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Let $R$ be a modulared space 1) with the modular $m(x)^{2)}(x\in R)$ . $R$

or $m$ is said to be finite if $ m(x)<\infty$ for every $x\in R$ .
Since the finite modulars are rather convenient to be treated, they

were studied from earlier steps of investigation on these spaces by some
authors.

W. Orlicz and Z. Birnbaum [6] found a necessary and sufficient
condition (so-called $\Delta_{2}$-condition) in order that Orlicz spaces are finite.
After that, this fact was generalized for an arbitrary monotone com-
pletea) modular by means of finding a formula which characterizes the
finite modular, on non-atomic and atomic spaces by I. Amemiya [1] and
by T. Shimogaki [7] respectively.

On the other hand, H. Nakano [3] defined a modulared fuction $s$pace,
a kind of the generalizations of the Orlicz spaces, and showed that an
arbitrary modulared space could be represented by a modulared function
space. Hence, the modulared function space may be considered as the
most general space among the concrete examples of the modulared space.

In this paper, we shall first characterize the finite modular by its
another formula in the both cases of non-atomic (\S 1) and atomic (\S 2)

spaces. Next, relating to the finiteness of the modular, we consider the
continuity of the modular norms (\S 3). However, our main purpose lies
in the application of the formula in question to the modulared function
space to get a generalization of Orlicz-Birnbaum’s $\Delta_{2}$-condition (\S 4).

Moreover, we discuss the conjugate property of the finite modular in
connection with those characterizations (\S 5).

Unless otherwise statdd, $m$ is always $monoto^{q}ne$ complete throughout

this paper. And that is not too restrictive, because our problems are
ultimately concerned with the modulared function space.

1) The modulared space is defined by H. Nakano [3] and have been studied mainly

by him and his school.
2) Terminologies and notations in this paper are also due to [3].

3) $m$ is said to be monotone complete if $ 0\leqq x_{\lambda}\uparrow\lambda\in\Lambda$ with $\sup_{\lambda\in\Lambda}m(x_{\lambda})<\infty$ implies the

existence of
$\bigcup_{\lambda\in A}x_{\lambda}$

.
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\S 1. Finite Modulars on Non-atomic Spaces.
$0<x\in R$ is said to be an atomic element if $[x]^{4)}\geqq[y]\geqq 0$ implies

$[x]=[y]$ or $[y]=0$ . If for any $x\neq 0$ there exists an atomic element $y$

with $[y]\leqq[x],$ $R$ is said to be atomic. If $R$ does not contain any atomic
element, it is said to be non-atomic.

W. Orlicz and Z. Birnbaum proved in [6] that a non-atomic Orlicz
space $L_{M(\xi)}(\Omega)^{5)}$ is finite if and only if the function $M$ satisfies, for some
$\gamma>0$ and $\xi_{0}\geqq 0$ , the condition:
$(\Delta_{2})$ $M(2\xi)\leqq\gamma M(\xi)$ for all $\xi\geqq\xi_{0}$

where $\xi_{0}$ must be zero if $\mu(\Omega)=\infty$ .
In a non-atomic modulared space $R$ , the result of I. Amemiya [1]

enables us to obtain the following main theorem.
Theorem 1. Let $R$ be non-atomic. $m\dot{\tau}s$ finite if and only if there

exist $K>0$ and $c\in R$ with $ m(c)<\infty$ such that
(F) $m(2x)\leqq Km(x)+m([x]c)$ for all $x\in R$ .

It is evident that (F) implies the finiteness of $m$ . In order to prove
the converse, we show the next two lemmas.

Lemma 1. If $m$ is finite, then there exist $\epsilon,$ $\delta>0\backslash $ such that
$ m(2x)\leqq\delta$ for all $x$ with $ m(x)\geqq\epsilon$ .

Proof. If otherwise, there exists a sequence of elements $x_{\nu}\geqq 0$ such
that

$m(x_{\nu})\leqq\frac{1}{2^{\nu}}$ and $m(2x.)\geqq v(v=1,2, \cdots)$

and consequently, that implies the existence of $x_{0}=\bigcup_{\nu=1}^{\infty}x_{\nu}$ with $m(x_{0})\leqq 1$

by the monotone completeness of $m$ . On the contrary, we have
$m(2x_{0})\geqq m(2\bigcup_{\nu=1}^{n}x_{\nu})\geqq m(2x_{n})\geqq n(n\geqq 1)$

which contradicts the finiteness of $m$ .
Lemma 2. (I. Amemiya). If $R$ is non-atomic and is finite, then

there exist $\epsilon,$ $\gamma>0$ such that
$m(2x)\leqq\gamma m(x)$ for all $x$ with $ m(x)\geqq\epsilon$ .

Proof. Let 6 be the same as in Lemma 1. If $ m(x)\geqq\epsilon$ there exists
an integer $n$ such that

4) $[x]$ denotes the projector by $x:[x]y=\bigcup_{\nu=1}^{\infty}(\nu|x|\cap y)$ for all $0\leqq yeR$ .
5) See \S 4.
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$\epsilon n\leqq m(x)<\epsilon(n+1)$ .
Since $R$ is non-atomic, we can decompose $x$ orthogonally into $\{x_{\nu}\}$ such
that

$x=\sum_{\nu=1}^{n+1}\oplus x_{\nu}$ with $m(x_{\nu})\leqq\epsilon(\nu=1,2, \cdots, n+1)$ .
Therefore

$m(2x)=\sum_{\nu=1}^{n+1}m(2x_{\nu})\leqq(n+1)\delta\leqq\frac{2\delta}{\epsilon}m(x)$

by Lemma 1.
Remark 1. The proofs for Lemma 1 and 2 are simpler than those

given for Lemma 2 by both [1] and [7].

