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Recently, in his paper [7] one of the authors has presented several general-
ized normal basis theorems for a division ring extension, which contain as
special cases the normal basis theorems given in [1] by Kasch (provided for
division ring extensions). One of the purposes of this paper is to extend his
results to simple rings. In §1, we shall prove those extensions, and add
a decision condition for a normal basis element in a strictly Galois extension
of a division ring, which is well-known in commutative case. Next, in §2,
we shall treat exclusively an F-group of order p° in a simple ring, and consider
the relations between the extension dimension over the fixed subring and the
order of the F-group. The principal theorem of §2 is an improvement of the
result stated in [8] for a DF-group. As to notations and terminologies used
in this paper, we follow [3] and [5].

§ 1. The following lemma has been given in [7]”, and will play a funda-
mental role in our present study.

Lemma 1. Let 7351 be a ring with minimum condition for right
ideals, and let M, N be unital right T-modules.

(i) M s T-projective if and only if it is T-isomorphic to a direct sum
of submodules each of which is T-isomorphic to a directly indecomposable
direct summand of T.

(ii) If M™ =T for a positive integer m and an infinite cardinal
number o, then M=~=T".

(i) If M™=T® for positive integers m, t and t=mq+r (0<r<m),
then M=TY®M, where M, is a T-homomorphic image of T such that
M™=T™. In particular, if m=t then M~T.

(iv) If M is T-projective and M™~N" with m<n then M~ N.

Theorem 1. Let $ be an N-group with B=J (D, A), and N>31 an
Q-invariant subring of A with minimum condition for right ideals such
that A possesses a finite (linearly independent) right N-basis {x,, -+, z,}. If

1) Numbers in brackets refer to the references cited at the end of this paper.
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t<[A:B] then A is DN,-homomorphic to DN,, in partzcular A is always
9 B,-homomorphic to 9B,. ‘

Proof Since Viuom 4 (B:)=9A, by [3, Theorem 1], [A : B]=m implies

A(’”)~®A and A, =P7,0.4A, =D, j0.x;.N, with some 5,€9. Then, to be
easily verified, N, satisfies the minimum condition for right ideals and $A,=
A,9=2x,N.9= X2, (DN,), so that A, is N, -homomorphic to (DN,)?,
whence it follows that A™ is $N,-homomorphic to (DN,)¥. Hence, by
Lemma 1 (iv), A is $N,-homomorphic to HN,.

Lemma 2. Let © be an N-group with B=J(9, A) and N>31 an 9-
invariant subring of A with minimum condition for right ideals such that
A possesses a right N-basis {x;; 2€A}.

(i) If V=C or VCN, then N, possesses a right N,-basis containing
[A : B] elements and {x,.; A€ A} forms a right QN,-basis of DA,.

(i) If A/B is strictly Galois with respect to 9={o,, -+, 0.}, then
ON,.=®D7a,N, and {x,,.; 2€A} forms a right QN,-basis of DA,.

Proof. (i) As in the proof of Theorem 1, A‘m)‘bér-‘ngr (m=[A : B))
and DA,=Prc,A, =P A,0;, with some 0,€9. If V=C then $ coincides
with {o,, ---,0,.} by [6, Theorem 1]. On the other hand, if VTN then
OV, =®70,V, S ®7"0,;N, by [5, Lemma 1.3 (iii)]. Thus, in either cases,
ON,=®7ae;N, and @Ar=@z’,zxerTO}::@zxn(@in)’ so that {x, ; 2€4} is
a right 9N,-basis of HA,.

(ii) As DA, =®P70A,, DN, =®D"0;N, of course. So that, the rest of
the proof is the same with the last part of (i).

Lemma 3. Let A be Galois and finite over B, and N>1 a G-invariant
simple subring of A. If V is different from (GF(2)), and [ON,:N,],=
[A: B] then V=C or VS N.

Proof. The proof will proceed except only one point in the same way
as [3, Theorem 3] did. However, for the sake of completeness, we shall give
it here. Suppose on the contrary that V is neither C nor contained in N.
Every element of V is a finite sum of elements contained in V" (the group
of units in V) and [@A,:A,],.=[A: B]=[ON,:N,],. In what follows, we
shall prove that there exist some v, wv,, -, v:€ V" such that {v, -, v,;} is
linearly independent over C and %= }.{%;a;, with some a,€ A not all contained
in N. (But, by [4, Lemma 1.3 and Lemma 1.4], the last fact yields at once
a contradiction.) To this end, we set V= 3]{Uy,, where {g,,} is a system of
matrix units and U= V,({g,,}) a division ring; and distinguish between two
cases :
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Case I. /=1: Let {v,, ---,v,} be a C-basis of V. Then, V+C ylelds
m>1. We shall distinguish further between three cases:

