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§ 1. Introduction. Let F, ., be an n41-dimensional Finsler space
with the fundamental function F'(«f, 2%) (=1, 2,-.--,2+1).” At every
point with coordinate («f) in F’,,, we obtain an n+1-dimensional Min-
kowski space M,,;, whose indicatrix I, is given by the end pomts of the
vectors (XYs at the origin (x7) satlsfymg the equation

(1.1) 9.,(0, X)X X7 =1 (g”(x X)= 82F(x X) /aXtaXf)

At any point (x7), the quadratic form for any fixed vector X;:

(1.2) 9.(xe, X)) X X7=1 ’

defines a hyperquadric I* which is in double contact with I,, at two
points of coordinates (X{) and (—X/J) respectively.

L. Berwald [5],2 E. Cartan [6] and many others regarded a, Finsler
space as a space of line-elements (z% 2’%). From this point of view,
we can obtain for each line-element («f, 2;°) an m+1-dimensional tangent
Euclidean space E,,,(xi x') whose indicatrix is a hyperquadric I} deter-
mined by (1.2) by putting X/=ua5'. Under this consideration the con-
nection in F,,, was established by defining a suitable correspondence be-
tween neighbouring tangent Euclidean spaces E., (¢, #'*) and E’n+1(xi+daci

x' 4 dx'?).

Recently W. Barthel [1] [4], A. Kawaguchi [9], D. Laugw1tz [10]
and H. Rund [11] reconstructed the foundation of the theory of .Finsler
space from the stand point that the Finsler space is a point space but is
not a line-element space, that is to say, the tangent space at each point
(xf) in F,,, should be regarded as a Minkowski space with an Indicatrix
determined by F'(zi, X?)=1. On account of this fact, in order to establish
the theory of Finsler space, it becomes an important problem to study

1) For the sake of convenience, we suppose that the dimension of a Finsler space is
n+1, because in the present paper we shall discuss malnly about the theory of transforma-
tions in an n-dimensional- indicatrix I,.

2) Numbers in brackets refer to the references at the end of the paper.
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the properties of Minkowski space. However since the foundation of the
theory of Minkowski space depends on the structure of the indicatrix, it
is necessary for us to study the properties of indicatrix in Minkowski
space. From this point of view, A. Kawaguchi [9] and T. Sumitomo [12]
developed the reduction theorems of Finsler space, namely, they gave
various conditions by which the Finsler space can be regarded essentially
as a Riemannian space and also gave interesting geometrical meanings
of them. One of those results showed us that a Lie group of rotations
is intransitive on I, and if it is transitive, the Minkowski space M, ., is
to be euclidean in essential and then the considered Finsler space F) .,
may be regarded as a Riemannian space, where the rotation means a
centro-affine transformation in M,,, which leaves invariant the indicatrix
I,

The present author wishes to study more precisely the properties
of a Lie group of rotations. As will be shown in §3, I, may be
regarded as an m-dimensional compact Riemannian space whose metric
tensor is naturally induced from the metric of M, , and it is remarkable
that the Riemannian space admits a symmetric covariant tensor of order
three. In the present paper we shall study, in an n-dimensional compact
Riemannian space I,, the properties of point transformations which are
induced ‘on I, by rotations in M,,;. .

In §2 the fundamental concepts of Minkowski space will be given
and we shall give a definition of a rotation in M,,;. §3 devoted to
show some characters of an n-dimensional compact Riemannian space
I,. In' §4, we will show that an infinitesimal point transformation
w*=u*+7*(u)ét coincides with the transformation induced on I, by an
infinitesimal rotation in M,,; when the condition %g.,=27"A4,;, be satis-
fied, where % denotes Lie differential with respect to the above stated
infinitesimal transformation and A.;, is a component of a symmetric
covariant tensor defined in I,. Since Lie differential is a main tool
in our discussion, 8§ 5 devoted to give some formulas on Lie derivatives
and several fundamental- relations which will be useful in the follow-
ing discussions. .