Proof of Theorem 1.
Let $\epsilon$ and $\gamma$ be the same as in Lemma 2. Putting

$(\#)$ $ H\equiv$ {$x;x\geqq 0,$ $m(2[p]x)\geqq(r+1)m([p]x)$ for all $p\in R$ },
$H$ is a directed system. Because, for any two elements $x,$ $y\in H$, since by
putting $[p]=[(x-y\rangle^{+}]$ it follows $x\cdot y=[p]x+(1^{6)}-[p])y$ , we have, for
all $q\in R$

$m(2[q](x\cdot y))$

$=m(2[q][p]x)+m(2[q](1-[p])y)$

$\geqq(\gamma+1)\{m([q][p]x)+m([q](1-[p])y)\}$

$=(\gamma+1)m([q](x\cup y))$

by $(\#)$ . That is, $x\uparrow x\in ff$ and $m(x)<\epsilon(x\in H)$ by Lemma 2. Therefore there
exists $x_{0}=\bigcup_{x\in H}x$ with $ m(x_{0})\leqq\epsilon$ by the monotone completeness of $m$ .

Now, for any $x\geqq 0$ , by Hahn’s decomposition, there exists $[p_{x}]\leqq[x]$

such that
$m(2[p]x)\geqq(\gamma+1)m([p]x)$ for all $[p]\leqq[p_{x}]$

with $m(2(1-[p.])x)\leqq(r+1)m((1-[p.])x)$ i.e. $[p_{x}]x\in H$ which implies
$[p_{x}]x\leqq x_{0}$ . Thus, we have

$m(2x)\leqq m(2[p_{x}]x)+m(2(1-[p_{x}])x)$

$\leqq m(2[x]x_{0})+(\gamma+1)m((1-[p_{x}])x)$

$\leqq m(2[x]x_{0})+(\gamma+1)m(x)$ .
Hence the proof completes by taking $2x_{0}=c$ and $\gamma+1=K$ respectively.

Q.E.D.

6) 1 denotes the identity operator on $R$ .
7) For Hahn’s decomposition theorem, see, for instance, [4; Th. 16.1].
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Remark 2. An immediate consequence of the condition (F) is that
$m$ is upper bounded8) on $(1-[c])R$ . So, if $m$ is finite and $R$ has no
complete element9) then there exists a normal manifold $N(\neq 0)$ of $R$

such that $m$ is upper $b\backslash $ounded on $N$.
In virtue of Th. 1, we can give another proof for Th. 55.10 by

H. Nakano [3].

Corollary (H. Nakano). Let $R$ be non-atomic and having no con-
stant 11) complete element. If $m$ is finite and constant 12‘ then $m$ is upper
bounded.

Proof. For any constant element $c\in R$ , we have
$m(2c)\leqq Km(c)$ .

If otherwise, i.e. there exists a constant $c$ with $m(2c)>Km(c)$ , then there
exists a complete orthogonal system of constant elements $c_{\lambda}(\lambda\in\Lambda)$ such
that

$\frac{m(2c_{\lambda})}{m(c_{\lambda})}=\frac{m(2c)}{m(c)}>K$
$(\lambda\epsilon\Lambda)$

by Th. 55.5 in [3], and so, we have
$m(2[p]c_{\lambda})\geqq Km([p]c_{\lambda})$ for all $[p]$ .

Therefore, for $H$ in the proof of Th. 1, we have $H\ni c_{\lambda}(\lambda\in\Lambda)$ , which
implies the existence of $c_{0}=\sum_{\lambda\in\Lambda}\oplus c_{\lambda}$ because $H$ is order bounded. That

contradicts an assumption because $c_{0}$ is a complete constant element.
Next, if we put $\xi_{c}=\sup_{m(\xi 0)=0}\xi$ for any constant $c\in R$ , we have

$m(2\xi c)\leqq Km(\xi c)$ for all $\xi\geqq\xi_{c}.$ ,

because if $ 0<m(\xi c)<\infty$ then $\xi c$ is also constant. Here, we have $\xi_{c}=0$

because if $\xi_{c}>0$ we have for some $\xi_{1}>\xi_{c}$

$0<Km(\xi_{1}c)<m(2\xi_{c}c)<m(2\xi_{1}c)$ ,

which is a contradiction.
Therefore, we have for any constant $c$

8) $m$ is said to be upper bounded if $m(2x)\leqq rm(x)(x\in R)$ for some $r>0$ .
9) An element‘ $x\in R$ is said to be complete if any $y\in R$ with $x^{\perp}y$ implies $\Psi^{=0}$ .

10) A manifold $N\subset R$ is said to be normal if for any $a\in R$ , there exist $x,$ $y\in R$ with
$a=x+y(x\in N, y\in N^{\perp})$ .

11) A simple element (see 15)) $c\in R$ is said to be constant if

$\frac{m(\xi[p]c)}{m([p]c)}=\frac{m(\xi c)}{m(c)}$ for all $\xi\geqq 0$ and $[p]$ .
12) $m$ is said to be constant if for any $x,$ $y\neq 0$ there exists a constant element $c.\in R$

with $[c]x,$ $[e]y\neq 0$ .



On the Finiteness of Modulared Spaces 17

$m(2\xi c)\leqq Km(\xi c)$ for all $\xi\geqq 0$

which implies that $m$ is upper bounded on $[c]R\neq 0$ where $K$ does not
depend on constant $c$ . Therefore $m$ is upper bounded on $R$ .

Q.E.D.

\S 2. Finite Modulars on Atomic Spaces.
As for an Orlicz sequence space $l_{Mt\text{\‘{e}})}$ , W. Orlicz and Z. Birnbaum

proved in [6] that $l_{M(\xi)}$ defined by a function $M$ with $ 0<M(\xi)<\infty$ for
all $\xi>0$ is finite if and only if there exist $\gamma,$ $\xi_{0}>0$ such that
$(\Delta_{2}s)$ $M(2\xi)\leqq\gamma M(\xi)$ for all $0\leqq\xi\leqq\xi_{0}$ .

