A NOTE ON NON-COMMUTATIVE KUMMER EXTENSIONS

By

Masayuki ÔHORI and Hisao TOMINAGA

Let a simple ring A (with 1 and minimum condition) be strictly Galois with respect to (an *F*-group) \mathfrak{H} in the sense of [2]. Then $B=J(\mathfrak{H}, A)$ is a simple ring with $[A:B]=\sharp\mathfrak{H}$, and the following facts have been given in [2] and [3]. (As to notations and terminologies used in this note, we follow [2].)

1°. Let \mathfrak{N} be an *F*-subgroup of \mathfrak{H} . If $N=J(\mathfrak{N}, A)$, then A/N is strictly Galois with respect to \mathfrak{N} , $[N:B]=(\mathfrak{H}:\mathfrak{N})$ and $\mathfrak{H}(N)=\mathfrak{N}$. In particular, if \mathfrak{N} is an invariant subgroup of \mathfrak{H} then $\mathfrak{H}|N\cong\mathfrak{H}/\mathfrak{N}$.

2°. A contains an \mathfrak{G} -normal basis element (\mathfrak{G} -n.b.e.), that is, A contains an element a such that $\{a\sigma; \sigma \in \mathfrak{F}\}$ forms a (linearly independent) right B-basis of A.

3°. If $\sigma \rightarrow x_{\sigma}$ is an anti-homomorphism of \mathfrak{H} into B° (the multiplicative group of units of B) then there exists an element $x \in A^{\circ}$ such that $x\sigma = xx_{\sigma}$.

4°. Let \mathfrak{H} be cyclic with a generator σ of order m, and $B \cap C$ (C the center of A) contains a primitive *m*-th root of 1. If there exists an element $a \in A$ such that $a\sigma = a\zeta$, there holds $A = \bigoplus_{i=0}^{m-1} Ba^i = \bigoplus_{i=0}^{m-1} a^i B$.

Further, A/B was called an \mathcal{F} -Kummer extension if \mathfrak{F} is a commutative *DF*-group whose exponent is m_0 and $B \cap C$ contains a primitive m_0 -th root of 1, and [3, Theorem 3] enabled us the notion of an \mathfrak{F} -Kummer extension to be naturally regarded as a generalization of the classical one for (commutative) fields. On the other hand, in his paper [1], C. C. Faith proved that any commutative Kummer extension A/B is completely basic, more precisely, every normal basis element of A/B is a normal basis element of A/B' for any intermediate field B' of A/B. The purpose of this note is to carry over the last proposition to division rings. In fact, by the validity of $1^\circ - 4^\circ$, a slight modification of Faith's proof will accomplish our attempt. Firstly, we exhibit the following characterization of an \mathfrak{F} -Kummer extension.

Theorem 1. Let $\mathfrak{H} = \{\eta_1, \dots, \eta_m\}$ be a DF-group of A whose exponent is m_0 . If A/B is an \mathfrak{H} -Kummer extension then $A = \bigoplus_{i=1}^m a_i B = \bigoplus_{i=1}^m Ba_i$ with some $a_i \in A$ such that every $\zeta_{ij} = a_i^{-1} \cdot a_i \eta_j$ is contained in $B \cap C$, and conversely.