When an indicatrix admits an 1ntrans1t1ve group of rotation, it
becomes an interesting problem to study the connection between struc-
tures of the indicatrix and those of the intransitive group. An example
will be given in §6 to show some those connections. The integrability
conditions of the infinitesimal point transformation, induced on I, by
an infinitesimal rotation in M,,,, are given in §7. §8 contains some
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theorems concerning with properties of infinitesimal transformations in
I,, and also several characters of Lie group of the transformations will
be given at the end of §8. ’

The present author wishes to express h1s sincere thanks to Dr. A.
Kawaguchi and Dr. Y. Katsurada for their constant guidances and
-criticisms, and also thanks to Mr T. Sumitomo who gave the author
‘many valuable suggestions. :

§2. Preliminaries and definition of rotation in M,,;. Minkowski
space M,,, is an m-+1-dimensional affine space in which the distance be-
tween two points P=(P* P%-.., P"*") and Q@=(Q" Q%---,Q"*") be deter-
mined by F(Q@—P). In the present paper we put the following assump-
tions about the function F(X)=F (X", X?-.., X"*"):
(I) F(X)>0 for X=0, :

(II) F(X)=F(—X),

(III) F(pX)=pF(X) for p>0,

av) FX )+F(Y)>F(X—|— Y) for llnearly 1ndependent vectors X
and Y,

(V) F(X) is contlnuous and continuously differentiable sufﬁmently
many times,

(VI) regular, i.e. the matrix of ‘
@=Lk =12 e

7 0XioX"* T

has rank n-+1, where L=%}F?

In M,,, the indicatrix is given by the equation
(2.1) ‘ F(X', X2, X" =1,
namely, I, is an n-dimensional hypersurface consisting of all points X=(X?,
X%..., X" which satisfy (2.1), where X® be regarded as coordinates of
the end point of the radius vector at the origin 0=(0,0,---, 0)- of the
coordinate system.

Let us consider any centro-affine transformation A, in M,,,, whose
centre coincides with the origin 0=(0, 0,---, 0), i.e.

(2.2) A Xi=aiXi (aj-zé(l)nst. and det. [a}[Z0).

If the relation F(X)=F(X) holds good for any vectors X° and X', that
is to say, the indicatrix I, remains unaltered under a transformation A4,,

3) Throughout the present paper the Latin indices <, 7, k,--- are supposed to run over
the range 1,2,---,n+1. :
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we call the transformation the rotation in M, ;. Denoting by "
(2.3) Xi=(05+&0t) X=X +£.X 0t
the vinﬁnitesimal transformation of the centro-affine transformation A4,
we find that &;X’ is a vector which gives a general 1nﬁn1tes1ma1 trans—
formation of A,.
V 1 adg,;
Now, putting Cijk(X)_Eﬁf?
covariant tensor. Then, as we have :
| 7 _1 m< 99ne | O9m _ 09 >=Ci_
{jk} 27 \Goxr Taxr axr )T
we can define a covariant derivative of a tensor T’ by
T _
(2.4) = % 2+ T5Cl— TClu— TpClhs .
Making use of the covariant derivative, we ean obtain the Lie deriva-
tive of a tensor 7% with respect to an infinitesimal transformation

Xi=X'+£&4(X)ot as follows:

C.;x is a component of a symmetric

(2f5) _ - XTH="T: kuf Thst+ Tutt,+ThE .
Accordingly, for a generating vector &;X’ we have from (2.4)
(2.6) (XN =§+&XCS .

From the definition, rotation in M,,, is characteriied by the equa-
tion Xg,;=0. Making use of (2.5) and (2.6) we find that :
(2-7) : Xgij:gkisg‘l‘gkjglf"‘zcijkéle:

must be satisfied for an infinitesimal rotation.

The last equation is also obtained by the following way. By virt_ue
of the assumptions (III), (IV) and _(V), we can see that the covariant
vector X,=g,;,(X)X"* represents a hyperplane which is parallel to a hyper-
plane tangent to the indicatrix I, at the point (X?). On the other hand
if we put - o -

1 oF 1 ;
2.8 Y =— "~ —_ =~ ¢g..X/ ,
(2.8) *=FoxF oL v
we find that the equation of the indicatrix I, can be expressed by
X*Y,=1, where X* denotes current coordinate. Then if the point (X*)
lies on the indicatrix, (2.8) gives us the relation '

: oF
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According to the deﬁn_ition.‘of rotation, F'(X) is an absolute invariant
of an infinitesimal transformation (2.3). Then, by means of (2.9) it
should be satisfied that - ,

(2.10) XF=£&X'X,=g, &X' X"=0.