In the atomic modulared space, we shall, for the characterization
of the finite modular, obtain the condition (f) which has a closer form
than that by T. Shimogaki [7] in generalizing $(\Delta_{2}s)$ as is shown in the
next theorem.

Theorem 2. $R$ is atomic, then almost finite 18) modular $m$ is finite
if and only if there exist $\epsilon,$ $\gamma>0$ and $c\in.R$ with $ m(c)<\infty$ such that
(f) $m(2x)\leqq\gamma m(x)+m([x]c)$

for all $x$ with $ m(x)\leqq\epsilon$ .
Proof. In order to prove this theorem, we first show that the

finiteness of $m$ implies (f).
Since $m$ is finite, for 6, $\delta>0$ in Lemma 1, we have easily

$(*)$ $\frac{\epsilon}{3}\leqq m(x)\leqq\epsilon$ implies $m(x)\leqq\frac{3\delta}{\epsilon}m(x)$ .
If we put

$(\#\rangle$ $K\equiv\{x;x\geqq 0,$
$m(x)\leqq\frac{\epsilon}{3}$

and $m(2[p]x)\geqq\frac{4\delta}{\epsilon}m([p]x)$ for all $[p]\leqq[x]$

then $K$ is a directed system. In fact, for any two $x_{1},$ $x_{2}\in K$ we have
$(**)$

$ m(x_{1}\cup x_{2})\leqq m(x_{1})+m(x_{2})\leqq 2\cdot\frac{\epsilon}{3}\leqq\epsilon$ .
On the other hand, putting $[p]=[(x_{1}-x_{2})^{+}]$ , we have

$m(2(x_{1}\cup x_{2}))=m(2[p]x_{1})+m(2(1-[p])x_{1})$

$\geqq\frac{4\delta}{\epsilon}m([p]x_{1})+\frac{4\delta}{\epsilon}m((1-[p])x_{2})=\frac{4\delta}{\epsilon}m(x_{1}\cup x_{2})$

13) See \S 3.
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by $(\#)$ . Therefore, by $(*)$ and $(**),$ $m(x_{1}\cup x_{2})<\frac{\epsilon}{3}$ . Similarly, we have

$m(2[p](x_{1}\cup x_{2}))\geqq\frac{4\delta}{\epsilon}m([p](x_{1}\cup x_{2}))$ for all $[p]$ .

That implies $x_{1}\cup x_{2}\in K$. Thus, since $x\uparrow x\in K$ and $m(x)\leqq\frac{\epsilon}{3}(x\in K)$ , there

exists $x=\bigcup_{x\in K}x$ with $ m(x_{0})\leqq\epsilon$ by the monotone completeness of $m$ .
For any $x\geqq 0$ with $ m(x)\leqq\epsilon$ , by Hahn’s decomposition, there exists

$[p_{x}]\leqq[x]$ such that

$m(2[p])x\geqq\frac{4\delta}{\epsilon}m([p]x)$ for all $[p]\leqq[p_{x}]$

with $m(2(1-[p_{x}])x)\leqq\frac{4\delta}{\epsilon}m((1-[p_{x}])x)$ .

By $(*)$ , $m([p_{x}]x)<\frac{\epsilon}{3}$ , and so, $[p_{x}]x\in K$.
Therefore

’ $m(2x)=(2(1-[p_{x}])x)+m(2[p_{x}]x)$

$\leqq\frac{4\delta}{\epsilon}m((1-[p_{x}])x)+m(2[x]x_{0})$

$\leqq\frac{4\delta}{\epsilon}m(x)+m(2[x]x_{0})$ .
$ 4\delta$

Thus, the proof completes by putting $2x_{0}=c$ and $--=\gamma$ .
$\epsilon$

Next, we prove that (f) implies the finiteness of $m$ . For any
$x$ with $ m(x)<\infty$ , there exists $[p_{x}]\leqq[x]$ such that $ m([p_{x}]x)\leqq\epsilon$ and
$([x]-[p_{x}])R$ is finite dimensional. Since

$ m(2([x]-[p_{x}])x)<\infty$

and $ m(2[p_{x}]x)\leqq\gamma\epsilon+m([x]c)<\infty$

by. the almost finiteness of $m$ and by (f) respectively, we have $m(2x)$

$<\infty$ . Q.E.D.

Remark 3. In Th. 2, the assumption that $R$ is atomic is needed
only to prove that (f) implies the finiteness of $m$ .

\S 3. Continuity of Modular Norms Relating to Finiteness of Modulars.
In the modulared space $R$ , we can define the norm:

II $x||^{14)}=\inf_{m(\xi x)\leqq 1}\frac{1}{|\xi|}$ $(x\in R)$ .

14) We can define two kinds of mutually equivalent norms on $R$ . That stated here
is called the second norm and denoted by $||||||$ usually.
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[ $|$ II is said to be continuous if $\inf_{\geqq 1}1|x_{\nu}||=0$ for all $0\leqq x_{\nu}\downarrow_{\nu=1}^{\infty}0$ . $m$ is
said to be almost finite if for any $0<x\in R$ there exists $0<y\leqq x$ such
that $ m(\xi y)<\infty$ for all $\xi\geqq 0$ .

H. Nakano [3; Th. 44.9] proved that if a modular $m$ is almost finite
then the continuity of 11 Il is equivalent to the finiteness of $m$ .

In this section, we shall show that the continuity of 1111 is charac-
terized by the same condition as (f) except for a finite dimensional
normal manifold of $R$ .

