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\S 1. Introduction

As an extension of a normal basis theorem in Galois theory of fields T.
Nakayama obtained the following so-called semi-linear normal basis theorem:
Let $L$ be a finite separable Galois extension field of a subfield $K$ with the
Galois group $\mathfrak{G}$, and let $F$ be a subfield of $L$ (not necessarily containing $K$)
such that $F^{\mathfrak{G}}\subseteqq F$ . Then there exists in $L$ an element whose $[L:K]$ conjugates
with respect to $L$ are linearly independent over $F$ or form a generating system
of $L$ over $F$ according as $[L:F]\geqq or\leqq[L:K]$ . And he extended the theorem
to the case of Galois extensions of division rings under some conditions [7,
Assumptions I, $II1$ .

The main purpose of this paper is to extend the theorem to the case of
strictly Galois extensions of division rings (Theorem 3).

On the other hand, F. Kasch considered in [5] the normal basis theorem
in Noether’s sense (Die zweite Fassung des Satz von der Normalbasis) for
Galois extensions of division rings and obtained a necessary and sufficient con-
dition under which the theorem holds [5, Satz 9]. His result will be easily
generalized to the case of our semi-linear normal basis.

In \S 2, as a preliminary, we shall give a theorem on projective modules
over a ring with minimum condition due to Nakayama and Nagao which
serves as a main tool in our present considerations (Theorem 1). In \S 3, we shall
give the proof of Theorem 3 and try to generalize some of Kasch’s results.
As an application of Theorem 1, we shall give in \S 4 a proof of a theorem
on finite dimensional central division algebras due to Brauer and Albert.

\S 2. Preliminary results on projective modules over
rings with minimum condition

Throughout this section, we assume that $R$ is a ring with a unit element
1 and $R$ satisfies the minimum condition for right ideals. As is well known
$R$ is decomposed into a direct sum of finite number of directly indecomposable
right ideals $e_{i}R,$ $i=1,$ $\cdots,$ $r$.



24 T. Onodera

(1) $R=\sum_{i-- 1^{\oplus}}^{r}e_{i}R$

where $E=\{e_{i} ; i=1, \cdots, r\}$ is a set of primitive idempotent elements in $R$ which
are mutually orthogonal and such that $1=e_{1}+\cdots+e_{r}$ .

Let $N$ be the (nilpotent) radical of $R$ . For an element $a$ in $R$ we denote
by $\overline{a}$ the class determined by $a$ in the semi-simple residue class ring $\overline{R}=R/N$

It is well known that an idempotent element $e$ in $R$ is primitive if and only
if $\overline{e}$ is primitive in $\overline{\overline{R}}$ , and two primitive idempotent elements $e$ and $f$ in $R$

are isomorphic (in the sense that the two right R-modules $eR$ and $fR$ are R-
isomorphic) if and only if $\overline{e}$ and $\overline{f}$ are so in $\overline{R}$ . From (1) we obtain the
following decomposition of $\overline{R}$ into a direct sum of minimal right ideals:

(2) $\overline{R}=\sum_{i--1^{\oplus}}^{r}\overline{e}_{i}\overline{R}$ .

Here each $e_{i}\overline{R}$ is an irreducible right R-module. Since $\overline{R}$ is semi-simple, every
unital1) irreducible right R-module $(\neq 0)$ is $\overline{R}-$ , whence R.isomorphic to some
of $e_{i}\overline{R}$ .

Changing indices, we suppose that $\{e_{1}, \cdots, e_{s}\}$ is a complete set of all
non-isomorphic idempotent elements in $E$ and denote by $f(k)$ the number of
idempotent elements in $E$ which are isomorphic to $e_{k}$ . Then we have R-
isomorphisms :

(1) $R\equiv\sum_{k=1^{\oplus}}^{s}(e_{k}R)^{f(k)}$

(2) $\overline{R}\equiv\sum_{k=1^{\oplus}}^{s}(e_{k}\overline{R})^{f(k)}$

where $(e_{k}R)^{f(k)}$ and $(\overline{e}_{k}\overline{R})^{f(k)}$ denote the direct sum of $f(k)$-copies of the right
R-modules $e_{k}R$ and $\overline{e}_{k}\overline{R}$ respectively.

