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Introduction

The main purpose of the present paper is to bring into unity several
theorems in the field of differential geometry. Some new results are included.

The relevant theorems are cited below.

Theorem A. (de Rham [1]). Let $M$ be a simply-connected complete
Riemannian manzfold and let $T(M)$ be the tangent bundle with the holonomy
group as structural group.

$|$ If the Whitney sum of vector sub-bundles of $T(M)$ :

$T_{1}(M)+\cdots+T_{p}(M)$

can be reduced to $T(M)$ , then $M$ turns out to be a product of Riemanian
manifolds $M_{1},$ $\cdots,M_{p}$ and $a$ Euclide,an space $E^{d}$ , namely

$M=M_{1}\times\cdots\times M_{p}\times E^{d}$

Theorem B. (G. Reed [2] and J. Milnor [3]). Let $M$ be a compact
differentiable manifold. If there exists a differentiable function with exactly
two non-degenerate critical points over $M$, then $M$ is homeomorphic to an
n-sphere where $n$ is the topological dimension of $M$.

We shall state generalizations of this theorem at the end of this introduction.
Theorem C. (S. Kobayashi). (See [4]). Let $M$ be a complete Riemannian

manifold. Then any Killing vector field defined over $M$ generates a
l-parameter transformation group of $isomet\prime^{-}ies$ .

Theorem D. (K. Nomizu [5]). Let $M$ be a simply-connected Riemannian
manifold and let A be the sheaf over $M$ of germs of Killing vector fields.
If dim $A_{x}$ do not depend on $x$, then @ is a constant sheaf.

$*)$ The material of this paper comprises a portion of the author’s doctoral dissertation,
prepared under the direction of Prof. A. KAWAGUCHI.
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We now sketch the outline of the present paper in what follows. The
first chapter is intended for the proof of a tool theorem together with pertinent
definitions. Let us state the main tool theorem precisely.

Let $M$ be a (not necessarily connected) complete1) Riemannian manifold
and let $\Gamma$ be a regular’ and connected3) Lie pseudogroup of local isometries.
We denote the set of germs of local isometries belonging to $\Gamma$ by $S$.

Main Tool Theorem. $(C(g), \alpha)$ is a covering space of $F_{\alpha(g)}$ for each
$g\in S$, where $C(g)$ is the connected component of $g$ in $S$ and $F_{\alpha(g)}$ that of $\alpha(g)$

in $M$.
Let $M$ be a locally connected and locally simply-connected Hausdorff space

each component of which is compact. Let $\Gamma$ be a connected and regular con-
tinuous pseudogroup of local transformations on $M$. In addition to these, we
assume that the postulate of regular imbedness is valid for $\Gamma$ . Then the
same conclusion as above holds good4).

In the second chapter we engage in some applications of the theorem
stated above. In Sec. 1 we show that the theorem of identity is valid for
affine maps of an affinely-connected manifold. In Sec. 2 an affine map of
a Riemannian manifold is uniformly continuous with respect to the uniformity
given by the metric. The present author has particular interest in whether or
not a uniformity (canonical in a sense) can be introduced into an affinely-connected
manifold in such a fashion that every affine map is uniformly continuous. This
is one of the reason why we pay some attention to uniformity. In Sec. 3
some study of isometries in analytic Riemannian manifolds will be made. And
there we prove the following theorem.

Theorem E. Let $F_{1}$ and $F_{2}$ be simply-connected complete and analytic
Riemannian manifolds of the same dimension. Then the existence of a local
isometric map implies that of a global isometry. More precisely: Let $f$ be
an isometry of $\alpha(f)$ onto $\beta(f)$ , where $\alpha(f)$ is an open set in $F_{1}$ and $\beta(f)$ in
$F_{2}$ . Then there exists an isometry $\tilde{f}$ of $F_{1}$ onto $F_{2}$ such that $\tilde{f}|\alpha(f)=f$.

Sec. 4 is concerned with Lie pseudogroups and Theorem $D$ is proved in
this form:

Theorem F. Let $M$ be a simply-connected manzfold and let $\Gamma$ be

1) This means that each component is complete.
2) See Def 3.3, Chap. I and Proposition 4.2, Chap. II.
3) A continuous pseudogroup is called connected, if $S_{x}=\alpha^{-1}(x)$ are connected for all

$x\in M$.
4) One of the applications is the Theorem 5.1, Chap. II where the postulate is auto-

matically satisfied.
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a regular Lie pseudogroup of local transfomations on M. Then the sheaf
of germs of infinitesimal transformations belonging to $\Gamma$ is a constant sheaf,
provided that the theorem of identity holds good for $\Gamma$ .

In Sec. 5 we prove Theorem A together with a preparatory theorem to
the next section whose aim is generalizations of Theorem B. The results of
this last section can be stated as two theorems each one of which includes the
Reeb’s classical theorem.

Let $M$ be a Riemannian manifold. A differentiable function $f$ defined
over $M$ is said to satisfy Lipschitz condition if and only if there exists a con-
stant $L$ over $M$ such that for any vector field $X$

$Xf=0\rightarrow|X||df|||\leqq L||X||^{5)}$

where we note that since $||df||$ is a scalar, $X$ can operate on it.

Theorem G. If there exists a differentiablefunction $f$satisfying Lipschitz
condition and having only positive or negative difinite critical points over
complete Riemannian $M$, then the number of critical points, denoted by $\mathfrak{n}(f)$ ,
is equal to or smaller than 2 and

(1) $M$ is homeomorphic to $R^{n}$ for $\mathfrak{n}(f)=1$ ,

(2) $M$ is homeomorphic to $S^{n}$ for $\mathfrak{n}(f)=2^{6)}$ ,

where $n$ is the topological dimension of $M$.
Theorem H. Let $M$ be a compact differentiable manifold. Let $f$ be

a differentiable function defined except on a nowhere dense set $F$ each point
of which is removable in the sense stated in the last section. If all the
critical points of $f$ are positive or negative definite, then $\mathfrak{n}(f)\leqq 2$ , and

(1) $M$ is homeomorphic to $P^{n}$ for $\mathfrak{n}(f)=1$ ,

(2) $M$ is homeomorphic to $S^{n}$ for $\mathfrak{n}(f)=2^{6)}$ .
The author wishes to express his thanks to Professor A. KAWAGUCHI and

Professor Y. NASU for many helpful sugg\’estions and conversations. His thanks
are also due to Professors G. AZUMAYA, S. IZUMI, O. TAKENOUCHI, Y. TASHIRO
and T. ITO.

5) It is interesting to note that this condition is satisfied by any differentiable function
on compact $M$.

6) If $\mathfrak{n}(f)=0$, then $M$ is homeomorphic to a product manifold $M_{n-1}\times R$ , wbere $M_{n-1}$ is
a suitable simply-connected manifold of dimension $n-1$ .
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CHAPTER I. THE MAIN TOOL THEOREM

1. Pseudogroups of local transformations

Let $F_{1}$ and $F_{2}$ be topological spaces7). Then a local bicontinuous map $a$

is a homeomorphism of an open subset $V$ on $F_{1}$ onto an open subset on $F_{2}$ .
$V$ and $a(V)$ are called the domain of $a$ and the range of $a$ respectively. We
denote them by $\alpha(a)$ and $\beta\{a$). We write $a|V^{\prime}$ for the restriction on $V\cap V^{\prime}$

of $a$ , where $V^{\prime}$ is an open set on $F_{1}$ . Let $F_{3}$ be another topological space
and let $b$ be a local bicontinuous map of an open set on $F_{2}$ into $F_{3}$ . Then
if $\beta(a)\cap\alpha(b)\neq 0$ , we can define the product $ b\cdot$ $a$ on a $(a)\subset a^{-1}(\alpha(b))$ .

A pseudogroup of local bicontinuous maps (or local transformations) of
a topological space $M$ is by definition a collection $\Gamma$ of local bicontinuous
maps of $M$ into itself which satisfies these:

(1) If $a,$
$ b\in\Gamma$ and $\beta(a)\cap\alpha(b)\neq 0$ , then $ b\cdot a\in\Gamma$ .

(2) If $ a\in\Gamma$ , then $ a^{-1}\in\Gamma$ .
(3) If $ a\in\Gamma$ , then $ a|U\in\Gamma$ for open $U$ with a $(\alpha)\cap U\neq 0$ .
(4) The identity of $M$ onto itself belongs to $\Gamma$ .
(5) If there exists an open covering $\{V_{j}\}_{j\in J}$ of $\alpha(a)$ such that for each

$j$ a $|V_{j}\in\Gamma$ , then $ a\in\Gamma$ .
Let $\{F_{\lambda}\}_{\lambda\epsilon r}$ be a family of connected, locally connected, locally simply-

connected topological spaces. Define a space $M$ by this:

$ M=UF_{\lambda}\lambda\in\Lambda$

and consider the topology of $M$ as the one given by the totality of open sets
of $F_{\lambda},$ $\lambda\in\Lambda$ . Let $\Gamma$ be a pseudogroup of local transformations on $M$. We
denote by $S$ the set of all the germs of elements of $\Gamma$ and by $S_{i,/\ell}$ that of
elements $a,$ $a^{\prime},$ $\cdots$ with $\alpha(a),$ $\alpha(a^{\prime}),$ $\cdots\subset F_{\lambda}$ and $\beta(a),$ $\beta(a^{\prime}),$ $\cdots\subset F_{t^{\ell}}$ . We introduce
the natural topology into $S$. The map that sends $rct$ to $\gamma_{a(x)}a^{-1}$ is a homeo-
morphism of $S$ onto itself that maps $S_{\lambda,\mu}$ onto $S_{\ell,\lambda}$ .

We suppose now the following conditions be satisfied by $\Gamma$ as we shall
do throughout the first chapter.