Theorem 3. Il 11 is continuous if and only if $the\gamma e$ . exist $\epsilon,$ $\gamma>0$

and a normal manifold $N\subset R$ such that

(C) $\left\{\begin{array}{l}i)thedimensionofN^{\perp}isfi nite\\ii)x\in N,m(x)\leqq\epsilon implym(2x)\leqq\gamma\end{array}\right.$

Proof.
1. The continuity of $||||$ implies (C).
Let $N_{\lambda}(\lambda\in\Lambda)$ be the totality of the normal manifolds in each of

which ii) holds for some $\epsilon,$ $\gamma>0$ (these two numbers may be taken
depending on every $N_{\lambda}$ ). Then for two $\lambda_{1},$ $\lambda_{2}\in\Lambda$ , there exist $\epsilon_{1},$ $\epsilon_{2},$ $\gamma_{1},$

$\gamma_{2}>0$

such that
$x\in N_{\lambda_{1}},$ $m(x)\leqq\epsilon_{1}$ imply $m(2x)\leqq\gamma_{1}$

$y\in N_{\lambda_{2}},$ $m(y)\leqq\epsilon_{2}$ imply $m(2y)\leqq\gamma_{2}$

and so, for $z\in([N_{\lambda_{1}}]U[N_{\lambda_{2}}])R$

$m(z)\leqq{\rm Min}\{\epsilon_{1}, \epsilon_{2}\}$ imply $m(2z)\leqq\gamma_{1}+\gamma_{2}$ .
Therefore the system is directed: $N_{\lambda}\uparrow_{\lambda\in\Lambda}$ and we set

$[N]^{15)}=\bigcup_{\lambda\in\Lambda}[N_{\lambda}]$ .
Proof of i). Suppose the contrary. We can construct a mutually

disjoint sequence of normal manifolds $M_{\nu}(\nu=1,2, \cdots)$ such that
$[N^{\perp}]\geqq[M_{v}]>0$ and $[M_{i}][M_{j}]=0(i\neq j)$ .

and such that ii) is not valid on any $[M_{\nu}]R$. Then there exists a
sequence of elements $\{x_{\nu}\}$ such that

$[M_{\nu}]R\ni x_{\nu}\geqq 0$ , $m(x_{v})\leqq\frac{1}{2^{\nu}}$ and $m(2x_{\nu})\geqq\nu(\nu=1,2, \cdots)$ .
By the monotone completeness of $m$ , there exists $x_{0}=\sum_{\nu=1}^{\infty}\oplus x_{\nu}$ because
$m(\sum_{\nu=1}^{\infty}\oplus_{X_{\nu}})=\sum_{\nu=1}^{\infty}m(x_{v})\leqq 1$ .

15) $[N]$ denotes the projection operator onto $N$.
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This implies

$y_{n}=\sum_{\nu=n}^{\infty}x_{\nu}\downarrow_{n=1}^{\infty}0$ and $ m(2y_{n})\geqq\sum_{\nu=n}^{\infty}m(2x_{\nu})=\infty$

which contradicts the continuity of $||||$ .
Proof of ii). Whithout loss of generality, we can assume $[N]=1$ .

If ii) does not hold on $R$ , there exists $0<y_{1}\in R$ such that

$m(y_{1})\leqq\frac{1}{2}$ and $m(2y_{1})>1$ .

Since $[N_{\lambda}]\uparrow_{\lambda\in\Lambda}1$ , there exists $[N_{\lambda_{1}}]$ such that

$m([N_{\lambda_{1}}]y_{1})\leqq\frac{1}{2}$ and $m(2[N_{\lambda_{1}}]y_{1})>1$ .

We set $x_{1}=[N_{\lambda_{1}}]y_{1}$ . Next, since ii) does not hold too in $[N_{\lambda_{1}}^{\perp}]R$ (if
otherwise, it contradicts the assumption that ii) is not valid on the
whole $R$ ), there exists also $0\leqq y_{2}\in[N_{\lambda_{1}}^{\perp}]R$ such that

$m(y_{2})\leqq\frac{1}{2^{2}}$ and $m(2y_{2})>2$

and so, there exists $[N_{\lambda_{2}}](\geqq[N_{\lambda_{1}}])$ such that

$m([N_{\lambda_{2}}])\leqq\frac{1}{2}$ and $m(2[N_{\lambda_{2}}]y_{2})>2$ .

We set $x_{2}=[N_{\lambda_{2}}]y_{2}$ again. Then, we have $C_{\wedge}^{1}earlyx_{1},$ $x_{2}\in[N_{\lambda_{2}}]R$ and $x_{1}\perp x_{2}$ .
Thus, we can construct consecutively by induction an orthogonal

sequence of elements $\{x_{\nu}\}$ such that

$m(x_{\nu})\leqq\frac{1}{2^{\nu}}$ and $m(2x_{\nu})\geqq\nu(\nu=1,2, \cdots)$ .

This contradicts the continuity of II II by the same reason as is used in
the proof for i).

2. (C) implies the continuity of Il $||$ .
By the definition of the modular, for any $0\leqq x\in R$ there exists an

integer $\nu_{0}=\nu_{0}(x)$ such that $ m(\frac{1}{2^{\nu_{0}}}x)<\infty$ . For any $[p_{\nu}]\downarrow_{\nu=1}^{\infty}0$ , there exists

$\nu_{1}>0$ such that
$[p_{\nu_{1}}][N^{\perp}]=0$ i.e. $[p_{\nu}]x\in N$ for all $\nu\geqq\nu_{1}$ ,

because $N^{\perp}$ is finite dimensional. Therefore there exists $n_{1}\geqq\nu_{1}$ such that
$ m(\frac{1}{2^{\nu_{0}}}[p_{n_{1}}]x)\leqq\epsilon$ and this implies

$ m(\frac{2}{2^{\nu_{0}}}[p_{n_{1}}]x)\leqq\gamma$
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by (C). Further, we can find $n_{2}\geqq n_{1}$ such that

$[p_{n_{2}}]\leqq[p_{n_{1}}]$ with $ m(\frac{2}{2^{\nu_{0}}}[p_{n_{2}}]x)\leqq\epsilon$

i.e. $ m(\frac{2}{2^{\nu_{0}}}[p_{n_{2}}]x)\leqq\gamma$

also by (C). Proceeding.consecutively, there exists $n_{\nu_{0}}$ such that

$ m([p_{n_{\nu_{0}}}]x)=m(\frac{2^{\nu_{0}}}{2^{\nu_{0}}}[p_{n_{\nu_{0}}}]x)\leqq\gamma<\infty$ .