Let $\mathfrak{M}$ be a right R-module. The following characterization of projective
right R-modules was established by Nakayama and Nagao in [8], but for the
sake of completeness, we shall give here a simplified proof.2)

Theorem 1. $\mathfrak{U}t$ is R-projective if and only if it is R-isomorphic to

a direct sum offinite or infinite number of submodules which are R-isomorphic
to the nght ideal components $e_{k}R’ s$ of $R$ ;

1) In the sequel all modules considered are supposed to be unital in the sense that the
unit element of a ring operates as an identity operator on the modules.

2) Theorem 1 and the present proof of it was informed by Prof. Azumaya to me. The
theorem remains valid, as Eilenberg pointed in [3], when $R\ni 1$ is a semi-primary ring with
nilpotent radical, that is, a ring with nilpotent radical $N$ such that the residue class ring $R/N$

is a semi-simple ring with minimum condition.
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$\mathfrak{M}\equiv\sum_{k=1^{\oplus}}^{\epsilon}(e_{k}R)^{\mu_{l\prime}}$

and when this is the case the numbers $\mu_{k}’ s$ are uniquely determined by M.
Before proving the theorem, we shall prove the following

Lemma 1. Let $\mathfrak{M}$ be a right R-module and let $\mathfrak{N}$ be a submodule of
$\mathfrak{M}$ such that $\mathfrak{M}=\mathfrak{N}+\mathfrak{M}N$. Then we have $\mathfrak{M}=\mathfrak{N}$ .

Proof. Let $N^{\rho}=0$ . From the supposition we have $\mathfrak{M}N=\mathfrak{N}N+\mathfrak{M}N^{2}$,
whence we have $\mathfrak{M}=\mathfrak{N}+\mathfrak{N}N+\mathfrak{M}N^{2}=\mathfrak{N}+\mathfrak{M}N^{2}$ . Repeating this process, we
have

$\mathfrak{M}=\mathfrak{N}+\mathfrak{M}N=\mathfrak{N}+\mathfrak{M}N^{2}=\mathfrak{N}+\mathfrak{M}N^{3}=\cdots=\mathfrak{N}+\mathfrak{M}N^{p}=\mathfrak{N}$ .

This proves our lemma.
Proof of Theorem 1. Since every $e_{k}R$ is R-projective, the sufficiency of

the condition is obvious. To prove the converse, let $\mathfrak{M}$ be a projective R-
module and consider the residue module $\overline{\mathfrak{M}}=\mathfrak{M}/\mathfrak{R}lN$

$\overline{\mathfrak{M}}$ is naturally regarded
as an R-module, and since $\overline{R}$ is semi-simple $\overline{\mathfrak{M}}$ is a completely reducible $\overline{R}-$

module. Hence there is an $(\overline{\overline{R}}- or)R$-isomorphism $\varphi$ ;

$\varphi:\overline{\mathfrak{M}}\equiv\sum_{3=1^{\oplus}}^{s}(\overline{e}_{k}\overline{R})^{\mu_{k}}$

where $\mu_{k}’ s$ are finite or infinite cardinal numbers. Setting $Q=\sum_{k=1^{\oplus}}^{s}(e_{k}R)^{\mu_{k}}$ , we
assert that $Q$ is R-isomorphic to $\mathfrak{M}$ .

Consider the following diagram of R-modules and R-homomorphisms with
the exact row:

$Q$

$\varphi_{0}\mu$

$l^{\nu}$

$\mathfrak{M}\rightarrow\overline{Q}=Q/QN-0$

where $\varphi_{0}$ denotes an R-isomorphism of $\overline{\mathfrak{M}}$ onto $\overline{Q}(\equiv\sum_{k=1^{\oplus}}^{s}(\overline{e}_{k}\overline{R})^{\mu_{k}})$ and $\nu,$ $\mu$ denote
the natural R-homomorphisms of $Q$ and $\mathfrak{M}$ onto 2 and $\overline{\mathfrak{M}}$ respectively. Since
$Q$ is R-projective, there exists an R-homomorphism $f$ of $Q$ into $\mathfrak{M}$ such that
$\varphi_{0}\mu f=\nu$ . Noting that $\varphi_{0}\mu$ maps $f(Q)$ onto $\overline{\overline{Q}}$ and $\mathfrak{M}N$ is the kemel of $\varphi_{0}\mu$ ,
we have

$\mathfrak{M}=f(Q)+\mathfrak{M}N$ .

