ON SEMI-LINEAR NORMAL BASIS
By

Takesi ONODERA

§ 1. Introduction

As an extension of a normal basis theorem in Galois theory of fields T.
Nakayama obtained the following so-called semi-linear normal basis theorem :
Let L be a finite separable Galois extension field of a subfield K with the
Galois group ®, and let F be a subfield of L (not necessarily containing K)
such that F®CF. Then there exists in L an element whose [L : K] conjugates
with respect to L are linearly independent over F or form a generating system
of L over F according as [L:F]=or<[L:K]. And he extended the theorem
to the case of Galois extensions of division rings under some conditions [7,
Assumptions I, II]. _

The main purpbse of this paper is to extend the theorem to the case of
strictly Galois extensions of division rings (Theorem 3). ‘

On the other hand, F. Kasch considered in [5] the normal basis theorem
in Noether’s sense (Die zweite Fassung des Satz von der Normalbasis) for
Galois extensions of division rings and obtained a necessary and sufficient con-
dition under which the theorem holds [5, Satz 9]. His result will be easily
generalized to the case of our semi-linear normal basis.

 In §2, as a preliminary, we shall give a theorem on projective modules
over a ring with minimum condition due to Nakayama and Nagao which
serves as a main tool in our present considerations (Theorem 1). In §3, we shall
give the proof of Theorem 3 and try to generalize some of Kasch’s results.
As an application of Theorem 1, we shall give in §4 a proof of a theorem
on finite dimensional central division algebras due to Brauer and Albert.

§ 2. Preliminary results on projective modules over
-rings with minimum condition

Throughout this section, we assume that R is a ring with a unit element
1 and R satisfies the minimum condition for right ideals. As is well known
R is decomposed into a direct sum of finite number of directly indecomposable
right ideals ¢,R, =1, ---, 7.



24 T. Onodera

(1) R=3oeR

where E={e;; i=1,---,7} is a set of pfimitive idempotent elements in R which
are mutually orthogonal and such that 1=¢,+--- +e,.

Let N be the (nilpotent) radical of R. For an element a in R we denote
by a the class determined by a in the semi-simple residue class ring R=R/N.
It is well known that an idempotent element ¢ in R is primitive if and only
if ¢ is primitive in R, and two primitive idempotent elements ¢ and f in R
are isomorphic (in the sense that the two right R-modules eR and fR are R-
isomorphic) if and only if ¢ and f are so in R. From (1) we obtain the
following decomposition of R into a direct sum of minimal right ideals:

(2) . R=3eeR

Here each &R is an irreducible right R-module. Since R is semi-simple, every
unital® irreducible right R-module (#0) is R-, whence R-isomorphic to some
of &R. '
Changing indices, we suppose that {e,---,e,} is a complete set of all
non-isomorphic idempotent elements in E and denote by f(%) the number of
idempotent elements in E which are isomorphic to e,. Then we have R-
isomorphisms : '

IH

3 olecRY®

(2) R= kz o (& RY®

where (e, RY® and (e, RY® denote the direct sum of f(k)-copies of the right
R-modules ¢;R and &R respectively.

Let M be a right R-module. The following characterization of prO_]eCthe
right R-modules was established by Nakayama and Nagao in [8], but for the
sake of completeness, we shall give here a simplified proof.”

Theorem 1. W is R-projective if and only if it is R-isomorphic to
a direct sum of finite or infinite number of submodules which are R-isomorphic
to the right ideal components exR’s of R; '

1) In the sequel all modules considered are supposed to be unital in the sense that the
unit element of a ring operates as an identity operator on the modules.

2) Theorem 1 and the present proof of it was informed by Prof. Azumaya to me. The
theorem remains valid, as Eilenberg pointed in [3], when R31 is a semi-primary ring with
‘nilpotent radical, that is, a ring with nilpotent radical N' such that the residue class ring R/N
is a semi-simple ring with minimum condition.
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and when this is the case the numbers p,’s are uniquely determined by .
Before proving the theorem, we shall prove the following

Lemma 1. Let M be a right R-module and let N be a submodule of
M such that M=N+INN. Then we have WM=9N.

Proof. Let N*=0. From the supposition we have IMN=NN-+IMN?
whence we have M=N+NN+MN*=N+MN?. Repeating this process, we
have

M=N+IMN=N+IMN* =R+ MN*=--. =N+IMN*=N.

This proves our lemma.

