2}$ .

Proof of Lemma 4.12. Let $s$ be smaller than $s_{0}$ . Then $W(s)\ni T^{+}(s^{\prime})$

for some $s’>s$ . According to Lemma 4.5, $T^{+}\{s^{\prime}-(s_{0}-s)\}$ or $T^{+}\{s’+(s_{0}-s)\}$

$\in W(s_{0})$ . Hence $s^{\prime}=s_{0}+(s_{0}-s)$ , because $W(s_{0})$ and $T^{+}$ meet together only
once. On the other hand $s^{\prime}=L-s$ from (4.15) and (4.16). Consequently
(4.18) can be derived.

Lemma 4.13. Let $V$ be a torse-forming vector field satisfying Con-
dition (iv). Then the number of the O-points of $V,$ $N(V)$ , is at- most 2.

Proof. Assume that there are more than two O-points and let
$x_{1},$ $ x_{2},\cdots$ be those O-points. Let $W_{1},$ $W_{2},$ $\cdots$ be maximal transversal
hypersurfaces sufficiently close to $x_{1},$ $ x_{2},\cdots$ respectively. Let $U(x_{2})$ be

13) This shows that $L$ is finite.
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such a neighborhood of the O-point $x_{2}$ as stated in Theorem 3.1. We can
assume $W_{3}\subset U(x_{2})^{c}$ . Since $ T_{\cap}^{+}W_{1}\neq\phi$ , $ T_{\cap}^{+}W_{2}\neq\phi,\cdots$ , let $T^{+}(s_{1})\in W_{1}$ ,
$ T^{+}\in W_{2},\cdots$ , provided that we assume $ s_{1}<s_{2}<\cdots$ Then after starting
from $T^{+}(s_{1})$ and reaching $T^{+}(s_{2}),$ $T^{+}$ must tend to $x_{2}$ without going beyond
$U(x_{2})$ . This means that $T^{+}$ has a O-point between $T^{+}(s_{2})$ and $T^{+}(s_{3})$ .
This is contrary to the definition of $T^{+}$ (see \S 3).

By virtue of the above-stated theorems, we can easily see that the
following theorems hold good. It seems to the present author that these
theorems are a satisfactory answer to the topological aspect of the pro-
blem which is given rise to in the introduction of the present paper.

We shall deal with the metric aspect of the problem in \S 5.

Theorem 4.7. If a 2-differentiable complete Finsler space $M$ admits
a torse-forming vector field in the large $V$ satisfying Condition (iv). then
the number of the O-points of $V$ is at most 2 and the type of $M$ is de-
composed into the following four:

I. The case in which $N(V)=1$ .
This case is divided into the following two:
i) All geodesics throgh the O-point deverge to the infinity, and they

cover the whole space one-foldly excepting for the O-point.
ii) All geodesics throgh the O-point are simply closed, and they cover
the whole space one-foldly excepting for the O-point.

II. The case in which $N(V)=2$ .
All geodesics through one of the O-points reach the other O-point, and
they cover the whole space one-foldly excepting for the O-points.

III. The case in which $N(V)=0$ .
The geodesic conruence tangent to $V$ covers the whole space cxclusively.
All geodesics of the congruence are homeomorphic to a straight-line
or a torus.
Corollary. If a 2-differentiable Finsler space $M$ admits a torse-

forming vector field in the large $V$ satisfying Condition (iv) and having

at least one O-point, then the space form of $M$ can be classified in the
following way accoding to the number of the O-points of $V$.

I. $M$ is homeomorphic to $a$ Euclidean space or a projective space
$(N(V)=1)$ .
II. $M$ is homeomorphic to a sphere $(N(V)=2)$ .
Corollary. If a 2-differentiable eomplete Finsler spaee admits a

torse-forming vector field in the large satisfying Condition (iv) -and
having at least one O-point, then the space is simply connected.
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Theorem 4,8. If a 2-differentiable complete Finsler space admits
a torse-forming vector field having two O-points $x_{0}$ and $x_{1}$ and if $A(x_{0})$

$A(x_{1})>0$ , then there exists at least one $W$ over which $||V|t=+\infty$ .
Corollary. A 2-differentiable compact Finsler space admits a torse-

forming vector field having one and only one O-point, then there exists
at least one $W$ over which $||V||=+\infty$ .