(6) The condition of analyticity: Let $a,$
$ b\in\Gamma$ and $x\in\alpha(a)\cap\alpha(b)$ . If there

exists an open set V in $\alpha(a)\subset\alpha(b)$ such that

(1. 1) $a=b$ in $V$ and $x\in\overline{V}$ ,

then $a=b$ in a neighborhood of $x$ .

7) By a space we always mean a Hausdorff one.
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Further in this section we assume the following condition.
(7) For any $x\in M$ we can find a neighborhood $V(x)$ of $x$ such that for

any $ a\in\Gamma$ with $x\in\alpha(a)$ there exists $ b\in\Gamma$ with $a(b)=V(x)$ and $a=b$ in $V(x)\subset\alpha(a)$ .
Remark. The condition (6) makes $S$ a Hausdorff space and the con-

dition (7) guarantees for each $x\in M$ the existence of a neighborhood which is
evenly covered by $\alpha$ . It is interesting to note that (6) is satisfied not only by
holomorphic maps of a complex manifold into a complex manifold, but also
by several maps of other types, as will be shown in the sequel, and that our
concem in this chapter is mainly directed to the question: Under what con-
ditions can (7) be proved ?

Let $g\in S_{\lambda,\mu}$ and let $C(g)$ denote the connected component of $g$ in $S$. Suppose
that $\alpha(C(g))=F_{\lambda}$ . Then by means of (6) and (7) $(C(g), \alpha)$ is a covering space of
$F_{\lambda}$ . Since $F_{\lambda}$ has a universal covering space, denote it by $(\overline{F}_{\lambda}, \pi)$ and let hi be
a point over $\alpha(g)$ . Then there exists one and only one continuous map $q_{\lambda}$ of
$F_{\lambda}$ onto $C(g)$ such that

$\pi_{\lambda}=\alpha\cdot q_{\lambda}$ and $q_{\lambda}(\tilde{x}_{\lambda})-\leftarrow g$ .
We write $r_{\lambda}=\beta\cdot q_{\lambda}$ . Then $r_{\lambda}$ is a continuous map of $\tilde{F}_{\lambda}$ into $F_{t}$ for some
$\mu\in\Lambda$ .

Definition 1. 1. Two spaces $F_{\lambda}$ and $F_{\mu}$ of the family are said to be
regularly connected if there exists $g\in S_{\lambda,\mu}$ such that $C(g)$ covers $F_{\lambda}$ by $\alpha$ and
$C(g^{-1})F_{\mu}$ ($R$ . Hermann [6]).

Proposition 2’.2 Two regularly connected spaces of the family have
homeomorphic universal coverings (cf. [6], Theorem 2.1).

Proof. $C(g)$ and $C(g^{-1})$ with projection $\alpha$ are covering spaces of $F_{\lambda}$ and
$F_{\mu}$ respectively. $C(g)$ and $C(g^{-1})$ are homeomorphic to each other by the map
that sends an element of $S$ to its inverse. Hence they have homeomorphic
universal coverings. These universal covering spaces coincide with those of $F_{\lambda}$

and $F_{\mu}$ respectively. This completes the proof.

Remark. Let $(F_{\mu}, \pi_{\mu})$ be a universal covering space of $F_{\mu}$ and let $x_{\iota}$ be
an arbitrary point over $\beta(g)$ . Then there exists one and only one homeomor-
phism $f$ of $\overline{F}_{\lambda}$ onto $\overline{F}_{\ell}$ with these conditions:

$\theta$

(1) $f(x_{\lambda})=x_{\mu}$ .

(2) The following commutative diagram holds.
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(1. 2)

Theorem 1. 1. Let $M$ be a topological space. Let $\Gamma$ be a pseudogroup
of local transformations on $M$ which satisfies the condition of analyticity.
Then any element of $\Gamma$ admits only one way of extension to a connected
open set in $M$, if possible. $7^{\tau}his$ can be more precisely as follows. Let
$a,$

$ b\in\Gamma$ and $\alpha(a)=\alpha(b)$ , for which we write D. Let $D$ be connected. If there
exists an open set $V$ with $V\subset D$ such that $a(x)=b(x)$ for $x\in V$, then $a(x)=b(x)$

over the whole $D$, namely, $a=b$ .
Proof. Let $V^{\prime}$ be a maximal open set such that $V\subset V^{\prime}\subset D$ and $a(x)=b(x)$

for $x\in V$. If $V^{\prime}\neq D$, then $\partial V^{\prime}=D\cap\overline{V}^{\prime}-V^{\prime}\neq 0$ , because $D$ is connected. Let
$y\in\partial V$. Then by the means of the condition of analyticity we can find some
open $V(y)$ with $y\in V(y)$ and with $a(x)=b(x)$ for $x\in V(y)$ , where $V(y)$ is sup-
posed to be contained in D. Hence $a(x)=b(x)$ for $x\in V^{\prime}\cup V(y)$ . Consequently
we get $V(y)\subset V^{\prime}$ . This cotradiction completes the proof.

2. Foliation and uniformity

Let $M$ be a topological space.
Definition 2. 1. A subspace imbedded in $M$ is a pair of a connected

topological space $F$ and a continuous map $\psi$ of $F$ into $M$ such that each point
of $F$ has a neighborhood $V$ with $\psi|V$ being a homeomorphism of $V$ onto $\psi(V)$ .

Definition 2.2. A foliation in a topological space $M$ is a family
$\{(E_{\mu},\psi_{\mu})\}_{\mu\in\Lambda}$ of subspaces imbedded in $M$ such that there passes through each
$x\in M$ one and only one subspace of the family (which we frequently denote
by $F_{x}$ in brief).

Remark. Let $V_{\ell}$ be any open set in $F_{\mu}$ such that the imbedding $\psi_{\mu}$ of $F_{u}$

is bicontinuous in it. The totality of $\psi_{\ell}(V_{\mu})$ for such $V_{\ell}$ constitutes a basis
of a new topology $T^{\prime}$ in $M$. Actually in [7] a foliation is defined by the pair
of two topologies $T$ and $T^{\prime}$ in $M$, where $T$ is the intrinsic topology of $M$.

Now we make a brief review of the definition of uniformity. For the full
details the reader must consult [8].

Let $S$ be a set and $2^{S}$ the set of all the subsets of $S$ . Then a filter $\mathfrak{F}$

is a subset of $2^{S}$ with these conditions:
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1 $0\not\in \mathfrak{F}$ and $s\in \mathfrak{F}$ .
2 If $s_{1}\in \mathfrak{F}$ and $S_{1}\subset S_{2}$ , then $s_{2}\in \mathfrak{F}$ .
Now let $M$ also be a set and consider $M\times M$. If $\sigma_{1},$ $\sigma_{2}$ are subsets of

$MxM$, the product and the inverse are defined as follows:
$\sigma_{1}\sigma_{2}=$ { $(x,$ $z)|(x,$ $y)\in\sigma_{1}$ and $(y,$ $z)\in\sigma_{2}$ for some $y\in M)$ }
$\sigma_{1}^{-1}=\{(x, y)|(y, x)\in\sigma_{1}\}$ .

Denote the diagonal set of MxM by $\Delta$ . Then a uniformity in $M$ is by
definition a structure given by a filter $F$ of $M\times M$ with these conditions:

1 If $\sigma\in \mathfrak{F}$ , then $\Delta\subset\sigma$ .
2 For any $\sigma_{1}\in \mathfrak{F}$ there exists $\sigma_{2}\in \mathfrak{F}$ with $\sigma_{2}\sigma_{2}\subset\sigma_{1}$ .
3 If $\sigma\in \mathfrak{F}$ , then $\sigma^{-1}\in \mathfrak{F}$ .
A uniformity on $M$ is called complete if every Cauchy sequence or directed

system is convergent. If $M$ is a compact topological space, then $M$ has
a complete uniformity which is compatible with the topology of $M$ and it is
unique up to the uniform transformations.

Proposition 2. 1. Let $F_{1}$ and $F_{2}$ be complete unzform spaces and let
$a$ be a uniformly bicontinuous map of an open set $\alpha(a)\subset F_{1}$ onto an open
set $\beta(a)\subset F_{2}$ . If $\alpha(a)$ is relatively compact in $F_{1}$ , then $\beta(\alpha)$ is so.

Proof. Any relatively compact set in a complete uniform space is totally
bounded and the image of a totally bounded set by a uniformly continuous
map is totally bounded. Further a totally bounded set in a complete uniform
space is relatively compact. Hence we get the proposition.

Definition 2.3. Let $M$ be a foliated space and let $\Gamma$ is a pseudogroup
of local transformations on $M$. Then $\Gamma$ is said to be compatible with the
foliation if for $a\in\Gamma F_{x}=F_{y}$ implies $F_{a(x)}=F_{a(y)}$ .

3. Continuous pseudogroups of local transformations

Let $\Gamma$ be a pseudogroup of local transformations of a topological space $M$

and let $S$ denote the set of all the germs of elements of $\Gamma$ . We can introduce
a topology into $S$ in the natural way. Then $\alpha$ (resp. $\beta$), a map assigning the
domain (resp. the range) to each element of $S$, is a $local\cdot homeomorphism$ of
$S$ onto $M$. We write $\alpha^{-1}(x)$ as $S_{x}$ for each $x\in M$. Further let $\Delta$ be the set
of the germs of the identities and let $\tilde{x}\in\Delta$ be the germ of identities in the
neighborhoods of $x$ . Then we have $\Delta\cap S_{x}=\tilde{x}$ . By the map or the cross-
section of $S$ sending $x$ to $\tilde{x}$ is $M$ imbedded in $S$.

