ON THE COMMUTATIVE FAMILY OF
SUBNORMAL OPERATORS
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Introduction. Harmos has given in [3] the definition of a sub-
normal operator and the characteristic property of it. A bounded
operator A defined on a HinserT space $ is said to be subnormal if
there exist a HinBerT space ® containing $ and a bounded normal
operator N on ® such that Ax=Nx for every z in . Recently in [1]
BrayM has made Harmos’ characterization simpler ([1], Theorem 1) and
given another characteristic property ([1], Theorem 2) and some results
about subnormal operators (for example, [1], Theorems 4, 7, 8, 9).

In this paper first we shall study #he problem under what con-
ditions it is possible to extend the commutative family of subnormal
operators acting on a HrirserT space $ to the commutative family of
normal operators on a HineerT space @ containing $. Theorem 1
answers to this question. Then we shall give a generalization of Bram’s

theorems (for example Theorem 6 and Theorem 7) and another simpler
proof of Bram’s theorm about the spectrum of subnormal operators

(Theorem 8).. Theorem 3 is a generalization of Coorer’s result in [2]
(cf. [9], p. 893). Theorem 5 gives a new characterization of subnormal
operators.

1. An abelian semi-group of subnormal operators. Throughout
the paper, a HIL.BERT Space is a vector space over the complex numbers,
an operator is a bounded linear transformation unless denoted explicitly.
For an operator A we denote by A* an adjoint operator of A.

Lemma 1. Let A,(=1,2,---,n) be n commutative operators on a
HILBERT space ©. If for every non-negative integer M and element x, ...,
n O 0=4,<M,1=1,2,---,n)

M '
) 2, %a... 2, j Fa.. Y
(1.1) il;lzo (ApAg---Ag Lji0dy0sdm? Al A ‘A-n”le,zz,---,in)go ’
1=1,2,,n .

then we have the inequality such that for every M, x; ;  .q, n O 0=1,=M,
1=1,2,---,n) and non-negative integer v, (1=1,2,---,m)
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M .
Z (Ai’ix+ VIASZ‘FU;. . 'A4£M+ anjnjzv"'rjn , Aifx*'l/lAgz'*' Vo.. fl,’f'n'l- uﬂxil,iz,'",‘in)
ip,75220

(1.2) =tz :
S AP AP AL 2 (Abe Ay, gy Al Ay e,) -

27,7220

Z=1,2,,m

Proof. Essentially the proof is the same as that of [1] Theorem
1. Heinz’s theorem ([5]) is essential. |

Let 9, .,,.4, ¢,=0,1,2,---;1=1,2,---,n) be spaces isomorphic to , R
be the direct sum of §, , ..., that is, = 2 D 4, ¢, We denote

;20
1=1,2,,72

the element of & by z={x, ..., }, Where z; , .., 18 %,%, -,%,-component
of . For a positive number €>0 we put B,=(||4,]| +¢&)7'4,(1=1,2,.--,n),
then ||B,||<1(=1,2,---,n).

We can define a linear transformation S on $t such that

Sﬁ:l‘—/:.{yzl,iz,...,z,‘}y r= {xil,iz,m,in} y
1.8)  \yy4s = 2 Biin..BraB¥ BiBb.--Biax, ; ., .

Jr1z0
=12, m

As |B)|<1(1=1,2,---,n), the right hand of (1.8) is convergent and
S is a bounded operator. Because ' '

HSiH?': 2 “ 2 B;,:jn"- .B;kle'fh. -B;'t‘nxjnjzr'"njﬂ HZ
;20 Jzz0

I=1,2,n 1=1,2,,n
< B { 2 B BEB B [y g I
l=l,‘i,=~-,n l=f,1'2f-",n :
= 2 { Z B BP0} { 2 125,00,

‘3150 szO jzgo

=1,2,+,m I=1,2,c,; I=1,2,0m

Il

(L= B )7 - (L= BJI*) " la]|*
So we have ‘ _ -
(1.4 1Szl = A—|B.I1")7"--A—B:)" | z| (e ).

On the other hand for z= {®;,,,-.,} Whose components equal to zero
except for finite number of %, . ... we have by assumption (1.1).