\S 5. The objective of this paragraph is to determine the metric of
a Finsler space admitting a torse-forming vector field in the large to the
fullest extent. Let $M$ be a complete Finsler space which admits a torse-
forming vector field in the large $V$ satisfying Condition (iv). Then we
set

(5.1)
$H(x)=e\int_{F(x)}\frac{A(x)}{1|V||}ds$

and call it the characteristic function of $M$, provided that the integral

of the right-hand member is made from a fixed $W$ to $x$ along $T(x)$ .
Hence $H(x)$ can not generally be a single-valued function.

Theorem 5.1. $Tn$ order that a point $x_{0}$ be $a$ O-point of $V$, it is
necessary and sufficient that

(5.2) $\lim_{x+x_{0}}H(x)=0$ .

Proof. Assume that (5.2) holds. Let $T$ be a trajectory passing
through $x_{0}$ and $T(O)$ be $x_{0}$ . Then

$\int^{s}\frac{A}{\{|V||}ds$

$\lim_{\rightarrow 0}ea$
$=0$ .

Accordingly

$\lim_{s\rightarrow 0}\int_{a}s\frac{A}{||V||}ds=-\infty$ , and $\lim_{s-\succ 0}||V||=0$ ,

The converse is obvious.
In what follows, we assume that $V$ has at least one O-point, and

every trajectory has the arc length measured from $a$ O-point as its
parameter. We say that $V$ satisfies H-condition, if $H(x)=H(x^{\prime})$ for
$x,$

$x^{\prime}\in W$. We write $W(s)$ instead of $W\{T(s)\}$ . Then there exists a
natural homeomorphism between $W(s)$ and $W(s^{\prime})$ for $0<s,$ $s’<L$ , where
$L$ means the constant length of the trajectories, including $ L=+\infty$ . We
denote it by $\Omega(s, s’)$ .

Now consider a mapping which assigns each element of $W(s)$ to the

unit initial vector of $T(s)$ , that is: $\{\frac{dT(s)}{ds}\}_{s=0}$ . We denote it by $\Omega(s)$



86 T. Maebashi

briefly. $\Omega(s)$ is a diffeomorphism between $W(s)$ apd the unit sphere $S_{u}^{n-1}$

of center $T(O)$ (in the tagent space of $T\langle O$)). $\Omega(s)$ can be extended to
a 1-1 bundle map from the tangent bundle with base space $W(s)$ to the
tagent bundle with base space $S_{u}^{n-\perp}$ . We denote it by $d\Omega(s)$ . On the
other hand, left $d\Omega(s, s^{\prime})$ express the natural bundle map from the tangent
bundle $\mathfrak{B}_{1}$ with base space $W(s)$ to the tangent bundle $\mathfrak{B}_{2}$ with base space
$W(s^{\prime})$ and let $d\Omega(s)$ be a bundle map defined in the same way as above.
These tagent bundles $\mathfrak{B}_{1}$ and $\mathfrak{B}_{2}$ are subbundles of the tangent bundle $\mathfrak{B}$

with base space $X$. We can consider a bundle map of $\mathfrak{B}$ onto $\mathfrak{B}$ called
a scaler multiplication in the natural way and we denote it by the scaler
itself. Let $\frac{1}{s’}d\Omega(s, s^{\prime})$ mean the product map of $d\Omega(s, s’)$ and a scaler

multiplication 1 and let $S_{u}^{n-1}$ be identified with a bundle with the base
space consisting of a single point $x_{0}$ . Notice that this bundle can be
considered as a subbundle of $\mathfrak{B}$ . Then we have the

Theorem 5.2.
$\lim_{s^{\prime}\rightarrow 0}\frac{1}{s’}d\Omega(s, s^{\prime})=d\Omega(s)$ ,

namely

(5.3) $\frac{d}{ds^{\prime}}d\Omega(s, s’)=d\Omega(s)$ at $s^{\prime}=0$ .

