ON THE NORMAL BASIS THEOREMS AND THE EXTENSION DIMENSION

By

Kazuo KISHIMOTO, Takesi ONODERA and Hisao TOMINAGA

Recently, in his paper [7] one of the authors has presented several generalized normal basis theorems for a division ring extension, which contain as special cases the normal basis theorems given in [1] by Kasch (provided for division ring extensions). One of the purposes of this paper is to extend his results to simple rings. In §1, we shall prove those extensions, and add a decision condition for a normal basis element in a strictly Galois extension of a division ring, which is well-known in commutative case. Next, in §2, we shall treat exclusively an F-group of order p^e in a simple ring, and consider the relations between the extension dimension over the fixed subring and the order of the F-group. The principal theorem of §2 is an improvement of the result stated in [8] for a DF-group. As to notations and terminologies used in this paper, we follow [3] and [5].

- § 1. The following lemma has been given in [7]¹⁾, and will play a fundamental role in our present study.
- **Lemma 1.** Let $T\ni 1$ be a ring with minimum condition for right ideals, and let M, N be unital right T-modules.
- (i) M is T-projective if and only if it is T-isomorphic to a direct sum of submodules each of which is T-isomorphic to a directly indecomposable direct summand of T.
- (ii) If $M^{(m)} \simeq T^{(\omega)}$ for a positive integer m and an infinite cardinal number ω , then $M \simeq T^{(\omega)}$.
- (iii) If $M^{(m)} \simeq T^{(t)}$ for positive integers m, t and t = mq + r $(0 \le r < m)$, then $M \simeq T^{(q)} \oplus M_0$, where M_0 is a T-homomorphic image of T such that $M_0^{(m)} \simeq T^{(r)}$. In particular, if m = t then $M \simeq T$.
 - (iv) If M is T-projective and $M^{(m)} \sim N^{(n)}$ with $m \le n$ then $M \sim N$.

Theorem 1. Let \mathfrak{P} be an N-group with $B=J(\mathfrak{P},A)$, and $N\ni 1$ an \mathfrak{P} -invariant subring of A with minimum condition for right ideals such that A possesses a finite (linearly independent) right N-basis $\{x_1, \dots, x_t\}$. If

¹⁾ Numbers in brackets refer to the references cited at the end of this paper.

 $t \leq [A:B]$ then A is $\mathfrak{P}N_r$ -homomorphic to $\mathfrak{P}N_r$, in particular, A is always $\mathfrak{P}B_r$ -homomorphic to $\mathfrak{P}B_r$.

Proof. Since $V_{\text{Hom }(A,A)}(B_l) = \mathfrak{F}A_r$ by [3, Theorem 1], [A:B] = m implies $A^{(m)} \cong \mathfrak{F}A_r$ and $\mathfrak{F}A_r = \bigoplus_{i=1}^m \sigma_i A_r = \bigoplus_{i,j} \sigma_i x_{jr} N_r$ with some $\sigma_i \in \mathfrak{F}$. Then, to be easily verified, $\mathfrak{F}N_r$ satisfies the minimum condition for right ideals and $\mathfrak{F}A_r = A_r \mathfrak{F} = \sum x_{ir} N_r \mathfrak{F} = \sum x_{ir} (\mathfrak{F}N_r)$, so that $\mathfrak{F}A_r$ is $\mathfrak{F}N_r$ -homomorphic to $(\mathfrak{F}N_r)^{(t)}$, whence it follows that $A^{(m)}$ is $\mathfrak{F}N_r$ -homomorphic to $(\mathfrak{F}N_r)^{(t)}$. Hence, by Lemma 1 (iv), A is $\mathfrak{F}N_r$ -homomorphic to $\mathfrak{F}N_r$.