M
(Sz,3)= > (Bi--Bia,,.., , Bi-Biw,.. )

27,9220

(1. 5) A
M
:il%;go(Agh-'Aj’mzj“jz’""j'"’ A']il"'.A;znz,';“...,»;n) g 0 ’

1=1,2,,n

where 2, 4, ..., =14 +e) 4 (|4, +&) " ;.-
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The whale of such 7 is dense in R evidently. Therefore S is a bounded

positive symmetric operator on $R. ,
In the same way we define a linear transformation 7" on % such

iy, } T = {xil,iz’...";n}
. -szn*”"xj”jz,...jn .

that
B;“jx+ulel+yl

- (1.6) Zs iy, = 2 B*ann
Jpz0
. 1=1,2,,m
It is proved like S that 7' is a bounded positive symmetric operator
on N. .
Next we see ,
1.7 1Tz < || Sz @e®).
Because
HTEHQ g H 2 B*J,,+un B;kj“L"'le"" Ul...B2n+Unxj Ve d ll
€20 J1z0 ! "
=12, I=1,2,.s,m2
é H Z B;‘:jn'{'yn Ble_FV]Bf[...B:’:nlerjzi""jnll
2220 Jrzo
1=1,2,,m 1=1,2,,m
,n) are commutative we have
B:jm...Bl*jJ.B;:l...Bz’nxj“jz,."’jn ”2

aS Bl (l:].,z,-"'
= 2

2=

= || By |*--- | B, |I”»| 8% <HSCE|I
Owing to Heinz’s theorem (cf. [5] or Kato [7]) we obtain from (1.7)
Tz, ) < (S%, T) (TeEMW).

,’n

| Bp?n--BE 7| 23
Jpzo

z=1,2,-

(1.8)
Hence
X 2 i s
iz'%.‘ZO(BIH‘V; Bnn"’ anj“m,jn’ Bii+v... ann+ v nxix-"','in)
1=1.2,,n
M ‘
é Z (B;’l..-Bi‘"xj ooy dy 9 Bli""B,f"x,; .y ) .
42,7220 ' ” L n
2=1,2,m
Therefore we have
o leO(A]ztx"'Vl A'Ln"‘ V’lej“ s iy ? A1j1+yy1...A"-Zn‘i‘l/nxi”".’in)
(1.9)
(Al +ey¥= 2 (Afl...A;nxj“m,jn, A Ajry ).
z-71>0

=1 A4l +8)w'
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'Remenbermg e was an arbitrary positive number we obtain the in-
equality (1.2) from (1.9). :

Let I’ be an abelian semi- group having at least one zero element
0. The function A, (rel") from I" into the algebra of bounded operators
on a HiLeerT space © is called an operator representation of I" if

jArl.Arz - 441'1+r2 (le T2EF) and

1.10 ,
(1.10) | 4, =1 (an identity operator on ).

Through the paper such an operator representation of I" will be denoted

by A, (erl, D). | |
Definition 1. An operator representation A, GE€I’, ) will be called

positive definite if '

(1.11) | %(Arixj, Arjxi)go

Jor every finite number of x;, in  and 7, in I.
From Lemma 1 following lemma is proved.

Lemma 2. Let an-operator representation A, (r €I, ) be positive definite.
Then we have for every finite number of x; i O, Ty in I and an arbitrary
ein I’ :

(1.12) 2 (Ar 50 Ay, @) S A7 g(Avmxj,Aﬁw'».

‘Proof. Assuming that 7 and 7 run from 1 to n—1 we put A4,=
A,,(1=i=n—1) and A,=A,. By the fact that 4,(€rl’, ) is positive
definite we can see easily A4,(!=1,2,:--,n) satisfy the assumption of
Lemma 1 namely.the inequality (1.1). Therefore putting in (1.2)
inlrizr"',"’n’: X, if il:]-’ ?:m - O(m'—‘f(:l), l:1,2. "',n_l s
xi“gz,...’in - O beSideS, '
v, =0 ?=12,--,n—1), v,=1,

we have (1.12).