From this, we get $\inf_{\nu\geqq 1}m([p_{\nu}]x)=0$ which implies the cont.inuity of II II
as is easily seen. Q.E.D.

Now next two corollaries are immediate consequences.
Corollary 1. II II is continuous if and only if there exist 6, $\gamma>0$

and $c\in R$ with $ m(c)<\infty$ and a normal manifold $N\subset R$ such that
i) the dimension of $N$ is finite,
ii) $x\in N,$ $ m(x)\leqq\epsilon$ imply $m(2x)\leqq\gamma m(x)+m([x]c)$ .
Corollary 2. Let $R$ be non-atomic. The continuity of 1111 is equi-

valent to the condition (F) on $R$ .
Remark 4. T. And\^o [2; Th. 5] found a necessary and sufficient

condition in order that 1I II is continuous. That condition is nothing

but to say, that there exist 6, $\xi>0$ and a normal manifold $N\subset R$ such
that the dimension of $N$ is finite and $m(\xi x)\leqq 1$ for all $x$ with $ m(x)\leqq\epsilon$ .

Remark 5. If $m$ is simple16) and satisfies the condition (C) then $m$

is uniformly simple17) by Th. 2.1 by S. Yamamuro [8].

\S 4. Applications to the Modulared Function Spaces.

Let $\Omega$ be an abstract space and $\mu$ be a totally additive measure
defined on a Borel field $\mathfrak{B}$ of subsets of $\Omega$ with $\Omega=\bigcup_{\mu(E)<\infty}E$.

Let $\Phi(\xi, \omega)(\xi\geqq 0, \omega\in\Omega)$ be a function satisfying the following con-
ditions: 1) $\Phi$ is a measurable function $\Omega$ (for all $\xi\geqq 0$) and a non-
decreasing convex function of $\xi\geqq 0$ (for all $\omega\in\Omega$); 2) $\Phi$ is continuous
from the left as a function of $\xi\geqq 0$ with $\Phi(0, \omega)=0$ (for all $\omega\in\Omega$); 3)

$\inf_{\xi>0}\Phi(\xi, \omega)=0$ and $\sup_{\xi>}\Phi(\xi, \omega)=\infty$ (for all $\omega\in\Omega$).

16) $s\in R$ is said to be simple if $ m(s)<\infty$ and $m([p]s)=0$ imply $[p]s=0$ for all $[p]$ .
17) $m$ is said to be uniformly simple if $infm(\xi x)>0$ for all $\xi>0$ .

11 $x$ ) $|\geqq 1$
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For any measurable function $ x(\omega\rangle$ on $\Omega,$ $\Phi(|x(\omega)|, \omega)$ is also measur-
able. In stead of writing $\Phi(|\xi|, \omega)$ for $\xi<0$ , we denote merely $\Phi(\xi, \omega)$

too. We denote by $L_{\Phi}$ (or by $L_{\Phi}(\Omega)$ if necessary) the totality of all
measurable functions $x(\omega)$ on $\Omega$ such that for some $\alpha=\alpha(x)<\infty$

$\int\Phi(\alpha x(\omega), \omega)d\mu<\infty$ .

With the order $x\leqq y(x, y\in L_{\Phi})$ if $x(\omega)\leqq y(\omega.)$ a.e. 18) on $\Omega,$ $L_{\Phi}$ is a
universally continuous semi-ordered linear space. We get, moreover, a
monotone complete modular $m_{\Phi}$ defined by

$ m_{\Phi}(x)=\int\Phi(x(\omega), \omega)d\mu$

on $L_{\Phi}$ . So, $L_{\Phi}$ with $m_{\Phi}$ is said to be a modulared function space.
Every semi-normal manifold19) of $L_{\Phi}$ is also considered as a modulared
space, however, in $gene\gamma al$ , it is not monotone complete.

If $\Phi(\xi, \omega)=\xi^{p(\omega)}$ $(\xi\geqq 0, \omega\in\Omega)$ for a measurable function $p(\omega)$ with
$ 1\leqq p(\omega)\leqq\infty$ on $\Omega$ , then $L_{\Phi}$ is denoted by $L_{p(\omega)}^{20)}$ and if furthermore
$p(\omega)=p=constant(\omega\in\Omega)$ then $L_{p}$ is the usual $L_{p}$-space.

If $\Phi(\xi, \omega)=M.(\xi)(\xi\geqq 0,0)\in\Omega)$ i.e. the value of $\Phi$ depends only on $\xi\geqq 0$ ,
then $L_{\Phi}$ is said to be $an$ . Orlicz space and in this paper we denoted it
by $L_{M(\xi)}$ .

$L_{p’\omega)}$ and $L_{M}$ are the two special types of $L_{\Phi}$ .
Let us start by stating the next lemma which makes brief the

discussions in this section.
Lemma. $m_{\Phi}$ is almost finite if and only if

(A) $\Phi(\xi, \omega)<\infty$ for all $\xi\geqq 0$ and $a.e$ . on $\Omega$ .
Proof. It is clear that (A) is valid if $m_{\Phi}$ is almost finite. For the

proof of the converse, we put, for any fixed $E\in \mathfrak{B}$ with $\mu(E)<\infty$ ,
$E_{n}$ , $.=\{\omega;\Phi(n, \omega)>\nu\}\cap E(\nu, n=1,2, \cdots)$ .

Since $\mu(\bigcap_{\nu=1}^{\infty}E_{n,v})=0(n\geqq 1)$ , we can find a subsequence $\{\nu_{n}\}$ such that

$t^{\ell}(E_{n,\nu_{n}})\leqq\frac{\mu(E)}{2^{n+1}}$ $(n\geqq 1)$ .