Definition 3. 1. A pseudogroup $\Gamma$ of local transformations which satisfies
the condition of analyticity is called a continuous pseudogroup if and only if
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we can give to $S$ one more topology of the following nature. Below the
topology of $S$ is assumed to be a new one.

(3. 1) $S_{x}$ is open for each $x\in M$.
(3. 2) The map to each $(g, h)\in \mathfrak{W}$ assigning $gh\in S$ is continuous,

where $\mathfrak{M}=$ { $(g,$ $h)|g,$ $h\in S$ and $\beta(g)=\alpha(h)$ }.
(3. 3) The map to each $(g, x)\in \mathfrak{Q}$ assigning $g(x)\in M$ is continuous,

where $\mathfrak{Q}=$ { $(g,$ $x)|g\in S$ and $\alpha(g)=x$}.
(3. 4) $S$ is a locally connected Hausdorff space.

The new topology will be referred to as vertical topology while the natural
one as horizontal.

Definition 3.2. A map $\varphi$ of a product space $WxV$ into $S$ is said to
be compatible with the structure of $S$, if and only if these two conditions
are satisfied:

(1) To each $ g\in W\varphi$ takes $g\times V$ into one and only one component of $S$

with respect to the horizontal topology.
(2) To each $ x\in V\varphi$ takes Wxx into one and only one component of $S$

with respect to the vertical topclogy.
In the present paper a map into $S$ and with two variables $g$ and $x$ is called

continuous if for each fixed $g$ it is continuous with respect to $x$ and if for
each fixed $x$ it is continuous with respect to $g$ . It is noted that, if $V$ and $W$

are both connected and if $\varphi$ is continuous, then $\varphi$ is compatible.
We now add one more conditon which will be of vital importance for the

proof of our main tool theorem.
Let $M$ be a foliated space8). Then the condition is that:
(3. 5) To each $x\in M$ there exist an open neighborhood $V(x)$ of $x$ in $F_{x}$

and an open neighborhood $W(\tilde{x})$ of $\tilde{x}$ in $S_{x}$ such that the inclusion
of $W(\tilde{x})$ into $S_{x}$ can be extended to a homeomorphism $\varphi_{x}$ of the
product space $W(\tilde{x})\times V(x)$ into $S$ so that it is compatible in the
sense of Definition 3.2 and so that for $y\in V(x)\varphi_{x}(\tilde{x}, y)=\tilde{y}-$ .

Definition 3.3 (Regularity). A continuous pseudogroup of local trans-
formations of a foliated space is called regular if and only if it satisfies the
above condition (3. 5).

Let $\{V_{i}\}_{i_{\overline{\sim}}^{\prime}f}$ be an open covering of a connected topological space $K$. By
a chain of the nerve $N$ we mean a sequence $i_{l},$ $i,$

$\cdots,$
$i_{m}$ with $(i_{k-1}, i_{k})\in N$ for

8) All the time when we consider a foliated space, the continuous pseudogroups under
consideration are assumed as the ones compatible with the foliation.
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$l\leqq k\leqq m$ . Then any pair $(i,j)$ with $i,j\in I$ we can find a chain with the origin
$i$ and the end $j$ (see $A$ . Weil [9]).

Let us go back to a foliated space $M$ and consider a regular continuous
$pse\mathfrak{U}dogr\ominus up\Gamma$ of local transformations. Let $K$ be a compact set on a leaf
$F$. Then we can assign the map $\varphi_{x}$ stated in the preceding section to each
$x\in K$ . Using the same notation as there, we can select a finite covering $V(x_{i})$ ,
$i=1,$ $\cdots,l$ of $K$ . We write $V_{i}$ (resp. $W_{i}$ ) instead of $V(x_{i})$ (resp. $W(\tilde{x}_{i})$ ). Let
$g\in W_{i_{0}}$ and let $N$ be the nerve of the covering. We say that $g$ is extendable
along a chain $(i_{0}, \cdot\cdot,i_{k})$ of $N$ if the connected component of $g$ in $S$ with respect
to the horizontal topology meets $\varphi_{x_{i}}(W_{i}xV_{i})$ for every $i$ belonging to the chain.

Let $i_{0}$ be Pxed and let us use the symbol $C(g)$ for the component of $g$ in
$S$ with respect to the horizontal topology. Further denote by $C^{X^{r}}(g)$ the total
sum of $\varphi_{x_{i}}(W_{i}\times V_{i})\cap C(g)$ such that $i$, belongs to some chain with the origin
$i_{0}$ along which $g$ is extendable.

Lemma 3. 1. There exists an open subset $W$ in $W_{\emptyset_{0}}$. such that if $g\in W$,

then $C^{Jf}(g)$ covers $K,$ $i.e.$ ,

a $(C^{K}(g))\supset K$ .

Proof. Assume the contrary. Then we can choose a directed system
$\{g_{j}\}_{j\in J}$ of germs with $g_{j}\in W_{i_{0}}$ for all $j\in J$ so that a $(C^{K}(g_{j}))DK$ for all $j\in J$

and $\lim_{J}g_{j}=\tilde{x}_{i_{0}}$ , where $\tilde{x}_{i_{0}}$ is the germ of identities in the neighborhoods of
$x_{i_{0}}$ . Select a point $x_{j}$ from $C\alpha(C^{K}(g_{j}))\cap K$ . Then there exists an accumulation
point $x\in K$ for $\{x_{j}|j\in J\}$ . And we can find a chain $C=(i_{0}, \cdots, i_{k})$ with $V_{i_{k}}\in x$ .
If $W$ is a suitable open set in $W_{i_{0}}$ , then all $g\in W$ are extendable along $C$.
Hence for $g\in W\alpha(C^{K}(g))\supset V_{i_{k}}\in x_{j}$ for some $j$ with $j\geqq j_{0}$ , where $j_{0}$ is a suitable
element of $J$. This is contrary to $C\alpha(C^{f^{\prime}}(g_{i}))\in x_{i}$ for all $j\in cI$. This completes
the proof.

Proposition 3. 1. Let $M$ be a foliated space and let $F$ be a leaf. Let
$\Gamma$ be a regular continuous pseudogroup of local transformations on $M$ and
$S$ the set of germs of local transformation belonging to $\Gamma$ . If $V$ is a simply-
connected and relatively compact open set on $F$ and if $x$ is a point of $V$,

then by taking a suitable neighborhood $W_{x}$ of $x$ in $S_{x}$ we can find a con-
tinuous and compatible map $\varphi$ of $W_{x}\times V$ into $M$ such that

(1) $\varphi|\tilde{x}\times V$ is trivial, $i.e$ . $\varphi(\tilde{x}, y)=\tilde{y}$ for $y\in V$

$ar\iota d$

(2) $\varphi|W_{x}\times x$ is trivial, $i.e$ . $\varphi(v, x)=v$ for $v\in W_{x}$ .

Proof. Let $K$ be a compact set in $F$ with $K\supset V$. We may suppose that
$K$ is connected, because any connected component is closed. Let $g$ be a germ



A Unified Theore$m\tau vith$ Some Application $\sigma$ to Generalizations of G. Reeb’s Theorem 23

belonging to $S_{x}$ . Let $K(g)$ be a connected component of $g$ in $\alpha^{-}$ $(K)\cap C^{Jf}(g)$ ,
using the same notation as in the preceding. $\alpha$ gives rise to a local home-
omorphism of $K(g)$ into $K$, which is denoted by the same letter $\alpha$ . If we take
$g$ from $W$ in the preceding lemma, then $\alpha$ is surjective. It is clear that $V_{i}\cap K$

is evenly covered by $\alpha$ more precisely $\alpha|K(g)$ . These imply that $(K(g), \alpha)$

is a covering space of $K$ . Let $\overline{7^{7^{J}}}=\alpha^{-1}.(V)\cap K(g)$ and let $\hat{\acute{V}}$ be a connected
component of $\overline{V}^{\prime}$ . Then $(\overline{t^{7}}, \alpha)$ is also a covering space of $V$. On the other
hand $V$ is simply-connected. Hence $\overline{V}$ is homeomorphic to $V$ by $\alpha$ . We shall
denote this homeomorphism by $\alpha_{g}$ . We put:

(3. 6) $\varphi(g, y)=\alpha_{g}^{-1}(y)$ ,

Where $(g, y)$ ranges over $W\times V$. Then $\varphi$ is the map of the required nature.
This completes the proof.

4. The proof of the main tool theorem

Let $M$ be a locally connected and locally simply-connected topological space.
We do not suppose it be connected. It can be considered as a foliated space
the topologies of which coincide with each other. In this section we deal
exclusively with continuous pseudogroups which are regular in the sense of
DePnition 3.3 and equi-uniform in the sense of the following definition.

Definition 4.1. A continuous pseudogroup $\Gamma$ is called equi-uniform if
all the maps that have relatively compact domain and that are the extensions9)

of local transformations of $\Gamma$ have also relatively compact range.
Examples. (1) Pseudogroups of local uniformly bicontinuous maps in

the case where the space $M$ is a complete uniform space, especially a complete
Riemannian manifold (see Sec. 2 of Chap. 2). (2) Pseudogroups of any kind
in the case where all the leaves are compact.

Postulate of regular imbedness. Let $x$ be any point of $M$. If we take
sufficiently small $V(x)$ and $W(\tilde{x})$ , then $C(g)\subset\varphi_{x}(W(\tilde{x})\times V(x))$ is connected with
respect $\cdot$ to the natural topology, where we use the notation in (3.5) and $g$ is
any element of $S$.