Definition 2. For two operator representations of I" A, (rel’, ) and
B, (el’, @) it is defined that B, (rel’, |®) is an extension of A, (T(—.F )

if following conditions are satzsﬁed
(1. 13) RO and B,x=A,x (x€D) for all T€T.

If all B, are normal operators on @ we call B, rel’, ) the 'normal extenszon
of A, (rel’, D).
We obtain the following theorem which is a generalization of
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Harmos’ theorem ([3], Theorem 3).

- Theorem 1. An operator representation A, Y€ I, ) of an abelian semi-
group I' has a normal extension N, "€I’, ®) if and only if A, (re€l’, D) is
positive definite. ' ‘

Proof. Necessity. For every finite number of z, in $ and 7, in
I’ we have 4

ig(A'” ‘T'.i’ A'iji) — g(NYixj’ N)’jx'i): ;J(N;‘fj xj" Ntixi)
= |2 N3zl = 0. |

Sufficiency. The construction of ® and N, (r€I’) are obtained by
generalizing Har.mos’ method ([3]) to the case of semi-groups.
Putting & the Cartesian product of $, ¥e€l'),. namely & = IIG;S;),,,
r

here every &, is isomorphic to . We shall denote the element of &
by #={x,} whose 7-component is z,. Let ¥®={z; z={z,}, 2,20 at
most finite number of 7}, then ® is a linear manifold in . We shall
introduce onto P a bilinear functional such that

(1' 15) <@9 ?7> :T ;GP(AT x;r’ 1 Ar’yr) . (‘E’ ge@) y

for brevity we identify all , with . Since A, (Ferl’, ) is positive
definite, <&, ¥> is a positive symmetric bilinear functional. Putting
I={x; <&, Ty=0}, then naturally the quotient space /I is an inner
product space. The completion @ of P/ by this inner product is
a HrirserT space. Evidently the correspondence $3r— = {x,}, where
z,=2 and x, =0 (7 =0), is an isomorphism from & into ®. Thus  is
imbeded into ®. , :

. Next we shall define linear transformations N, (°P€I’) on D such
that :

J pr:y:{'yr}’ Ez{xr},

1.1
( 6) l‘yy:Apr (xEF).

Then we have from Lemma 2 |
<NDE! N/O:i>: Z (A-r+px7’; A7’+px7)b

v,7€r

SIALI 3 (Arwy, Ays) = | A,KE, 5

Therefore N, is regarded as a bounded operator on §. We shall denote
this operator on § by the same notation N, .

We shall show N, is a normal operator on ®. For every p,7€r,
putting I',_,={8; 6+P=7}, and we introduce linear transformations
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L,(Perl) on D such that

(1.18) J Lo =2={z}, j:{x?_}’ \
| 2 = xs; or =0 if I',_,=¢,
3€l 4 -
generally I',_, is an infinite set, but for # ;=0 except for finite

number of 6, so > xz; has a meaning. Thus.
3€ly-p

(1.19) Loz Lyid= 3 (4, 3 @53,4, 3 )

,TED 33 4"~ p 3€ly — o

= B (Agesan Ay o) =(NoE, NoBD S|4, 1XE 2.

3,87

Therefore L, defines a bounded operator on |, we shall denote that
operator by the same notation L,. Then likeweise we have

(1. 20) (L,x,y) =%, Npg> (¥, Y€D),

therefore L%*=N, (°P€Il’) on ®. From (1.19) and (1.20) N, (P€l’) are
normal operators on ®. And evidently N,=A, on . Furthermore
by (1.16) N,=1I and N, N, =N, ., (,7.€). The proof is complete.

Definition 3. Let N, "€I',®) be a normal extension of A, (Y€, ).
If for any subspace R, such that R OR, =9 and every N, is reduced by K,
we have R,=$§, then N, (7 el’, }) is called a minimal normal extension of

A, Tel, D). ,
Putting Q={>X N7,x;; for every,ﬁnite number of z, in & and 7,
Z

in I'}, then evidently the closure of { in ® is a subspace containing
$ and invariant under every N, and Nj. Therefore the necessary
and sufficient condition that N, (F€I’, ®) be a minimal normal extension
of A, (r€rl, ©) is that a linear manifold £ be dense in &. It is noted
that the normal extension N, (€l @) which was obtained in Theorem
1 is a minimal normal extension of A, (T€I’, ).