Proof. Describe a curve $\gamma$ on $W(s)$ and let its equation be $x=x(\tau)$

$(0\leq\tau\leq 1)$ . Next consider a function given by the equation: $f(s^{\prime}, \tau)$

$=\Omega(s, s^{\prime})x(\tau)$ . Then

$\frac{d}{ds’}d\Omega(s, s^{\prime})\frac{dx}{d_{\mathcal{I}}}=\frac{d}{ds’}\frac{d}{d_{\mathcal{T}}}f(s’, \tau)=\frac{d}{d_{T}}\frac{d}{ds’}f(s’, \tau)$

$=\frac{d}{d_{T}}\Omega(s)x(\tau)=d\Omega(s)\cdot\frac{dx}{d_{T}}$ at $s^{\prime}=0$ .

Thus we have obtained (5.3).

By virtue of Theorem 2.2, we see that $\sqrt{H}14$ ) has a derivative in
every direction at $x_{0}$ (more strictly speaking a derivative for every
vector) and the derivative is different from $0$ . We denote the derivative
for a vector $X$ by $(d\sqrt{H})_{0}X$. Then we have the

Theorem 5.3.

(5.4) $||d\Omega(s)X||=\frac{(d\sqrt{H})_{0}\circ\Omega\{s(p(X))\}p(X)}{\sqrt{H\{p(X)\}}}$ ,

14) $\sqrt{H}$ can not be differentiable at $x_{0}$ .
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where $p$ is the projection of $\mathfrak{B}$ and $s(x)$ expresses the distance along

$T(x)$ from the O-point and $x$ .
Proof. It is readily seen that

$||d\Omega(s, s^{\prime})X||$ : $||X||=\sqrt{H\{\Omega(s,s^{\prime})p(X)\}}:\sqrt{H\{p(X)\}}$

$\frac{||d\Omega(s,s^{\prime})X||}{s’}=\{\frac{\sqrt{H\{\Omega(s,s^{\prime})p(X)\}}}{s’}/\sqrt{H\{p(X)\}}\}||X||$ .

By virtue of (5.3), we obtain

$||d\Omega(s)X||=\lim_{s^{\prime}0}\Vert\frac{d\Omega(s,s^{\prime})X}{s^{\prime}}\Vert=\{(d\sqrt{H})_{0}\Omega(s)p(X)/\sqrt{H\{p(X)}\}\}||X||$ .

Let $\gamma$ be a curve on $W(s)$ . Then $\Omega(s)\gamma$ is curve on $S_{u}^{n-1}$ . Then we
have a corollary of Theorem 5.3.

Corollary.

The length of $\gamma=l_{\gamma}^{\Gamma}\frac{\sqrt{}\overline{H(x)}}{(d\sqrt{H})_{0}\Omega(s)x}||d\Omega(s)dx||$

$=\int_{\Omega\dot{(}s)\gamma}\frac{\sqrt H\{\Omega(s)^{-1}z\}}{(d\sqrt{H})_{0}z}||dz||$ ,

where $||dz||$ means the norm $w\dot{i}$th respect to the metric of $S_{u}^{n-1}$ .
Theorem 5.4. Every $W$ is conformal to a sphere. .
Besides a conformal mapping between $S_{u}^{n-1}(x_{0})$ and $W(s)$ is given by

$\Omega(s)$ .
Theorem 5.5. In order that $\Omega(s)$ be homothetic, it is necessary and

sufficient that $V$ satisfies H-condition.
If $V$ satisfies H-condition, then $H(x)$ depends only upon $s$ . That is

the reason why we write $H(s)$ instead of $H(x)$ in this case.
CcrolIary. If $V$ satisfies H-condition, every $W(s)$ is a sphere and

its radius is given by this:

$r(s)=\frac{\sqrt{}\overline{H(s)}}{(\frac{d}{ds}\sqrt{H(s)})_{s=0}}$

.