Then by the above lemma we obtain $\mathfrak{M}=f(Q)$ , that is, $f$ maps $Q$ onto $\mathfrak{M}$ .
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Since $\mathfrak{M}$ is R-projective, there exists an R-homomorphism $g$ of $\mathfrak{M}$ into $Q$

such that $fg=1_{\mathfrak{M}}$ (the identity mapping of M). It is ovbious that $g$ is a 1-1
mapping of $\mathfrak{M}$ into $Q$ .

Since $\nu g=\varphi_{0}\mu fg=\varphi_{0}\mu,$ $\nu$ maps $g(\mathfrak{M})$ onto 2 and hence we have

$Q=g(\mathfrak{M})+QN$ .

Hence, again by the lemma, we get $Q=g(\mathfrak{M})$ . Thus $g$ is an R-isomorphism
of $\mathfrak{M}$ onto $Q$, and this secures our assertion.

Since $\overline{\mathfrak{M}}=\mathfrak{M}/\mathfrak{M}N\equiv\sum_{k=1^{\oplus}}^{s}(\overline{e}_{k}\overline{R})^{\mu_{l}}$ , and $\overline{e}_{i}\overline{R}$ and $\overline{e}_{j}\overline{R}$ are not R-isomorphic if
$i\neq j$, the uniqueness of $\mu_{k}’ s$ follows from the theory of completely reducible
modules.

Corollary 1. Let $\mathfrak{M}$ be a right R-module such that

$\mathfrak{M}^{(n)}\equiv R^{(m)}$

for positive integers $n$ and $m$ . If $m=nq+r(0\leqq r<n)$ , then we have an
R-isomorphism

$\mathfrak{M}\cong R^{(q)}\oplus \mathfrak{m}$

where )$\mathfrak{n}$ is an R-homomorphic image of the right R-module $R$ such that
$\mathfrak{m}^{(n)}\equiv R^{(r)}$ . Especially, if $n=m$ then $\mathfrak{M}$ and $R$ are R-isomorphic, and if
$m<n$ then $\mathfrak{M}$ is an R-homomorphic image of $R$ .

Proof. From the supposition we see that $\mathfrak{M}$ is R-projective. Hence by
Theorem 1 we have an R-isomorphism

$\mathfrak{M}\equiv\sum_{k=1^{\oplus}}^{s}(e_{k}R)^{g(k)}$

where $g(k)s$ are finite or infinite cardinal numbers. This implies again by
Theorem 1 that

$g(k)n=f(k)m=f(k)nq+f(k)r$ , $k=1,$ $\cdots,$ $n$ .

Thus we have $g(k)=f(k)q+t(k),$ $0\leqq t(k)=f(k)r/n<f(k)$ , and so $\mathfrak{m}=\sum_{k=1^{\oplus}}^{s}(e_{k}R)^{t(k)}$

is the required module.
Corollary 2. If

$\mathfrak{M}^{(n)}\cong R^{(\omega)}$

for a positive integer $n$ and an infinite cardinal number $\omega$ , then we have
an R-isomorphism:
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$\mathfrak{M}\equiv R^{(\omega)}$

Proof. As in the same way in the proof of Corollary 1, we have
$ g(k)n=f(k)\omega=\omega$ . Hence we get $ g(k)=\omega$ , and this proves our assertion.

Theorem 2. Let $\mathfrak{M}$ be a projective R-module and let $\mathfrak{N}$ be an R-module.
If $\mathfrak{N}^{(n)}$ is R-isomorphic to $\mathfrak{M}^{(n)}$ where $n$ denotes a positive integer, then $\mathfrak{R}$ is
R-isomorphic to $\mathfrak{M}$ . Moreover if $\mathfrak{N}^{(m)}$ is R-homomorphic to $\mathfrak{M}^{(n)}$ where $n$

and $m$ are positive integers such that $n\leqq m$ , then $\mathfrak{N}$ is R-homomorphic to $\mathfrak{M}$ .
Proof. The first half of the theorem easily follows from Theorem 1. To

prove the last half of the theorem, let $\varphi$ be an R-homomorphism of $\mathfrak{M}^{(n)}$ onto
$\mathfrak{N}^{(m)}$ . Then $\varphi$ induces an R-homomorphism of $\mathfrak{M}^{(n)}/\mathfrak{M}^{(n)}N=\mathfrak{M}^{(n)}/(\mathfrak{M}N)^{(n)}$