Since g,,(X") is homogeneous of degree zero with respect to X?,
C;;x»(X)X*=0 holds good. Therefore, differentiating the relation (2.10)
with respect to X' and X7, we obtain (2.7).

As C,;(X) is a symmetric tensor, by means of (2.4)-(2.7) we can
easily see that

XC-ijk:‘%‘gih{(ngh)m + (X9, W) (ngk)lh}

Therefore, if Xg,,=0 holds gobd, we have XC;jk=0.

Theorem 2.1. An infinitesimal rotation leaves invariant the sym-
metric tensor C,,,.

A set of all rotations forms a subgroup of a group of centro-affine
transformations. If the indicatrix I, admits an r-parameter Lie group
G, of the rotations, its point is a fixed point of G, or lies on one of the
family of affine W-submanifolds determined by G,. According to the
remarkable fact obtained by A. Kawaguchi [9], if G, is transitive on
the indicatrix, it is an affine W-hypersurface and because of our assump-
tions stated in § 2, the indicatrix must be a hyper-ellipsoid. Then, the
considered Minkowski space is to be euclidean in essential. This is the
fundamental conclusion for our following discussions.

8§ 3. Indicatrix of Minkowski space. For the. convenience of our
discussion, following to the study of A. Kawaguchi [9] we shall give some
fundamental properties of Riemannian space I,. As indicatrix I, is an
n-dimensional hypersurface in an 7-1-dimensional Minkowski space M, ,,
we may express the indicatrix I, by n-+1 equations involving » para-
meters as .

(3.1) C Xi=Xiu). (i=1,2,---,n+1; a=1,2,--., n)®

This means that we can regard I, as -an n-dimensional manifold with
coordinate system (u*). According to (2.9), if the point (X?) lies on I,
the equation of I, is reduced to X, X?=1. Thus we get ‘

4) Throughout the present paper, the Greek indices «, 8, r,--- take the values 1, 2,
cery, n. :
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3.2) X,X:=0. (Xs%‘f— Rank(a‘:fz)_n>

From the assumptions (I), (III), (V) and (VI), if we put g.,(u)
=¢,(X)X:X{, the indicatrix I, may be regarded as an n-dimensional
compact Riemannian space whose fundamental metric tensor is g.(u).

In consequence of (3.2), n+1 vectors X} and X' are linearly inde-
pendent and they form an ennuple (X7, X?) at every point on I,. As
usual, putting

(3 -3) - fcijk'—_f"—“ =A,

it is evident tyhatzC,.j,c—_-A,-j;,c holds good at every point on I,. If we
denote by A.; the induced quantity of the symmetric tensor 4,;, then
it follows that :

(3.4) A =AWXIXIXE, A=A XiXPXT,
where X, =X,.0% and X,.=g,,X..

Denoting by X} and X,., the covariant derivatives of X, and X,
with respect to the Christoffel symbols constructed by g.; we have the
following decompositions with respect to the ennuple (X}, X?%):

(35) :,sz —A;.ﬁaXai_gaﬁXi ’
(3.6) Kis=—Aeps Xd —9ap Xy,
where A.7=A,;9".

Making use of (3.5), by means of the Ricei’s identity Xj,,—Xj,,
=X/R%,;, we can easily obtain
(3 7) ) Raﬁra—'saﬁrd+(ga7’gﬁﬂ gar’gﬂf) ’
where Ram 9..R5%.; and

Ry=T0 TR SHa 16 Hat
Suprs=Aif Ay s—Aur A
Itb is remarkable that, by virtue of (3.3) and (34), A.; is a com-
ponent of a sy_mmetric tensor in I, and also it satisﬁes the relation
(38) C Aun =40, Y

Summarizing the preceding results, since I, is closed, we can regard
the indicatrix I, as an n-dimensional compact Riemannian space, provided

5) Throughout the present paper, semi-colon is used to represept covariant differentiation
with respect to the Christoffel symbols made by gus. -
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that there exists a symmetric tensor A,,, which satisfies the relation
(8.8), and the curvature tensor has the form (3.7).