18) “ a.e. (almost everywhere) ” means always, in this Paper, that “ except on some
$A\in.\mathfrak{B}$ which $\mu(E\cap A)=0$ for all $\mu(E)<\infty$ “.

19) A linear manifold $M\subset R$ is said to be semi-normal if $x\in M,$ $|x|\geqq|y|$ imPly $y\in M$.
20) $L_{p(\omega)}$ is defined and discussed mainly by H. Nakano [3 and 5].
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Putting $E_{1}=\bigcup_{n=1}^{\infty}E_{n,n}$ and $E_{2}=E-E_{1}$ respectively, we have

$\mu(E_{1})\leqq\sum_{n=1}^{\infty}\frac{\mu(E)}{2^{n+1}}\leqq\frac{\mu(E)}{2}$ i.e. $\mu(E_{2})\geqq\frac{\mu(E)}{2}$ .

And so, $E_{2}\subseteqq E-\bigcup_{n=1}^{\infty}E_{n,\nu n}\subseteqq E-E_{n,\nu_{n}}(n\geqq 1)$ implies

$m_{\Phi}(n\chi_{E_{2}})^{21)}=\int_{B_{2}}\Phi(n, \omega)d\mu\leqq\int_{B-E_{n}}\Phi(n, \omega)d\mu\leqq\nu_{n}\cdot\mu(E)<\infty\nu_{n}$

i.e, $\chi_{E_{l}}$ is a finite element. Thus, for any $0<x\in L_{\Phi}$ , there exists a finite
$ele\backslash $ment $0<y_{x}(\leqq x)$ and this is nothing but the definition of the almost
finiteness of $m_{\Phi}$ . Q.E.D.

Now, on the modulared function space, we shall present the formula
corresponding to $(\Delta_{2})$ . First, on the case that $R$ is non-atomic, we have
as a consequence of (F) in Th. 1

Theorem 1’. Let $\mu$ be non-atomic. $m_{\Phi}$ is finite if and only if there
exist $K>0$ and $h(\omega)\in L_{1}(\Omega)$ such that

(Ag) $\Phi(2\xi, \omega)\leqq K\Phi(\xi, \omega)+h(\omega)$

for all $\xi\geqq 0$ and $a.e$ . on $\Omega$ .
Proof. That the finiteness of $m_{\Phi}$ follows from $(\triangle_{2})$ is evident.

Conversely, it is easy to see that if $m_{\Phi}$ is finite then $(\Delta_{2})$ holds by (F)

in Th. 1 and by the property of integration. Q.E.D.

Remark 6. If we apply (A5) only to the Orlicz space $L_{M(\xi)}$ , we have
that $L_{M}$ is finite if and only if there exist $\gamma>0,$ $\alpha\geqq 0$ such that

$(\Delta_{2}^{\prime})$ $ M(2\xi)\leqq\gamma M(\xi)+\alpha$ for all $\xi\geqq 0$

where $\alpha$ must be zero if $\mu(\Omega)=\infty$ because $\alpha\in L_{1}(\Omega)$ . And it is clear
that $(\Delta_{2}^{\prime})$ is equivalent to $(\Delta_{2})$ restricted in a Orlicz space.

Next, we shall consider the’ case $\mu$ is atomic. If $\mu$ is atomic, with-
out loss of generality, we can assume $\mu(\omega)=1$ for all $\omega\in\Omega$ and so,

$m_{\Phi}(x)=\sum_{\omega\in\Omega}\Phi(x(\omega), \omega)$ for all $x\in L_{\Phi}$ .
We find for this case the formula corresponding to $(\Delta_{2}s)$ to the

Orlicz sequence space as in the next theorem.
Theorem 2’. Let $\mu$ be atomic. $m_{\Phi}$ defined by $\Phi$ with $\Phi(\xi, \omega)<\infty$

for all $\xi\geqq 0$ and $\omega\in\Omega$ is finite if and only if there exist $\gamma>0$ and
$\xi_{\omega},$ $\eta_{\omega}\geqq 0(\omega\in\Omega)$ such that

21) $\chi_{B}$ denotes the characteristic function of $E\in \mathfrak{B}$ .
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$(\Delta_{2}^{\prime}s)$ $\left\{\begin{array}{ll}a) & \sum_{\omega\in\Omega}\eta_{w}<\infty,\\b) & \inf_{\omega\in\Omega}\Phi(\xi_{\omega}, \omega)>0,\\c) & \Phi(2\xi, \omega)\leqq\gamma\Phi(\xi, \omega)+\eta_{\omega} for all 0\leqq\xi\leqq\xi_{\omega} and \omega\in\Omega.\end{array}\right.$

Proof. For the proof, by Lemma it suffices to show that $(\Delta_{2}^{\prime}s)$ in
Th. 2’ is equivalent to (f) in Th. 2.

1. (f) implies a), b), and c) of $(\Delta_{2}^{\prime}s)$ .
We take $\epsilon,$ $\gamma>0$ and $c\in L_{\Phi}$ the same ones as in (f). Putting

$\eta_{\omega}=\Phi(c(\omega), \omega)$ and $(\#)$ $\xi_{\omega}=$ $sup\xi$
$\Phi(\S,\omega)\leqq 8$

for all $\omega\in\Omega$ , then a) and c) are evident. Since $\Phi(\xi_{\omega}, \omega)\leqq\epsilon$, we have
$\Phi(2\xi_{\omega}, \omega)\leqq\gamma\epsilon+\eta_{\omega}<\infty$

by c). And by $\epsilon<\Phi(2\xi_{\omega}, \omega)$ , there exists $0<\xi<2\xi_{\omega}$ with $\Phi(\xi, \omega)=\epsilon$ for
all $\omega\in\Omega$ , because $\Phi(\xi_{\omega}, \omega)>0$ by $(\#)$ . Thus $\Phi(\xi_{\omega}, \omega)=\epsilon$ for all $\omega\in\Omega$ which
implies b).