($\equiv(\mathfrak{M}/\mathfrak{M}N)^{(n)}$ onto $\mathfrak{N}^{(m)}/\mathfrak{N}^{(m)}N=\mathfrak{N}^{(m)}/(\mathfrak{N}N)^{(m)}(\equiv(\mathfrak{N}/\mathfrak{N}N)^{(m)})$ . Then since
$(\mathfrak{M}/\mathfrak{M}N)^{(n)}$ and $(\mathfrak{N}/\mathfrak{N}N)^{(m)}$ are completely reducible R-modules, as is easily seen
from the theory of completely reducible modules, $\overline{\mathfrak{N}}=\mathfrak{N}/\mathfrak{N}N$ is itself an R-
homomorphic image of $\overline{\mathfrak{M}}=\mathfrak{M}N$ Let $\varphi_{0}$ be an R-homomorphism of $\overline{\mathfrak{M}}$ onto $\overline{\mathfrak{N}}$

and consider the following diagram of R-modules and R-homomorphisms with
the exact row:

$\mathfrak{U}l$

$\frac{\downarrow}{\mathfrak{M}}\mu$

$\mathfrak{N}\frac{\downarrow}{\mathfrak{R}}-0\underline{\nu}\varphi_{0}$

where $\mu,$
$\nu$ denote the natural mappings of $\mathfrak{M}$ and $\mathfrak{N}$ onto $\overline{\mathfrak{M}}$ and $\overline{\mathfrak{N}}$ respectively.

Since $\mathfrak{M}$ is R-projetive, there exists an R-homomorphism $f$ of $\mathfrak{M}$ into $\mathfrak{N}$ such
that $\nu f=\varphi_{0}\mu$ . Noting that $\nu$ maps $f(\mathfrak{M})$ onto En and $\mathfrak{N}N$ is the kemel of $\nu$ ,
we have $\mathfrak{N}=f(\mathfrak{M})+\mathfrak{N}N$ Then by the above lemma we obtain $\mathfrak{N}=f(\mathfrak{M})$ , that
is, $f$ maps $\mathfrak{M}$ onto $\mathfrak{N}$ . This proves our assertion.

\S 3. Semi-linear normal basis

Let $\Delta$ be a division ring, and let $\Phi$ be a division subring of $\Delta$ . In the
sequel, we suppose that $\Delta$ is Galois and finite over $\Phi$ , that is, $\Phi$ is the fixed
subring of a group of antomorphisms of $\Delta$ , and $[\Delta:\Phi]_{l}(=[\Delta:\Phi]_{r})=n<+\infty$ .
By $\mathfrak{G}$ we denote the group of automorphisms of $\Delta$ wich leave $\Phi$ elementwise
invariant. We shall say that $\mathfrak{G}$ is the Galois group of $\Delta$ over $\Phi$ .

Let $\mathfrak{E}$ be the ring of endomorphisms of $\Delta$ considered as an additive abelian
group. Then $\mathfrak{E}$ ocntains $\mathfrak{G}$ and $\Delta_{R}$ (the ring of right multiplications of the
elements of $\Delta$), and it contains the ring $\mathfrak{G}\Delta_{R}$ generated by $\mathfrak{G}$ and $\Delta_{R}$ . Noting
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that the formula

$d_{R}\cdot\sigma=\sigma\cdot(d\sigma)_{R}$ $d\in\Delta,$ $\sigma\in \mathfrak{G}$

holds, we shall see that every element a of $\mathfrak{G}\Delta_{R}$ is expressed as a finite sum

$a=\sum_{\sigma\in \mathfrak{G}}\sigma d_{\sigma R}$ , $ d_{\sigma}\in\Delta$ .

a is naturally regarded as a right $\mathfrak{G}\Delta_{R}$-module.
Lemma 2. $\mathfrak{G}\Delta_{R}$ is a simple ring with minimum condition having the

capacity $n$ and $\Delta^{(n)}$ , the direct sum of n-fold copies of the $r\dot{\tau}ght\mathfrak{G}\Delta_{R}$-module
$\Delta$, is $\mathfrak{G}\Delta_{R}$-isomorphic to $\mathfrak{G}\Delta_{R}$ .

Proof. Since $\mathfrak{G}\Delta_{R}$ contains $\Delta_{R},$ $\Delta$ is an irreducible right $\mathfrak{G}\Delta_{R}$-module, and
as is easily seen the commutor ring of $\mathfrak{G}\Delta_{R}$ in $\mathfrak{E}$ is the left mutiplication
ring $\Phi_{L}$ . Then by the density theorem for irreducible modules $\mathfrak{G}\Delta_{R}$ is a dense
ring of linear transformations of the left $\Phi$-vector space $\Delta$ . Since $\Delta$ has finite
degree over $\Phi$, this implies that $\mathfrak{G}\Delta_{R}$ is the ring of linear transformations of
$\Delta$ over $\Phi$ . Thus $\mathfrak{G}\Delta_{R}$ is a simple ring with minimum condition having the
capacity $n$ . Noting that irreducible modules for a simple ring with minimum
condition are all isomorphic, we obtain the latter half of the lemma.