In what follows we assume that regular and equi-uniform continuous $\Gamma$

satisfies the above postulate unless stated otherwise.
Lemma 4. 1. Let $x\in M$ and let $V$ be a connected, simply connected,

and relatively compact open set in $F_{x}$ with $x\in V$. Then there exists one
and only one continuous map $\varphi$ of $S_{xo}\times V$ into $S$ with these conditions:

9) By an extension we mean a continuous map $f$ the domain of which has an open
covering $\{Ui\}i\in\Gamma$ with $ f|U_{i}\in\Gamma$ for each $i\in I$.
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(4. 1) $\varphi(h, x)=h$ for $h\in S_{xo}.$ .

(4. 2) $\varphi(x, y)=y$ for $y\in V$ .

(4. 3) $\varphi$ is compatible in the sense of Definition 3.2,

where $\tilde{x}$ is $the_{\text{・}}germ$ of identities in neighborhoods of $x$ .

Proof.
I. Uniqueness. Let $\varphi_{1}$ and $\varphi_{2}$ be two maps of the nature stated above.

Since $\varphi_{1}$ and $\varphi_{2}$ are compatible,
$\varphi_{1}(h, y),$ $\varphi_{2}(h, y)\in S_{y0}$ for any $y\in V$ .

Let $a_{1}(y)=\beta_{0}\varphi_{1}(h, y)$ and $a_{2}(y)=\beta_{0}\varphi_{2}(h, y)$ . Then it follows that $\gamma_{y}a,$ $=\varphi_{1}(h, y)$

and $\gamma_{y}a_{2}=\varphi_{2}(h, y)$ for any $y\in V$. By (4. 1), $\gamma_{x}a_{1}=r_{x}a_{2}$ . Then it follows from
the theorem of identities that $a_{1}=a_{2}$ . Hence $\varphi_{1}(h, y)=\varphi_{2}(h, y)$ for any $y\in V$

This completes the proof of the uniqueness.
II. Let $H$ be an open set in $S_{xo}$ and assume that there exists a compatible

$\varphi_{R}$ which sends $HxV$ into $S$ and which has the natures: (4.1) where $S_{x0}$ is
replaced by $H$, and (4.2), and (4.3).

III. If $H\neq S_{xo}$ , then let $h\in\partial H$ and write
$H^{\prime}=H+h$ .

Consider the connected subsets $S,$ $S^{\prime},$ $\cdots$ of $V$ with the property that $\varphi_{B}|H\times$

$S,$ $\varphi_{B}|H\times S^{\prime},$ $\cdots$ are extendable to $H\times S,$ $H\times S’,$ $\cdots$ while preserving the above
natures with $S_{x0}$ replaced by $H$ ‘. It is seen that among $S,$ $S’,$ $\cdots$ there exists
a maximal one with respect to the inclusion relation $\subset$ . We denote it by $V_{0}$ .

I V. $V_{0}$ is open in $V$.
Proof of IV. Denote the extension over $H’\times V_{0}$ of $\varphi_{H}|H\times V_{0}$ by the

same symbol $\varphi_{B}$ and let $y\in V_{0}$ . We write $z=\beta_{0}\varphi(h_{H}, y)$ . With the notation
of Section 3, $\varphi_{z}$ is a continuous map of $W(\tilde{z})\times V(z)$ into $S$, where $V(z)$ and
$W(\tilde{z})$ are connected neighborhoods of $z$ and $ z\infty$ in $F_{z}$ and $S_{z0}$ respectively. Let

fbe an element of $\Gamma$ belonging to the germ $\varphi_{H}(h, y)$ and let $(g, u)\in H\times(\alpha(f)\cap V)$ .
We define a map $\varphi$ by

$\varphi(g, u)=r_{u}f\varphi_{z}(\varphi_{I1}(h, y)^{-1}\varphi_{H}(g, yJ,f(u))$ .

Then $\varphi$ is a continuous and compatible map of $H^{l}\times(\alpha(f)\cap V)$ into $S$ . For
any $g\in H$ we have

$\varphi(g, y)=\gamma_{y}f\varphi_{H}(h, y)^{-1}\varphi_{H}(g, y)=\varphi_{H}(g, y)$ .

It is noted here that we may suppose $\alpha(f)\cap V$ is connected. Then using the
theorem of identity, we can get.
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$\varphi(g, u)=\varphi_{I}(g, u)$ in $H\times(\alpha(f)\cap V)$ .
Further by continuity we obtain the same equality for $(g, u)\in H^{\prime}\times\alpha(f)\cap V_{0}$ .
If $\alpha(f)\cap V$ is not contained in $V_{0}$ , then we can extend $\varphi_{H}$ further. This is
contrary to the definition of $V_{0}$ . Hence $\alpha(f)\cap V\subset V_{0}$ . This completes the
proof of IV.

V. $V_{0}$ is closed in $V$.
Proof of V. Let $y\in\overline{V}_{0}\cap V$ and further $y\not\in V_{0}$ . Since $\Gamma$ is equi-uniform,

the set: $\{\beta_{0}\phi_{H}(h, u)|u\in V_{0}\}$ is relatively compact. Then we can find a directed
system $\{y_{j}\}_{j\in J}$ such that the system itself tends to $y$ from the inside of $V_{0}$ (this
means that $y_{j}\in V_{0}$ for all $j\in J$) and such that the image system $\{\beta_{0}\varphi_{H}(h, y_{j})\}_{j_{\sim}^{\prime}J}-$

also has a limit in $F_{\beta(h)}$ . Denote the limit by $z$ . We use the notation as in IV.
It is seen from the postulate of regular imbedness that there exist a number

$j_{0}$ in $J$ and a neighborhood $W(h)$ of $h$ in $S_{xo}$ so that

(4. 4) $\varphi_{H}(h, y_{j})^{-1}\varphi_{H}(g, y_{j})\in\varphi_{z}(W(\tilde{z})\times V(z))$ for $j>j_{0}$

and for $g\in H\cap W(h)$ .

We can write $\varphi_{z}^{-1}(\varphi_{H}(h, y_{j})^{-1}\varphi_{H}(q, y_{j}))$ as $(k, \beta\cdot\varphi_{H}(h, y_{j}))$ . Then clearly $k$ does
not depend on the choice of $y_{j}$ . We can, therefore, write it as $k(g)$ . Then
$k(g)$ is continuous with respect to variable $g$ in $H^{\prime}\cap W(h)$ . Especially we have

$\lim_{q\rightarrow h}k(g)=\tilde{z}$ .

Fix $g\in H\cap W(h)$ for a while and define the value at $(h, y)$ of $\varphi_{H}$ by

$\varphi_{H}(h, y)=\varphi_{H}(g, y)k(g)^{-1}$

It is clear that $\beta\cdot\varphi_{H}(h, y)=z$ . And we have
$\lim_{J}\varphi_{I1}(h, y_{j})=\lim_{J}\varphi_{H}(g, y_{j})_{z}\varphi(k(g), \beta\cdot\varphi_{H}(h, y_{j}))^{-1}$

$=\varphi_{H}(g, y)\varphi_{z}(k(g), z)^{-1}=\varphi_{H}(g, y)k(g)^{-1}=\varphi_{H}(h, y)$ .

From this follows

$\lim_{u\rightarrow g}u\in V_{0}\varphi_{R}(h, u)=\varphi_{R}(h, y)$ .

On the other hand we can see

$\lim_{g\rightarrow h}\varphi_{H}(g, y)=\lim\varphi_{H}(g, y)k(g)^{-1}=\varphi_{H}(h, y)$ .

because the definition of $\varphi_{H}(h, y)$ does not depend on the choice of $g$ as seen
from the above caluculation. Thus it is seen that we can extend $\varphi_{H}$ to the
region $H^{\prime}x(V+y)$ . This is contrary to the definition of $V_{\mathfrak{a}}$ . Hence
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$V_{0}=\overline{V}_{0}\cap V$ .

This completes the proof $\dot{o}f$ V.
VI. Since $V$ is connected, we can conclude

$V=V_{0}$ .
In other words, we can find a continuous map of $H^{\prime}\times V$ into $S$ which has
the conditions (4.1), (4.2) and (4.3), provided that in (4.1) $S_{xo}$ should be replaced
by $H^{\prime}$ .

VIII. Consider the open subsets $H,$ $H^{\prime},$ $\cdots$ of $S_{xo}$ with these two conditions:
1 $x\in H,$ $H^{t},$ $\cdots$

2 There exist continuous maps $\varphi_{H},$ $\varphi_{H},$
$\cdots$ of $H\times V,$ $H^{\prime}\times V,$ $\cdots$ which

satisfy (4.1), (4.2) and (4.3) with $S_{xo}$ being replaced by $H,$ $H^{\prime},$ $\cdots$ respectively.
Then there exists a maximal one among them with respect to the inclusion
relation. Let $H$ denote it for the economy of letters.

VIII. Assume $H\neq S_{xo}$ and let $h\in\partial H$. According to VI, we can extend
the domain of $\varphi_{H}$ to $(H+h)\times V$, continuously and preserving (4.1), (4.2), and
(4.3), with $S_{xo}$ in (4.1) being replaced by $H+h$ . Let $V^{\prime}=\beta\cdot\varphi_{H}(h\times V)$ . Then
$V$ ’ is relatively compact. Hence by Proposition 3. 1 we can get a continuous
map $\overline{\varphi}$ of $W(h)xV$ into $S$ such that

(1) $\overline{\varphi}(h, y)=the$ germ of identities at $\varphi_{H}(h,y)$ for $y\in V$

(2) $\overline{\varphi}(g, x)=h^{-1}g$ for $g\in W(h)$

where $W(h)$ is a connected open neighborhood of $h$ in $S_{xo}$ . Consider the map
$\varphi$ defined by $\varphi(g, y)=\varphi_{H}(h, y)\overline{\varphi}(g, y)$ . Then if $g\in W(h)\cap H,$ $\varphi_{H}(g, x)=g=hh^{-1}g$

$=\varphi(h, x)\overline{\varphi}(g, x)=\varphi(g, x)$ . Therefore by the theorem of identity we obtain
$\varphi_{H}(g, y)=\varphi(g, y)$ for $(g, y)\in(W(h).\cap H)\times V$.