The following important theorem is likewise obvious from Theorem
5.3.

Theorem 5.6. A complete Finsler space which admits a torse-
forming vector field in the large with at least one O-point is a Rieman-
nian one.

\S 6. In this section we shall make some applications of the pre-
ceding theorems. First we have the
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Theorem 6.1. Let $M$ and $M$ ’ be analytic Riemeannian spaces ad-
mitting torse-forming vector fields in the large $V$ and $V^{\prime}$ respectively.
Let $V$ satisfy H-condition and have at least one O-point $x_{0}$ . Then in
order that $M$ be isometric to $M^{\prime}$ , it is necessary and sufficient that there
exists a mapping $f$ of $M$ into $M^{\prime}$ which $prese\gamma vesA,$ $B$ , and $||V||$ that
$is$ :
(6.1) $A(x)=A’\{f(x)\}$

(6.2) $B(x)=B^{\prime}\{f(x)\}$

(6.3) $||V(x)||=||V^{\prime}\{f(x)\}||$ .
Proof. Let us restrict our consideration on a trajectory $T$ and de-

fine a function $h(s)$ through a relation: $s’=h(s)\Leftrightarrow f\{T(s)\}\in W^{\prime}(s^{\prime})$ , where
the primes indicate symbols with respect to $M$ . Then we have

(6.4) $\frac{d||V||}{ds}=\{A(s)+B(s)||V||^{2}\}$ ,

and using (6.1) and (6.2)

$\frac{d||V^{\prime}||}{ds}=\{A(s)+B(s)||V^{\prime}||^{2}\}\frac{dh}{ds}$ .
By (6.3) -

(6.5) $\frac{d||V||}{ds}=\{A\langle s)+B(s)||V||^{2}\}\frac{dh}{ds}$ .

It follows from (6.4) and (6.5) that $\frac{dh}{ds}=1$ holds on $ 0\leq s\leq\epsilon$ for some
positive number $\epsilon$ or there exists a sequence $\{s_{i}\}_{1\leq i<+\infty}$ such that $\lim_{i\prec-+\infty}s_{i}=0$

and $A(s_{i})+B(s_{i})||V||^{2}=0(i=1,2,\cdots)$ . In the latter case we get $A(O)$

$=\lim_{i-\succ+\infty}A(s_{i})=\lim\{-B(s_{i})||V|\{2\}=0$ .
This contradicts our assumption $A(O)\neq 0$ . Consequently only the former
case arises. Therefore
(6.6) $h(s)=s$ for $ 0\leq s\leq\epsilon$ .
Since $(\frac{d||V||}{ds})_{s=0}=(\frac{d||V^{\prime}||}{ds’})_{s’=0}=A(O)\neq 0$ ,

any transversal hypersurface to $V$ or $V^{\prime}$ in a neighborhood of $x_{0}$ or
$f(x_{0})$ can be determined as equi-valued hypersurfaces of $||V||$ or 1 $V^{\prime}||$ .
Thus we find that $f$ preserves transversal hypersurfaces. It is obvious
that

(6.7) $H(x)=e^{-\int_{a}\frac{A}{||V|}ds}=e^{-\int_{a}\frac{A^{\prime}}{||V||}ds}=H^{\prime}\{f(x)\}ss$
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With the help of Theorem 5.3, (5.6) and (5.7) show that an arbitrary

isometry $u$ between the tangent spaces of $x_{0}$ and $f(x_{0})$ can be extended
to an isometry $v$ between a neighborhood of $x_{0}$ and that of $f(x_{0})$ in the
sense $(dv)_{x_{0}}=u$ . Besides, $M$ and $M$ ’ are simply-connected by the corollary

of Theorem 4.4. Therefore according to H. Hopf-W. Rinow’s theorem ([19]

or [2]), $v$ can be extended to a global isometry between $M$ and $M^{\prime}$ .
We would like to conjecture the following unproved theorem.

