ON SOME TYPE OF THE MODULARED
LINEAR SPACE

By
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§ 1. Preliminary. Modulared linear spaces with order structure
in which there are functionals called modulars were discussed by H.
Nakav~o in his book [3]. H. Nagano studied these spaces through the
properties of these functionals. Above all he defined the uniform
properties such as “uniformly simple”, uniformly monotone”, “uniformly
increasing” and “uniformly finite”, in his paper [2].

~ In this paper we investigate some new uniform properties of
modulars, and give some examples of the new spaces with these
properties. :

In the following, we denote a modulared semi-ordered linear space
by R, and an additive modular on R by m, and it will be supposed
that R is semi-regular, i. e. there exist sufficiently many order- contlnuous
linear functionals. :

The terminologies and notations will be the same as [1] and [3].

§2. Uniformly ascendlng modulars. A modular. m is said to be
m(&a)

ascendmg if for any a(:=0)€R we have inf > 0. Uniformizing

&€ >0
these properties, we have the following definition.
Definition 1.° We call the modular m wuniformly ascending if

reavo |laf] =

where |jal| is the second norm of m. (cf. [1] p. 180).

In the above definition we may change the second norm by the
first norm of m.

The conjugate property of an ascending modular is semi-singular:
that is, for any a>0 there exists an element b such that m()=0 and

1) These definitions are also found in thebpaper [1] p. 186, which concerns with the
another problem ; they are sufﬁclent condltlons in order that a semx-addltlve modular is
essentially additive.
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0<bZa.
Definition 2.° We call m uniformly semi-singular if for some mumber
e>0, [[+]|<e, x€ER implies m(x)= o

Theorem. 1. Let m be an ascending modula'r; Then m/(a)=inf mgfa)
€ >0

is linear modular and m' s also considered a modular norm of m’ utself. m’
is equivalent to the modular norm of m if and only if m is uniformly
ascending. ,

Proof. Suppose that m is uniformly ascending. Since we have
m(a)=¢llal] for some §>0, it follows that m(fa)=¢s|lall for £=0 i.e.

| inf ﬂ(’g‘g)_ =dllall for every a€R. (1)
E>
From the above 1nequahty (1), it is easy to see that m’ is a linear
modular, because w/ (éa)=¢&m/(a) for any £=0 and a€R. On the other
hand, for any a€R and 1=£6>0, we have

m(a) zl’ifi) =m/(a).

Since 1=m(a) implies m(@)=<|a| , we have llal=m/(a). Hence m’ and
Il I are equivalent to each others. Conversely if m/(a) is equivalent
to the modular norm of m, then there exists a number §>0 such that
m/(@)=4|lali.
Therefore
m (@) =m/'(a) =3 lall ,

which implies 1nf 7[7“2(;‘) =06>0..
a0 a |

Theorem 2. Let m be a semi-singular modular on R. Then |al,=

inf E];—l (aER) s @ norm on K. m is uniformly semi-singular if and only
m( € a)=0

if this norm is equivalent to the modular norm.

The proof of this theorem is followed easily from Definition 2. We
have the dual relation between the uniformly ascending modulars and
the uniformly semi-singular ones as in [1] p. 185.

Theorem 3. Let m be uniformly ascending, then m s uniformly semi-
singular modular on B™.

Theorem 4. Let m be umformly semi-singular, then m is uniformly
ascending modular on RB™.
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- The proofs of the above two theorems are found in [1] and 80

omitted. (cf. [1] p. 185). »
If m is uniformly semi-singular, we will write

HaHo:m inf — for a€eR,
end if m is uniformly ascending, we will make use of the notation:
| lall” = hz’(a) = iﬁlﬁ —”-@(EE—OL) for a€R.
Theorem 5. Let m be uniformly semi-singular. Then the norm

m(gd) , GQER™ is ewactly the dual norm of |al,, a€R.

|a’='@) = inf

Conversely if m is uniformly ascending, the norm |dll, aeR™ is exactly the
dual norm of ||a)’, a€R.