This shows that $\varphi_{H}$ can be extended to $(W(h)\cap H)\times V$, preserving the natures
under consideration. This contradiction concludes

IX. $H=S_{xo}$ .
This completes the proof of Lemma 4.1.
Remark. Let $M$ be a complete (not necessarily connected) Riemannian

manifold. Let $\Gamma$ be a continuous pseudogroup of local isometric maps (see Sec.
1, Chap. 2). In this case there is no need for the postulate of regular im-
bedness. Remember that it was used only to guarantee (4.4). Consequently it
suffices to show that (1.4) is verified without using this postulate. Let $\epsilon$ be a suf-
ficiently small positive number. If we take sufficiently small $V^{\prime}(z)\subset V(z)$ , then
the $\epsilon$-neighborhood of any point $(\in\beta\cdot\varphi_{z}(g,V‘ (z))$ where $g\in W(\hat{\hat{z}})$ is arbitrary is
contained in $\beta\cdot\varphi_{z}(g,V(z))$ . Take a $number.j_{0}$ such that if $j_{0}\leqq j$, then $z_{j}\in V(z)$
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and $y_{j}$ belong to the $\epsilon$-neighborhood $V_{\epsilon}$ of $y_{j_{0}}$ . Since $\varphi_{H}(h, y_{j_{0}})^{-1}\varphi_{E}(g, y_{j_{0}})$

converges to $\tilde{z}_{j_{0}}$ as $g$ tends to $h$ ,

$\varphi_{H}(h, y_{j_{0}})^{-1}\varphi_{H}(g, y_{j_{0}})\in\varphi_{z}(k(g)\times V(z))$

where $g\in W(h)r)H$ for a sufficiently small neighborhood of $h,$ $W(h)$ . Let $f(u)$

$=\beta\cdot\varphi_{z}(k(g), u)$ . Let $z^{\prime}=f(z)$ . Then $f$ is a local isometric map belonging to
$\Gamma$ . We write

$\varphi_{z^{\prime}}(k, u)=\varphi_{z}(k(g)k_{;}f^{-1}(u))$ .
We write $V(z’)$ (resp. $W(\tilde{z}^{t})$ for $f(V(z))$ (resp. $k(g)^{-1}W(zR)$ ). Then $\varphi_{z^{\prime}}$ is a com-
patible map of $W(\tilde{z}^{\prime})\times V(z’)$ into $S$ . Let $g$

’ be another element of $W(h)\cap H$.
Then clearly

$\varphi_{H}(g, y_{j_{0}})^{-1}\varphi_{H}(g^{\prime}, y_{j_{0}})\in\varphi_{z^{\prime}}(W(\tilde{z}^{t})\times V(z^{t}))$ .

On the other hand $\beta\cdot\varphi_{H}(g,V)\subset\beta\cdot\varphi_{z}(k(g)\times V(z)$ . It follows from this that we
can define a map over $V_{\epsilon}$ by

$\overline{\varphi}(\overline{y})=\varphi_{z^{\prime}}(k(g)^{-1}k(g’))$ , $\beta\cdot\varphi_{H}(g,\overline{y})$ .

Then $\overline{\varphi}(y_{j_{0}})=\varphi_{\mathcal{F}I}(g, y_{j_{0}})^{-1}\varphi_{H}(g’, y_{j_{0}})$ . Since $\alpha\cdot\overline{\varphi}(\overline{y})=\beta\cdot\varphi_{Ii}(g,\overline{y})$ , it follows from
the theorem of identitiy that

$\overline{\varphi}(\overline{y})=\varphi_{H}(g,\overline{y})^{-1}\varphi_{H}(g^{\prime},\overline{y})$ .
Hence for $j\geqq j_{0}$ ,

$\varphi_{H}(g, y_{j})^{-1}\varphi_{H}(g’, y_{j})\in\varphi_{z^{\prime}}(k(g)^{-1}k(g^{\prime}),V(z^{\prime}))$ .
If we make $g$

’ tend to $h$ , then we can get

$\varphi_{H}(g, y_{j})_{(0_{H}}^{-1}(g’, y_{j})\in\varphi_{z^{\prime}}(k(g)^{-1}k(g^{\prime}),V(z’))$ .

Consequently we have
$\varphi_{H}(h, y_{j})^{-1}\varphi_{H}(g, y_{j})\in\varphi_{z}(k(g),V(z’))$ .

This completes the proof of our assertion.
It is noted that the same thing holds good for the case where $\Gamma$ is a con-

tinuous pseudogroup of local unzformly bicontinuous maps.
Let $\Gamma$ be a continuous pseudogroup of one of the two kinds in the state-

ment of the tool theorem in the introduction. Then $\Gamma$ is equi-continuous
automatically. In the case of the second kind we assume that the condition
of regular imbedness is satisfied. In both cases we can use the conclusion in
Lemma 4.1 owing to the above remark. Now let us prove the theorem.

Proof of the main tool theorem. We divide the proof into the following
two, in the first one of which we show that the projection $\alpha$ of $C(g)$ into
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$F_{\alpha(q)}$ is surjective and in the second one of which we verify that there exists
a neighborhood evenly covered by $\alpha$ for each $y\in F_{\alpha(g)}$ .

I. $\alpha(C(g))=F_{\alpha(Q)}$ .
Proof of I. Let $\{V_{i}\}_{i\in\Gamma}$ be a covering of $F_{\alpha(q)}$ by relative.ly compact and

simply-connected open sets on $F_{a(g)}$ . We write $x=\alpha(g)$ . Let $N$ be the nerve
of the covering. Take any point $y$ of $F_{x}$ . Then there exists a chain joining
$x$ and $y$ . Let the chain be $(i_{0}, \cdots, i_{m})$ . First we assign a point $x_{k}\in V_{i_{k-1}}\cap V_{i_{W}}$,
to each $(i_{k-1}, i_{k})$ . Then by Lemma 4.1 we obtain maps $\varphi_{k}^{\prime}$ of $S_{x_{k}}\times V_{ik}$ into
$S$ which have the natures prescribed there. We put:

$\varphi_{3}(g, z)=\varphi_{k}^{\nearrow}(\varphi_{k- 1}(g, x_{k})z)$ for $(g, z)\in S_{x0}\times V_{iIc}$

consecutively. Then $\varphi_{k}(g, z)\in C(g)$ for $z\in V_{i_{k}}$ . Especially we see $\varphi_{m}(g, y)\in$

$C(g)$ . Since $\alpha\cdot\varphi_{m}(g, y)=y$ , this shows I.
II. Any relatively compact and simply-connected open set in $F_{x}$ is evenly

covered by $\alpha$ .
Proof of II. Let $y\in V$ and let $h,$ $k\in S_{y0}\cap C(g)$ . Then we get a map $\varphi$

of $S_{y0}\times V$ into $S$ by Lemma 4.1. We write:

$f_{h}(z)=\beta\cdot\varphi(h, z)$ and $f_{k}(z)=\beta\cdot\varphi(k, z)$ for $z\in V$.
It follows from the identity theorem that if $\gamma_{z}f_{h}=\gamma_{z}f_{k}$ for some $z\in V$, then

$f_{h}=f_{k}$ . If $h\neq k$ , then
$\{\gamma_{u}f_{h}|u\in V\}$ and $\{\gamma_{u}f_{k}|u\in V\}$

are disjoint. If these sets are denoted by $V_{h}$ and $l^{7_{k}},$ $\alpha|V_{h}$ and $\alpha|\backslash V_{k}$ are
homeomorphisms. These complete $the\backslash $ proof.

Remark. Let us consider the maps $\varphi_{y}$ defined by
(4. 5) $\varphi_{y}(g)=\varphi(g, y)$ for $y\in V$ .

Then it is seen that $\varphi_{y}$ is bijective for each $y\in V$. Let us prove it. Let $\overline{\varphi}$ be
the map that is obtained by replacing $x$ by $y$ in Lemma 4. 1. Then we get
maps $\overline{\varphi}_{z}$ of $S_{y0}$ into $S_{z0}$ for $z\in V$ similarly to 4.5. By means of Lemma 4. 1
(uniqueness)

$\varphi|W\times V=\varphi\cdot\varphi_{y}^{-i}$

where $W=\varphi_{y}S_{x0}$ and $\varphi_{y}^{-1}$ should be considered to be a map of $WxV$ onto
$SxV$ in the natural way. Then we easily see:

(4. 6) $\varphi_{x}\cdot\varphi_{y}=the$ identity of $S_{xo}$ .

Similarly:
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(4. 7) $\varphi_{y}\cdot\varphi_{x}=the$ identity of $S_{y0}$ .

(4.6) and (4.7) imply that $\varphi_{y}$ and $\varphi_{x}$ are the inverses of each other, and
especially that they are surjective. This completes the proof. Hence if we
denote $\bigcup_{x_{\sim}^{c}.V}S_{xo}$ by $S_{0}$ , then $\varphi$ is a map into $S_{0}$ .

5. Some theorems

Let $M$ be a connected foliated space the leaves of which have coverings
by relatively compact and simply connected open sets. Let $\Gamma$ be a regular and
equi-uniform continuous pseudogroup of local transformations compatible with
the foliation. Remember that $S$ is the set of the germs of element of $\Gamma$ . Let
$x\in M$ and write $F$ instead of $F_{x}$ . Let $(\overline{F}, \pi)$ be a universal covering space of
$F$. Further put $\tilde{G}=S_{xo}$ .