(i) Cd:N: As is readily verified, v1+v2=‘v1(7)1 (0, + )Y, + Do (V2 (0, +
Vy) ). I v (v,+v,)"*& N then v,+wv, v, and v, are elements desired. On
the other hand, if d,=v,(v,+v.)™" is in N then v,=(d;*—1)v, and 4, is dif-

ferent from 1. For an arbitrary ce C\ N, we have vl/—!-—\c/z),a:"?)l (v, (v, +cv.) ™), +
To(voc (Vs +cv,)Y),. Then, d,=v,(v;+cv,)"" is not contained in N. In fact, if
d,€N then (di'—1)v,=v,=c *(d;'—1)v, yields a contradiction c=(d;'—1)-
(di'—1)'eN.

(if) CCNand {v,, -, U} N=0: 1=wvic,+ - +v,¢, with ¢,€C, so that
T1=3,(vc)),+ +* + T (UmCm),- Recalling that c,#0 for some j and hence
v,;c; €N, 1, vy, -+, v, are evidently desired ones.

(ii) CEN and {v,, -+, Un} - N#*J: As CCN and V¢N without loss

of generality, we may assume that v,€ N and v,& N. Then, v1+v2 O (v, (v +
;) 7), + (Ve (v + 7)Y, and v, (v, +v,) '€ N, so that v,+v,, v, and v, are
desired ones.

Case II. I>1: Evidently, {1, fou=1—9g,, (p,q=1, -, L; p#q)} (& V) is
linearly -independent over C, and similarly in case / is even so is {f,=gq.+
2280p1-p+ (g=1,---,0)} (2 V). By [2, Theorem 2], VEN or NC H, so that
NCH in reality”?. Noting that V_IN is then a field contained in the center
of V, it is clear that no non-diagonal elements of V are contained in N.
Now, we shall complete our proof by distinguishing between two cases:

(i) V is not of characteristic 2: In this case, every 1+f,, is-in V" and

1+f;nq_“ 1(1 +qu +qu(f;)q(1 +qu) )r with (1 +qu)_1EN- .

(ii) V is of characteristic 2: If / is odd, then u=1+ X! f,_..,€ V" and
G=Tu;'+ X Fprn(forpt™), with 27*g& N. On the other hand, if / is even
then 1= Y!f,, so that 1= 3 %f, f,. with f, & N.

The following example will show that the assumption V#(GF(2)), is
indispensable in LLemma 3. |

Example 1. Let A=(GF(2)), B=GF(2). Then, 1-_—((1) (1’) a=(] 1)

.3=<(1) i>, 7= (1) (1)>, 5=<i (1)>, s=<(1) i) induce the Galois group &= {1, &,

B,7,0,8} of A/IB, V=A and N={0, 1, §, ¢} is a ®-invariant subfield of A.
Since 7=4ae, +p0, and =10, +d¢,, we obtain ®N.=TN,PEZN,PDEN.PSN,, so
that [BN, : N,],=4=[A : B]. However, to be easily verified, V#C and & N.

2) The assumption V#(GF(2)), is needed only to secure NC H (provided VZN}. Accord-
ingly, our lemma is evidently valid for N=B even in case V=(GF(2)),. (Cf. [2, Theorem 3]).
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Theorem. 2. Let A/B be Galois, [A : Bl=m, V different from (GF(2)),,
and let N be a &-invariant simple subring of A.

(i) The following conditions are equivalent to each other:

(1) V=C or VCN.

(2) [GN.,:N,],=[A: B].

(ii) If [A:N), is an infinite cardinal number o, then A is ®ON,-
isomorphic to (ON,). | :

(iii) If [A: N]l.=t and t=mqg+r (0<r<m), then each of the conditions
(1), (2) cited in (i) is equivalent to the next:

(3) A is GN,-isomorphic to (BN,)2PM, where M is a ON,-homo-
morphic image of GN, such that M ~(SN,)".

Proof. (i) The equivalence is a direct consequence of Lemma 2 (i) and

®N,

Lemma 3. (ii) A™<®A ~(OGN)* by Lemma 2 (i). Hence, Lemma 1 (ii)
yields at once our assertion. (iii) By (i) and Lemma 1 (iii), one will easily see
the equivalence relations. ,

Now, by the light of Lemma 2 (ii), Lemma 1 (ii) and (iii) will yield the
following, too. The proof may be left to readers.