8 4. Infinitesimal rotation on I,. According to the definition given
in §2, the rotation transforms any point on the indicatrix I, onto the
point on the same. Now, we shall seek the condition under which an
infinitesimal point transformatlon w*=u"+7*(u)dt on I, coincides with
rotation in M, .. :

In consequence of (2. 10) it follows that a direction of the generat-
ing vector §X’ of an infinitesimal rotation (2.8) is contained in a tangent
hyperplane of I, at a point (X®). Hence we may put a component of the
vector £:X’/ such that '

(4.1) EX7 =p"(u) X} . ‘
Differentiating the equation £:X’X,=0 with respect to w*, it becomes
(4.2)  XEXT+H X EXI=0.

Moreover if we covariantly differentiate (4.2) with respect to u’, we get
Xwﬁngj‘l—Xf;X&’p +X¢aE§X,ej+Xiﬁ§§X3:0

However, substituting (8.5) and (3.6), in consequence of (2.10) and (4.2)
it is easily seen that X, ,£:X’'+X,£X7=0 holds good. Therefore, we
can reduce the above expression in the form

(4.3) P Xial§5X7) 5+ X;p(£5X7),a=0 .
Making use of (4.1), we have from (4.3)
(4 4) -Xiav ﬁX +Xza)7 ﬂ+Xzﬂ77 X +Xzﬁ77 sza_o

On the other hand, by means of gaﬁ(u) 9., (X)X;X/ and (8. 5) it is easily
verified that

XzaXﬂ _ga’ﬁ H XzaXﬁr Aa’ﬁf

In consequence of these relations, we get from (4.4) 7, .8+77ﬂa—277 Agr.
Therefore we have

Theorem 4.1. If an infinitesimal point transformation u° ——u

+n*(w)dt on. I, cm/nczdes with a rotation in M,,,, it must be satisfied
that

(4.5) , Dasp+0pa=27"Asg, .

When an infinitesimal point transformation on. I, satisfies (4.5), we call
it the infinitesimal rotation on I,. :
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§ 5. Fundamental relations and formulas on Lie derivatives. In
the following we give some fundamental formulas on Lie derivatives,
which will be useful in the discussions of the present paper, and derive
several relations for an infinitesimal rotation on I,. :

Denoting by 8T.2, the Lie derivatives of an arbitrary tensor T3,
with respect to an 1nﬁn1tes1mal transformation #W*=wu"+7" (u)5t it is
given by the form : ‘

(5.1) eT2,=TA . — Tt Tonfut Tharts .
In general we have

(5.2) S{pr}_EQW’[(ﬁg“) +(2967) s—(RGs)s ],
(53) ﬁ{ﬁar}"_'ﬂ?ﬂ;r—R-‘:ir&va ’

(56.4) CR%,:=C{HD:— {5 Dss -

In consequence of Theorem 4.1, making use of the expressionv by
Lie derivatives, an infinitesimal rotation on I, is characterized by the
condition ’

(5.5) 4 8Gap=uspt V0 =27 Aupr -

Also, from (5.5) we get for an infinitesimal rotation on I,
(5.6) Ly*? = — 25" A%,

and substituting (5.5) into (5.2) we have

®;.7 5 =A%, + 0501 A%+ 0§A% s — 9" Aprs) .

§6. Special case. 'When an indicatrix admits an intransitive group
of rotations, we can derive some properties of the indicatrix in connec-
tion with structures of the group. In the following, as an example we
shall consider the special 2-dimensional indicatrix I, in M, and derive
its properties by means of the group structures.

For convenience’ sake, let us denote coordinates of ‘a point in M; by
(x,¥,2) in stead of («!, 2% 2%). If the finite equations of a centro-affine
transformation in M, are given by :

A1+ QY +ay52
g1 X+ UoyY + Asg det. |a,;| 0 :
A3 X+ A3y + Ags”

I

x
(6.1) 1Y
z

all transformations of the type (6. 1) form a 9-parameter Lie group G,
and its symbols are given by
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xfxr yfz) zf.z'v xfyr yfy7 zfya
xf,, uf., =z (Where'fx af , fo=——, fi=—— of )

Now, we shall suppose that an indicatrix I2 is a revolutmnal surface
and equation of it has a form ' '
(6.2) ' F(x*4y% 2)=1.
Since we have from (6.2)

2F xdx+2F ydy+ F,dz=0 (where v=x°+%%) ,

the indicatrix I, admits a transformation determined by a generating
vector with component (y, —, O) namely admits a one-parameter group
of rotations with the symbol Xf=yf, —uaf,, which is one of subgroups
contained in the above G,. In this case, if we denote by P(0, 0, z,) and
Q(0, 0, —z,) two points determined by intersection of I, and 2-axis, then
P and @ are fixed points of rotations.