Proposition 5. 1. Let $\tilde{S}$ denote the product $\tilde{G}\times\overline{F}$ . Let $p$ be the pro-
jection of $\tilde{S}$ onto $F$ defined by

$p(g, u)=\pi(u)$ where $(g, u)\in\tilde{S}$ .

Then there exists one and only one continuous map $\varphi$ of $\tilde{S}$ into $S$ such that

(5. 1) $\varphi(g,\overline{x})=g$ for any $g\in\tilde{G}$

(5. 2) $\alpha\cdot\varphi=p$

where $\overline{x}$ is a fixed point over $x$ .

Proof. Take any $g$ from $\tilde{G}$ and $C(g)$ be the component of $g$ in $S$ with
respect to the natural topology. Then by means of the main tool theorem
$(C(g), \alpha)$ is a covering space of $F$. We can, therefore, find a continuous map
$\varphi_{g}$ of $g\times F$ onto $C(g)$ with $\alpha\cdot\varphi_{g}=p|g\times F.$ $\phi_{g}$ is uniquely determined by the
condition

(5. 3) $\varphi_{g}(g,\overline{x})=g$ .

After all we get a continuous map $\varphi$ by putting

$\varphi(g, u)=\varphi_{Cj}(g, u)$ .
(5.1) follows from (5.3).

Let $G$ be the set of elements $g\in\tilde{G}$ with $\beta(g)\in F$. Then we can consider
$G$ as a group. For $g\in G$ there exists a homeomorphism $g$ with $\beta\cdot\varphi=\pi\cdot\tilde{g}$ .
Let $\tau(g, u)=\tilde{g}(u)$ .

Theorem 5. 1. $(G,\tau)$ is a transformation group acting on $\overline{F}$ and the
diagram
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$\varphi$

$G\times\overline{F}-S$

$\lfloor\tau$ $[a$

$F\rightarrow^{\pi}F$

is commutative.

Theorem 5.2. $F_{\alpha(g)}$ and $F_{\beta(g)}$ have homeomorphic universal covering
spaces where $g$ is any element of $S$ .

Theorem 5.3. Let $L$ be the image of $S_{xo}$ by $\beta$ If $(S_{xo}, \beta)$ is a $co\cdot u$ering
space of $L$ , then $\overline{M}$ is homeomorphic to $\tilde{S}_{xo}\times\overline{F}$ .

CHAPTER II. APPLICATIONS

1. The identity theorem for isometries

Let $F$ be a Riemannian manifold with a Riemannian metric $g$ . Then, as
is well-known in classical theory (see [10]), $\cdot$ for each point $x\in F$ there exists
a differentiable map $k_{x}$ of $S_{x}^{n-1}x$ $I$ into $F$, what is called a polar coordinate
system at $x$, such that

(1) if we fix $X\in S_{x}^{n-1}$ , then $k_{x}(X, t)$ is a geodesic with canonical para-
meter $t$ ,

(2) $k_{x}(X, O)=x$ for any $X\in S_{x}^{n-1}$ ,
where $S_{x}^{n-1}(n=\dim F)$ is the set of all the unit vectors at $x$ and $I$ an interval
$]-\epsilon,$

$\epsilon$ [ with a certain positive number $\epsilon$ . Clearly $k_{x}$ is injective on $S_{x}^{n-1}x$ ] $0$ ,
$\epsilon$ [ and it has the inverse. We write $k_{x}^{-1}(z)=(p_{x}(z),t)$ for $z\in k_{x}(S_{x}^{n-1}x$ ] $0,$ $\epsilon$ [).
Then $p_{x}$ is a differentiable map which takes $k_{x}(S_{x}^{n-1}\times]0, \epsilon [)$ onto $S_{x}^{n-1}$ . It is
noted that by setting

$\tilde{k}_{x}(Y, t)=k_{x}(\frac{Y}{\Vert Y\Vert}\Vert Y\Vert t)$ for any $Y\in T_{x}$

we can extend the domain of $k_{x}$ to $(T_{x}-0)\times$ ] $-\epsilon,$
$\epsilon$ [. This map is also called

a polar coordinate system.
Let $F_{1}$ and $F_{2}$ be Riemannian manifolds with Riemannian metrics $g_{1}$ and

$g_{2}$ respectively. Let us consider a differentiable map $f$ of $F_{1}$ into $F_{2}$ which is
not necessarily injective and satisfies

(1. 1) $g1(X, Y)=g_{2}(f_{*}(X),f_{*}(Y))$ for $X,$ $Y\in T_{x}$
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where $x$ ranges over $F_{1}$ and $f_{*}$ is the differential of $f$

For such a map $f$ we can see without difficulty the following facts.
(1) $f_{*}|T_{x}$ is injective for each $x\in F_{1}$ .
(2) $f$ has Jacobian matrices of maximal rank at all the points of $F_{1}$ .
(3) If there exists such $f$ of $F_{1}$ into $F_{2}$ , then

dim $F_{1}\leqq\dim F_{2}$ .
(4) $f$ is a local diffeomorphism if dim $F_{1}=\dim F_{2}$ .
By isometries we mean bidifferentiable maps satisfying (1.1). A connected

open set in $F_{1}$ is also a Riemannian manifold. By local isometric maps we
mean isometries of an arbitrary connected open subset of $F_{1}$ into $F_{2}$ .

Lemma 1. 1. The set of local isometric maps between $F_{1}$ and $F_{2}$ satisfies
the condition of analyticity (see Section 1, Chap. I).

Proof. As is easily seen, it suffices to prove it in the case where
(1) $f$ is a local isometric transformation of $F_{1},$ $i.e$ . a local $i^{\backslash }sometric$ map

between $F_{1}$ and $F_{1}$ ,
(2) $f(x)=x$ for some $x\in\alpha(f)$ ,
(3) $f(z)=z$ is an open set $U$ with $U\subset\alpha(f)$ and $\overline{U}\ni x$ ,

and the other map under consideration is the identity. Let us consider a polar
coordinate system with origin $x$ . Since $f$ fixes all the geodesics through $z\in U$,
we see

$f_{*}(p_{x}(z))=p_{x}(z)$ for $z\in U$ .

Stated in other words, $f_{*}$ fixes $p_{x}(U)$ , an open set in $S_{x}^{n-1}$ . Hence $f_{*}|T_{x}$ must
coincide with the identity of $T_{x}$ . Consequently for any $y$ in a neighborhood
of $x$

$f(y)=f(k_{x}(p_{x}(y), t))=k_{x}f_{*}(p_{x}(y), t)=k_{x}(p_{x}(y), t)=y$ ,

where $t=the$ distance between $x$ and $y$ . This completes the proof.
The theorem of $identity^{1)}$ follows from Theorem 1.1, Chap. I with the

help of this lemma1).

Remark. The proof of Lemma 1.1 holds good for local affine maps be-
tween an affinely-connected manifold and another affinely-connected manifold.
Then the identity theorem is true for automorphisms of an affinely-connected
manifold into an affinely-connected manifold.

10) Theorem of identity: Let $a$ and $b$ be isometric (sesp. affine) maps of a connected
Riemannian (resp. affinely-connected) manifold $F_{1}$ into a Riemannian (resp. affinely-connected
manifold $F_{2}$ . If there exists a point $x\in F_{1}$ such that $r_{x}a=r_{x}b$ , then $a=b$ on the whole $F_{1}$ .
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2. Uniformities and affine transformations

Let $F_{1}$ and $F_{2}$ be Riemannian manifolds. Then $F_{1}$ and $F_{z}$ have the con-
nections and the uniformities which are induced from the Riemannian metrics.
If $\gamma$ is a curve on $F_{1}$ whose origin is $x$ and whose end is $y$ , the parallel
displacement along $\gamma$ gives rise to an isomorphism of the vector space $T_{x}$ onto
the vector space $T_{y}$ , which is also denoted by the same letter $\gamma$ . The uniformity
of $F_{1}$ (resp. $F_{2}$) will be denoted by $\mathfrak{U}_{1}$ (resp. $\mathfrak{U}_{2}$ ) in what follows.

Let $f$ be a differentiable map of $F_{1}$ into $F_{2}$ . The image curve of $\gamma$ by $f$

is denoted by $f(\gamma)$ in brief. $f$ is called an affine map in case of $f$ being a diffe-
omorphism of $F_{1}$ onto $F_{2}$ such that for an arbitrary $\gamma$

(2. 1) $ f(\gamma)\cdot f_{*x}=f_{*y}\cdot\gamma$

where $f_{*x}$ is the restriction on $T_{x}$ of the differential $f_{*}a_{-}nd$ so on.
The following facts are well-known:
(2. 2) $\Vert\gamma(X)\Vert=\Vert X\Vert$ for $X\in T_{x}$ .
(2. 3) $f\hslash_{x}(X, t)=\tilde{k}_{f(x)}(f_{*}(X), t)$ for $X\in T_{x}$ ,

where $\tilde{k}_{x}$ and $\tilde{k}_{f(x)}$ are polar coordinate systems at $x$ and $f(x)$ respectively.

Proposition 2. 1. An offine map $f$ of $F_{1}$ into $F_{2}$ is uniformly continuous
with respect to $\mathfrak{U}_{1}$ and $\mathfrak{U}_{2}$ , in other words, $\iota f\sigma_{2}\in \mathfrak{U}_{2}$ , then we can find $\sigma_{1}\in \mathfrak{U}_{\iota}$

such that

$f(\sigma_{1})=\{(f(x),f(y))|(x, y)\in\sigma_{1}\}\subset\sigma_{2}$ .