Proof. Let $\mathfrak{H} = \mathfrak{H}_1 \times \cdots \times \mathfrak{H}_e$ with cyclic $\mathfrak{H}_i = [\sigma_i]$ of order m_i . Then, the exponent m_0 of \mathfrak{F} coincides with the least common multiple $\{m_1, \dots, m_e\}$. Now, let ζ be a primitive m_0 -th root of 1 contained in $B \cap C$, and let $\zeta_i =$ ζ^{m_0/m_i} , that is evidently a primitive m_i -th root of 1. Then, $\eta = \prod_{j=1}^i \sigma_j^{i_j} \rightarrow \zeta_i^{i_i}$ defines a homomorphism of \mathfrak{F} into $(B \cap C)$ $(i=1, \dots, e)$. Thus, by 3°, there exists an element $x_i \in A^{\circ}$ such that $x_i \sigma_i = x_i \zeta_i$ and $x_i \sigma_j = x_i$ for all $j \neq i$. Noting that $J(\mathfrak{F}_2 \times \cdots \times \mathfrak{F}_e, A)$ contains x_1 and is strictly Galois with respect to \mathfrak{F}_1 by 1°, 4° yields at once $J(\mathfrak{F}_2 \times \cdots \times \mathfrak{F}_e, A) = \bigoplus_{t=0}^{m_1-1} x_1^t B$. Repeating similar arguments, we obtain $J(\mathfrak{F}_{j+1} \times \cdots \times \mathfrak{F}_{e}, A) = \bigoplus_{t=0}^{m_{j-1}} x_{j}^{t} J(\mathfrak{F}_{j} \times \cdots \times \mathfrak{F}_{e}, A) = \bigoplus_{0 \leq t_{i} \leq m_{i}} x_{j}^{t_{j}}$ $\cdots x_1^{t_1}B$, in particular, $A = \bigoplus_{0 \le t_i \le m_i} x_e^{t_e} \cdots x_1^{t_1}B$. If $\eta = \prod_{i=1}^e \sigma_i^{s_i} (0 \le s_i \le m_i)$ is an arbitrary element of \mathfrak{H} and $a = x_e^{t_e} \cdots x_1^{t_1}$ then it is easy to see $a\eta = a\zeta_e^{t_es_e} \cdots \zeta_1^{t_1s_1}$, so that $a^{-1} \cdot a\eta = \zeta_e^{t_e s_e} \cdots \zeta_1^{t_1 s_1}$ is contained in $B \cap C$, as desired. Conversely, assume that $A = \bigoplus_{i=1}^{m} a_i B$ $(a_i \in A^{\cdot})$ and every $\zeta_{ij} = a_i^{-1} \cdot a_i \eta_j$ is contained in $B \cap C$. As ζ_{ij} is contained in B, it will be easy to see that $\zeta_{ij}^k = a_i^{-1} \cdot a_i \eta_j^k$ for $k = 0, 1, \cdots$. We see therefore that if η_j is of order k then $a_i\eta_j^k = a_i$ and $\zeta_{ij}^k = 1$, whence it follows that some one among ζ_{ij} $(i=1, \dots, m)$ is a primitive k-th root of 1. We see accordingly $B \cap C$ contains a primitive m_0 -th root of 1. Next, if $a = \sum_{i=1}^{m} a_i b_i \ (b_i \in B)$ is an arbitrary element of A then $a\eta_s \eta_t = \sum_{i=1}^{m} a_i \eta_s \eta_t \cdot b_i =$ $\sum_{i=1}^{m} a_i b_i \zeta_{ii} \zeta_{is} = a \eta_i \eta_s$, which asserts \mathfrak{F} is abelian.

The next will be easily seen from the proof of Theorem 1.

Corollary 1. Let A/B be an \mathfrak{F} -Kummer extension. If $\mathfrak{F} = \mathfrak{F}_1 \times \mathfrak{F}_2$ with $B_i = J(\mathfrak{F}_i, A)$, then $A = B_1B_2 = B_2B_1$ and every \mathfrak{F}_2 -n.b.e. of B_1/B is an \mathfrak{F}_2 -n.b.e. of A/B_2 .

Corollary 2. Let A/B be an \mathfrak{F} -Kummer extension with a basis $\{a_1, \dots, a_m\}$ as in Theorem 1. Then, $a = \sum_{i=1}^m a_i b_i$ $(b_i \in B)$ is an \mathfrak{F} -n.b.e. if and only if every b_i is in B.

Proof. By assumption, $a_{7,j} = \sum_{i=1}^{m} a_i \eta_j \cdot b_i = \sum_{i=1}^{m} a_i b_i \zeta_{ij}$. Accordingly, a is an \mathfrak{F} -n.b.e. if and only if the matrix $(b_i \zeta_{ij}) = \begin{pmatrix} b_1 & 0 \\ 0 & b_m \end{pmatrix} (\zeta_{ij})$ is regular. In any rate, A contains an \mathfrak{F} -n.b.e. by 2°, so that the matrix $(b_i \zeta_{ij})$ is regular for some choice of b_i , whence it follows the matrix (ζ_{ij}) is regular. Thus, a is an \mathfrak{F} -n.b.e. if and only if $\begin{pmatrix} b_1 & 0 \\ 0 & b_m \end{pmatrix}$ is regular, that is, every b_i is in B.

Lemma 1. Let A be a division ring, A/B an \mathfrak{F} -Kummer extension, and $\mathfrak{F} = \mathfrak{F}_1 \times \mathfrak{F}_2$ with cyclic $\mathfrak{F}_1 = [\sigma_1]$ of order m_1 . If \mathfrak{F}_0 is a subgroup of \mathfrak{F} containing \mathfrak{F}_2 , then every \mathfrak{F} -n.b.e. of A/B is an \mathfrak{F}_0 -n.b.e. of $A/J(\mathfrak{F}_0, A)$.