Theorem 3. Let A/B be strictly Galois with respect to 9 of order
m, and N>31 an D-invariant subring of A with minimum condition for
right ideals such that A possesses a right N-basis {x,; A€A}.

(i) If A is infinite then there exists a subset {u;; 2€A} of A such that
{u0; 2€A and 6€D} is a right N-basis of A.

(ii) If gAd=t<oo and t=mq+r (0<r<m) then A contains q elements
Uy, -, u, and an QN,-homomorphic image M with M™ ~(9N,)” such that
{uw; i=1, -, q and oc€D} is right linearly independent over N and A=
(Ds,.(x0) N) D M.

As a special case of Theorem 3 (ii), we see that if A/B is strictly Galois
with respect to © then there exists a right (and similarly a left) $-n.b.e. (cf.

[38, Theorem 4]). In case A is a division ring, we can prove the following
theorem, that is well-known for the commutative case.

Theorem 4. Let A be a division ring, and 9= {s,, ---,0,} an auto-
morphism group of A with B=J(9, A). In order that [A : B] coincides
with m, it is necessary and sufficient that there exists an element a€A such
that the matrix (acso;) is regular. Moreover, acA is a left H-n.b.e. (right
D-n.b.e.) if and only if the matrix (ac,o;) (the matrix *ac.o;) transposed) is
regular. ’

Proof. If [A:B]=m, that is, A/B is strictly Galois -with respect to 9,
then there exists a left $n.b.e. acA by Theorem 3, for which we have
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Ty(a)=2as,#0. Suppose (aoc,s,) is non-regular. Then, the matrix is a zero-
divisor, so that there hold non-trivial relations 3a, cacw0;=0 (=1, ---, m) with
some a,, -+, a,€A, where we assume a,#0. Since uaai'a;-acw;=0 (j=
1,---,m) and Tg(aa;'ar)=Ts(a)#0, we may assume further T(a,)#0. We
obtain then 0=}, ;a,065'-ao,= Y, Ts(a,)-as,. Now, Ty(a,)€B and Tola)#0
contradict our assumption that a is a left 9n.b.e. Conversely, if (ag,0;) is
regular then {ao,, - -, a0,} is linearly left independent over B, so that
[A:B]=m by [3, Lemma 2]. The latter assertion will be evident by the
above proof.

Corollary 1. Let a division ring A be strictly Galois with respect 9
of order m. A left ©n.b.e. is a right H-nb.e. as well, provided either D

is abelian or A is of characteristic p and m=p".

Proof. If © is abelian, our assertion is evident by Theorem 4. On the
other hand, in case A is of characteristic p and m=p°, our assertion is a direct
consequence of [3, Corollary 1].

§2. In [8]”, the results obtained in [3, §3] have been generalized as
follows: Let A(>31) be a simple ring (satisfying the minimum condition for
right ideals) with the center C,  a DF-:group of order p° ( p a prime), and
B=J(9, A). If the center Z of B contains no primitive p-th roots of 1, then
V= V.4(B) coincides with C[Z] and [A : B] divides p°. If moreover A is not
of characteristic p, then [A : B] coincides with p°. In below, we shall present
an improvement of the above theorem (Theorem 5) together with several
additional remarks. Our improvement is essentially due to the following brief
lemma.

Lemma 4. Let A be a central simple algebra of finite rank over C,
© an automorphism group of A such that J(D, A)=C and £D=p°
(P a prime). If C contains no primitive p-th roots of 1 then A coincides
with C.

Proof. Suppose on the contrary e>0. As &(A/C)= A, the center of O
contains a subgroup P={1,3, ---, 57!} of order 2. Then, for each c=u€ 9,
Y6 =07 implies vo=vc, with some c,eC. And, v? =wuvPu'=(ve)? =v?c? yields
cZ=1, i.e. ¢,=1, which means evidently ve=v, so that veJ(9, A)=C. But,
this is a contradiction.

In the rest of this paper, we use the following conventions: A is
a simple ring with the center C, and © an F-group of A of order p* (p
a prime). We set B=J(9, A), that is a simple ring by [3, Lemma 2]. And,

3) By the way, we should like to note here a typographical error in the proof of [8,
Theorem 2]: =V @ should replace S=V.
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Z, V and H represent the center of B, V,(B) and V,(V), respectively.
$.,=9 _V is evidently an invariant subgroup of © consisting of all the inner
automorphisms contained in . One may remark here that V= V(D)= V(D)
by [3, Lemma 2]. Finally, by p* we denote the .exponent of 9, and set
P=(9:90) 7 | | |

: Theorem 5. If Z contains no przmztwe p-th roots of 1, then V is the
composite C[Z] of C and Z (accordingly 9 is a DF- group®), and [A : B] is
a multiple of p’ and a divisor of p°. In particular, if moreover, A is not
of characteristic p then [A: B] coincides with p*.

