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Let a simple ring $A$ (with 1 and minimum condition) be strictly Galois
with respect to (an $F$-group) $\mathfrak{H}$ in the sense of [2]. Then $B=J(\mathfrak{H}, A)$ is
a simple ring with $[A:B]=\#\mathfrak{H}$ , and the following facts have been given in
[2] and [3]. (As to notations and terminologies used in this note, we follow
[2].)

$1^{o}$ . Let $\mathfrak{N}$ be an F-subgroup of $\mathfrak{H}$ . If $N=J(\mathfrak{N}, A)$ , then $A/N$ is strictly
Galois with respect to $\mathfrak{R},$ $[N:B]=(\mathfrak{H}:\mathfrak{N})$ and $\mathfrak{H}(N)=\mathfrak{N}$ . In particular, if $\mathfrak{N}$

is an invariant subgroup of $\mathfrak{H}$ then $\mathfrak{H}|N\equiv \mathfrak{H}/\mathfrak{N}$ .
$2^{o}$ . $A$ contains an $\mathfrak{H}$-normal basis element $(\mathfrak{H}- n.b.e.)$ , that is, $A$ contains

an element $a$ such that $\{a\sigma;\sigma\in \mathfrak{H}\}$ forms a (linearly independent) right B-basis
of $A$ .

$3^{o}$ . If $\sigma\rightarrow x_{\sigma}$ is an anti-homomorphism of $\mathfrak{H}$ into $B$ (the multiplicative
group of units of $B$) then there exists an element $x\in A$ . such that $x\sigma=xx_{\sigma}$ .

$4^{o}$ . Let $\mathfrak{H}$ be cyclic with a generator $\sigma$ of order $m$ , and $B\cap C(C$ the
center of $A$ ) contains a primitive m-th root of 1. If there exists an element
$a\in A$ such that $ a\sigma=a\zeta$ , there holds $A=\oplus_{i=0}^{m1}Ba^{l}=\oplus_{i=\overline{0}^{1}}^{m}a^{i}B$.

Further, $A/B$ was called an $\mathfrak{H}$-Kummer extension if $\mathfrak{H}$ is a commutative
DF.group whose exponent is $m_{0}$ and $B\cap C$ contains a primitive $m_{0^{-}}th$ root of
1, and [3, Theorem 3] enabled us the notion of an $\mathfrak{H}$-Kummer extension to
be naturally regarded as a generalization of the classical one for (commutative)
fields. On the other hand, in his paper [1], C. C. Faith proved that any
commutative Kummer extension $A/B$ is completely basic, more precisely, every
normal basis element of $A/B$ is a normal basis element of $A/B^{\prime}$ for any
intermediate field $B^{\prime}$ of $A/B$. The purpose of this note is to carry over the
last proposition to division rings. In fact, by the validity of $1^{O}-4^{o}$ , a slight
modffication of Faith’s proof will accomplish our attempt. Firstly, we exhibit
the following characterization of an $\mathfrak{H}$-Kummer extension.

Theorem 1. Let $\mathfrak{H}=\{\eta_{1}, \cdots, \eta_{m}\}$ be a DF-group of A whose exponent
is $m_{0}$ . If $A/B$ is an $\mathfrak{H}$-Kummer extension then $A=\oplus_{i-1}^{m}- a_{i}B=\oplus_{i=1}^{m}Ba_{i}$ with
some $a_{i}\in A$ such that every $\zeta_{ij}=a_{i}^{-1}\cdot a_{i}\eta_{j}$ is contained in $B\cap C$, and conversely.
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Proof. Let $\mathfrak{H}=\mathfrak{H}1\times\cdots\times \mathfrak{H}_{e}$ with cyclic $\mathfrak{H}_{i}=[\sigma_{i}]$ of order $m_{i}$ . Then, the
exponent $m_{0}$ of $\mathfrak{H}$ coincides with the least common multiple $\{m_{1}, m_{e}\}$ .
Now, let $\zeta$ be a primitive $m_{0^{-}}th$ root of 1 contained in $B\cap C$, and let $\zeta_{i}=$

$\zeta^{m_{0}/m_{i}}$ , that is evidently a primitive $m_{i^{-}}th$ root of 1. Then, $\eta=\Pi_{j=1}^{e}\sigma_{J^{j}}^{t}\rightarrow\zeta_{i}^{t_{i}}$

defines a homomorphism of $\mathfrak{H}$ into $(B\cap C)(i=1, \cdots, e)$ . Thus, by 3’, there
exists an element $x_{i}\in A$ such that $x_{i}\sigma_{i}=x_{i}\zeta_{i}$ and $x_{i}\sigma_{j}=x_{i}$ for all $j\neq i$ . Noting
that $J(\mathfrak{H}2\times\cdots\times \mathfrak{H}_{e}, A)$ contains $x_{1}$ and is strictly Galois with respect to $\mathfrak{H}_{1}$ by
1’, $4^{o}$ yields at once $J(\mathfrak{H}_{2}\times\cdots\times \mathfrak{H}_{e}, A)=\oplus_{t=0}^{m_{1}-1}x_{1}^{t}B$. Repeating similar argu-
ments, we obtain $J(\mathfrak{H}_{j+1}\times\cdots\times \mathfrak{H}_{e}, A)=\oplus_{t=0}^{m_{f-1}}x_{j}^{t}J(\mathfrak{H}_{J}\times\cdots\times \mathfrak{H}_{e}, A)=\oplus_{0<t_{i}<m_{i}}x_{J^{j}}^{t}$