Proof. Let $B_i = J(\mathfrak{F}_i, A)$ (i=0, 1, 2), and $\mathfrak{F}_1^* = \mathfrak{F}_0 \cap \mathfrak{F}_1 = [\sigma_1^s]$ with a posi-

tive divisor s of m_1 . Then, $\mathfrak{H}_0 = \mathfrak{H}_1^* \times \mathfrak{H}_2$. To be easily seen from the proof of Theorem 1, there exist (non-zero) elements $a_1 = 1, a_2, \dots, a_n \in B_1$ and $a \in B_2$ such that $A = \bigoplus_{\substack{1 \le i \le m \\ 0 \le j \le m_1}} a_i a^j B$, $a_i^{-1} \cdot a_i \eta \in B \cap C$ for each $\eta \in \mathfrak{H}_2$, and $a \sigma_1 = a \zeta_1$ where ζ_1 is a primitive m_1 -th root of 1 contained in $B \cap C$. If $n_1 = m_1/s$ then $a^{n_1} \sigma_1^s =$ a^{n_1} , so that $\{a^{n_1\lambda}; 0 \le \lambda < s\}$ forms a right B-basis of B_0 by 1°. It follows therefore $\{a_i a^{\mu}; 1 \le i \le n, 0 \le \mu < n_1\}$ is a right B-basis of A and $(a_i a^{\mu})^{-1} \cdot (a_i a^{\mu}) \eta \in B \cap C$ for each $\eta \in \mathfrak{H}_0$. Now, if $u = \sum_{i,\mu,\lambda} a_i a^{\mu} a^{n_1\lambda} b_{i\mu\lambda}$ ($b_{i\mu\lambda} \in B$) is an \mathfrak{H} n.b.e. of A/B then every $b_{i\mu\lambda}$ is non-zero by Corollary 2, whence we see that every $\sum_{\lambda} a^{n_1\lambda} b_{i\mu\lambda}$ is a non-zero element of B_0 . Hence, again by Corollary 2, u is an \mathfrak{H}_0 -n.b.e. of A/B_0 .

In [1], a subgroup H of a *p*-primary abelian group G of finite order was called a regular subgroup if G has a factorization $G = [g_1] \times \cdots \times [g_t]$ such that $H = [g_1^{\alpha_1}] \times \cdots \times [g_t^{\alpha_t}]$ with some α_i , and [1, Lemma 2.4] proved that if H is a subgroup of a finite *p*-primary abelian group G and contains $G^p = \{g^p; g \in G\}$ then it is a regular subgroup. By the light of this fact, we can prove now our principal theorem.

Theorem 2. Let A be a division ring. If A|B is an \mathfrak{F} -Kummer extension then it is \mathfrak{F} -completely basic, that is, any \mathfrak{F} -n.b.e. of A|B is always an \mathfrak{F}^* -n.b.e. of $A|J(\mathfrak{F}^*, A)$ for every subgroup \mathfrak{F}^* of \mathfrak{F} .

Proof. As is well-known, $\mathfrak{H} = \mathfrak{H}_1 \times \cdots \times \mathfrak{H}_t$ with the p_i -primary components \mathfrak{H}_i . If \mathfrak{H}_0 is a subgroup of \mathfrak{H} with prime index p_i , then $\mathfrak{H}_0 = \mathfrak{H}_1^* \times \mathfrak{H}_2^*$ with a subgroup \mathfrak{H}_1^* of \mathfrak{H}_1 and $\mathfrak{H}_2^* = \mathfrak{H}_2 \times \cdots \times \mathfrak{H}_t$. As $(\mathfrak{H}_1 : \mathfrak{H}_1^*) = p_1$ implies $\mathfrak{H}_1^* \supseteq \mathfrak{H}_1^p$, \mathfrak{H}_1^* is a regular subgroup of \mathfrak{H}_1 by [1, Lemma 2.4]. And so, by Lemma 1, we see that any \mathfrak{H}_2 -n.b.e. of A/B is an \mathfrak{H}_0 -n.b.e. of $A/J(\mathfrak{H}_0, A)$. Now, the proof of our theorem will be completed by the induction with respect to the order of \mathfrak{H}_2 .

References

- [1] C. C. FAITH: Extensions of normal bases and completely basic fields, Trans. Amer. Math. Soc., 85 (1957), 406-427.
- [2] T. NAGAHARA, T. ONODERA and H. TOMINAGA: On normal basis theorem and strictly Galois extensions, Math. J. Okayama Univ., 8 (1958), 133-142.
- [3] N. NOBUSAWA and H. TOMINAGA: Some remarks on strictly Galois extensions of simple rings, Math. J. Okayama Univ., 9 (1959), 13-17.

Department of Mathematics, Hokkaido University

(Received April 10, 1964)