2. $(\Delta_{2}^{\prime}s)$ implies (f).
Let $\epsilon$ be any fixed $0<\epsilon<\inf_{\omega\in\Omega}\Phi(\xi_{\omega}, \omega)$ then $ m_{\Phi}(x)\leqq\epsilon$ implies $|x(\omega)|\leqq\xi_{\omega}$

$(\omega\in\Omega)$ . And so
$(*)$ $\Phi(2x(\omega), \omega)\leqq\gamma\Phi(x(\omega), \omega)+\eta_{\omega}$ $(\omega\in\Omega)$ .
Putting $ c(\omega)=\sup_{\Phi(\xi,\omega)\leqq\eta_{\omega}}\xi$ , we have $\eta_{\omega}\geqq\Phi(c(\omega), \omega)$ . Then $(*)$ implies

$\Phi(2x(\omega, \omega))\leqq\gamma\Phi(x(\omega), \omega)+\Phi(c(\omega), \omega)$ .
Therefore $m_{\Phi}(2x)\leqq\gamma m_{\Phi}(x)+m_{\Phi}([x]c)$

where $\{c(\omega)\}=c\in L_{\Phi}$ . Q.E.D.

Remark 7. By applying the condition $(\Delta_{2}^{\prime}s)$ to an Orlicz sequence
space $l_{M(\xi)}$ , we obtain that $l_{M}$ defined by $M$ with $ 0<M(\xi)<\infty$ for all
$\xi>0$ is finite if and only if there exist $\gamma,$

$\delta>0$ such that
$(\Delta_{2}s)$ $M(2\xi)\leqq\gamma M(\xi)$ for all $ 0\leqq\xi\leqq\delta$ ,

.because $inf\xi.=0$ and $\inf_{\in\Omega}\eta_{\omega}>0$ by a) and b) of $(\triangle_{2}^{\prime}s)$ respectively (where,

of couse, $l_{M}$ is assumed to be infinite dimentional).
It is known by Th. 1 that if $R$ is non-atomic and if $m$ is monotone

complete and finite then $m$ is uniformly finite22) (I. Amemiya [1]).
Therefore, (F) in Th. 1 gives already a necessary and sufficient condition
in order that $m$ is uniformly finite.

22) $m$ is said to be uniformly finite if $\sup_{|\{x||\leqq 1}m(\xi x)<\infty$ for all $\xi>0$ .
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On the contrary, if $R$ is atomic, the finiteness of $R$ does not always
imply the uniform finiteness of $m$ . I. Amemiya showed a necessary and
sufficient condition in order that a modular $m$ is uniformly finite in the
atomic space $R$ . Relating to the result, we shall show the next corollary.

Corollary. Let $\mu$ be atomic. $m_{\Phi}$ is uniformly finite if and only if
i) there exist $\alpha_{\omega}>0(\omega\in\Omega)$ with $\Phi(\alpha_{\omega}, \omega)=1$ such that $\sup_{\omega\in\Omega}\Phi(\xi\alpha_{\omega}, \omega)<\infty$

for all $\xi\geqq 0$ ,

ii) the same as $(\Delta_{2}^{\prime}s)$ .
Proof. It is clear that the uniform finiteness of $m_{\Phi}$ implies i) and

ii). For the converse, in order to prove the uniform finiteness of $m_{\Phi}$ ,
it suffice to show that for any $\alpha>1$ there exists $\beta>0$ such that

$x\in L_{\Phi}$ , $ m_{\Phi}(x)\leqq\alpha$ imply $ m_{\Phi}(2x)\leqq\beta$ .
Let $\epsilon=\inf_{\omega\in\rho}\Phi(\xi_{\omega}, \omega)>0$ by b) of $(\Delta_{2}^{\prime}s)$ .
Then, if $ m_{\Phi}(x)\leqq\alpha$ , the number of the elements in the set $\{\omega;|x(\omega)|>\xi_{\omega}\}$

is less than $\frac{\alpha}{\epsilon}$ as well as it follows 1 $x(\omega)|\leqq\alpha\cdot\alpha_{\omega}(\omega\in\Omega)$ by i) too.

Therefore, we have

$m_{\Phi}(2x)=\sum_{|x(\omega)|>\xi_{\omega}}\Phi(2x(\omega), \omega)+\sum_{|x(\omega)|\leqq\S_{\omega}}\Phi(2x(\omega), \omega)$

$\leqq\frac{\alpha}{\epsilon}\sup_{\omega\in}\Phi(2\alpha\cdot\alpha_{\omega}, \omega)+\sum_{\omega\in\Omega}\gamma\Phi(x(\omega), \omega)+\sum_{\omega\in\Omega}C_{\omega}$

$=\frac{\alpha}{\epsilon}\sup_{\in}\Phi(2\alpha\cdot\alpha_{\omega}, \omega)+\gamma\cdot\alpha+\sum_{\omega\in\Omega}c_{\omega}=\beta$

by ii). Q.E.D.

We denote by $||||_{\Phi}$ the norm by $m_{\Phi}$ , and we consider on the con-
tinuity of 1I $||_{\Phi}$ . In the case $\mu$ is non-atomic, the continuity of II $||_{\Phi}$ is
equivalent to the condition $(\Lambda_{2}^{\prime})$ by Cor. 2 in \S 3. For the case $\mu$ is
atomic, we get the next (C).

Theorem 3‘. Let $\mu$ be atomic. II $||_{\Phi}$ is $contin\backslash uous$ if and only if
there exist $\gamma>0$ and $\xi_{\omega},$ $\eta_{\omega}\geqq 0(\omega\in\Omega)$ such that

(C) $\left\{\begin{array}{l}\sum_{\omega\in\Omega}\eta_{\omega}<\infty\\\inf_{\omega\in\Omega_{0}}\Phi(\xi_{\omega}, \omega)>0\Omega_{0}\subset\Omega\Omega-\Omega_{0}\\\\\Phi(2\xi, \omega)\leqq\gamma\Phi(\xi, \omega)+\eta_{4)}0\leqq\xi\leqq\xi_{w}\omega\in\Omega\end{array}\right.$

Proof. By the same way as in the proof for Th. 2’, we see easily
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that $(C^{\prime})$ is equivalent to the fact that $(\triangle_{2}\prime s)$ holds on
$ N\equiv$ {$x;x\in L_{\Phi},$ $x(\omega)=0$ for $\omega\in\Omega-\Omega_{0}$}.