Proof. We need only prove the first ~par_t'of the theorem. Let m
be uniformly semi-singular. For any @€R™, and £§>0 we have

mEa) _ f m(a) 7 (@) — @)
: = sup a(a) : } =sup {a, (@) = |

acR

where A= {a[m(a):O}  Hence we have

772(5(1) >‘§u.p lq(a)l = Sup |a(a'>l
£ .

@l =1

therefore la|’ =sup|a(a) |

“ol[=

On the other hand, we have | |
m(a):erug{ﬁ(a)—ﬁ(ﬁ)f =< sup {a(@)—wn’ @) :Sgreg{d(a)—\ldll’} :

Hence sup |a(a)| = sup lG(a@)|]<1 implies m(a)=0.

m(@)sl

Putting B= {a]supla(a)|<1} we have Bc A. By the reflexivity of
the norm, (cf. [4]) we have for any aeRm
|@]” = sup |a(a)| =< sup [@(@)] .
Hence we have
@l = sup |@ ()] = sup |()|

Another theorem for uniformly ascending modulars is |
Theorem 6. Suppose that m is uniformly ascending. Then m is also
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ascending and uniformly simple. Hence zf R has 70 atomw element, then m
is uniformly finite.

The first of this theorem is followed by the deﬁnltlon If R has
no atomic element and m is uniformly simple, then m is uniformly
finite by the theorem of Smimocaki [5] p. 2056 or Theorem 5.1 in [1].

A dual form of this theorem is

- Theorem 7. Suppose that m is uniformly semi-singular. Then m is
semi-singular and uniformly monotone. Hence, if R has no atomic element,
m s uniformly increasing.

§3. Uniformizations of infinitely linear modulars.
For any a€R, we consider the functional defined by

m(fa)
sup ———=
3

£>0

= ol .

The set of all elements ||a|..<co, a€R is a semi-normal manifold
of R. 1If this set is complete in R, then we call m infinitely linear.
Uniformizing this property, we have the following definition:

Definition 3. We call m uniformly wnfinitely linear if there exists a
positive number € >0 such that Sfor some po.sztzve number n,

x| =¢e implies m@)=n|x|.

. Here the second norm may be changed by the first norm. We
call an element a€R a finite element by m if '

m (¢a) < + oo for every £=0.

If there is no finite element except 0, then we call m infinite. This
property is dual to an infinitely linear modular. Hence we have the
dual definition: | '

Definition 4. A modular m is said to be umformly mﬁmte if there
ewists a positive number n such that

x|l =n implies m x)=+oco.

By the above definitions we have the following:

. Theorem 8. If m is uniformly infinitély linear, then m is umformly
nfinite.

Proof. By assumptlon, there ex1st positive numbers n, €>0 such
that |lz|| =€ implies m(x)<n\|IxH|

Hence we have :
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| m (%) = sup z(x)— m(x)}

2ER"

=‘supllllwill<fc‘ ,—@—) m@) )‘>Sap EIRE: (i—)*nl .

eweer | e/ wl /T AR

. [itzlllz &
Since ||Z|| = sup |z(x)| = sup |i(x)| = sup {z(x)}, we can see that
e £1 [l[z]f]=1 jal =1 .

E<H'—2Hl>lgn+l’

|z =n+1 implies sup |Z(x)| =sup
HENEY! C2ER

il.e. ni‘i% {9’0 <'H‘2‘W)_—n} >0
Therefore
|zl =n+1 implies m(Z)= +co.
This shows the assertion. |

A dual form of Theorem 8 is

Theorem 9. If m is uniformly mﬁmte then m 1s umformly mﬁmtoly
linear.

Proof. Since there exists a positive number e such that o)l =e
implies m(r)= + oo, for any z€R™, we have

e = e la )

= sup |z(@)— m(x)szup {a@)} = ez -

2ER,!2(/£E HEHE

Theorem. 10. Let m be uniformly infinitely linear. Thevn lim—m%@—:
& -»oco
lzll.< + oo for every x€R. Conversely, if m is monotone complete®, and
l)loe << + 00 for every ©t€R, then m is uniformly infinitely linear. :
Proof. The first part of this theorem follows from Definition 3.
If m is monotone complete and |x|.. is finite for every z€R, then I::z:\l°e

can be considered a norm on R. Furthermore we have
| izl < 2] for every xER

Since the second norm || || is complete by virtue of the monotone
completeness of m, the second norm || || and | |. are equlvalent to
each others,

ie. z|.=Znlzl for some number n>0.