- **Lemma 2.** Let \mathfrak{P} be an N-group with $B=J(\mathfrak{P},A)$ and $N\ni 1$ an \mathfrak{P} -invariant subring of A with minimum condition for right ideals such that A possesses a right N-basis $\{x_{\lambda}; \lambda \in \Lambda\}$.
- (i) If V=C or $V\subseteq N$, then $\mathfrak{P}N_r$ possesses a right N_r -basis containing [A:B] elements and $\{x_{\lambda r}; \lambda \in \Lambda\}$ forms a right $\mathfrak{P}N_r$ -basis of $\mathfrak{P}A_r$.
- (ii) If A/B is strictly Galois with respect to $\mathfrak{F} = \{\sigma_1, \dots, \sigma_m\}$, then $\mathfrak{F}N_r = \bigoplus_{i=1}^m \sigma_i N_r$ and $\{x_{\lambda_r}; \lambda \in \Lambda\}$ forms a right $\mathfrak{F}N_r$ -basis of $\mathfrak{F}A_r$.
- *Proof.* (i) As in the proof of Theorem 1, $A^{(m)} \cong \mathfrak{F}A_r$ (m = [A : B]) and $\mathfrak{F}A_r = \bigoplus_{1}^m \sigma_i A_r = \bigoplus_{1}^m A_r \sigma_i$ with some $\sigma_i \in \mathfrak{F}$. If V = C then \mathfrak{F} coincides with $\{\sigma_1, \dots, \sigma_m\}$ by [6, Theorem 1]. On the other hand, if $V \subseteq N$ then $\mathfrak{F}V_r = \bigoplus_{1}^m \sigma_i V_r \subseteq \bigoplus_{1}^m \sigma_i N_r$ by [5, Lemma 1.3 (iii)]. Thus, in either cases, $\mathfrak{F}N_r = \bigoplus_{1}^m \sigma_i N_r$ and $\mathfrak{F}A_r = \bigoplus_{i,\lambda} x_{\lambda r} N_r \sigma_i = \bigoplus_{\lambda} x_{\lambda r} (\mathfrak{F}N_r)$, so that $\{x_{\lambda r}; \lambda \in \Lambda\}$ is a right $\mathfrak{F}N_r$ -basis of $\mathfrak{F}A_r$.
- (ii) As $\mathfrak{F}A_r = \bigoplus_{i=1}^m \sigma_i A_r$, $\mathfrak{F}N_r = \bigoplus_{i=1}^m \sigma_i N_r$ of course. So that, the rest of the proof is the same with the last part of (i).

Lemma 3. Let A be Galois and finite over B, and $N\ni 1$ a \mathfrak{G} -invariant simple subring of A. If V is different from $(GF(2))_2$ and $[\mathfrak{G}N_r:N_r]_r=[A:B]$ then V=C or $V\subseteq N$.

Proof. The proof will proceed except only one point in the same way as [3, Theorem 3] did. However, for the sake of completeness, we shall give it here. Suppose on the contrary that V is neither C nor contained in N. Every element of V is a finite sum of elements contained in V (the group of units in V) and $[\mathfrak{G}A_r:A_r]_r=[A:B]=[\mathfrak{G}N_r:N_r]_r$. In what follows, we shall prove that there exist some $v,v_1,\cdots,v_k\in V$ such that $\{v_1,\cdots,v_k\}$ is linearly independent over C and $\tilde{v}=\sum_1^k \tilde{v}_i a_{ir}$ with some $a_i\in A$ not all contained in N. (But, by [4, Lemma 1.3 and Lemma 1.4], the last fact yields at once a contradiction.) To this end, we set $V=\sum_1^l Ug_{pq}$ where $\{g_{pq}\}$ is a system of matrix units and $U=V_v(\{g_{pq}\})$ a division ring, and distinguish between two cases:

Case I. l=1: Let $\{v_1, \dots, v_m\}$ be a C-basis of V. Then, $V \neq C$ yields m>1. We shall distinguish further between three cases:

- (i) $C \not = N$: As is readily verified, $v_1 + v_2 = \tilde{v}_1(v_1(v_1 + v_2)^{-1})_r + \tilde{v}_2(v_2(v_1 + v_2)^{-1})_r$. If $v_1(v_1 + v_2)^{-1} \not \in N$ then $v_1 + v_2$, v_1 and v_2 are elements desired. On the other hand, if $d_1 = v_1(v_1 + v_2)^{-1}$ is in N then $v_2 = (d_1^{-1} 1)v_1$ and d_1 is different from 1. For an arbitrary $c \in C \setminus N$, we have $v_1 + cv_2 = \tilde{v}_1(v_1(v_1 + cv_2)^{-1})_r + \tilde{v}_2(v_2c(v_1 + cv_2)^{-1})_r$. Then, $d_2 = v_1(v_1 + cv_2)^{-1}$ is not contained in N. In fact, if $d_2 \in N$ then $(d_1^{-1} 1)v_1 = v_2 = c^{-1}(d_2^{-1} 1)v_1$ yields a contradiction $c = (d_2^{-1} 1) \cdot (d_1^{-1} 1)^{-1} \in N$.
- (ii) $C \subseteq N$ and $\{v_1, \dots, v_m\} \cap N = \emptyset$: $1 = v_1c_1 + \dots + v_mc_m$ with $c_i \in C$, so that $\tilde{1} = \tilde{v}_1(v_1c_1)_r + \dots + \tilde{v}_m(v_mc_m)_r$. Recalling that $c_j \neq 0$ for some j and hence $v_jc_j \notin N$, $1, v_1, \dots, v_m$ are evidently desired ones.
- (iii) $C \subseteq N$ and $\{v_1, \dots, v_m\} \cap N \neq \emptyset$: As $C \subseteq N$ and $V \not\sqsubseteq N$, without loss of generality, we may assume that $v_1 \in N$ and $v_2 \not\in N$. Then, $v_1 + v_2 = \tilde{v}_1(v_1(v_1 + v_2)^{-1})_r + \tilde{v}_2(v_2(v_1 + v_2)^{-1})_r$ and $v_1(v_1 + v_2)^{-1} \not\in N$, so that $v_1 + v_2$, v_1 and v_2 are desired ones.
- Case II. l>1: Evidently, $\{1, f_{pq}=1-g_{pq}\ (p,q=1,\cdots,l\,;\,p\neq q)\}\ (\subseteq V)$ is linearly independent over C, and similarly in case l is even so is $\{f_q=g_{qq}+\sum_{1}^{l}g_{pl-p+1}\ (q=1,\cdots,l)\}\ (\subseteq V)$. By [2, Theorem 2], $V\subseteq N$ or $N\subseteq H$, so that $N\subseteq H$ in reality². Noting that $V\cap N$ is then a field contained in the center of V, it is clear that no non-diagonal elements of V are contained in N. Now, we shall complete our proof by distinguishing between two cases:
- (i) V is not of characteristic 2: In this case, every $1+f_{pq}$ is in V and $\widetilde{1+f_{pq}}=\widetilde{1}(1+f_{pq})^{-1}+\widetilde{f}_{pq}(f_{pq}(1+f_{pq})^{-1})_r$ with $(1+f_{pq})^{-1}\not\in N$. (ii) V is of characteristic 2: If l is odd, then $u=1+\sum_{l=1}^{l}f_{p-1}\in V$ and
- (ii) V is of characteristic 2: If l is odd, then $u=1+\sum_{i=1}^{l}f_{p-1p}\in V$ and $\tilde{u}=\tilde{1}u_r^{-1}+\sum_{i=1}^{l}\tilde{f}_{p-1p}(f_{p-1p}u^{-1})_r$ with $u^{-1}\notin N$. On the other hand, if l is even then $1=\sum_{i=1}^{l}f_p$, so that $\tilde{1}=\sum_{i=1}^{l}\tilde{f}_pf_{pr}$ with $f_p\notin N$.

The following example will show that the assumption $V \neq (GF(2))_2$ is indispensable in Lemma 3.

Example 1. Let $A = (GF(2))_2$, B = GF(2). Then, $1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\alpha = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\beta = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $\delta = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $\delta = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $\delta = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ induce the Galois group $\mathfrak{G} = \{\tilde{1}, \tilde{\alpha}, \tilde{\beta}, \tilde{\tau}, \tilde{\delta}, \tilde{\epsilon}\}$ of A/B, V = A and $N = \{0, 1, \delta, \epsilon\}$ is a \mathfrak{G} -invariant subfield of A. Since $\tilde{\tau} = \tilde{\alpha} \varepsilon_r + \tilde{\beta} \delta_r$ and $\tilde{\varepsilon} = \tilde{1} \delta_r + \tilde{\delta} \varepsilon_r$, we obtain $\mathfrak{G} N_r = \tilde{1} N_r \oplus \tilde{\alpha} N_r \oplus \tilde{\beta} N_r \oplus \tilde{\delta} N_r$, so that $[\mathfrak{G} N_r : N_r]_r = 4 = [A : B]$. However, to be easily verified, $V \neq C$ and $\mathfrak{G} N$.