Therefore, in view of Cor. 1 in $\xi 3$ , we $\dot{c}an$ conclude that (C) is equi-
valent to the continuity of 11 $||_{\Phi}$ .

Remark 8. By (C), we see that the modular norm 11 $||_{M}$ of the
Orlicz sequenoe space $l_{M}$ defined by $M$ with $ 0<M(\xi)<\infty$ for all $\xi>0$ is
continuous if and only if there exist $\gamma,$ $\xi_{0}>0$ such that

$M(2\xi)\leqq\gamma M(\xi)$ for all $0\leqq\xi\leqq\xi_{0}$ .

\S 5. The Conjugate Property of Uniformly Finite Modulars.
Let $m$ be finite throughout this section. The conjugate space $\overline{R}$ of $R$,

the totality of universally ecntinuous linear functionals on $R$, coincides
with the totality of modular bounded24) linear functionals, because $m$ is
monotone. complete. $\overline{R}$ is moreover a modulared space with the conjugate
modular $m$ :

$\overline{m}(\overline{x})=\sup_{x\in R}\{\overline{x}(x)-m(x)\}$
$(\overline{x}\in\overline{R})$ .

It was proved by H. Nakano [5; \S 86] that the conjugate modular
$\overline{m}$ of a modular $m$ is uniformly increasing25) if and only if $m$ is uni-
formly finite.

Our aim in this section is to characterize the uniformly increasing
modular by the formula which is the conjugate of (F).

Theorem 4. Let $R$ be non-atomic. $m$ is finite if and only if for
the conjugate modular $\overline{7n}$ of $m$ , there exist $\gamma>2$ and $\overline{c}\in\overline{R}$ with $\overline{m}(\overline{c})<\infty$

such that

(UI) $\overline{q}\overline{n}(\frac{\gamma}{2}\overline{x})+2\overline{m}([\overline{x}]\overline{c})\geqq\gamma\overline{m}(\overline{x})$ for all $\overline{x}\in\overline{R}$ .
Proof. We state only that (F) on $m$ implies (UI) on its conjugate

modular $\overline{m}$ , because,’ in virtue of the reflexibility26) of the modular $m$ ,

23) A linear functional $\overline{x}$ on $R$ is said to be universally continuous if, for any $x_{\lambda}\downarrow\lambda\in A0$

$(x_{\lambda}\in R)$ , we have $\inf_{\lambda\in A}|\overline{x}(x_{\lambda})|=0$ .
24) A linear functional hi on $R$ is said to be modular bounded if $\sup_{m(x)\leqq 1}|\overline{x}(x)|<\infty$ .
25) $m$ is said to be uniformly increasing if

sup $inf\underline{m(\xi x)}=\infty$ .
$\xi>0||x||\geqq 1$ $\xi$

26) See H. Nakano [3].



On the Finiteness of Modulared Spaces 27

we can see conversely by the similar way that (UI) on $\overline{m}$ implies (F)
on $m$ .

For any $\overline{x}\in\overline{R}$, by (F), we have

(fl) $\overline{m}(\overline{x})\leqq\sup_{x\in R}\{\overline{x}(x)-\frac{1}{\gamma}m(2x)+\frac{1}{r}m([x]c)\}-$

$\leqq\frac{1}{\gamma}\sup_{x\in R}\{\frac{\gamma}{2}\overline{x}(2[\overline{x}]^{R27)}x)-m(2[\overline{x}]x)+m([[\overline{x}]^{R}x]c)\}$

$\leqq\frac{1}{r}\overline{m}(\frac{\gamma}{2}\overline{x})+\frac{1}{\gamma}m([\overline{x}]^{R}c)$ .
Therefore, the proof is complete if we prove that for above $c>0$ there
exist $\overline{c}\in\overline{R}$ with $\overline{m}(\overline{x})<\infty$ such that for some $[N_{c}]$

$m([p]c)=\overline{m}(\overline{c}[p])$ for all $[p]\leqq[N_{c}]$

$\overline{x}[N_{c}^{\perp}]\leqq\overline{c}[N_{c}^{\perp}]$ for all $\overline{m}(\overline{x})<\infty$ .
Because, for any $\overline{x}$ with $\overline{m}(\frac{\gamma}{2}\overline{x})<\infty$ we have

$\gamma\overline{m}(\overline{x})=\gamma\overline{m}(\overline{x}[N_{c}])+\gamma\overline{m}(\overline{x}[N_{e}^{\perp}])$

$\leqq\overline{m}(\frac{r}{2}\overline{x}[N_{c}])+m([\overline{x}]^{R}[N_{c}]c)+\gamma\overline{m}(\frac{2}{\gamma}\overline{c}[N_{c}^{\perp}][\overline{x}]^{R})$

$\leqq\overline{m}(\frac{\gamma}{2}\overline{x})+2\overline{m}(\overline{c}[\overline{x}]^{R}[N_{c}])+2\overline{m}(\overline{c}[\overline{x}]^{R}[N_{c}^{\perp}])$

$=\overline{m}(\frac{\gamma}{2}\overline{x})+2\overline{m}([\overline{x}]\overline{c})$

by $(\#)$ . We can show the existence of such $\overline{c}$ by generalizing the method
considered in H. Nakano [3; \S 62]. Q.E.D.

Corollary. Let $R$ be non-atomic. $m$ is uniformly increasing if
and only if $m$ has the type (UI).
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27) $[\overline{x}]^{R}=[\{x;|\overline{x}|(|x|)=0\}^{1}]$ .
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