As is clear from the above proof, we can apply the lemma to every auto.
morphism group $\mathfrak{H}$ of $\Delta$ with $\Phi$ as its fixed subring.

When there exists an automorphism group $\mathfrak{G}_{0}=\{\sigma_{1}=1, \cdots, \sigma_{n}\}$ of order $n$

whose fixed subring is $\Phi$ , we shall say that $\Delta$ is strictly Galois over or more
explicitly $\Delta$ is $\mathfrak{G}_{0}$-strictly Galois over $\Phi$. Needless to say $\mathfrak{G}_{0}$ is a subgroup
of G. The question whether every finite Galois extension is necessarily
strictly Galois or not is still open.

Corollary 3. Let $\Delta$ is $\mathfrak{G}_{0}$-strictly Galois over $\Phi$ . Then the right $\mathfrak{G}_{0}\Delta_{R^{-}}$

module $\Delta^{(n)}$ is $\mathfrak{G}_{0}\Delta_{R}$-isomorphic to $\mathfrak{G}_{0}\Delta_{R}$ , and $\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\}$ is a right basis of
$\mathfrak{G}_{0}\Delta_{R}$ over $\Delta_{R}$ .

Proof. Since $\mathfrak{G}_{0}\Delta_{R}=\mathfrak{G}\Delta_{R}$ , the first part of the assertions is obvious. Let
$\{l_{1}, \cdots,l_{n}\}$ be a left basis of $\Delta$ over $\Phi$ , and let $d_{i}’ s$ be the linear transformations
of the left $\Phi$-vector space $\Delta$ defined by

$(l_{i})d_{j}=\delta_{ij}$ (the Kronecker’s delta).

Then, as is easily verified, $Hom_{\Phi}(\Delta, \Delta)$ , the ring of linear transformations of

the $\Phi$-space $\Delta$, is $\sum_{i=1^{\oplus}}^{n}d_{i}\Delta_{R}$ where $d_{i}’ s$ are linearly independent over $\Delta_{R}$ . Since

$\mathfrak{G}_{0}\Delta_{R}=\sum_{i=1}^{n}\sigma_{i}\Delta_{R}=Hom_{\Phi}(\Delta, \Delta),$ $\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\}$ is a right basis of $\mathfrak{G}_{0}\Delta_{R}$ over $\Delta_{R}$ as
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asserted.
Now we are in the position to state our main theorem.
Theorem 3. Let $\Delta$ be $\mathfrak{G}_{0}$-strictly Galois over $\Phi$ , and let $[\Delta:\Phi]_{l}=n<$

$+\infty$ . Suppose that $\Lambda$ is a division subring of $\Delta$ which is invariant as a
whole under $\mathfrak{G}_{0}$ .

(i) If $[\Delta:\Lambda]_{r}=m<+\infty$ , and $m=nq+r(0\leqq r<n)$ , then there exist $q+1$

elements $\epsilon_{1}\ldots,$ $\xi_{q}$ ; $\rho$ of $\Delta$ such that $\{\xi_{i}^{\sigma}; \sigma\in \mathfrak{G}_{0}, i=1, \cdots, q\}$ and suitable $r$

elements in $\{\rho\sigma;\sigma\in \mathfrak{G}_{0}\}$ form a right basis of $\Delta$ over $\Lambda^{3)}$

(ii) if $[\Delta:\Lambda]_{\gamma}=\omega$, where to is an infinite cardinal number, then there
exist elements $\xi_{\alpha}(\alpha\in A)$ in $\Delta$ such that $\{\xi_{\alpha}^{\sigma} ; \sigma\in \mathfrak{G}_{0}, \alpha\in A\}$ is a right basis of
$\Delta$ over $\Lambda$ , where $A$ is an index set with the cardinal $\omega$ .

Proof. Since $\Lambda$ is invariant as a whole under $\mathfrak{G}_{0}$ , every element a of $\mathfrak{G}_{0}\Lambda_{R}$

is expressed as a finite sum

$a=\sum_{\sigma\in \mathfrak{G}_{0}}\sigma\lambda_{\sigma R}$
, $\lambda_{\sigma}\in\Lambda$ .