Theorem. Let $M$ ana $M^{\prime}$ be spaces stated in the above theorem, and
$V$ and $V^{\prime}$ be vector fields done so. Then in order that $M$ be isometric
to $M^{\prime}$ , it is necessary and sufficient that there exists a mapping $f$ of $M$

into $M^{\prime}$ which preserves $A,$ $B$ , and $H$.
Definition. We call a Riemannian space $R$ a rotation element, if

$R$ admits a torse-forming vector field satisfying H-condition and having
$x_{0}\in R$ as an isolated O-point. 16)

Then we have the
Theorem 6.3. In the 2-dimensional case, a rotation element of center

$x_{0}$ is an equivalent of a Riemannian spaces admitting an isometry group
I such. that dis $(x, x_{0})=dis(y, x_{0})\Rightarrow g(x)=y$ for some $g\in I(x_{0})^{15)}$ (see [5]).

In one of his noteworthy paper [5], W. Rinow pursued what kind of
analytic rotation element (of 2 dimension) can be extended ’ to a complete

space, and his result is one to the effect:
Let us take a geodesic polar coordinate system with $x_{0}$ as center.

In that coordinate system suppose that the line element is given by
$ds^{2}=dr^{2}+g_{22}d\theta^{2}$ . Set $f(r)=\sqrt{g_{22}}$ .

I. The case where the analytic function $f(r)$ has an irregular point.
In this case the extension is evidently impossible.

II. The case where $f(r)$ has no irregular point.
(i) If always $f(r)>0(r>0)$ , then the extension is possible and the
extended space is homeomorphic to a Euclidean plane.
(ii) If $f(a)=0$ and $f(\gamma)>0$ for $0<r<a$ , then in order that the
extension be possible, it is necessary and sufficient that $f(r)$ is a
periodic function with period $2a$ such that $f’(a)=-1$ . In this case,
the extended space is homemorphic to a sphere.
Our next theorem is a generalized one of the above to a non-analytic

space of arbitrary dimension.
Theorem 6.4. Let $A(t)$ and $B(t)$ be continuous functions of one

15) $I(x_{0})$ means the isotropic group at $x_{0}$ of $I$.
16) By a torse-forming vector field, we mean one satisfying Condition (iv).
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variable. Let $R$ be a rotation element with respect to coefficient functions:
(6.8) $A(x)=A$ {dis $(x_{0},$ $x)$ }, $B(x)=B$ {dis $(x_{0},$ $x)$ }.
Let $y(t)$ be the solution with condition $y(O)=0$ of the differential equation
(2.1). Then in order that $R$ can be extended to a complete rotation
element’ with respect to coefficient functions (5.8), it is necessary and
sufficient that one $oJ$ the following mutually incompatible cases arises:

I. $y(t)rs$ always Positive for $t>0.16$ )

II. (i) $y(a)=0$ , (ii) $y(t)>0^{17)}$ for $0<t<a$ , (iii) $A(a)\neq 0$ , and (iv)18)
$e^{\int_{0}^{s}B(t)y(t^{\backslash },dt}$

is bounded on $[0, a]$

In case $I$, the extended space is homeomorphic to $a$ Euclidean space, and
in case $\Pi$, that is homeomorphic to an n-dimensional sphere or an n-
dimensional projective space. Furthermone the extended Riemannian
space is uniquely determined in case the extension is possible and in
case the space form is given.

In this theorem, $A(t)$ and $B(t)$ are assumed not to vanish constantly
on any interval.