On the other hand, except fixed points P and Q we may represent
I, by three equations involving two parameters u' and u® such that

r=f@? cosu'. y=sf(@W?)sinu', z=u?,

where we put #*+y*=wv(2)=,%2) and u' denotes angle between radius
vector (x, v, 0) and z-axis. Then we have :

T__ 0% 5_ 0y _ 0z _
Xi:aul—_y’ Xl:aul x; i_'ﬁa 1—0’
(6.3) g 5 _ 5
| 1= 9% _ proosut, Xi= =fsinu, Xi=2 =1,
ou ou’ u?

’ df
h = .
where f e

Putting 3F2(a?+9?% 2) = L(2*+%?%2) and if we denote by gz7 the
components of fundamental metric tensor in M; we have

911=L,,=2L,+4«*L,,, gi3=L.,=42yL,,, 915=L..=22L,.,

(6.4) ,
‘ gEEELyyZZLv+4y2Luvy gE—?;ELyZZZyva’ 935=L,,,
Also, from the definition A;nz_;_ ag “: it follows that
x

b
ot

T va+4x2vav , Airs=2yL,,+4a*yL,,,,

Aits =L .+4x*L,,,,  Aizz=2aL,,+42y°L,,,,
2yL,,+4y°L,,, , Ays5=2¢yL,., Ass3=L,,+49°L,,.,

zL.,,., Asss=yL,.., Az3ss=%L,...

(6.5)

EE

- > 2

1

33

|
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Making use of (4.3), (4.4) and (4.5), we can obtain induced components
gap and A, (a, B,7=1,2) of g75 and A;3z respectively with respect to
the reference system (6.3). After direct calculations we find that

(6 6) g12—973XzXJ'—0 A=Az gszXJX]f-—O Algz——A”kX'X"X’zc—O
- As component of a generatlng vector of one-parameter group with

symbol Xf=yf,—xf, is (y, —z, 0), denoting by (7!, 7°) its induced com-
ponent with respect to the reference system (6.3), it follows that

y:leT+7]2X;—, —x=771X5—|—772X§_, '0—771X3-+772X3_
Therefore, substituting (6.3) into the above relations, we find that 7°= —-5"
holds good except at fixed points P and Q.
Since 7* generates an infinitesimal rotation on I,, in consequence of
(4.5), it should be satisfied that Nasg+Npa =27 Aup,. However this last
relation can be rewritten as follows: ‘ - ’ \

©.7) 7y Bestg,, 20 + 05 T 20 Ay (a, B, 7=1,2).
ou’ u? ou”

Substituting »*= —4; into (6.7) it follows that 09.p/0u'=2A,5. Then, in

consequence of (6.6) we find that g,; and g;, do not contain a variable u!.

This shows us that in our example an infinitesimal rotation on I, coin-

cides with a motion with respect to the metric in I, [8].

Theorem 6.1. In a 3-dimensional Mainkowski space, if I, is a re-
volutional surface, an infinitesimal rotation on I, coincides with a motion
with respect to the induced Riemamnian metric on I, and intersecting
points on I, with its axis of rotation are fixed pomts of the trans-
formation. :

Moreover, as 912—0 it should be satisfied that A,;,=0. Therefore,
by means of this relation and (6.6) we find that Slm_O holds good at
every point except at P and Q. :

In- the followings, we shall study about properties of groups of
infinitesimal rotations on I, under assumptions that I, has no singular
point. '

§7. The determination of groups of infinitesimal rotatnons on I
We shall consider that under what conditions the ‘equation

(7.1) ‘ . R9s=u;5F7p,a =27"Asy

admits one or more solutions. :
By means of (5.3) and (5.6), it follows that
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(7.2) Nigr =" 2(A,, ++R. ﬂra)+77 2(07 6+55A ra—9g" Aﬂra)