Proof. Let $\sigma_{1\delta}$ denote the set:

{ $(x,$ $y)|$ the distance between $x$ and $ y<\delta$ }
and so on. Let $\sigma_{x}$ denote the set:

$\{z|(x, z)\in\sigma\}$

and so on. Let $\sigma_{2}.\in U_{2}$ and $x\in F_{1}$ . We can choose $\delta$ so that

$\sigma_{2*f(x)}\supset$ { $\hslash_{f(x)}(f_{*x}(X),$ $t)|X\in S_{x}^{n-1}$ and $ 0\leqq t<\delta$ }
Let $y$ be any point on $F_{1}$ and join $x$ to $y$ by a curve $\gamma$ and let $z\in\sigma_{1\delta y}$ . Then
$z=k_{y}(Y, t)$ for some $Y\in T_{y}$ with $\Vert Y\Vert=1$ and with some $t$ such that $ 0\leqq t<\delta$ .
We write $\gamma^{-1}(Y)=X$. Then $X\in T_{x}$ . We have

$f(z)=f(k_{y}(Y, t))=k_{f(y)}(f_{*}(Y), t)=k_{f(y)}(f_{*}(\gamma(X)), t)$

$=k_{f(y)}(f(\gamma)\cdot f_{*}(X), t)=k_{f(y)}(Z, t)$ ,
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where $Z$ is a vector of $T_{f(y)}$ with $\Vert Z\Vert=\Vert f_{*}(X)\Vert\leqq\epsilon/\delta$ . Hence we see $f(z)\in\sigma_{2\cdot f(y)}$ ,

namely, $f(\sigma_{1\delta})\subset\sigma_{2\epsilon}$ . This completes the proof.

3. Analytic Riemannian manifolds

Let $F_{1}$ and $F_{2}$ be analytic Riemannian manifolds. Then we have a well-
known lemma.

Lemma 3. 1. Let $\gamma$ be a curve on $F_{1}$ . Then any local isometric map
of an open neighborhood of $\gamma(0)$ into $F_{2}$ can be extended along $\gamma$ and this
extension is unique, where $F_{2}$ is assumed to be complete.

Let $S(F_{1}, F_{2})$ denote the set of all the germs of local isometric maps be-
tween $F_{1}$ and $F_{2}$ , and give the natural topology to it. Then the following
lemma is a direct result of the preceding.

Lemma 3.2. Let $\gamma$ be any curwe on $F_{1}$ , and let $g$ be any germ of
$S(F_{1}, F_{2})$ with $\alpha(g)=\gamma(0)$ . Then there exists one and only one curue $\tilde{\gamma}$ with
origin $g$ and with $\gamma=\alpha\cdot\tilde{\gamma}$ .

It is interesting to note that an arc-wise connected $F$ becomes a covering
space of $F$ if for any curve on $F$ we can find one and only one curve that
covers the curve on $F$ and passes through any point. over the origin of the
curve on $F$.

Hence we see that, if $C(g)$ is the connected component of $g$ in $S(F_{1}, F_{2})$ ,

Then $(C(g), \alpha)$ is a $cover$}$ng$ space of $F_{1}$ . Suppose $(F_{1}, \pi_{1})$ is a universal covering
space of $F_{1}$ and $x=\alpha(g)$ . Fix a point fu over $x$ . Then there exists one and
only one continuous map $\varphi_{q}$ with a commutative diagram:

under the condition $\varphi_{g}(\tilde{x})=g$ . Let $y=\beta(g)$ and let $(\overline{F}_{2}, \pi_{2})$ be a universal covering
space of $F_{2}$ . Choose a point $\tilde{y}$ over $y$ . Since $\beta\cdot\varphi_{g}$ is a continuous map of
simply connected $\overline{F}_{1}$ into $F_{2}$ , we can find one and only one continuous map $\varphi$

with a commutative diagram:
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under the condition $\varphi(\tilde{x})=\tilde{y}$ . Clearly $\varphi$ is a local homeomorphism. Hence as
a conclusion we can obtain the following theorem.

Theorem 3. 1. Let $\overline{F^{\prime}}_{1}$ and $\overline{F}_{2}$ be simply connected analytic Riemannian
manifolds of the same dimension. Let $\overline{F}_{2}$ be complete with respect to its
Riemannian metric. If there exists an isometric map of an open set in $\overline{F}_{1}$

into $\overline{F}_{2}$ . Then $\overline{F}_{1}$ can be immersed in $\overline{F}_{2}$ .
Consider now the case where $F_{1}$ is also complete. Then $(C(g^{-1}), \alpha)$ is

a covering space of $F_{2}$ where $C(g^{-1})$ is the component of $g^{-1}$ in $S(F_{1}, F_{2})$ .
Hence we can get Theorem $E$ in the introduction by Proposition 1.2, Chap. I.

Let $\xi$ be the germ of local Killing vector fields in a simply connected
analytic complete Riemannian manifold $F$ and $X$ a Killing vector field belong
to it. Then $X$ generates a local l-parameter group $a_{t}(0\leqq t<\epsilon)$ of analytic
local isometries. According to the above, each $a_{t}$ can be extended to a global
isometry of $F$. Therefore the local group $a_{t}$ can be extended to a global 1-
parameter group of isometries of $F$. Hence to each germ $\xi$ we can assign
a global Killing vector field of F. After all we can conclude it as follows.

Theorem 3. 2. (K. Nomizu [6]). If $\overline{F}$ be a complete and simply con-
nected analytic Riemannian manzfold, then the sheaf $\overline{K}$ of germs of Killing
vector fields is a constant sheaf.

4. Lie pseudogroups

Let $M$ be a differentiable manifold and let $\Gamma$ be a Lie pseudogroup of
local transformations ($i.e$ . local bidifferentiable maps) on $M$. We follow the
notation in Sec. 3, Chap. I. Then $S$ is the set of germs of elements of $\Gamma$

and $S_{xo}$ is the connected component of $S_{x}=\alpha^{-1}(x)$ for each $x\in M$.
Definition 4. 1. A Lie pseudogroup $\Gamma$ is of finite dimension if and only

if Ifor each $x\in MS_{x}$ is of finite dimension.
Let $\Gamma$ be a Lie pseudogroup of finite dimension. Then we know these

things:
(1) For each $x\in MS_{xo}$ is a differentiable manifold.
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(2) For each $x\in M$ the tangent vector space at $x$ of $S_{xo}$ is the set of
the germs at $x$ of infinitesimal $transformations\cdot belonging$ to $\Gamma$ . We denote it
by $\Theta_{x}$ and write $\Theta=\bigcup_{x\in Jp}\Theta_{x}$ .

(3) $(\Theta, \alpha, M)$ is a sheaf with Lie algebras $\Theta_{x}$ as stalks.
(4) Let $\xi\in\Theta_{x}$ and let $X$ be a local vector field belonging to $\xi$ . Consider

a local l-parameter group exp $tX$. We write

exp $t\xi=r_{x}$ exp $tX$ .

Then the following relation holds

(4. 1) exp $(st)\xi=eupt(s\xi)$ .

Proposition 4. 1. If $\Gamma$ is a Lie pseudogroup of finite dimension, then
dim $S_{xo}$ is lower semi-continuous as a function of $x$ .

For the proof see [5].

Definition 4.2. A Lie pseudogroup $\Gamma$ is said to be of constant dimension
if and only if dim $S_{xo}$ is continuous.

We can see that for each $x\in M$ there exists a neighborhood $V(x)$ such
that $\Theta|V(x)$ is a constant sheaf, if $\Gamma$ is of constant dimension.

Proposition 4. 2. A Lie pseudogroup $\Gamma$ is regular in the sense of Def.
4.3, Chap. I $\iota f$ and only if it is of constant dimension.

Proof. Let us consider a sufficiently small neighborhood $W(\tilde{x})$ of $(\tilde{x})$ in
$S_{xo}$ We put

$\varphi_{x}(\exp t\xi, y)=\exp ti_{x}(\xi, y)$

where $i_{x}$ is the canonical map of the constant sheaf $\Theta_{x}\times V(x)$ onto $\Theta|V(x)$ ,

and we assume exp $t\xi\in W(\tilde{x})$ . Suppose exp $ t^{\xi}=\exp s\eta$ . Then $\eta=\frac{t}{s}\xi$ and by

(4. 1)

$\varphi_{x}(\exp s\eta, y)=\exp si_{x}(\eta,y)=\exp ti_{x}(\frac{s}{t}\eta,$ $g)$

$=\exp ti_{x}(\xi, y)=\varphi_{x}(\exp t\xi,y)$ .

This $\varphi_{x}$ is a map of $W(\tilde{x})\times V(\tilde{x})$ into $B$ and it has the nature required in
(3.5), Chap. I. This completes the proof.

As easily seen, we can see from Proposition 4.1, Chap. I that if $V$ is
a relatively compact and simply-connected open set in $M$, then $\Theta|V$ is a con-
stant sheaf. Thus we can get Theorem $F$ by the same technique as in the
proof of the main tool theorem.
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5. Local product spaces and de Rham’s theorem

Let $F_{1}$ and $F_{2}$ be connected, locally connected, locally simply-connected
Hausdorff spaces and let $\Gamma^{\prime}$ be a pseudogroup of local transformations of $F_{1}\times F_{2}$

which are compatible with the product structure, in other words, if $a\in\Gamma^{\prime}$ , then
there exist local transformations of $F_{1}$ and $F_{2}$ which are denoted by $a_{1}$ and $a_{2}$

respectively such that
$a(x, y)=(a_{1}(x), a_{2}(y))$ for $x,$ $y\in\alpha(a)$ .