"2) For the definition of the monotone complete modular, see, 2] p. 129. .
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This shows that m is uniformly infinitely linear.

Theorem 11. Suppose that m is uniformly infinitely linear. Then m
ts uniformly finite. If furthermore m is simple, then m is uniformly simple.

The proof of the first part of this theorem is deduced from the
definition. If m is uniformly finite and simple, then we can suppose
that m is furthermore monotone complete. Hence, by the theorem of
Yamamuro (cf. [1] p. 190) we can deduce the second assertion.

A dual form of the above theorem is

Theorem 12. Let m be uniformly infinite. Then m s uniformly in-
creasing. Hence, if m is monotone, then m is uniformly monotone.

If m is uniformly infinite, then a norm is defined by the set F'=
{x: m@x)< + o}, such that

1
| = f
lzll, = in AT

Theorem 13. Let m be u-mlformly infinitely linear. Then |Z|..(T€ER™)
ts the dual norm of |z|;, (x€R). '
Proof. For any z€BR™, we will show that

Sglplf<x)12§up ED) ).
Since
L(:f) = sup {E(x)* mg(‘”) } < sup|z(7)| for any £>0,
we have | Hw\lm_sup]&:‘(x)l .

V-On the other hand, for,every_xEF, and for any £§>0, we have

sup m(£7) >z (x)— ) (@) ,
& 3

£ >0

£ >0

that is, : sup —@—(j—@— =7(x) .

Hence, we have ilfllm:Supﬁ@g sup |Z(x)|, therefore we have
§>0 - IS 2EF . .

the proof. ,
Concerning the relation between the uniformly infinitely linear
modulars and the uniformly ascending ones, we have the following:

Theorem 14. Let R have no atomic element. If m is uniformly
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ascending, then m is uniformly infinitely linear.
Proof. We will prove that for some n>0,
m(x)=1 implies ném(x)=m(x) (for £>1).

- Suppose that for any integer n>0, there exist a real number £>1
and >0, x€ R such that :

ném (x) < m(éx) .

Decomposmg x orthogonally, we find the projection operators [p,,]
t1=1,---,n, such that

m(E[p]e) <1, é&[ple=x0; ¢=1,---,m,,
since R has no atomic element.

Hence we have for some 1=<1i,=<mn,,

ném ([p.]2) = m(E[p,]2) .
Putting &[p,]Jr=y>0, we have

ném (%) =m@) = |yl .

Hence we have -

. 1
lyl’ = 1 = ~lyil, y=0.

This shows that || ||/ is not equivalent to || || . | By virtue of Theorem
1, this contradicts the uniformly ascending property of m. '
Hence, for any x€R such that m(z)=1 and §>1, we have

ném(x) = m (§x) .
That is

lell=1 implies %l‘;lxm?__m ,

and this shows that n\llle>|]wa, therefore we have the proof of
Theorem 14.
A dual form of this theorem is o
Theorem 15. Let R have no atomic element. If m z's uniformly semi-
singular, then m is uniformly infinite. :
Remark. If R is discrete, there is no relation between unlformly
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ascending and uniformly infinitely linear properties as it will be seen
later. (see proposition 1, 3 in §5.)

§4. Uniformizations of asymptotically linear modulars.
We say an element x€R to be asymptotically linear if

séu.%) {Er (x)—m(Ex)} < +oco  where 7(x)=sup ﬂ%@l .

§>0

The totality of the asjzmptotically linear elements constitutés,a semi-
normal manifold. (ef. [3] p. 202). If this manifold is complete in R,
then we say m to be asymptotically linear.