²⁾ The assumption $V \neq (GF(2))_2$ is needed only to secure $N \subseteq H$ (provided $V \not\subseteq N$). Accordingly, our lemma is evidently valid for N = B even in case $V = (GF(2))_2$. (Cf. [2, Theorem 3]).

Theorem 2. Let A/B be Galois, [A:B]=m, V different from $(GF(2))_2$, and let N be a \mathfrak{G} -invariant simple subring of A.

- (i) The following conditions are equivalent to each other:
- (1) V=C or $V\subseteq N$.
- (2) $[\mathfrak{G}N_r:N_r]_r = [A:B].$
- (ii) If $[A:N]_r$ is an infinite cardinal number ω , then A is $\mathfrak{G}N_r$ -isomorphic to $(\mathfrak{G}N_r)^{(\omega)}$.
- (iii) If $[A:N]_r = t$ and t = mq + r $(0 \le r < m)$, then each of the conditions (1), (2) cited in (i) is equivalent to the next:
- (3) A is $\mathfrak{G}N_r$ -isomorphic to $(\mathfrak{G}N_r)^{(q)} \oplus \mathfrak{M}$, where \mathfrak{M} is a $\mathfrak{G}N_r$ -homomorphic image of $\mathfrak{G}N_r$ such that $M^{(m)} \simeq (\mathfrak{G}N_r)^{(r)}$.
- *Proof.* (i) The equivalence is a direct consequence of Lemma 2 (i) and Lemma 3. (ii) $A^{(m)} \cong \mathfrak{G} A_r \cong (\mathfrak{G} N_r)^{(\omega)}$ by Lemma 2 (i). Hence, Lemma 1 (ii) yields at once our assertion. (iii) By (i) and Lemma 1 (iii), one will easily see the equivalence relations.

Now, by the light of Lemma 2 (ii), Lemma 1 (ii) and (iii) will yield the following, too. The proof may be left to readers.

Theorem 3. Let A/B be strictly Galois with respect to \mathfrak{D} of order m, and $N\ni 1$ an \mathfrak{D} -invariant subring of A with minimum condition for right ideals such that A possesses a right N-basis $\{x_{\lambda}; \lambda \in \Lambda\}$.

- (i) If Λ is infinite then there exists a subset $\{u_{\lambda}; \lambda \in \Lambda\}$ of A such that $\{u_{\lambda}\sigma; \lambda \in \Lambda \text{ and } \sigma \in \mathfrak{P}\}$ is a right N-basis of A.
- (ii) If $\sharp A = t < \infty$ and t = mq + r $(0 \le r < m)$ then A contains q elements u_1, \dots, u_q and an $\mathfrak{D}N_r$ -homomorphic image M with $M^{(m)} \simeq (\mathfrak{D}N_r)^{(r)}$ such that $\{u_i\sigma; i=1,\dots,q \text{ and } \sigma \in \mathfrak{D}\}$ is right linearly independent over N and $A = (\bigoplus_{i,\sigma}(x_i\sigma)N) \oplus M$.

As a special case of Theorem 3 (ii), we see that if A/B is strictly Galois with respect to \mathfrak{F} then there exists a right (and similarly a left) \mathfrak{F} -n.b.e. (cf. [3, Theorem 4]). In case A is a division ring, we can prove the following theorem, that is well-known for the commutative case.

Theorem 4. Let A be a division ring, and $\mathfrak{F} = \{\sigma_1, \dots, \sigma_m\}$ an automorphism group of A with $B = J(\mathfrak{F}, A)$. In order that [A : B] coincides with m, it is necessary and sufficient that there exists an element $a \in A$ such that the matrix $(a\sigma_i\sigma_j)$ is regular. Moreover, $a \in A$ is a left \mathfrak{F} -n.b.e. (right \mathfrak{F} -n.b.e.) if and only if the matrix $(a\sigma_i\sigma_j)$ (the matrix ${}^t(a\sigma_i\sigma_j)$ transposed) is regular.