Proof. Let C, be the center of V. Then, 9|C, is evidently the Ga101s
group of C,/Z, so that [C,: Z]=%(9|C,) divides p°. Hence, C, contdins no
primitive p-th roots of 1. Next, $|V is an automorphism group of V and
its order divides p°. As J(D,|V, V)=C, and [V: C,]J< oo, Lemma 4 yields
then V=C,. Suppose V=2C[Z]. Then, noting that V= V(9D,), we can find
an element ve V\C[Z] with 3€9,. Since the field V is normal and separable
over C[Z] and v”*=ceC, there exists an element u€ V different from v with
u?* =, that is, (vu')**=1. Recalling here that C,=V contains no primitive
pth roots of 1, we obtain va™'=1. Hence, we have a contradiction v=u,
which proves our first assertion V=C[Z]. It follows then, [A: B] is a divisor
of p° by [4, Theorem 1] and in case A is not of characteristic p it coincides
with p° by [8, Theorem 3]. And so, in what follows, we shall prove that if
A is of characteristic p then p’ divides [A: Bl. By [6], we obtain ®(H)=9,
and [H:B]=(9: 9,). Since the field V coincides with V(9,) and the order
of O, is a power of p, V is a finite dimensional purely inseparable extension
of C and one will easily see that the exponent of V/C coincides with e.
Hence, p* divides [V: C]=[A: H], so thatp =p(D:9,) does [A: H|[H: B]
—=[A: B].

Now, combining the first assertion of Theorem 5 with [4, Corollary 1. 3],
we readily obtain the next:

Corollary 2. Let A be of characteristic p, and O a fundamental
abelian group: 9=9,x% -+ x 9., where D.=l0.] is cyclic with a generator o;
of order p If A/B is strzctly Galois with respect to O then there exist
some I, -+, T,EA such that (1) x?—x,€B, (2) A= Blxz,, -, z.], (3) B=B[x,] -
Blz,, -+, &4, -, x] and (4) B [z]/B is strzctly Galois with respect to 9,

Theorem 6. Let A be of characteristic p. In order that [A: B] coin-
cides with p’, it is necessary and sufficient that V|C is primitive.

Proof As was noted in the proof of Theorem 5, [H:B]=(9: ) and

4) However, in case Z contains a primitive’ p-th root, § is not always a DF-group.



On the Normal Basis Theorems and the Extension Dimension 87

the exponent of V/C coincides with ¢. So that, by [9, p. 140], V/C is primitive
if and only if p*=[V:Cl=[A: H], i.e. p'=[A: Bl.

Corollary 3. Let Z contain no primitive p-th roots of 1. If D, is
cyclic then [A : Bl=p*, in particular, if C is a Galoisfeld then [A : Bl=p>.

Proof. In virtue of Theorem 5, we may assume that A is of charac-
teristic p. Since the exponent of cyclic 9, coincides with #9,, our assertion
is a direct consequence of Theorem 6. _

Finally, let A be of characteristic p. As 9, is abelian by Theorem 5,
we may set D=9, x -+ x O, with cyclic O,." If we set V,=V(D,) (a field),
then V="V,---V, and [V, : C]=%9, by Corollary 3. Now, one will easily see
the following : | '

Theorem 7. Let A be of characteristic p. In order that [A : B] coin-
cides with p°, it is necessary and sufficient that V,---V,=V,Q¢ - QcV,.

Example 2. Let @=GF(p), and C=®(x,, ---, x,) with e indeterminates

x, - x,. B=C(xpP,-,zP) is evidently a p*-dimensional purely inseparable
extension over C with exponent 1. Let A be the ring of p°x p° matrices with
entries in C. Then, C is the center of A, B is a maximal subfield of A and

1
[A:B]=p° We consider here inner automorphisms ¢, induced by x?

(=1, ---,e). To be easily verified, 9,=[o,, -+, 0.]=[0.] % --- x[0,] is a DF-
group of order p° with J(9,, A)=B. If e>1, we consider further the inner

1
automorphism ¢, induced by X ¢xf. 9D.=[0s, 01, =+, 0c]l=[0.] % [0:] % -+ x [0.]

is then a DF-group of order p°*' with J(9,, A)=B.
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