Let $\{u_{1}, \cdots, u_{m}\}$ be a right basis of $\Delta$ over $\Lambda$ . Then we have

$\mathfrak{G}_{0}\Delta_{R}=\Delta_{R}\mathfrak{G}_{0}=\sum_{i-- 1}^{m}u_{i_{R}}\Lambda_{R}\mathfrak{G}_{0}=\sum_{i=1}^{m}u_{i_{R}}\mathfrak{G}_{c}\Lambda_{R}$

and, as is easily verified, $\{u_{1_{R}}, \cdots, u_{m_{R}}\}$ is a right basis of the right $\mathfrak{G}_{0}\Lambda_{R^{-}}$

module $\mathfrak{G}_{0}\Delta_{R}$ . Then by Corollary 1, we have a $\mathfrak{G}_{0}\Lambda_{R}$-isomorphism:

$\Delta^{(n)}\cong(\mathfrak{G}_{0}\Lambda_{R})^{(m)}$ .

Since $\mathfrak{G}_{0}\Lambda_{R}$ is a ring with minimum condition the results of Corollary 1 are
applicable. Thus we have a $\mathfrak{G}_{0}\Lambda_{R}$-isomorphism:

$\Delta\cong(\mathfrak{G}_{0}\Lambda_{R})^{(q)}\oplus \mathfrak{m}$

where $\mathfrak{m}$ is a $\mathfrak{G}_{0}\Lambda_{R}$-homomorphic image of $\mathfrak{G}_{0}\Lambda_{R}$ . $i$

Setting here $\xi_{i}$ the element of $\Delta$ which corresponds to $(0, \cdots, 0,1\cdots, 0)\vee$, and
$\rho$ the one which corresponds to the element $m$ , the image of 1 under the
$\mathfrak{G}_{0}\Lambda_{R}$-homomorphism of $\mathfrak{G}_{0}\Lambda_{R}$ onto $\mathfrak{m}$ , then we see that the elements $\xi_{i}’ s$ and
$\rho$ are the desired elements in (i).

If $[\Delta:\Lambda]_{r}=\omega$ , then in the same way as in (i) we have a $\mathfrak{G}_{0}\Lambda_{R}$-isomorphism:

$\Delta^{(n)}\cong(\mathfrak{G}_{0}\Lambda_{R})^{(\omega)}$ .

Then, by Corollary 2 we obtain a $\mathfrak{G}_{0}\Lambda_{R}$-isomorphism:

3) Cf. [10].
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$\Delta\equiv(\mathfrak{G}_{0}\Lambda_{R})^{(\omega)}$

and this implies the validity of our assertion (ii).
As a special case of Theorem 3 (i), we have
Corollary 4. Let $\Delta,$ $\Phi$ and $\mathfrak{G}_{0}$ be as in Theorem 3. Then there exists

an element $\xi$ such that $\{\xi^{\sigma} ; \sigma\in \mathfrak{G}_{0}\}$ is a right basis of $\Delta$ over $\Phi$ .
Let $Z$ be the center of $\Delta$, and let $T$ be the commutor ring of $\Phi$ in $\Delta$ .

By $\mathfrak{J}$ we denote the subgroup of $\mathfrak{G}$ which consists of all inner automorphisms
in G. It is well known that $(\mathfrak{G}:\mathfrak{J})[T:Z]=[\Delta:\Phi]=n$ , and if $\{\sigma_{1}, \cdots, \sigma_{r}\}$ is
a complete representative system of $\mathfrak{G}$ modulo $\mathfrak{J}$ and $\{\tau_{1}, \cdots, \tau_{s}\}$ is a basis of
$T$ over $Z$, then $\{\sigma_{i}L_{j} : i=1, \cdots, r;j=1, \cdots,s\}$ is a basis of $\mathfrak{G}\Delta_{R}$ over $\Delta_{R}$ where
I. denotes the inner automorphism induced by the element $\tau$ .

In [5], Kasch obtained the following normal basis theorem in Noether’s
sense [5, Satz 9]:

$\Delta$ is $\mathfrak{G}\Delta_{R}$-isomorphic to $\mathfrak{G}\Delta_{R}$ if and only if $Z=T$ or $ T_{\geq}^{\prime}\Phi$ .
We shall try to generalize the theorem to the case of semi-linear normal

basis theorem.
Lemma 3. Let $\Lambda$ be a division subring of $\Delta$ which is invanant as a

whole under the Galois group $\mathfrak{G}$ . If $[\Delta:\Lambda]_{r}$ is finite, then the following
conditions $(a),$ $(b),$ $(c)$ are equivalent.