Proof of Theorem 1. Since every e,R is R-projective, the sufficiency of
the condition is obvious. To prove the converse, let I be a projective R-
module and consider the residue module M =9/MN. Wt is naturally regarded
as an R-module, and since R is semi-simple 9t is a completely reducible R-
module. Hence there is an (R- or)R-isomorphism ¢ ;

©: M= k§® (e_/cR)Pk

» 8
where y;’s are finite or infinite cardinal numbers. Setting Q= > 4 (e:R)**, we
k=1

assert that Q is R-isomorphic to .
Consider the following diagram of R-modules and R-homomorphisms with
the exact row:

Q

MO~ QION——0

where ¢, denotes an R-isomorphism of 90t onto Q@ (‘—E Zsj@(é,cf—{)"k) and v, 1 denote

£=1 ]
the natural R-homomorphisms of Q and 9% onto Q and 9% respectively. Since
Q is R-projective, there exists an R-homomorphism f of Q into I such that
porf =v. Noting that ¢,z maps f(Q) onto Q@ and MN is the kernel of ¢ou,
we have :

M = F(Q)+IMN.

Then by the above lemma we obtain M =F(Q), that is, f maps Q onto M.
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Since M is R-projective, there exists an R-homomorphism ¢ of M into Q
such that fg=1y (the identity mapping of IM). It is ovbious that g is a 1-1
mapping of M into Q , ,

~ Since vg = @opff = oo, v maps g(M) onto @ and hence we have

Q=g(W)+QON.

Hence, again by the lemma, we get Q=¢g(IM). Thus g is an R-isomorphism
of M onto Q, and this secures our assertion. ‘ ‘

Since Mt=W/MN= Zs]o(e'klé)"*, and ¢,R and &R are not R-isorﬂorphic i

i#j, the uniqueness of e ’s follows from the theory of completely reducible
modules.

Corollary 1. Let M be a right R-module such that
. I = R

Jor positive integers n and m. If m=ng+r (0Zr<n), then we have an

R-isomorphism | '
M=RP2Pm

where m is an R-homomorphic image of the right R-module R such that

mW=R". Especially, if n=m then W and R are R-isomor phzc, and zf
m<n then M is an R-homomorphic image of R.

Proof. From the supposition we see that 9t is R-projective. Hence by
Theorem 1 we have an R-isomorphism : :

M= 3o (e RF
k=1

where ¢(k)’s are finite or infinite cardinal numbers. This implies again by
Theorem 1 that o '

g (B)n = fRym = fl)ng+fR)r, k=1, n.
Thus we have g (k)= f(k)q +£(k), 0<t(k)=f(k)r/n < k), and so m= k}i:‘,l@(e,‘R)’(")

is the required module.
‘Corollary 2. If

P = R@

for a positive integer n and an infinite cardinal number o, then we have
an R-isomorphism : - - ’ '
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M= R

Froof. As in the same way in the proof of Corollary 1, we have
g(k)n=fk)o=w. Hence we get g(k)=w, and this proves our assertion.

Theorem 2. Let I be a projective R-module and let N be an R-module.
If N™ is R-isomorphic to M™ where n denotes a positive integer, then N is
R-isomorphic to M.  Moreover if M'™ is R-homomorphic to M™ where n
and m are positive integers such that n<m, then N is R-homomorphic to WM.

Proof. The first half of the theorem easily follows from Theorem 1. To
prove the last half of the theorem, let ¢ be an R-homomorphism of W™ onto
N. Then ¢ induces an R-homomorphism of M™/IMN = P /(IMRN)™
(= (M/MN)™ onto N™/NWN =R [(RN)™ (=R/NN)). Then since
(WYMN)™ and (N/NN)™ are completely reducible R-modules, as is easily seen
from the theory of completely reducible modules, R=N/NN is itself an R-
homomorphic image of M =INN. Let ¢, be an R-homomorphism of ¢ onto N
and consider the following diagram of R-modules and R-homomorphisms with
the exact row:

We
©

v *500
N -0 >0

where p, v denote the natural mappings of It and N onto B} and N respectively.
Since Mt is R-projetive, there exists an R-homomorphism f of M into N such
that »f = g,uz. Noting that v maps f(IN) onto N and NN is the kernel of v,
we have NM=F(M)+NN. Then by the above lemma we obtain M=f(IM), that

is, f maps M onto M. This proves our assertion.

§ 3. Semi-linear normal basis

Let 4 be a division ring, and let @ be a division subring of 4. In the
sequel, we suppose that 4 is Galois and finite over @, that is, @ is the fixed
subring of a group of antomorphisms of 4, and [4: @], (=[4: ?],)=n< + co.
By ® we denote the group of automorphisms of 4 wich leave @ elementwise
invariant. We shall say that & is the Galois group of 4 over @.

Let & be the ring of endomorphisms of 4 considered as an additive abelian
group. Then & ocntains & and 4, (the ring of right multiplications of the
elements of 4), and it contains the ring &4, generated by & and 4. Noting
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that the formula
dr-0=o0-(do)g ded, ce®
holds, we shall see that every element a of &4, is expressed as a finite sum

a:ZU o2 s d,,GA.