Theorem 2. A minimal normal extension N, (7€', ®) of A, GTEl, D)
is unique except for umitary isomorphism and |N,|a=1A4,lls TE€I), where
|Nyle and ||A,|ls are respectively the operator norms on § and $.

Proof. Let N, €r,®,) and M, (r€l’, },;) be two minimal normal
extensions of 4, P€I’, ) and L, and . be respectively linear manifolds
defined above (cf. after Definition 38). Then we have

| DNzl = N, g Ny g)= DA, g, Ars)
o g([‘/'[?jxi, 'Myixj) e “52 Mitxi“é.
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Therefore if we make correspond ZN;‘ xz, to ZM z,, then we have

an isometric transformation from ,{3, onto .. Since £, and . are
dense respectively in &, and ®.. Consequently N, (r€erl, ®) and
M, (rel’, Q) are unitary equivalent. . :

From (1.17) we have ||N,|a=<|A4,|5, on the other hand from $Hc |
we have ||A,]s=<|N,|a, therefore we obtain |N,ls=14,ls (PET).

Remark. The fact |N,|g=A4.|s (r€r) is a generalization of Bram
[1] Lemma 2, but remarked that Har.mos’ theorem about the spectrum
of subnormal operators is not necessary.

2. A commutative family of isometric operators. In this section
the partially isometric operator V such that V*V=I will be called
isometric simply. By the application of Theorem 1 we can show the
following Theorem 3. This is a generalization of Coorer’s result (2]
or cf. [9] p. 393) about the continuous one parameter semi-group V,((=0)
consisting of isometric operators. In our proof any assumption about
the parameter is not necessary.

Theorem 3. Let V, €I’, ©) be an operator representation consisting

of tsometric operators. Then it can be extended to an wunitary operator
representation U, (Y€, ). '
‘ Let B={V} be a commutative family of isometric operators on $.
As the semi-group generated by B consists of isometric operators, from
Theorem 3 we can extend 8 to a commutative family {W1=U} of
unitary operators. :

Before the proof we shall show the following Lemmas.

Lemma 3., Let A, (eI, D) be positive definite, N, ¥ €I, }) be a minimal
extension of A, FeI',D) and B be a bounded operator on $.

a) The necessary and sufficient conditions that B can be extended to an
operator L on K being commutative with all N, (r€l’) is that

(1) \ BA, = A,B rerl)
and some positive number C>0 exist such that
2.1 (@i) :L;(A”ij, A, Bx)<C Zj.(A”xj, A, x,)

Jor every finite number x, in © and v, in I'. And such L is unique.

b) Let B, and B, be bounded operators on © and satisfy conditions (i)
and (ii) tn a) and L, and L, be the extensions on R of B, and B, respectively.
Then if B, and B, are commutative, L, and L, are commutative also.

¢) If adding to (i), (ii) of @) B is a normal operator, then L ts also a
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normal operator on R.
- Proof.
a). Necessity. (i) is evident. By observing that

2.2)  2(A,,Bz), A, Bz)= D% Lo, Nt Le)=| LD Nt @)’
| < LI 2 Nfm = LI S A, 250 Ay,
(ii) is obtained. ‘
Sufficiency. First we define a linear transformation L for the
element of L such that L(X N7 ,x)=2> N7¥,Bx,. Then
3 Z .
| (2 N* )= 2(N, Bz,, N, Br)
2,7 :
gC%(A,,ij, A, Bx,)=C| 2 N7, 2.
Hence L is a bounded operator on {, and L can be extended onto @

uniquely. We see easily LN, =N,L(€l') on £ and L is unique on L.
Thus we have conclusion.‘ '

b). L .L,(DN%x)=2N%,BBg,
= ZN;E B.Byx,=L,L, (X N;lfixi) ,
% [ .
hence L,L,=1L,L,. ' |
c). As B is normal and commutative to all 4,, B* commutes with
all A, rel’. And ‘
Zj](A”B*xj, A, B*x)= (A, Bx;, A, Bx)
2, 2,7
A _S_CiZJ(A”mj, Ay x) . o

Therefore from a) B* has a extension M on § uniquely. From b) L
and M are commutative and ,

(L(Kj—‘ Ni‘,xi)’ @Nttyi): %(AYjBxir Ariyj)
= 2 (Ar,30 Ar Bry)=(Z N7 20 M(Z N7, 95).