On the other hand, by means of the definition of covariant. dlfferentlal
we have

a * of a a
(7.3) aZﬂ =—0"{5s} -+ 7%,
(7.4) Bl

Substituting (7.2) into the last term in right hand side of the second
equation, we can see that both d7*/ou’ and 07;/ou’ are expressed by
linear forms with respect to 7* and 7%, and do not contain higher order
derivatives of these unknown functions. In consequence of the above
observations we have '

Theorem 7.1. In order that a Riemannian space I, admits an
infinitesimal rotation on I, it is mecessary and sufficient that the system
of linear partial equations

on* ' «
(78)  Sl=—n{s s

(7.6) g”f—#(A“p,a+Rpra)+ru(5lApa+5ﬂ o — " Ay — 5ﬁ{ar}+5{p,})

admits solutions »* and 7% under the condition

(1.7) Do+ 0p:a=27" Aasr (s ﬁ—gaﬂ? Ts) -

Now, we shall seek the integrability conditions of the mixed system
of partial differential equations (7.5)- (7 7). Differentiating (7.3) with
respect to u’ it follows that : )

/. oy’ (&} —7° a{aﬁ} 07 .
v oufou’ ou’ ouw’  ou’
If we. substltute the relations (7. 3) and (7. 4) into the right hand s1de of
the above expression, we obtain
8277& _ a 677:!
W—z[ Ser sl ) — 772'{65}+ au’ _GE‘Z—J ®

According to the Ricei’s identity, we may put %5%,—7%5s=—7 R Sy
Therefore 9°7%/0ut?au™>=0 ‘holds good identically. Next, we shall consider
about (7.6).

Covariantly dlﬁ'erentlatmg (7.2) with respect to u°, we obtain

6) We use the notation [ ] for the expression of skew-symmetric part such that Tras
=¥(Tap—Tpo)- o
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U?ﬁ;r;szﬁa(Aflﬂr;a;s‘{‘R-‘:‘Jra;E)‘*"]fs(A?ﬁr;'a+R-‘feri)
+ 70207 A%s;e+03A% 5. — 9% Apys,e)
4 —-1—77?1;5(5;1147;;5,—}—52447,5—g"*Aﬁw) .
In stead of 7};.. in the above equation, we substitute the term obtained
from (7.2) by changing indices «, B and 7 by 6, 2 and ¢ respectively. Then
it follows that : '
(7.8) - » W?ﬁ;r;ezvap-aférﬁa'!—’??z “erse s
where '
P rse= Al s, E+R pra; e+A ﬁw(A"’rs s+ R rea)
+ A% (A%e;0+ R%es) — A%y (Afues— Ries) -
QY5 =0{(A%, s+ R5%5)+ (0] A%s,eF05A% e — 9 Aspy.e)
Al (07 A% +0L A% — 97 A es) + A% (08 A%+ 03 A% — g° A ges)
— A%, (00 A%, —0LA%:+ 9" Aues) . o :
By means of the Ricci’s identity we have

79 srse— Yipsesr = 05a(— 04 R 5 e+ 05 R 1)
On the other hand, from (7.8) it follows that
(7.10) Narie—ipse; 7_776(P broe— ?ear)“"’/az(QMﬁrae “ sar)

In consequence of (7.9) and (7 10), the integrability condltlons are written
in the form

(7.11)  9’(Phee— -79551')+77?1(Q?.lﬁrae;Q?.zﬁadr +oiR5,e—05R5,)=0.
Making use of (3.8) and the Ricci’s identity we find that - ,
Algrise— Algeior =Alps e Alpse; = — A% R e+ A% R+ A% RS e
and therefore, we obtain ‘
(P Srse— Plhesr) =0’ — A% R+ Al R et (R Bre—S.5re)is
+2A45, R a5+ 241 ﬁ[sRIwalrj}
7];(@ prae_Q ﬁsaz+5ﬁR sre 5QR§SrE)
(7.13) =n]i{20(R.5s1110— S 51710) +05( RS — %78);53(-3;'1975—‘3-%75)
— 29" AporeA% 10+ 2A% Al 15} —12:(95S hre+ 9" Spser)
On the other hand, from the relation 7,,;,47,,=27"4,,,, it follows that -

(7.12)

(7.14) 79% = —75,9"" + 21 A%,
Substituting (7.14) into the last term in right hand side of (7. 13), by
means of the 1dent1ty Saprs= —Spars= —S,45;, We get the relation