€S

4 is naturally regarded as a right ®4z,-module.

Lemma 2. &4y is a simple ring with minimum condition having the
capacity n and 4™, the direct sum of n-fold copies of the right &d,-module
4, is Ody-isomorphic to Ody.

Proof. Since @4y contains 4y, 4 is an irreducible right &4;-module, and
as is easily seen the commutor ring of &4, in & is the left mutiplication
ring @;. Then by the density theorem for irreducible modules &4, is a dense
ring of linear transformations of the left @-vector space 4. Since 4 has finite
degree over @, this implies that &4, is the ring of linear transformations of
4 over ®. Thus &4 is a simple ring with minimum condition having the
capacity n. Noting that irreducible modules for a simple ring with minimum
condition are all isomorphic, we obtain the latter half of the lemma. _

As is clear from the above proof, we can apply the lemma to every auto-
morphism group § of 4 with @ as its fixed subring.

When there exists an automorphism group &,={s,=1,:--,0,,} of order =
whose fixed subring is @, we shall say that 4 is strictly Galois over or more
explicitly 4 is ®,-strictly Galois over @. Needless to say &, is a subgroup
of @. The question whether every finite Galois extension is necessarily
strictly Galois or not is still open.

Corollary 3. Let 4 is Oy strictly Galois over @. Then the right &,dy-
module 4™ is &, dx-isomorphic to &, 4z, and {o,,0.,---,0,} is a right basis of
&4, over 4.

Proof. Since &, 4,=®4,, the first part of the assertions is obvious. Let
{L,,---,1,.} be a left basis of 4 over @, and let d;’s be the linear transformations
of the left @-vector space 4 defined by

(1,)d; = 0y (the Kronecker’s delta).

Then, as is easily verified, Hom, (4, 4), the ring of linear transformations of

the @-space 4, is Y o d;dr where d,’s are linearly independent over 4. Since
=1

®udp= 3 6,dn=Homy(d, 4), {a:, s+, 0,} is a right basis of &, over 4, as
: £=1
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asserted. ,

Now we are in the position to state our main theorem. o

Theorem 3. Let 4 be Ostrictly Galois over @, and let [4:P,=n<
+oo. Suppose that A is a division subring of 4 which is invariant as a
whole under ®&,. _

(1) If [4:4],=m< + o0, and m=nqg+r (0=<r<n), then there exist g+1
elements £, ---,&; P of 4 such that {£; 6€®,, i=1, ---,q} and suitable r
elements in {0°; 0€®,} form a right basis of 4 over A.” ‘ '

(ii) if [4: 4], =ow, where w is an infinite cardinal number, then there
exist elements &,(a€A) in 4 such that {&2; 6€®,, acA} is a right basis of
4 over A, where A is an index set with the cardinal o.

Proof. Since A is invariant as a whole under &,, every element a of &,45

is expressed as a finite sum

a= Y dAn, Led.

a&@®,

Let {«,---,u,} be a right basis of 4 over 4. Then we have
@04}3 == AR@O = % uiRAR@o = % u¢R©cAR
=1 t=1

and, as is easily verified, {w.,, -, %,,} is a right basis of the right G4
module & d;. Then by Corollary 1, we have a &,4zisomorphism :

AP = (@A) .

Since ®&,4, is a ring with minimum condition the results of Corollary 1 are
applicable. Thus we have a &,4z-isomorphism : '

A = (@oAR)(Q) @ m

where m is a ®&,4z-homomorphic image of &,415.

Setting here &, the element of 4 which corresponds to (0, :--,0,1,---,0) and
© the one which corresponds to the element , the image of 1 under the
®,4 z-homomorphism of &,4, onto m, then we see that the elements &’s and
© are the desired elements in (i).

(=

If [4: 4], =w, then in the same way as in (i) we have a G4 rz-isomorphism :
| A7 = (G A) .

Then, by Corollary 2 we obtain a &,4z-isomorphism :

3) Cf. [10].
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A= (G4 z)

and this implies the validity of our assertion (ii).
As a special case of Theorem 3 (i), we have

Corollary 4. Let 4,® and ®, be as in Theorem 3. Then there exists
an element & such that {&;, 08} is a right basis of 4 over ®.

‘Let Z be the center of 4, and let 7" be the commutor ring of @ in 4.
By & we denote the subgroup of & which consists of all inner automorphisms
in @. It is well known that (8:QJ) [T:Z]=[4:@]=n, and i {0, ---,0,} is
a complete representative system of & modulo ¥ and {z,,---,7,} is a basis of
T over Z, then {aiI,j: i=1,--,7; j=1,---,s} is a basis of @4, over 4, where
I. denotes the inner automorphism induced by the element z.