$x_{1}^{t_{1}}B$, in particular, $A=\oplus_{0\leq t_{i}<m_{i}}x_{e^{e}}^{t}\cdots x_{1}^{t}B$ . If $\eta=\Pi_{i=1}^{e}\sigma_{i}^{s_{i}}(0\leq s_{i}<m_{i})$ is an
arbitrary element of $\mathfrak{H}$ and $a=x_{e}^{t_{e}}\cdots x_{1}^{t_{1}}$ then it is easy to see $a\eta=a\zeta_{e^{e^{S}e}}^{t}\cdots\zeta_{1}^{t_{1}s_{1}}$ ,
so that $a^{-1}\cdot a\eta=\zeta_{e^{e^{S}e}}^{t}\cdots\zeta_{1}^{t_{1}s_{1}}$ is contained in $B\cap C$, as desired. Conversely,
assume that $A=\oplus_{i=1}^{m}a_{i}B(a_{i}\in A)$ and every $\zeta_{ij}=a_{i}^{-1}\cdot a_{i}\eta_{j}$ is contained in $B\cap C$.
As $\zeta_{ij}$ is contained in $B$, it will be easy to see that $\zeta_{ij}^{k}=a_{i}^{-1}\cdot a_{i}r_{jj}^{k}$ for $k=0,1,$ $\cdots$ .
We see therefore that if $\eta_{j}$ is of order $k$ then $a_{i}\eta_{j}^{k}=a_{i}$ and $\zeta_{ij}^{k}=1$ , whence it
follows that some one among $\zeta_{ij}(i=1, \cdots, m)$ is a primitive k.th root of 1.
We see accordingly $B\cap C$ contains a primitive $m_{0^{-}}th$ root of 1. Next, if
$a=\sum_{i=1}^{m}a_{i}b_{i}(b_{i}\in B)$ is an arbitrary element of $A$ then $a\eta_{s}\eta_{t}=\sum_{i=1}^{m}a_{i}\eta_{S}\eta_{t}\cdot b_{i}=$

$\sum_{i=1}^{m}a_{i}b_{i}\zeta_{it}\zeta_{is}=a\eta_{t}\eta_{8}$ , which asserts $\mathfrak{H}$ is abelian.
The next will be easily seen from the proof of Theorem 1.
Corollary 1. Let $A/B$ be an $\mathfrak{H}$-Kummer extension. If $\mathfrak{H}=\mathfrak{H}1\times \mathfrak{H}_{2}$

with $B_{i}=J(\mathfrak{H}_{i}, A)$ , then $A=B_{1}B_{2}=B_{2}B_{1}$ and every $\mathfrak{H}_{2}- n.b.e$ . of $B_{1}/B$ is an
$\mathfrak{H}_{z}- n.b.e$. of $A/B_{2}$ .

Corollary 2. Let $A/B$ be an $\mathfrak{H}$-Kummer extension with a basis
$\{a_{1}, \cdots, a_{m}\}$ as in Theorem 1. Then, $a=\sum_{i-1}^{m}-- a_{i}b_{i}(b_{i}\in B)$ is an $\mathfrak{H}- n.b.e$. if
and only if every $b_{i}$ is in $B$ .

Proof. By assumption, $ar_{j}=\sum_{i=1}^{m}a_{i}\eta_{j}\cdot b_{i}=\sum_{i-- 1}^{m}a_{i}b_{i}\zeta_{ij}$ . Accordingly, $a$ is

an $\mathfrak{H}- n.b.e$ . if and only if the matrix $(b_{i}\zeta_{ij})=\left(\begin{array}{ll}b_{1} & 0\\0 & \overline{b}_{m}\end{array}\right)(\zeta_{ij})$ is regular. In any

rate, $A$ contains an $\mathfrak{H}- n.b.e$ . by $2^{o}$ , so that the matrix $(b_{i}\zeta_{ij})$ is regular for
some choice of $b_{i}$ , whence it follows the matrix $(\zeta_{ij})$ is regular. Thus, $a$ is

an $\mathfrak{H}- n.b.e$ . if and only if $\left(\begin{array}{ll}b_{1} & 0\\0 & b_{m}\end{array}\right)$ is regular, that is, every $b_{i}$ is in $B$ .

Lemma 1. Let $A$ be a division ring, $A/B$ an $\mathfrak{H}$-Kummer extension,
and $\mathfrak{H}=\mathfrak{H}1\times \mathfrak{H}_{z}$ with cyclic $\mathfrak{H}_{1}=[\sigma_{1}]$ of order $m_{1}$ . If $\mathfrak{H}_{0}$ is a subgroup of
$\mathfrak{H}$ containing $\mathfrak{H}_{2}$ , then every $\mathfrak{H}- n.b.e$. of $A/B$ is an $\mathfrak{H}_{0}- n.b.e$ . of $A/J(\mathfrak{H}_{0}, A)$ .