Thus we obtain L*= M, consequently L is a normal operator on Q.
Lemma 4. Let V, (I=1,2,---,n) be n commutative isometric operators
on O, then we can extend them to n commutative unitary operators U,1l=1,2,---,n)
on R containing . ;
Proof. In the case n=1, it is evident that V; can be extended to
the unitary operator. Therefore the minimal normal extension of V,
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is an unitary operator. Let a semi-group generated by Vi, V;,---, V, (v <n)
have a minimal normal extension consisting of unitary operators on
$, containing $ and W,(=1,2,---,v) be extensions of V,(=1,2,---,1).
By Lemma 3, a) V,,, can be extended to the operator W,,, on §,. It
is easily proved W ,,, is isometric operator on &. Hence putting U,,,
a minimal normal extension of W,., and ® the space on which U, .,
is defined, again from Lemma 3, a) W,(=1,2,:--,») can be extended to
U,(=1,2,---,») defined on . From Lemma 3, b) U,(=1,2,---,»+1) are
commutative and U, (=1,2,---,v) are isometric, and normal from Lemma
3, ¢). Therefore U,(=1,2,---,»+1) are commutative unitary operators
oh ®. By the induction the conclusion is obtained.

Proof of Theorem 3. From Lemma 4 V, (r€I’, ©) is positive definite.
Therefore from Theorem 1 V, (€I, ) has a minimal normal extension
U,(rel’,®). If wereplace A, with V, and N, with U, in the inequality
(1.17), we have <U,%, U,z)=<x,%>. Therefore U, (r€l') are unitary
operators on ®.

Remark. In Lemma 3 and Lemma 4, Theorem 1 is not used
essentially. 'And by Maximal theorem (or transfinite induction) and
Lemma 4, Theorem 3 is proved independently of Theorem 1.

3. A continuous one parameter semi-group. In this section we
shall study a continuous one parameter semi-group consisting of sub-
normal operators and give two types of characterization of subnormal
operators. One parameter family of bounded operators A, (¢=0) on
is called continuous one parameter semi-group when

(1) Azl Atz = Atl-}-tz (tlzor tzgo): AOZI!

3.1 ,
3-1) (ii) weakly continuous on ¢=0.

Lemma 5. Continuous one parameter semi-group A,(t=0, D) of subnormal
operators is positive definite.

Proof. For an arbitrary finite number of ¢=0¢=1,2,---,n) we find
siquences of positive rational numbers r,,;(+=1,2,---; ¢=1,2,---,m) such
that limr, =t (¢=1,2,---,n). We can put 7r,,=b,,/a, v=12,---; ¢t =

Y oo

1,2,.-.,n), where b,, a, are positive integers. Since one parameter
semi-group is weakly continuous if and only if strongly continuous ([6]),
we have ‘ ‘ :

(3.2) ;‘}(A,txj, A, x)=1im > (4

Vo> 2,7

<«

Yy,ile A'Y V,jxi)

=l1lim 2 ((Alla,,)by’ixj’ (Al/ay Yvix;)

v §,7
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On the other hand every A,,, is subnormal by assumption, hence
Z ((AI/ay)bu xj’ (Allay) v Jx’l) > O

Therefore A,t=0, ) is positive definite.

Theorem 4. Continuous one parameter semi-group A, (t=0, ©) of sub-
normal operators con be extended to continuous one parameter semi- group
N,(t=0, ®) consisting of normal operators on R containing .

Proof. From Lemma 5 A,(¢=0, ) has a minimal normal extension
N, (=0, R). We shall show the continuity of N, about the parameter.
It is evident N, is continuous about £=0 on the linear manifold §
(cf. Def. 3) of @, and for any #,=0 and a sequence of rational numbers
r,(v=1,2,---)such that lylin r,=t, {|N,, |;v=1,2,.--} is uniformly bounded,
because | N, ,|=|N|"¥(v=1,2,---). Therefore easily we can see lim N, ,

Y Soe

=N,, strongly by observing that Q is dense in & and {|N, |; »=1,2,---}
is uniformly bounded. Thus N, is strongly continuous about ¢{=0.