$(a)$ $Z=T$ or $ T\subseteqq\Lambda$

$(b)$ $[\mathfrak{G}\Lambda_{R} : \Lambda_{R}]_{r}=[\Delta:\Phi]$

$(c)$ $[\mathfrak{G}\Delta_{R} : \mathfrak{G}\Lambda_{R}]_{r}=[\Delta:\Lambda]_{r}$

Moreover $(a)$ (or equivalently $(b)$ ) implies $(c)$ without the finiteness con-
dition of $[\Delta:\Lambda]_{r}$ .

Proof. The proof of the equivalence of $(a)$ and $(b)$ proceeds quite ana-
logously to that of [5, Satz 10] hence we shall omit it here. The equivalence
holds in fact without the supposition $[\Delta:\Lambda]_{r}<+\infty$ . The equivalence of $(b)$

and $(c)$ is clear from the relation
$[\mathfrak{G}\Delta_{R} ; \mathfrak{G}\Lambda_{R}]_{r}[\mathfrak{G}\Delta_{R} : \Lambda_{R}]_{r}=[\mathfrak{G}\Delta_{R} : \Delta_{R}]_{r}[\Delta_{R} : \Lambda_{R}]_{r}=[\Delta:\Phi][\Delta:\Lambda]_{r}$ .

The last part of the lemma is almost obvious.
Combining this lemma with Corollary 1, we obtain the following

generalization of [5, Satz 9].

Theorem 4. Let $\Delta$ be Galois and finite over $\Phi$ with the Galois group
$\mathfrak{G}$ , and let $[\Delta:\Phi]=n$ . Suppose that $\Lambda$ is a division subring of $\Delta$ which is
invariant as a whole under G.

(i) If $[\Delta:\Lambda]_{r}=m<+\infty$ , and $m=nq+r(0\leqq r<n)$ , then the following
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propositions are equivalent:
(1) There exists a $\mathfrak{G}\Lambda_{R}$-isomorphism:

$\Delta\cong(\mathfrak{G}\Lambda_{R})^{(q)}\oplus \mathfrak{m}$

where $\mathfrak{m}$ is a $\mathfrak{G}\Lambda_{R}$-hmomorphic image of $\mathfrak{G}\Lambda_{R}$ such that $\mathfrak{m}^{(n)}\equiv(\mathfrak{G}\Lambda_{R})^{(r)}$ .
(2) $Z=T$ or $ T\subseteqq\Lambda$ .
(ii) If $[\Delta:\Lambda]_{r}=\omega$ (infinite) and the condition (2) is satisfied, then there

exists a $\mathfrak{G}\Lambda_{R}$-isomorphism

$\Delta\equiv(\mathfrak{G}\Lambda_{R})^{(\omega)}$ .

Corollary 5. Let $\Delta,$ $\Phi$ and $\mathfrak{G}$ be as in Theorem 4. If $Z=T$ or $ T\subseteqq\Phi$,
then for any system $\{\sigma_{1}, \cdots, \sigma_{r} ; L_{1}, \cdots, L_{s}\}$ chosen from $\mathfrak{G}$ such that $\{\sigma_{1}, \cdots, \sigma_{r}\}$

is a complete representative system of $\mathfrak{G}$ modulo $\mathfrak{J}$ and $\{\tau_{1}, \cdots, \tau_{s}\}$ is a basis
of $T$ over $Z$, there exists an element $\xi$ in $\Delta$ such that { $\xi^{\sigma_{i}t_{\tau}}j;i=1,$

$\cdots,$ $r$ ;
$j=1,$ $\cdots,s$ } is a right basis of $\Delta$ over $\Phi$ .

