A NOTE ON NON-COMMUTATIVE KUMMER EXTENSIONS

By

Masayuki ÔHORI and Hisao TOMINAGA

Let a simple ring A (with 1 and minimum condition) be strictly Galois with respect to (an F-group) \mathfrak{G} in the sense of [2]. Then $B=J(\mathfrak{g}, A)$ is a simple ring with $[A: B]=\# \mathfrak{G}$, and the following facts have been given in [2] and [3]. (As to notations and terminologies used in this note, we follow [2].)
1°. Let \mathfrak{R} be an F-subgroup of \mathfrak{K}. If $N=J(\mathfrak{R}, A)$, then A / N is strictly Galois with respect to $\mathfrak{R},[N: B]=(\mathfrak{K}: \mathfrak{R})$ and $\mathfrak{g}(N)=\mathfrak{R}$. In particular, if \mathfrak{R} is an invariant subgroup of \mathfrak{G} then $\mathfrak{G} \mid N \cong \mathfrak{W} / \mathfrak{N}$.
2°. A contains an \mathfrak{K}-normal basis element (\mathfrak{E}-n.b.e.), that is, A contains an element a such that $\{a \sigma ; \sigma \in \mathfrak{W}\}$ forms a (linearly independent) right B-basis of A.
3°. If $\sigma \rightarrow x_{\sigma}$ is an anti-homomorphism of \mathfrak{E} into B (the multiplicative group of units of B) then there exists an element $x \in A^{\cdot}$ such that $x \sigma=x x_{o}$.
4°. Let \mathfrak{G} be cyclic with a generator σ of order m, and $B \cap C(C$ the center of A) contains a primitive m-th root of 1 . If there exists an element $a \in A \cdot$ such that $a \sigma=a \zeta$, there holds $A=\oplus_{i=0}^{n-1} B a^{i}=\oplus_{i=0}^{n-1} a^{i} B$.

Further, A / B was called an \mathfrak{g}-Kummer extension if \mathfrak{G} is a commutative $D F$-group whose exponent is m_{0} and $B \cap C$ contains a primitive m_{0}-th root of 1 , and [3, Theorem 3] enabled us the notion of an $\mathfrak{\mathfrak { b }}$-Kummer extension to be naturally regarded as a generalization of the classical one for (commutative) fields. On the other hand, in his paper [1], C. C. Faith proved that any commutative Kummer extension A / B is completely basic, more precisely, every normal basis element of A / B is a normal basis element of A / B^{\prime} for any intermediate field B^{\prime} of A / B. The purpose of this note is to carry over the last proposition to division rings. In fact, by the validity of $1^{\circ}-4^{\circ}$, a slight modification of Faith's proof will accomplish our attempt. Firstly, we exhibit the following characterization of an \mathfrak{b}-Kummer extension.

Theorem 1. Let $\mathfrak{G}=\left\{\eta_{1}, \cdots, \eta_{m}\right\}$ be a DF-group of A whose exponent is m_{0}. If A / B is an \mathfrak{S}-Kummer extension then $A=\oplus_{i=1}^{m} a_{i} B=\oplus_{i=1}^{m} B a_{i}$ with some $a_{i} \in A \cdot$ such that every $\zeta_{i j}=a_{i}^{-1} \cdot a_{i} \eta_{j}$ is contained in $B \cap C$, and conversely.