Definition 5. Furthermore if we suppose

Sup sup (cr (@)—m(Ex)} < + oo

zeA € >0

where 7(x) = sup m(éx).
§>0

and A is the set of all asymptotically linear elements,

we call m uniformly asymptotically linear.

If m is asymptotically linear, then = is totally dlscontlnuous (cf.
[3] p. 203: i.e. discontinuous units are complete 1n R). Uniformizing
this property, we have

Definition 6. We call m wuniformly discontinuous, zf for some n>0,
m(X)< + co implies m (x) <n.

Theorem 16. If m s uniformly asymptotically lmear, then m 18 uni-
SJormly discontinuous.

Proof. Let xz€B™ be such that m(¥)< +oc0. Then we have, -
m (Z) = sup {i(x)-——m(w)} = sup {:f(x)——m(x)}
2ER €A

= sup {¢z(@)—m(sx)}

05§ ,2c4

because A is a complete semi-normal manifold of R.
If #(x)>T (z) for some z€ A4, then # (%)= co, but this is a contradiction.
Hence we have z(x)<7(x), therefore by assumption

(%)< sup {S:E(x)—m(sx)} = sup {éT(x)—M(Em); <n
0S¢ ,254 0s ¢ ,xed
for some number #n>0.

This fact shows that # is uniformly discontinuous.’
Theorem 17. If m s uniformly discontinuous, then m is uniformly
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asymptotically linear.

Proof. If m is uniformly discontinuous, then m is totally -dis-
continuous. By Theorem 46.6 in [3], % is asymptotically linear. Let
F€ER be an asymptotically linear element by m. Then we can find some
number n>0 such that

+ 0 > 7—;@(55) = sup {#(x)—m(x)| = sup {z(x)—mix)|
2ER 2E€EF
= Slel}){:,f(m)} —n

where F={z|m(x)< +oo}. For any £>0, we have thus

+ 0 >77(67) Z sup {e2@)} —

Since ™ E®) _ — sup | #(x)— Mm@ _ gyp 7 (@) — m(x)
3

|
x€R E J 2R E j é sup {fl (x)}

we have

T(ac) = sup—@@ < sup {a?(x)} , therefore. -

£€>0 P 1sh 24
Er () —m(ED) < n - for £>0.
This shows that

sup sup lgT (x)—im (Em)} < n
zed

where A is the set of all asymptotically linear elements by .
Concerning the relations to the previous sections we glve the fol-
lowing theorems.

Theorem 18. If m is umformly asymptotzcally linear, then m is uni-
formly infinitely linear.

A dual form of the above theorem is ‘

Theorem 19. Ff m s uniformly discontinuous, then m s uniformly
infinite. ' ’ '

Proof. We will only prove Theorem 19.

For any z, and a positive integer n,

m(x)<n implies m( n)< 1,

‘therefore Hix]ll>n+1 implies m(x)=+ o if m is umformly d1scont1nu-
ous. This shows the assertion of this theorem.
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§5. Examples. _

“Discrete cases”. (modulared sequence spaces).

Let ¢,(A€4) be a system of positive convex functions of positive
real variable. Then the set of sequence {£;};cs such that a‘g%(l&ll)

< +oo for some £>0, constitutes a modulared linear space with the

usual order, defining a modular by mx)=> ¢,(¢,) where z=1{£,}cs-
a

This space {(¢2)ics is monotone complete by this modular. We will

investigate the prOpertles of these modulars on the line of the former

conditions.
For a convention, we can suppose that the convex functions ¢,

(A€ ) is normalized, i.e. |le, || =1(21€ 4), where e, is an element of Ue)aea
such that :

ea:{fp}pe/lrls =0 if P2
b = .

 Proposition 1. L@ )aca ts uniformly ascending if and only if we can
Jind a number n>0 such that

inf £ =iz - Ged

£>0

- Proof. We need only prove the sufficiency. If x={&,}.es and
m(x):?f%(éa)él, then we have

m @) Z S0 L DeaEa)
ie. M@z m@),
n

this concludes the sufficiency of the proposition.
Proposition 2. [(¢;)ie, 18 uniformly semi-singular if and only if we
can find a number n>0 such that
P2(§)=1 <tmplies ¢,(¢/m)=0
Proof of this proposition is similar to that of the former propos1t1on,
therefore it is omitted.