Proof. If [A:B]=m, that is, A/B is strictly Galois with respect to \mathfrak{F} , then there exists a left \mathfrak{F} -n.b.e. $a \in A$ by Theorem 3, for which we have

 $T_{\mathfrak{P}}(a) = \sum a\sigma_i \neq 0$. Suppose $(a\sigma_i\sigma_j)$ is non-regular. Then, the matrix is a zero-divisor, so that there hold non-trivial relations $\sum a_i \cdot a\sigma_i\sigma_j = 0$ $(j=1, \dots, m)$ with some $a_1, \dots, a_m \in A$, where we assume $a_k \neq 0$. Since $\sum aa_k^{-1}a_i \cdot a\sigma_i\sigma_j = 0$ $(j=1, \dots, m)$ and $T_{\mathfrak{P}}(aa_k^{-1}a_k) = T_{\mathfrak{P}}(a) \neq 0$, we may assume further $T_{\mathfrak{P}}(a_k) \neq 0$. We obtain then $0 = \sum_{i,j} a_i \sigma_j^{-1} \cdot a\sigma_i = \sum_i T_{\mathfrak{P}}(a_i) \cdot a\sigma_i$. Now, $T_{\mathfrak{P}}(a_i) \in B$ and $T_{\mathfrak{P}}(a_k) \neq 0$ contradict our assumption that a is a left \mathfrak{P} -n.b.e. Conversely, if $(a\sigma_i\sigma_j)$ is regular then $\{a\sigma_1, \dots, a\sigma_m\}$ is linearly left independent over B, so that [A:B]=m by [3, Lemma 2]. The latter assertion will be evident by the above proof.

Corollary 1. Let a division ring A be strictly Galois with respect \mathfrak{F} of order m. A left \mathfrak{F} -n.b.e. is a right \mathfrak{F} -n.b.e. as well, provided either \mathfrak{F} is abelian or A is of characteristic p and $m=p^e$.

Proof. If \mathfrak{P} is abelian, our assertion is evident by Theorem 4. On the other hand, in case A is of characteristic p and $m = p^e$, our assertion is a direct consequence of [3, Corollary 1].

§ 2. In $[8]^3$, the results obtained in $[3, \S 3]$ have been generalized as follows: Let $A(\ni 1)$ be a simple ring (satisfying the minimum condition for right ideals) with the center C, \mathfrak{F} a DF-group of order p^e (p a prime), and $B=J(\mathfrak{F},A)$. If the center Z of B contains no primitive p-th roots of 1, then $V=V_A(B)$ coincides with C[Z] and [A:B] divides p^e . If moreover A is not of characteristic p, then [A:B] coincides with p^e . In below, we shall present an improvement of the above theorem (Theorem 5) together with several additional remarks. Our improvement is essentially due to the following brief lemma.

Lemma 4. Let A be a central simple algebra of finite rank over C, \mathfrak{F} an automorphism group of A such that $J(\mathfrak{F}, A) = C$ and $\mathfrak{F} = p^e$ (p a prime). If C contains no primitive p-th roots of 1 then A coincides with C.

Proof. Suppose on the contrary e>0. As $\mathfrak{G}(A/C)=\tilde{A}$, the center of \mathfrak{F} contains a subgroup $\mathfrak{F}=\{\tilde{1},\tilde{v},\cdots,\tilde{v}^{p-1}\}$ of order p. Then, for each $\sigma=\tilde{u}\in\mathfrak{F}$, $\tilde{v}\sigma=\sigma\tilde{v}$ implies $v\sigma=vc_{\sigma}$ with some $c_{\sigma}\in C$. And, $v^p=uv^pu^{-1}=(v\sigma)^p=v^pc_{\sigma}^p$ yields $c_{\sigma}^p=1$, i.e. $c_{\sigma}=1$, which means evidently $v\sigma=v$, so that $v\in J(\mathfrak{F},A)=C$. But, this is a contradiction.

In the rest of this paper, we use the following conventions: A is a simple ring with the center C, and \mathfrak{H} an F-group of A of order p^e (p a prime). We set $B = J(\mathfrak{H}, A)$, that is a simple ring by [3, Lemma 2]. And,

³⁾ By the way, we should like to note here a typographical error in the proof of [8, Theorem 2]: $\mathfrak{F} = \widetilde{V} \setminus \mathfrak{F}$ should replace $\mathfrak{F} = \widetilde{V}$.