Remark. (i) If in Theorem 4 & is separable, the space ® of the
minimal normal extension N, (=0, &) is also separable.

(ii) From Theorem 2 we have ||4,| = 4,||*((=0) for every continuous
one parameter semi-group A4,(=0) of subnormal operators.

Theorem 5. A bounded operator A on S’Q ts subnormal if and only if
one parameter semi-group exp (tA) (t=0) is positive definite.

Proof. Necessity. Let N be a minimal normal extension of A.
Then we have '

(3.3) iZj] (exp (¢, A)x; exp (tj’A)xi) = z.,Z“_j,(exp' ¢ N*)z;, exp (. N*)x,)
= || };exp(t,;N*)x,szgO.
Sufficiency. Let N,(¢=0,%®) be a minimal normal extensien of
exp (tA) (t=0, ). Then N, is continuous about {=0 from Theorem 4.
— @N: | that is, the infinitesimal operator of N, (t=0)

t=0

(6], N is regular normal operator on & ([8]) (generally non-bounded).
Since _dexp(tA)
] dt . 2=0
the domain of N*. Therefore
(3.4) Z(A“ T, A™x,) = Z‘_,(N”x,n, N™x,)= Z}(N*”‘ , N*mz,)

= || ZN*"an =0.

=A on &, we have N Dy~=8, where Dy» denotes
n=1
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Hence A is subnormal. .

Remark. Naturally A is subnormal if and only if exp (t4)
(—oo <t< + o) is positive definite. »

Let I" be a group and e be an identity element of I". An operator
valued function ¢(r) from I" into bounded operators on a HILBERT space
$ 1is called a positive definite function in Naay’s sense ([11]) if ¢(e)=
identity operator on &, and Z(xz,gb(n 7)x,)=0 for every finite number

of , in  and 7, in I".

Lemma 6. Let I" be a group, ¢ ) (€I, ) an operator representation
of I' and $(r)=(~V o). Then ¢)TEl’, ) is positive definite in the
sense of Definition 1 if cmd only if ¢(r) is a positive definite fzmctwn on I’
m NAGY's sense.

Proof. Because
Z (@, o7 ,Tj) x;) = Z (7 7r) @, @' T xy)

, (8.5
8-5) . =¢,Z;3(90(6;)y¢, ACHED)

where §,=7;' and y,=¢(,)x; for all 2. - And hence the conclusion is
clear. ‘

From Theorem 5 and Lemma 6 we obtain the following theorem
which is a generalization of Braw’s theorem ([1] Theorem 2).

Theorem 6. A bounded operator A on a HILBERT space £ is subnormal
if and only if exp(—tA*)exp (tA) (—oco<t< +o0) is a positive definite
Sunction in NAGY’s sense. ‘

Remark. If for an arbitrary positive definite function on an
abelian group ¢ () in Nacy’s sense it is possible to find an operator
representation ¢() such that ()= ¢(—7)*¢(), we shall obtain from
Theorem 1 Nacy’s result ((11] Theorem III) in the case of abelian groups.
But in general it is impossible. For example for continuous one- para-
meter semi-group 7, (t=0) of contractions; |7,|=1, if we put ¢ {&)=T,
for t=0 and ¢ )=T*, for t<<0, then ¢ (¥) exists for such ¢(f) if and only
if all T, are unitary operators.