(7 15) - /N 1(5 rs+guzsﬁaer):2vdA?-aaS5ﬂr€ .
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In conéequence of (7.12), (7.18) and (7.15), the integrability conditions
(7.11) can be expressed as follows: .
7 — A%, R et A%y R et (Ribre—S5r0)10
—2(A% R p1e1s + AlsreR0s1:1— A58 0p1re)}
+ 77 {05( R 5. —S. Sre) —05(R e — 7975)+2A?6[€A?r]ﬁ
+208(RS5s1r10— S So1r15) — 20" Apare A%} =0 .
If we call our attention to the fact that in an mn-dimensional Rie-

mannian space I, the curvature tensor has the form (8.7), we obtain the
following theorem:

(7.16)

Theorem 7.2. In an n-dimensional Riemcmnian space I, the system
of linear partial differential equations for determination of groups of
infinitesimal rotations on In' 1s completely integrable.

Proof. In the following we shall show that (7.16) holds good
identically if the relation (8.7) is satisfied. By means of (3.7) and (7.7).
it is easily seen that ’

7762{5§(R7778'" TE) 5a(R -pre= fﬁrs)+2558(R-Tﬁlr]6—s-7ﬂ|7’]6)} v
=27°(07 Aess — O A -
Also, from (8.7) we must have (R &e—S8%.0),,=0. Accordingly (7.16)
can be rewritten as follows: - :
P {— A% R5e+ A% R e —2( A% RS p1e1s + Alsre R usi 1)
(7.16") — 248,50+ 2(05Acps— 5°‘A,,9,,)}
+70(2A% Al s — 29" A gsreAtr10) =0 .
On the other hand, making use of (5. 3), (5.4) and (5. 7), after some
complicated calculations we get
SRS, =17 {— A% R%et+ A%s R %e— 2(Alup, R ape1s + Alpre R usi 1)}
(7.17) 88 %, + 20" A%0S %e;
+ 7 (A% AL 15— 20" ApsreATr10) - :
Comparmg (7.16") and (7.17), the integrability conditions may be reduced
in the form
LR, —8S %, +7° (25"‘A5,95 25“A,',§5) 0.
However since ang—zn A,s,, it is readily seen that
7°(207 Asﬂa 20¢ A, 55) =079 se— 0:9sr) -

Therefore, finally we have the following form of the integrability con-
ditions: '
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' Q{R-T?Er—s-‘;isr—(5ggﬂr_5¢9198)}: 0
The above relation gives us the result of Theorem 7.2. _

In consequence of Theorem 7.2 and the theory of linear partial
differential equations, we can see that the general solution involves at
most in(n+1) parameters, because the system of partial differential
equations (7.5) and (7.6) with respect to nm-+mn® unknown function 7 and

7%, is completely integrable under %n(n—{—l) conditions (7.7). Then we
have

Theorem 7.3. The maximum order of groups of mﬁnzteszmal 'rota-
tions on I, is equal to in(n—+1).

§8. Properties of an infinitesimal rotation on I,. In the following,
we shall consider properties of an 1nﬁn1te51mal transformation wW*=wu"
+7*(u)dot, where 7~ satisfies the relation

8.1) vw+WM—2vAm—(v—mM@

As a special case, if the vector A® generates an 1nﬁn1te31mal rotation
on I, it should be satisfied that

(8.2) : : Aa;ﬂ+Aﬁ;a:2ArAaﬂr .

Multiplying (8.2) by ¢** and summing for « and B, it follows' that A7,
=A"A,. Slnce I, is a compact Riemannian space, if I, is an orientable
manifold, by means of the theorem of Green, we find that

(8.3) | fm%~fmAw_

In consequence of A’A g”A’A">O (8. 3) implies A’A, —0. There-
fore A,=0 should be held at every point on I,. This means that the
considered :Minkowski: space M,,, is essentially a Euclidean space [9].
Thus we have ‘ :

Theorem 8.1. In I, the generating wvector 7° of an infinitesimal
rotation does mot coincides with the vector A*, otherwise M, ., is essentially
a Euclidean space and the infinitesimal transfo'rmatwn becomes the
rdentity transformatwn : ‘ -

Let us suppose that a vector 7* generates an infinitesimal rotation
on I,. In order that a vector 07", where p is a scalar function, generates
also an infinitesimal rotation on I, it is necessary and sufficient that we
have :

(84) (1077«);,9+(P775);a=21077’14aﬂr .
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However, since the vector 7, satisfies the relation (8.1), we have from
(84)

®5 pmeto.m=0. (p.=-2)
. ou

Replaciﬁg B8 by 7 in (8.5), we have a similar relation
(8.6) | 0t 0,.,=0.
Then, eliminating 7, from (8.5) and (8.6), we get

(8.7 0..(0,:05—0,m,)=0.