Z, V and H represent the center of B, $V_A(B)$ and $V_A(V)$, respectively. $\mathfrak{F}_0 = \mathfrak{F}_{\frown} \widetilde{V}$ is evidently an invariant subgroup of \mathfrak{F} consisting of all the inner automorphisms contained in \mathfrak{F} . One may remark here that $V = V(\mathfrak{F}) = V(\mathfrak{F}_0)$ by [3, Lemma 2]. Finally, by p^* we denote the exponent of \mathfrak{F}_0 , and set $p^f = (\mathfrak{F} : \mathfrak{F}_0) \cdot p^*$.

Theorem 5. If Z contains no primitive p-th roots of 1, then V is the composite C[Z] of C and Z (accordingly \mathfrak{F} is a DF-group⁴⁾, and [A:B] is a multiple of p^f and a divisor of p^e . In particular, if moreover, A is not of characteristic p then [A:B] coincides with p^e .

Proof. Let C_0 be the center of V. Then, $\mathfrak{H}|C_0$ is evidently the Galois group of C_0/Z , so that $[C_0:Z]=\#(\mathfrak{F}|C_0)$ divides p^e . Hence, C_0 contains no primitive p-th roots of 1. Next, $\mathfrak{H}_0|V$ is an automorphism group of V and its order divides p^e . As $J(\mathfrak{F}_0|V,V)=C_0$ and $[V:C_0]<\infty$, Lemma 4 yields then $V=C_0$. Suppose $V \supseteq C[Z]$. Then, noting that $V=V(\mathfrak{F}_0)$, we can find an element $v \in V \setminus C[Z]$ with $\tilde{v} \in \mathfrak{H}_0$. Since the field V is normal and separable over C[Z] and $v^{p^e} = c \in C$, there exists an element $u \in V$ different from v with $u^{pe} = v^{pe}$, that is, $(vu^{-1})^{pe} = 1$. Recalling here that $C_0 = V$ contains no primitive p-th roots of 1, we obtain $vu^{-1}=1$. Hence, we have a contradiction v=u, which proves our first assertion V=C[Z]. It follows then, [A:B] is a divisor of p^e by [4, Theorem 1] and in case A is not of characteristic p it coincides with p^e by [8, Theorem 3]. And so, in what follows, we shall prove that if A is of characteristic p then p^f divides [A:B]. By [6], we obtain $\mathfrak{D}(H) = \mathfrak{D}_0$ and $[H:B] = (\mathfrak{H}:\mathfrak{H})$. Since the field V coincides with $V(\mathfrak{H}_0)$ and the order of \mathfrak{H}_0 is a power of p, V is a finite dimensional purely inseparable extension of C and one will easily see that the exponent of V/C coincides with ε . Hence, p^{ϵ} divides [V:C]=[A:H], so that $p^{\epsilon}=p^{\epsilon}\cdot(\mathfrak{F}:\mathfrak{F}_{0})$ does [A:H][H:B]= [A : B].

Now, combining the first assertion of Theorem 5 with [4, Corollary 1. 3], we readily obtain the next:

Corollary 2. Let A be of characteristic p, and \mathfrak{F} a fundamental abelian group: $\mathfrak{F} = \mathfrak{F}_1 \times \cdots \times \mathfrak{F}_e$, where $\mathfrak{F}_i = [\sigma_i]$ is cyclic with a generator σ_i of order p. If A/B is strictly Galois with respect to \mathfrak{F} then there exist some $x_1, \dots, x_e \in A$ such that $(1) \ x_i^p - x_i \in B$, $(2) \ A = B[x_1, \dots, x_e]$, $(3) \ B = B[x_i] \cap B[x_1, \dots, x_i, \dots, x_e]$ and $(4) \ B[x_i]/B$ is strictly Galois with respect to \mathfrak{F}_i .

Theorem 6. Let A be of characteristic p. In order that [A:B] coincides with p^t , it is necessary and sufficient that V/C is primitive.

Proof. As was noted in the proof of Theorem 5, $[H:B] = (\mathfrak{F}:\mathfrak{F}_0)$ and

⁴⁾ However, in case Z contains a primitive p-th root, $\mathfrak P$ is not always a DF-group.

the exponent of V/C coincides with ϵ . So that, by [9, p. 140], V/C is primitive if and only if $p^* = [V:C] = [A:H]$, i.e. $p^r = [A:B]$.