Proof. Let $B_{:}=J(\mathfrak{H}_{i}, A)(i=0,1,2)$ , and $\mathfrak{H}_{1}^{*}=\mathfrak{H}_{0}\cap \mathfrak{H}_{1}=[\sigma_{1}^{\theta}]$ with a posi-
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tive divisor $s$ of $m_{1}$ . Then, $\mathfrak{H}_{0}=\mathfrak{H}^{*}1\times \mathfrak{H}_{z}$ To be easily seen from the proof
of Theorem 1, there exist (non-zero) elements $a_{1}=1,$ $a_{2},$ $\cdots,$

$a_{n}\in B_{1}$ and $a\in B_{2}$

such that $A=\oplus_{0\leq j<m_{1}}^{1\leq i\leq n}a_{i}a^{j}B,$ $a_{i}^{-1}\cdot a_{i}\eta\in B\cap C$ for each $\eta\in \mathfrak{H}2$

’ and $a\sigma_{1}=a\zeta_{1}$ where
$\zeta_{1}$ is a primitive $m_{1}$-th root of 1 contained in $B\cap C$. If $n_{1}=m_{1}/s$ then $a^{n_{1}}\sigma_{1}^{s}=$

$a^{n_{1}}$ , so that $\{a^{n\lambda} ; 0\leq\lambda<s\}$ forms a right B-basis of $B_{0}$ by $1^{o}$ . It follows
therefore $\{a_{i}a‘‘ ; 1\leq i\leq n, 0\leq\mu<n_{1}\}$ is a right $B_{0}$-basis of $A$ and $(a_{i}a^{\mu})^{-1}$ .
$(a_{i}a^{1^{\ell}})\eta\in B\cap C$ for each $\eta\in \mathfrak{H}_{0}$ Now, if $u=\Sigma_{i,/x,\lambda}a_{i}a^{\mu}a^{n_{1}\lambda}b_{ip\lambda}(b_{i\mu\lambda}\in B)$ is an $\mathfrak{H}-$

n.b.e. of $A/B$ then every $b_{i\mu\lambda}$ is non-zero by Corollary 2, whence we see that
every $\sum_{\lambda}a^{n\lambda}b_{i\mu\lambda}$ is a non-zero element of $B_{0}$ . Hence, again by Corollary 2,
$u$ is an $\mathfrak{H}_{0}- n.b.e$ . of $A/B_{0}$ .

In [1], a subgroup $H$ of a $p$-primary abelian group $G$ of finite order was
called a regular subgroup if $G$ has a factorization $G=[g_{1}]\times\cdots\times[g_{t}]$ such that
$H=[q_{1}^{\alpha}]\times\cdots\times[g_{t}^{\alpha_{\ell}}]$ with some $\alpha_{i}$ , and [1, Lemma 2.4] proved that if $H$ is
a subgroup of a finite $p$-primary abelian group $G$ and contains $G^{p}=\{q^{p} ; g\in G\}$

then it is a regular subgroup. By the light of this fact, we can prove now
our principal theorem.

Theorem 2. Let $A$ be a division ring. If $A/B$ is an $\mathfrak{H}$-Kummer
extension then it is $\mathfrak{H}$-completely basic, that is, any $\mathfrak{H}- n.b.e$ . of $A/B$ is
always an $\mathfrak{H}^{*}- n.b.e$ . of $A/J(\mathfrak{H}^{*}, A)$ for every subgroup $\mathfrak{H}^{*}$ of $\mathfrak{H}$

Proof. As is well-known, $\mathfrak{H}=\mathfrak{H}_{1}\times\cdots\times \mathfrak{H}_{t}$ with the $p_{i}$-primary components
$\mathfrak{H}_{i}$ If $\mathfrak{H}_{0}$ is a subgroup of $\mathfrak{H}$ with prime index $p_{1}$ , then $\mathfrak{H}_{0}=\mathfrak{H}_{1}^{*}\times \mathfrak{H}_{z}^{*}$ with
a subgroup $\mathfrak{H}^{*}1$ of $\mathfrak{H}_{1}$ and $\mathfrak{H}_{2}^{*}=\mathfrak{H}2\times\cdots\times \mathfrak{H}_{t}$ . As $(\mathfrak{H}1 : \mathfrak{H}_{1}^{*})=p_{1}$ implies $\mathfrak{H}^{*}\supseteq \mathfrak{H}^{p}$ ,
$\mathfrak{H}^{*}1$ is a regular subgroup of $\mathfrak{H}_{1}$ by [1, Lemma 2.4]. And so, by Lemma 1,
we see that any $\mathfrak{H}- n.b.e$ . of $A/B$ is an $\mathfrak{H}_{0}- n.b.e$ . of $A/J(\mathfrak{H}_{0}, A)$ . Now, the
proof of our theorem will be completed by the induction with respect to the
order of $\mathfrak{H}$ .
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