The relation (8.7) shows us that if we suppose that p,=0, then p,7;
—p.m,=0 must be satisfied. However, in such a case, since we have
o, s+ p,m, =0, it follows that p,7,=0. Therefore, from our assumption
we should have 7,=0. Accordingly, we must have p,.=0. Then,

- Theorem. 8.2. Two infinitesimal rotations on I, cannot have the
same tragjectory.

Next, let us consider the case when the trajectory for an infinitesimal

rotation on I, be geodesic of the Riemannian space I,. Then we must
have (8.1) and

(8.8) : Das " = O%a s

where p is a scalar function. Multiplying (8.1) by 7"7’ and summing for
a and B, by means of (8.8) we get ’

(8.9) o0’ = Aupr 0y .

On the other hand, if we contract 7* to (8.1) and making use of (8.8)
it follows that

1 ‘
5 (0a1’);67° + 01 =2A05,7°7" .

Moreover, making contraction by 7®, the above “relation becomes
1 «

(8.10) g(vav?);pﬂ-pvmﬁ:&‘lwrv .

Comparing (8.9) and (8.10), we must have (9:7°).,7°=2p(7:7°), namely
L(9:.7"7")=20(9:,7"7"). Consequently it follows that £g,,=2pg,,. This im-
plies that the infinitesimal rotation on I, is’ an infinitesimal conformal
transformation.

Theorem 8.3. I f the trajectory of an infinitesimal rotation on I,

is a geodesic of the Riemannian space I, the transformation.must be
an infinitesimal conformal one. ‘
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Let 7%, (a=1,2,---,7) be vectors of r one-parameter groups of
infinitesimal rotations on I,. Then we have Eaga,g=277§a>Aaﬁ, and from
which it follows that

(8 11) C 8a,gvzﬁ—c (v(a)a /3+77(a)ﬂ a) (C 7)(a)a') ﬁ+(c W(a)ﬁ) —2(0 77(00)14-::4% ’
where c¢* are arbitrary constants. '

If we introduce the notation X,f=1g, ;f , it is a symbol of the
ua

infinitesimal transformation #*=w"+7%,(u)ot. In consequence of (8.11),
we have the following '

- Theorem 8.4. If X, f are symbols of r ome-parameter groups of
infinitesimal rotations om I,, then c¢*X,f s also a symbol of a one-
parameter group of znﬁ’mteszmal rotatwns on I, where c® are arbitrary
constants. . ‘ -

If X,/ are the generators of an r-parameter group, then the trans-
formations of this group consist of the transformations of one-parameter
groups generated by the infinitesimal transformation ¢*X,f and of the
products of such transformations [8' Thus .in consequence of Theorem
8.4, we obtain :

Theorem 8.5. When each of r genm‘dtors of an r—paraméter group
G, of transformations is a generator of a one-parameter group of rota-
tions on I,, every transformation of the group G, is a rotation on I,.
‘ By virtue of the second fundamental theorem of Lie, if » independent
linear operator X,f constitute a complete system of order », then the
transformations of the group, generated by the infinitesimal transforma-
tions ¢*X,f or products of such transformations, form an 7-parameter
group G, of transformations. Then making use of the result of Theorem
8.5 we obtain : '

Theorem 8.6. If X,f are r gemerators of a complete set of one-
parameter groups of infinitesimal rotations on I,, then they are genera-’
tors of an r-parameter group of infinitesimal rotations on I,.

The properties of an infinitesimal rotation on I,, when the trans-
formation coincides with a motion or transformations of other special
classes and also the structures of »-parameter groups of infinitesimal
rotations on I, will be discussed more precisely in ‘the next paper.
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