Proof. Let $\mathfrak{S}=\mathfrak{S}_{1} \times \cdots \times \mathfrak{S}_{e}$ with cyclic $\mathfrak{S}_{i}=\left[\sigma_{i}\right]$ of order m_{i}. Then, the exponent m_{0} of \mathfrak{S} coincides with the least common multiple $\left\{m_{1}, \cdots, m_{e}\right\}$. Now, let ζ be a primitive m_{0}-th root of 1 contained in $B \cap C$, and let $\zeta_{i}=$ $\zeta^{m_{0} / m_{i}}$, that is evidently a primitive m_{i}-th root of 1 . Then, $\eta=\Pi_{j=1}^{e} \sigma_{j}^{t_{j}} \zeta_{i}^{t_{i}}$ defines a homomorphism of \mathfrak{S} into $(B \cap C) \cdot(i=1, \cdots, e)$. Thus, by 3°, there exists an element $x_{i} \in A$. such that $x_{i} \sigma_{i}=x_{i} \zeta_{i}$ and $x_{i} \sigma_{j}=x_{i}$ for all $j \neq i$. Noting that $J\left(\mathfrak{S}_{2} \times \cdots \times \mathfrak{S}_{e}, A\right)$ contains x_{1} and is strictly Galois with respect to \mathfrak{S}_{1} by $1^{\circ}, 4^{\circ}$ yields at once $J\left(\mathfrak{E}_{2} \times \cdots \times \mathfrak{S}_{e}, A\right)=\oplus_{t=0}^{m_{1}-1} x_{1}^{t} B$. Repeating similar arguments, we obtain $J\left(\mathfrak{S}_{j+1} \times \cdots \times \mathfrak{W}_{e}, A\right)=\oplus_{t=0}^{m_{j-1}} x_{j}^{t} J\left(\mathfrak{S}_{j} \times \cdots \times \mathfrak{S}_{e}, A\right)=\oplus_{0 \leq t_{i}<m_{i}} x_{j}^{t_{j}}$ $\cdots x_{1}^{t_{1}} B$, in particular, $A=\oplus_{0<t_{i}<m_{i}} x_{e}^{t_{e}} \cdots x_{1}^{t_{1}} B$. If $\eta=\Pi_{i=1}^{e} \sigma_{i}^{s_{i}}\left(0 \leqslant s_{i}<m_{i}\right)$ is an
 so that $a^{-1} \cdot a \eta=\zeta_{e}^{t_{e} s_{e}} \ldots \zeta_{1}^{t_{1}^{s} s_{1}}$ is contained in $B \cap C$, as desired. Conversely, assume that $A=\oplus_{i=1}^{n} a_{i} B\left(a_{i} \in A \cdot\right)$ and every $\zeta_{i j}=a_{i}^{-1} \cdot a_{i} \eta_{j}$ is contained in $B \cap C$. As $\zeta_{i j}$ is contained in B, it will be easy to see that $\zeta_{i j}^{k}=a_{i}^{-1} \cdot a_{i} r_{j}^{k}$ for $k=0,1, \cdots$. We see therefore that if η_{j} is of order k then $a_{i} \eta_{j}^{k}=a_{i}$ and $\zeta_{i j}^{k}=1$, whence it follows that some one among $\zeta_{i j}(i=1, \cdots, m)$ is a primitive k-th root of 1 . We see accordingly $B \cap C$ contains a primitive m_{0}-th root of 1 . Next, if $a=\sum_{i=1}^{m} a_{i} b_{i}\left(b_{i} \in B\right)$ is an arbitrary element of A then $a \eta_{s} \eta_{t}=\sum_{i=1}^{m} a_{i} \eta_{s} \eta_{t} \cdot b_{i}=$ $\sum_{i=1}^{m} a_{i} b_{i} \zeta_{i t} \zeta_{i s}=a \gamma_{t} \eta_{s}$, which asserts \mathscr{S} is abelian.

The next will be easily seen from the proof of Theorem 1.
Corollary 1. Let A / B be an \mathfrak{S}-Kummer extension. If $\mathfrak{S}=\mathfrak{S}_{1} \times \mathfrak{S}_{2}$ with $B_{i}=J\left(\mathfrak{S}_{i}, A\right)$, then $A=B_{1} B_{2}=B_{2} B_{1}$ and every \mathfrak{S}_{2}-n.b.e. of B_{1} / B is an \mathfrak{S}_{2}-n.b.e. of A / B_{2}.

Corollary 2. Let A / B be an \mathfrak{S}-Kummer extension with a basis $\left\{a_{1}, \cdots, a_{m}\right\}$ as in Theorem 1. Then, $a=\sum_{i=1}^{m} a_{i} b_{i}\left(b_{i} \in B\right)$ is an Sg-n.b.e. if and only if every b_{i} is in B.

Proof. By assumption, $a r_{\gamma_{j}}=\sum_{i=1}^{m} a_{i} \eta_{j} \cdot b_{i}=\sum_{i=1}^{m} a_{i} b_{i} \zeta_{i j}$. Accordingly, a is an \mathfrak{S}-n.b.e. if and only if the matrix $\left(b_{i} \zeta_{i j}\right)=\left(\begin{array}{cc}b_{1} & 0 \\ 0 & b_{m}\end{array}\right)\left(\zeta_{i j}\right)$ is regular. In any rate, A contains an \mathfrak{S}-n.b.e. by 2°, so that the matrix $\left(b_{i} \zeta_{i j}\right)$ is regular for some choice of b_{i}, whence it follows the matrix $\left(\zeta_{i j}\right)$ is regular. Thus, a is an \mathfrak{S}-n.b.e. if and only if $\left(\begin{array}{ll}b_{1} & 0 \\ & \\ 0 & b_{m}\end{array}\right)$ is regular, that is, every b_{i} is in B.

Lemma 1. Let A be a division ring, A / B an \mathfrak{N}-Kummer extension, and $\mathfrak{S}=\mathfrak{S}_{1} \times \mathfrak{S}_{2}$ with cyclic $\mathfrak{S}_{1}=\left[\sigma_{1}\right]$ of order m_{1}. If \mathfrak{S}_{0} is a subgroup of \mathfrak{S} containing \mathfrak{S}_{2}, then every \mathfrak{S}-n.b.e. of A / B is an \mathfrak{N}_{0}-n.b.e. of $A / J\left(\mathfrak{K}_{0}, A\right)$.