Proof. We treat only of Case II, because Case I can be dea.lt with
in an analogous way. Let $I$ be an interval $(0, a)$ and $S_{u}^{n-1}$ the unit sphere.
Let $J=S_{u}^{n-}$ $\times I$ and consider a product bundle $J\rightarrow^{p}S_{u}^{n-1}$ , where $p$ means
a natural mapping. To every point of $J$ we assign a vector which is
tangent to the fibre and has an absolute value $y(t)$ . The direction is
assumed to be appropriately chosen so as to be continuous. Let $K’=\{t|$

$y(t)=\pm\infty,$ $t\in I$ }. It is obvious that $K^{\gamma_{C}}$ is open. $K^{\prime}$ has no inner point
because of $B(t)$ never vanishing on any interval (if $K^{\prime}(t)$ has an inner
point, then $B(t)=0$ in a neighborhood of that point). Hence $K^{\gamma-0}=K^{\prime c- c}$

$=M^{c}=\phi$ . Namely $K^{\prime}$ is nowhere dense. Let $K=S_{ll}^{n-1}\times K^{\prime}$ . Then $K$ like-
wise is nowhere dense. Define a function $Y(s)$ by

$Y(s)=\{\frac{d}{dt^{*}}e^{\int_{t^{*}}\frac{A}{|y_{\backslash }^{\prime}t)|}dt}\}_{t^{*}=0}=A(a)e^{\int_{0}By_{\backslash }^{\prime}t^{\backslash }dt}ss$

This function never vanishes for $0<s<a$ . Let the line-element at $x\in J$

be given by this:
$ ds^{2}=\langle dp^{*}(dx), dp^{*}(dx)\rangle+Y\{p^{*}(x)\}\langle dp(dx), dp(dx)\rangle$

where $p^{*}$ is a natural mapping to the fibre and the metrics of the base
and the fibre are the natural ones. It is readily seen that manifold $J$ with

17) If $|y(t_{0})|=+\infty$ , then $y(t_{0})$ is assumed to be $+\infty$ .
18) This condition may perhaps be verified from the other conditions.
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the above metric can be compactified by adding one point to either end
of $J$, if condition (iii) is fulfilled. As a matter of fact,

$\lim_{t’ a-0}e=A(a)e\frac{1}{a-t}\int_{t}s\frac{A}{y(t_{\grave{J}}}dt\int_{0}sBy_{c^{t)dt}}^{\prime}$

The manifold obtained like this is what we are seeking for.
Theorem 6.5. $A$ (simply-connected) spherical form admits a torse-

forming vector field in the large $(O.5),$ $a$ (simply-connected) hyperbolic

form (0.6), and $a$ Euclidean form (0.7).

Proof. Take the example of a sphere. Differential equation (0.5)

satisfies the integrability condition on the sphere. By giving an initial
condition $V(x_{0})=0$ , we can make a vector field (0.5) defined in a certain
region on the sphere. We easily find that the region is a hemi-sphere
of $x_{0}$ . Taking the antipodal point to $x_{0}$ as starting point, we can also
define $V$ over the other hemi-sphere. The equator is the common hyper-
surface of singularity. On it, the absolute value of $V$ diverges. In a
sense, we may consider $||V||=+\infty$ . It is easily seen that $V$ defined in
such a way make a torse-forming vector field in the large. The other
cases are dealt with in an analogous way, but it is interesting to note
that in the cases excepting for the spherical no discontinuity appears.

Theorem 6.6. If a space admits such a type of torse-forming vector
field in the large as (0.5), (0.6), or (0.7), then the space is a (simply-
connected) spherical form, $a$ (simply-connected) hyperbolic form, or $[$

Euclidean form.
Proof. For example, take (0.5). Along a trajectory we have

(6.9) $\frac{d||V||}{ds}=c_{2}(1+||V||^{2})$ .

In the case of the spherical form likewise, we have precisely the same
equation as (6.9). Hence by virtue of Theorem 6.4, the space in question
must be isometric to the spherical form.

Since the proof of Theorem 6.5 is also available for the spaces of
constant curvature, we have the following well-known classical theorem.

Theorem 6.7. A simply connected complete Riemannian space of
constant curvature $c$ is isometric to one of the spaces:

(1) $A$ euclidean space, if $c=0$ ; (2) A hyperbolic space, if $c<0$ ;
(3) A spherical space, if $c>0$ ([17] or [22]).

Mathematical Institute,
Hokkaido University, Sapporo.
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