4. A weak closure of 4, (eI, ). Let A,(rel’, ) be a positive
definite operator representation and A, (w€L, D) be the weakly closed
algebra (not necessary self-adjoint) generated by A, (€rl’). In this
section we shall give a theorem which shows the relation between the
minimal normal extension N, €l’, ®) of A, (rel’, ) and that of A,
(w€Q, ). This theorem is a generalization of [1] Theorem 9 but our
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proof seems to be simpler than that of [1]. '

Theorem 7. If A, (er’, ) is positive definite, then the weak closed
algebra A, (w€R, ) is positive definite also. And let N, (Yel’, ®) and L,
(0€EL, M) be respectively the minimal normal extensions of A, (T€Il, $) and
Ay (wER, D). Then we may consider M=K and L,ER {N,TeI)} (vED),
where R{N,(rel")} is the operator ring (weakly closed self-adjoint algebm)
generated by N,(rel’) on R. :

Proof. Since A, (el’,$) is positive definite, the algebra 9 ge-
nerated by A, (Y€rI') is evidently positive definite. By the definition
of positive definite naturally the strong closure of 9[ is also positive
definite. Therefore A,(w€R, D) is positive definite, because the strong
closure of a linear set of operators is the same as its weak closure.

Let L, (wv€£, M) be the minimal normal extension of A, (w€L, ),
L,(rel') be its part which is a extension of A,(r€rI) onto Ik and RN
{L, (rel")} be the operator ring on Ik generated by L, (€.

" First we shall show that for any L, (w€%) (fixed) and for any >0
and z,€9 (2=1,2,---,n) there exists an operator L such that

LeR{L, (rel)},
(4.1) 1L <v/72 | La| ,
liwai’—inH é e (1::: 1,2,...,n) .

Because for A, there exists B€9 such that |4,z,—Bx,;|<¢ (t=1,2,---,n),
putting M the extension of B onto §k, then MeR {L,(rel)} and | L.z,
—Mzx, | <e (¢t=1,2,---,n), it follows that |R(L,)x;—R(M)x,| <e, |I(Ly) ,
—IM)x,|<e(¢=1,2,---,n), where R(T) and I(T) denote respectively the
real part and the imaginary part of T, ‘evidently R(M), I(M) €R
{L,(€l)}, we can find a polynom1a1 P @) (cf. von NEumann [9] p. 399)
such that

IIP(R(M))‘I =|Loll, [P = ||Lwl
4. 2) IP(R(M))x,—R(L.)z,| < e,
| P I (M)x,—I(Ly)x,|| <& t=1,2,---,n
If we put L=P(R(M)+iP(I(M)), then L satisfies (4.1). |
Putting 8—{2L”x¢, for every finite number of x,€$ and 7,€I'}
and R=¢ (closure of £ in M). Then §® reduces every L, (rerl’) and

therefore @ reduces R {L,(T€l}. We can see by using (4. 1) ® reduces
also every L, (w€&). Because, for any f€® and e>0, we can find

ZLiixieﬂ and LeR{L,(rel')} such that | f— ZL xinge//z Il Lo,
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ILI =/ Z | Lall, |Lowi—La) <¢/3IL,,|. Hence | Luf—Lf || < |Luf—

Lo(2 L3,2) | + | La(D LY, @) —L(Z L 0| + | L(D Lt,w)—Lf | <3e, that is,

we have | L,f—Lf|=3e. Since L, and L are commutative we have
\Lif —L*f|| <8e also. As Lf,L*f€® and ¢ is arbitrary, it follows that
L,f, LXf€® namely @ reduces L,. Since L, (w€L, %) is a minimal
normal extension, we must have @=9k. Likeweise above we can see
for arbitrary L., f,€® (:=1,2,---,n) and >0 there exists Le Rt {L, (7€)}
such that || L,f;—Lf,|<8e (:=1,2,---,n). Therefore L., belongs to the
strong closure of § {L,(rer')} on |, that is, L,eR {L, (7€ Ny, L,Gel',R)
is evidently the minimal normal extension of A,(r€!l’,9). Thus the
proof is complete.
Remark. As A, (w€L, $) is positive definite, by using Lemma 3
a) A, can be extended uniquely to an operator L, acting on ® which
is the space of the minimal normal extension N, (rel’, ®) of A, (rer’,
$). In other words Theorem 7 is as follows A,, an element of the
weakly closed algebra generated by A, (€, can be extended uniquely
to an operator L, on § such that L,€ R{N,(€l)} and |L,|=14.].