Let $\Lambda$ be a subring of $\Delta$ which is invariant as a whole under $\mathfrak{G}$ such that
$[\Delta:\Lambda]_{r}=m\leqq n$ , and let $\{u_{1}, \cdots, u_{m}\}$ be a right basis of $\Delta$ over $\Lambda$ . Then we
have $\mathfrak{G}\Delta_{R}=\Delta_{R}\mathfrak{G}=\sum_{i-1}^{m}u_{i_{R}}\Lambda_{R}\mathfrak{G}=\sum_{i=1}^{m}u_{i_{R}}\mathfrak{G}\Lambda_{R}$ , accordin$g$ly $\mathfrak{G}\Delta_{R}$ is $\mathfrak{G}\Lambda_{R}$-homomorphic

to $(\mathfrak{G}\Lambda_{R})^{(m)}$ . Since $\Delta^{(n)}$ is $\mathfrak{G}\Lambda_{R}$-isomorphic to $\mathfrak{G}\Delta_{R}$ , this implies that $\Delta^{(n)}$ is $\mathfrak{G}\Lambda_{R^{-}}$

homomorphic to $(\mathfrak{G}\Lambda_{R})^{(m)}$ . Then by Theorem 2 we obtain the following

Theorem 5. Let $\Delta,$ $\Phi,$
$\mathfrak{G}$ and $\Lambda$ be as in Theorem 4. If $[\Delta:\Lambda]_{r}=m\leqq n$ ,

then $\Delta$ is $\mathfrak{G}\Lambda_{R}$-homomorphic to $\mathfrak{G}\Lambda_{R}$ . Especially $\Delta$ is $\mathfrak{G}\Phi_{R}$-homomorphic to
$\mathfrak{G}\Phi_{R}$ .

A subgroup of the Galois group $\mathfrak{G}$ which contains a right basis of $\mathfrak{G}\Delta_{R}$

over $\Delta_{R}$ was called independent in [5]. An independent subgroup is nothing
but one whose fixed subring coincides with $\Phi$ .

Corollary 6. Let $\mathfrak{G}^{\prime}$ be an independent subgroup of $\mathfrak{G}$ , and let $\Lambda$ be
a division subring of $\Delta$ which \’is invanant as a whole under $\mathfrak{G}^{\prime}$ . If
$[\Delta:\Lambda]_{r}\leqq n$ , then $\Delta$ is $\mathfrak{G}^{\prime}\Lambda_{R}$-homomorphic to $\mathfrak{G}^{\prime}\Lambda_{R}$ .

\S 4. An application

Let $\Delta$ be a finite dimensional central division algebra over $\Phi$ of degree
$\delta:[\Delta:\Phi]=\delta^{2}$ . Suppose that $P$ is a maximal subfield of $\Delta$ which has a primitive
element $\xi$ . over $\Phi$ Let, as in \S 3, $\mathfrak{E}$ be the endomorphism ring of the additive
group $\Delta$ . Then the commutor ring of $\Delta_{1i}\Delta_{R}$ in $\mathfrak{E}$ is the multiplication ring
$\Phi_{L}=\Phi_{R}$ . As is seen from the proof of Lemma 2 we have a $\Delta_{L}\Delta_{R}$-isomorphism:
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$\Delta^{(\delta^{2})}\cong\Delta_{L}\Delta_{R}=\Delta_{L}\otimes_{\Phi}\Delta_{R}$ .

Since $[\Delta:P]=\delta$ , it follows

$\Delta_{L}\Delta_{R}\equiv(P_{L}P_{R})^{(\delta^{2}\rangle}$

whence
$\Delta^{(\delta^{2})}=\wedge-(P{}_{L}P_{R})^{(\delta^{2})}$ as right $P{}_{L}P_{R}$-modules.

Hence, by Corollary 1 there exists a $P{}_{L}P_{R}$-isomorphism:

$\Delta\cong P{}_{L}P_{R}=P_{L}\otimes_{\Phi}P_{R}$ .

Since $P=\sum_{j=1}^{\delta-1}\xi^{j}\Phi,$ $ P{}_{L}P_{R}=\sum_{i,j=1}^{\delta- 1}\xi_{L}^{i}\xi_{R}^{j}\Phi$ . Considering the element $\eta$ of $\Delta$ which

corresponds to $ 1\in\sum_{i,j=1}^{\delta-1}\xi_{L}^{i}\xi_{R}^{j}\Phi$ in the above isomorphism, we obtain the following
theorem:4)

Theorem 6. (Albert and Brauer). Let $\Delta$ be a finite dimensional
central division algebn over $\Phi$ of degree $\delta$ . Suppose $P$ is a maximal
subfield of $\Delta$ which has a primitive element $\xi$ . Then there exists an element
$\eta$ in $\Delta$ such that $\{\xi^{i}\eta\xi^{j} ; i, j=0,1, \cdots, \delta-1\}$ is a basis for $\Delta$ over $\Phi$ .
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