Proposition 3. l(gol)le 1 18 uniformly mﬁmtely linear +f and only if, the

Sollowing conditions are satzsﬁed .
(1) ¢a(6)<+ oo for every £=0 and there is a definite number n, such

that
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.= L lim 9”2(5) =1 7).

no § oo no

) D) < Foo dmplies 23|&a| < oo

Proof. (1) is deduced from Definition 3. If we have
;‘Pa(|§a|)<.~+ co, then x={&}€l(e,).

Hence ). = 4‘13,|511<P°f(1)< + oo,

Because of the inequality |£:|=|¢,1]¢7(1), we have

Z]E | = Zlcalﬁﬂa(l)

This prove the necessity of the conditions (1), (2).
Let 25%(51)§1 and z={&}. |
Then (1) and (2) show that
| @) Sy 2 [£2] < + 00

This shows the sufficiency by Theorem 10.

Proposition 4. 1(¢,),:4 i uniformly infinite of and only if the followmg
conditions are sotisfied:

(1) For some integer n,>0, we have
@) = + o0, A€ A .
(2) Fqr some number €>0, we have
' ZZ] ¢r(e) <+ oo,
Proof. Suppose that |
1

2 Pa < o ) — + oo = for every integer m>0 .
Selectmg A; 7=1,2,---,%,,, from 4, we have
1
Z¢M<W>gl.

Hence, putting =, = e, +---+e,,

where, | at 4

1
e, =
8 | 0 - otherwise,
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we have‘
lz,l=2" and m(x,)<eco.

This is a contradiction. Therefore (2) is a necessary condition.
It is easy to see that (1) is also a necessary cond1t1on
Suppose that (1), (2) are satisfied.

From (1), z:_‘, ¢.(|82])< + = implies sup €] < + o0
A€
Hence, if x={¢,} €llp.), then sup |&2] < + oo .

Let x;,={1} {i.e. this element has a value 1 at any co-ordinate 1€ A4}.
By (2) we can find that

x, €l(e,).
Hence we can find a number &, such that

, |180x1!11 =1.

- If x={&, }El(gaa) llzll=1, then there exists at least one 2 €4 such
that

| €a, | =¢€a .

n

By virtue of (1) i@liZ " implies m (@)= +oo.
: 0

This prove the sufficiency of the conditions (1), (2). |
Proposition 5. l(pa) is uniformly discontinuous if and only if, there
exist n>0 and a system of £,>0, A€A such that

(D ()< +oo and ¢, (Er+e)=+oo for every €>0,
(2) /__SOA(E )<+°°-

Proposr.tlcn 6. lpa) ts uniformly asymptotzcally linear if omd only zf
22T, Q) <+ o0
a

where 72(1) =sup {¢7(D)—¢. ()} .
€ >0 .
Proofs of the above propesitions are easy, therefore omitted.

“Non discrete cases”

1. The converse of Theorem 6 is not true.
- An example of a modulared linear space which is monotone complete
uniformly finite, uniformly simple and ascending, but not uniformly
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ascending and uniformly iriﬁnitely linear is' the following:
Let M, be a real function such that

Mn(x):%x"’—l——!;x  m=1,2)
n

and L(M,) be a totality of measurable functions f defined on [0, 1]
such that

1

i R M,(a|f®))dt < +oo  for some a>0.

7n+1

Then L(M,,) is such an example.

2. The converse of Theorem 13 is not true.

An example of a modulared  linear space which is uniformly
infinitely linear, but not uniformly ascending is the following:

Let ¢, be a real function such that

'sﬂn(x):—l x + 1, if z<1
2 n'
1 1 .
— —1 £
(@) <1+ - )x 5" if z>1

and L(¢,) be a totality of measurable functions f defined on [0, 1] such
that - » '

iljf @ (alfO))dt< + oo for some a>0.
Then L(¢,) is such an éxample’.
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