5. A spectrum of subnormal operators. Harmos |4] has shown
that if NV is the minimal normal extension of the subnormal operator
A, then the resolvent set ¢ (A) of A is contained in the resolvent set
P(N) of N. Let 0,(N)(n=1,2,---) be all connected components of £(N).
Then Bram [1] has shown P(4)= 2 P.(N), where J is a subset of the

positive integers. In this section we shall show simpler another proof
of this theorem, in our proof the theory of complex variable functions
is not necessary.

Denoting £(A) the resolvent set of a operator A 3 the whole of
polynomials P (1) on the complex plane, &, the whole of rational functions
F(D)=P,)/P{1) which are regular on the spectrum of A. We can define
P(A) for P(A)ESB and f(A)=P;(A) P,(A)™ for f(DHET.-

Lemma 7. The following conditions are equivdlent each other

a) A is subnormal,
b) P(A) (P(A)ES[} ) is positive oleﬁmte
¢) f(A) (f(AHETL ) is positive definite,
d) (A—A)for some 1€ P(A) is subnormal.
Proof. 1t is evident that a) implies b) and c¢) implies d). We shall
prove b) implies ¢). Because for arbitrary finite number of f,(Q) €T,
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(i=1,2,--n), F,()=P,()/Q2). we have
(5. 1) él(fi(A)xj, FA)m) = éj(Pi(A)Qi(A)“‘xj, P,(4) Q,(A) 'z,
= B (PUAR(A,, PAAR, (A 20,

where y,= Qi(4A)7'Q(A)" - Q.(4A)'%,(1=1,2,---,m) and. B,(})= Q,()Q.(A)---
Q.(N)/Q,() (2=1,2,---,n). And likewise d) implies a).

Remark. Let f(A) (f€F,, ) be positive definite and N(FEF,, |)
be its minimal extension Then by remenbering the proof of Theorem
1 we obtain Ny, N;, =Ny, and Ny ., =N; +N;. Therefore we have from
Theorem 2 || f1(A)+f.(A)|s=|N;, + N |ln for every f,, f.€F. (th1s fact will
be used in the proof of Theorem 8).

Theorem 8. (Har.mos, Bram). Let A be subnormal and N be the minimal
normal extension of A. Then we have ”

(5. 2) | . P(A)= ZPn(N)

where £,(N)(n=1,2,---) are all connected components of © (N) and J is a suitable
subset of the positive integers.

Proof. From Lemma 9 f(A)(fR)EF. ) is positive definite, hence
it has a minimal normal extension N,(f(A)€F4, R). We shall denote
by N the extension of A onto . For any 1,€P(A) if we put P(A)=A—A1,
then P '€, a.nd P(2) P(2)"'=1, hence N.N,-:=N, :N,=I. Therefore
(N—2) Np-1= Np-1(N—1,)=I namely 2,€P(N) and N, _ a1 = (N—2,)7.
Furthermore we obtam N;=f(N) for every f€F,. On the other hand
N is a minimal normal extension of A. Because, if a subspace ?, of
% contains  and reduces N, then evidently ®, reduces every f(N)=
N,(f€F4), therefore §,=R. Thus we obtain Harmos’ theorem, that is,
P(A)=P(N). /

Next we shall prove that °,(N)~pP(A)=¢ or =p, (N) for every n.
If P,(N)~P(A)>=¢ for some n, then P,(N)~rP(A) is non-empty open set.
On the other hand °,(N)~rP(A) is a closed set in £,(N). Because, for
every sequence 1,€£,(N)~FP(A) such that lim i, =21,€L,(IN) we have

P =]

lim [|(N—4,)'—(N—2,)"'|2=0, by the Remark after Lemma 9 (A—2,)?

Y o0

—(A—=2) e =I(N—2,)""—(IN—2,)""|lg, therefore we find an operator B
on & such that lim I (A—A,,)"—B}lg,:o and hence for every 1€ P(A) we

have (A—A)"'—B —llm(A —A)” 1—(A——Z,,)1~11m(,2—-),,)(A DT (A—2,) =
(A—4) (A—A)'B, that is, (A—A)"'"—B=(1— 2,,) (A —A)7'B. Therefore it



follows that 1,€ P(A) and B=(A4—1,)"".
and closed in #,(N), hence P,(N)~P(A)=F,(N).
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Consequently 2,,(N)~P(A) is open
The proof is complete.