Corollary 3. Let Z contain no primitive p-th roots of 1. If \mathfrak{D}_0 is cyclic then $[A:B]=p^e$, in particular, if C is a Galoisfeld then $[A:B]=p^{e\,5}$.

Proof. In virtue of Theorem 5, we may assume that A is of characteristic p. Since the exponent of cyclic \mathfrak{F}_0 coincides with $\sharp \mathfrak{F}_0$, our assertion is a direct consequence of Theorem 6.

Finally, let A be of characteristic p. As \mathfrak{F}_0 is abelian by Theorem 5, we may set $\mathfrak{F}_0 = \mathfrak{F}_1 \times \cdots \times \mathfrak{F}_t$ with cyclic \mathfrak{F}_i . If we set $V_i = V(\mathfrak{F}_i)$ (a field), then $V = V_1 \cdots V_t$ and $[V_i : C] = \sharp \mathfrak{F}_i$ by Corollary 3. Now, one will easily see the following:

Theorem 7. Let A be of characteristic p. In order that [A:B] coincides with p^e , it is necessary and sufficient that $V_1 \cdots V_t = V_1 \otimes_{C} \cdots \otimes_{C} V_t$.

Example 2. Let $\Phi = GF(p)$, and $C = \Phi(x_1, \dots, x_e)$ with e indeterminates x_1, \dots, x_e . $B = C(x_1^{\frac{1}{p}}, \dots, x_e^{\frac{1}{p}})$ is evidently a p^e -dimensional purely inseparable extension over C with exponent 1. Let A be the ring of $p^e \times p^e$ matrices with entries in C. Then, C is the center of A, B is a maximal subfield of A and $[A:B] = p^e$. We consider here inner automorphisms σ_i induced by $x_i^{\frac{1}{p}}$ ($i=1,\dots,e$). To be easily verified, $\mathfrak{F}_1 = [\sigma_1,\dots,\sigma_e] = [\sigma_1] \times \dots \times [\sigma_e]$ is a DF-group of order p^e with $J(\mathfrak{F}_1,A) = B$. If e > 1, we consider further the inner automorphism σ_0 induced by $\sum_1^e x_i^{\frac{1}{p}}$. $\mathfrak{F}_2 = [\sigma_0,\sigma_1,\dots,\sigma_e] = [\sigma_0] \times [\sigma_1] \times \dots \times [\sigma_e]$ is then a DF-group of order p^{e+1} with $J(\mathfrak{F}_2,A) = B$.

References

- [1] F. KASCH: Über den Endomorphismenring eines Vektorraums und den Satz von der Normalbasis, Math. Ann., 126, (1953), 447-463.
- [2] K. KISHIMOTO, T. NAGAHARA and H. TOMINAGA: Supplementary remarks to the previous papers, Math. J. Okayama Univ., 11 (1963), 159–163.
- [3] T. NAGAHARA, T. ONODERA and H. TOMINAGA: On normal basis theorem and strictly Galois extension of simple rings, Math. J. Okayama Univ., 8 (1958), 133-148.
- [4] T. NAGAHARA and H. TOMINAGA: On Galois and locally Galois extensions of simple rings, Math. J. Okayama Univ., 10 (1961), 143-166.
- [5] T. NAGAHARA and H. TOMINAGA: On Galois theory of simple rings, Math. J. Okayama Univ., 11 (1963), 79–117.

⁵⁾ If C is a Galoisfeld of characteristic p, \mathfrak{F} is outer in reality. Moreover, we can prove that if A is of characteristic p and \mathfrak{F} is not outer then every element of $V \setminus C$ is transcendental over its prime field (cf. Example 2).

- [6] T. NAKAYAMA: Galois theory of simple rings, Trans. Amer. Math. Soc., 73 (1952), 276-292.
- [7] T. ONODERA: On semi-linear normal basis, J. Fac. Sci. Hokkaido Univ., Ser. I, 18 (1964), 23-33.
- [8] T. TAKAZAWA and H. TOMINAGA: On a simple ring with a Galois group of order pe, J. Fac. Sci. Hokkaido Univ., Ser. I, 15 (1961) 198-201.
- [9] B. L. van der WAERDEN: Moderne Algebra, Bd. I, Berlin (1950).

Hokkaido Gakugei University Hokkaido University Hokkaido University

(Received April 14, 1964)