In [5], Kasch obtained the following normal basis theorem in Noether’s
sense [5, Satz 9]: |

4 is Odp-isomorphic to Gdy if and only if Z=T or TZ®.

We shall try to generalize the theorem to the case of semi-linear normal
basis theorem.

Lemma 3. Let A be a division subring of 4 which is invariant as a
whole under the Galois group &. If [4:A),. is finite, then the following
conditions (a), (b), (c) are equivalent.

(@@ Z=T or TS A

(b)) [GAg:Ag),=[4:D] -

(c) [Cdr: ®Ag]. =[4: 4],

Moreover (a) (or equivalently (b)) implies (c¢) without the finiteness con-
dition of [4: 4]..

Proof. The proof of the equivalence of (a) and (b) proceeds quite ana-
logously to that of [5, Satz 10] hence we shall omit it here. The equivalence
holds in fact without the supposition [4:4].< +oco. The equivalence of ()
and (c) is clear from the relation

[B4y : &4:],[Odr: 45), = [Gdr: 4:), [4r: Az], = [4: P][4: 4], .

The last part of the lemma is almost obvious.
Combining this lemma with Corollary 1, we obtain the following
generalization of [5, Satz 9]. | ’
Theorem 4. Let 4 be Galois and finite over @ with the Galois group
S, and let [4:Dl=n. Suppose that A is a division subring of 4 which is
invariant as a whole under . '

(1) If [4:A],=m < + o0, and m=nq+r (0<r<n), then the following
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propositions are equivalent:

(1) There exists a OAp-isomorphism :
4= (4" Dm

where m is a GAzp-hmomorphic image of GAg such that m™W=(SAg)".
(2) Z=T or T<A.

(1) If [4: 4], =ow (infinite) and the condition (2) is satisfied, then there
exists a GAyp-isomorphism ‘

4= (B4 .

Corollary 5. Let 4, ® and & be as in Theorem 4. If Z=T or TZO,
then for any system {o,,---,0,; I.,---,1.} chosen from & such that {o,,---,0,}
is a complete representative system of & modulo I and {z,,---,7,} is a basis
of T over Z, there exists an element & in A such that {&%%5:i=1,---,1;
j=1,---,s} is a right basis of 4 over ®. :

Let A be a subring of 4 which is invariant as a whole under & such that
[4:4]),=m=mn, and let {«,, - -,u,} be a right basis of 4 over 4. Then we

have &4,=4,8= f} 4y, A& = % u; & Ay, accordingly &4, is &4 ,-homomorphic
i1 i1

to (BAz)™. Since 4™ is &Az-isomorphic to &4, this implies that 4™ is GAx-
homomorphic to (84;). Then by Theorem 2 we obtain the following

Theorem 5. Let d, @, S and A be as in Theorem 4. If [4:4],=mZn,
then 4 is &Az-homomorphic to (55/1,,3 Especially 4 is S®x-homomorphic to
SD,.

A subgroup of the Galois group & which contains a right basis of &4,
over 4 was called independent in [5]. An independent subgroup is nothing
but one whose fixed subring coincides with @.

Corollary 6. Let &' be an independent subgroup of &, and let A be
a division subring of 4 which is invariant as a whole under &'. If
[4:4],=n, then 4 is & Ap -homomorphic to &' Ay,

§ 4. An application

Let 4 be a. fite dimensional central division algebra over @ of degree
6:[4: D]=6 Suppose that P is a maximal subfield of 4 which has a primitive
element £ over @ Let, as in §3, & be the endomorphlsm ring of the additive
group 4. Then the commutor ring of 4;4, in & is the multiplication ring
@,=®;. As is seen from the proof of Lemma 2 we have a 4;4z-isomorphism :
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A =A;4r, = 4, Rod5 .
Since [4:P]=9, it follows
4 4= (P Py)®
whence |
A9 == (PP L)) as right P,Pzmodules.
Hence, by Corollary 1 there exists a PP g-isomorphism :
A=P,Pp=P;Q0oPr.

é6—1 é—-1
Since P = ), &0, P, P, = ; £5850. Considering the element 7 -of 4 which
j=1 i,j=

1

6—1
corresponds to 1€ X £%£%® in the above isomorphism, we obtain the following
4,7=1

theorem :¥

Theorem 6. (Albert and Brauer). Let 4 be a finite dimensional
central division algebra over @ of degree 5. Suppose P is a maximal
subfield of 4 which has a primitive element &. Then there exists an element
n tn 4 such that {&9&%;1, j=0,1,---,0—1} s a basis for 4 over @.
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