Proof. Let $B_{i}=J\left(\mathfrak{E}_{i}, A\right)(i=0,1,2)$, and $\mathfrak{S}_{1}^{*}=\mathfrak{S}_{0} \cap \mathfrak{K}_{1}=\left[\sigma_{1}^{s}\right]$ with a posi-
tive divisor s of m_{1}. Then, $\mathfrak{S}_{0}=\mathfrak{S}_{1}^{*} \times \mathfrak{S}_{2}$. To be easily seen from the proof of Theorem 1, there exist (non-zero) elements $a_{1}=1, a_{2}, \cdots, a_{n} \in B_{1}$ and $a \in B_{2}$ such that $A=\oplus_{\substack{1 \leq i \leq j<m_{1} \\ 0}} a_{i}^{j} B, a_{i}^{-1} \cdot a_{i} \eta \in B \cap C$ for each $\eta \in \mathfrak{S}_{2}$, and $a \sigma_{1}=a \zeta_{1}$ where ζ_{1} is a primitive m_{1}-th root of 1 contained in $B \cap C$. If $n_{1}=m_{1} / s$ then $a^{n_{1}} \sigma_{1}^{s}=$ $a^{n_{1}}$, so that $\left\{a^{n_{1}{ }^{2}} ; 0 \leqslant \lambda<s\right\}$ forms a right B-basis of B_{0} by 1°. It follows therefore $\left\{a_{i} a^{\mu} ; 1 \leqslant i \leqslant n, 0 \leqslant \mu<n_{1}\right\}$ is a right B_{0}-basis of A and $\left(a_{i} a^{\mu}\right)^{-1}$. $\left(a_{i} a^{\mu}\right) \eta \in B \cap C$ for each $\eta \in \mathfrak{S}_{0}$. Now, if $u=\sum_{i, \mu, \lambda} a_{i} a^{\mu} a^{n_{1} \lambda} b_{i \mu \lambda}\left(b_{i \mu \lambda} \in B\right)$ is an \mathfrak{g} n.b.e. of A / B then every $b_{i \mu \lambda}$ is non-zero by Corollary 2, whence we see that every $\sum_{\lambda} a^{n_{1} \lambda} b_{i \mu \lambda}$ is a non-zero element of B_{0}. Hence, again by Corollary 2, u is an \mathfrak{K}_{0}-n.b.e. of A / B_{0}.

In [1], a subgroup H of a p-primary abelian group G of finite order was called a regular subgroup if G has a factorization $G=\left[g_{1}\right] \times \cdots \times\left[g_{t}\right]$ such that $H=\left[g_{1}^{\alpha_{1}}\right] \times \cdots \times\left[g_{t}^{\alpha_{t}}\right]$ with some α_{i}, and [1, Lemma 2.4] proved that if H is a subgroup of a finite p-primary abelian group G and contains $G^{p}=\left\{g^{p} ; g \in G\right\}$ then it is a regular subgroup. By the light of this fact, we can prove now our principal theorem.

Theorem 2. Let A be a division ring. If A / B is an \mathfrak{S}-Kummer extension then it is \mathfrak{S}-completely basic, that is, any \mathfrak{S}-n.b.e. of A / B is always an $\mathfrak{S}^{*}-n . b . e$. of $A / J\left(\mathfrak{S}^{*}, A\right)$ for every subgroup \mathfrak{S}^{*} of \mathfrak{S}.

Proof. As is well-known, $\mathfrak{S}_{\mathcal{E}}=\mathfrak{S}_{1} \times \cdots \times \mathfrak{S}_{t}$ with the p_{i}-primary components \mathfrak{V}_{i}. If \mathfrak{S}_{0} is a subgroup of \mathfrak{S}_{2} with prime index p_{1}, then $\mathfrak{C}_{0}=\mathfrak{S}_{1}^{*} \times \mathfrak{S}_{2}^{*}$ with a subgroup \mathfrak{S}_{1}^{*} of \mathfrak{K}_{1} and $\mathfrak{S}_{2}^{*}=\mathfrak{S}_{2} \times \cdots \times \mathfrak{S}_{t}$. As $\left(\mathfrak{S}_{1}: \mathfrak{S}_{1}^{*}\right)=p_{1}$ implies $\mathfrak{S}_{1}^{*} \supseteq \mathfrak{S}_{1}^{p}$, \mathfrak{S}_{1}^{*} is a regular subgroup of \mathfrak{S}_{1} by [1, Lemma 2.4]. And so, by Lemma 1, we see that any \mathfrak{S}-n.b.e. of A / B is an \mathfrak{S}_{0}-n.b.e. of $A / J\left(\mathfrak{S}_{0}, A\right)$. Now, the proof of our theorem will be completed by the induction with respect to the order of \mathfrak{S}.

References

[1] C. C. FaITH: Extensions of normal bases and completely basic fields, Trans. Amer. Math. Soc., 85 (1957), 406-427.
[2] T. Nagahara, T. Onodera and H. Tominaga: On normal basis theorem and strictly Galois extensions, Math. J. Okayama Univ., 8 (1958), 133-142.
[3] N. Nobusawa and H. Tominaga: Some remarks on strictly Galois extensions of simple rings, Math. J. Okayama Univ., 9 (1959), 13-17.

[^0](Received April 10, 1964)

[^0]: Department of Mathematics, Hokkaido University