Definition 5. 1. A topological space $M$ is said to be a local product
space if and only if there exists an open covering $\{V_{i}\}_{i_{\sim}^{\prime}I}-$ such that for each
$i\in IV_{i}$ is mapped onto $F_{1}\times F_{2}$ by a homeomorphism $f_{i}$ and such tlwt $f_{i}\cdot f_{j}^{-1}\in\Gamma^{\prime}$

for any pair $(i,j)\in N$ where $N$ is the nerve of the covering.
Let us consider the totality of $f_{i}^{-1}(V_{1}\times y)$ with any open set $V_{1}$ and any

$y\in F_{2}$ (resp. of $f_{i}^{-1}(x\times V_{2})$ ) with any open set $V_{2}$ in $F_{2}$ and any $x\in F_{1}$ where
$i$ runs through $I$. It defines a foliation, what will be called canonical in the
present paper. We denote it by $T_{1}$ (resp. $T_{2}$). It will be referred to as
horizontal (resp. vertical). The leaves of the foliations are also distinguished
by the same tenns.

From now on we shall use the term “local transformations” in the
meaning of local transformations with respect to the horizontal topology.

Let us consider the local transformations of the type:

(5. 1) $f_{i}^{-1}\cdot p(y,\overline{y})\cdot f_{i}$ , $i\in I$ , $y,\overline{y}\in F_{2}$ ,

where $p(y,\overline{y})$ are the projections of $F_{1}\times y$ onto $F_{1}\times\overline{y}$ defined by $p(y,\overline{y})(x, y)$

$=(x,\overline{y})$ . It is seen that there exists the smallest pseudogroup of local trans-
formations that contains those of the above type. We denote it by $\Gamma_{1}$ . $\Gamma_{1}$

leaves the local product structure of $M$ invariant.
We can also define the pseudogroup $\Gamma_{2}$ in exactly the same way.

Definition 5.2. The local product structure is called equi-unzform if
and only if one of these two pseudogroups $\Gamma_{1}$ and $\Gamma_{2}$ is equi-uniform in the
sense of Def. 4.1. in Chap. I and satisfies the postulate of regular imbedness
in Def. 3. 3, Chap. I.

We here present some examples of the equi-uniform local product struc-
tures before going further.

1. If all the leaves of $T_{1}$ or $T_{2}$ are compact, then it is equi-uniform.
2. If all the leaves of $T_{1}$ or $T_{2}$ are metric spaces and if the maps of the

type (1.1) are metric-preserving, then it is equi-uniform.
3. If all the leaves of $T_{1}$ or $T_{2}$ are Riemannian manifolds and if the
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maps of the type (1.1) are affine transformations, then it is equi-uniform.
Let us denote the horizontal (resp. vertical) leaf through $x\in M$ by $F_{1x}$

(resp. $\Gamma_{2x}$) and the set of all the germs of elements of $\Gamma_{1}$ (resp. $\Gamma_{2}$ ) that have
domain $x$ by $S_{Jx}$ (resp. $S_{2x}$). In what follows we take the case where the
structure is equi-uniform with respect to $\Gamma_{1}$ . It is seen directly from the
definition of $\Gamma_{1}$ that if we take a sufficiently small neighborhood $W$ in $F_{2x}$ of
$y\in F_{2x}$ , we can attach a single element of $S_{1y}$ to each $z\in W$. We can define
by this map of $W$ into $S_{1y}$ a neighborhood system of $y$ the germ of identities
in the neighborhoods of $y$ as the image of neighborhoods of $y$ in $W$. Let $g$

be any element of $S_{1x}$ and let $\beta(g)=y$ . Then we can define a neighborhood
system of $y$ in $S_{1y}$ in the above way. Denote it by $\sum$ . Then we can de ne
a neighborhood system of $g$ in $S_{1x}$ by $ g\sum$ . It is easily seen that this introduces
a topology into $S_{1x}$ and that it is a $1oCally$ connected Hausdorff one We write

$\cup S_{\iota x}$ as $S$ . Then $S$ has two kinds of topology: The natural one as the set
$x\in M$

of germs and the a,bove one. With respect to the latter one $S_{1x}$ for each $x\in M$

is a connected component. We can easily get

Lemma 5. 1. The operations of $S$ are continuous with respect to the
above defined topology.

Lemma 5. 2. $\Gamma_{1}$ and $\Gamma_{2}$ are regular in the sense of Def. 3.3, Chap. I.

Lemma 5.3. $(S_{1x}, \beta)$ is a covering space of $F_{2x}$ .

Proof. Let $g$ and $h$ be the germs belonging to $S_{1x}$ and with $\beta(g)=\beta(h)$

$=y$ . Let $W$ be a neighborhood of $y$ of the above stated nature. Then it is
homeomorphic to a certain neighborhood of $y$ , which will be denoted by the
same letter $W$ Assume $gW\cap hW\neq 0$ , which implies the existence of $k,$ $l\in W$

such that $g^{-1}h=lk^{-1}$ . $lk^{-1}$ is the germ of the type (1.1) and it leaves $y$ fixed.
Hence $lk=y^{-1}$ . This implies $g=h$ . This completes the proof.

If $1lX$ is a connected local product space all the horizontal leaves of which
are compact, then $\Gamma_{1}$ is a regular, equi-uniform continuous pseudogroup satisfying
the postulate of regular imbedness. Thus we get the following theorem.

Theorem 5. 1. Let $M$ be a connected local product space all the hori-
zontal leaves of which are compact. Then all the horizontal leaves have
homeomorphic universal covering spaces. All the vertical leaves do so. More-
over the universal covering spece of $M$ is a product space of that of the
horizontal leaves and that of the vertical leaves.

$\overline{M}\approx\overline{F}_{1x}x\overline{F}_{2x}$ for any $x\in M$.

Consider the case in which $\Gamma_{1}$ is a pseudogroup of local isometric maps.
According to the remark in Sec. 4, Chap. I, there is no need for using the
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postulate of regular imbedness.
Theorem 5. 2. Let $M$ be a connected complete local product Riemannian

manifold. Then the same conclusion holds good likewise.
As a result of this theorem we have the de Rham’s decomposition theorem

[1].

6. A generalization of a Reeb’s theorem 11)

Let $M$ be a compact differentiable manifold. Let $f$ be a differentiable
function defined over $M-F$ where $F$ is a nowhere dense subset.

Definition 6. 1. A point $x_{0}$ of $M-F$ is said to be a non-degerate critical
point of index $k$ in case a system of coordinates $\varphi_{1},$ $\cdots,\varphi_{n}$ exists in a neighborhood
of $x_{0}$ , which satisfies these conditions:

(6. 1) $\varphi_{i}(x_{0})=0$ , $i=1,2,$ $\cdots,n$ .

(6. 2) $-\sum_{i=1}^{k}\varphi_{i}^{2}(x)+\sum_{j\subset k+1}^{n}\varphi_{j}^{2}(x)=f(x)-f(x_{0})$ .

Let $K$ be the set of points where the differential $f_{*}$ vanishes. We, further,
assume that $K$ is nowhere dense.

Definition 6.2. A point $x$ of $F\cup K$ is said to be removable if and only
if there exists a function $r$ of one real variable with these conditions:

1. The domain of $r$ contains $f(V(x)\cap CF)$ .
2. $r\cdot f$ has a differentiable extension over $V(x)$ which is free of critical

points, in other words, the differential of which never vanishes,

where $V,(x)$ is a sufficiently small neighborhood of $x$ .
Prerequisites: Of the functions which appear in this section, all the

points of $K$ are assumed to be removable or definite, where “definite” means
“non-degenerate critical of index $0$ or $n$ .

Examples of removable points. Let us consider a torus $T^{1}$ of dimensioIi
1, $i.e.,$ $\{\exp i\theta|\theta\in R\}$ .

1. $\cos^{2}\theta$ is a function defined on it. The values $=0,$ $\pm\frac{1}{2}\pi,$ $\pi$ give rise

to critical points. But those corresponding to $\pm\frac{1}{2}\pi$ are removahle. Actually

$r=\sqrt{f}$ is a function of the desired nature.
2. Let $F$ be the set composed of $i$ and $-i$ . Then tan $\theta$ is a function

11) See [11] and [12] where the same consequence is derived from a more geometrical
problem.
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defined over $T^{1}-F$. But all the points of $F$ are removable. Actually $r=\frac{1}{f}$

is a function of the desired nature.
Let $x$ be ordinary (resp. removable). Then there exists a system of

coordinates $\varphi_{1},$ $\cdots,\varphi_{n}$ in a neighborhood $V(x)$ of $x$ such that
(6. 3) $\varphi_{i}(x)=0$ , $i=1,2,$ $\cdots,n$ ,

(6. 4) $\varphi_{n}(y)=f(y)-f(x)$ for $y\in V(x)$ .
(resp. $\varphi_{n}(y)=r\cdot f(\prime y)-r\cdot f(x)$ )

In $V(x),$ { $y|f(y)=const$ . (resp. $r\cdot f=const.)$ } are submanifolds. The totality
of such submanifolds constitute a basis of a foliation.

Lemma 6.1. All the leaves of this foliation are compact.

Proof. Let $F$ be a leaf and let $x\in\overline{F}$ . It suffices to show $x\in F$. We can
take a sequence $\{x_{i}\}_{i=1,2},\cdots$ such that

$x_{i}\in F$ , $i=1,2,$ $\cdots$ and $\lim_{i\rightarrow\infty}x_{i}=x$

By the assumption all the critical points, say, $x_{0}$ , that are not removable have
a system of coordinates about it with the conditions (6.1) and (6.2), from which
we see that the closure of any leaf does not contain $x_{0}$ . Consequently, $x$ is
not a non-removable critical point. Let $x\in F\cup K$ . Then we can choose a
system of coodinates with (6.3) and (6.4). First we note that for any $y,$ $z\in F$

$r\cdot f(y)=r\cdot f(z)$ .

Hence if $x_{i}\in F_{x}$ for infinitely many $i$ , then we can see that $(r\cdot f)_{*}$ vanishes at
$x$ . This is contrary to the definition of removability. Hence $x_{i}\in F_{x}$ for suf-
ficiently large $i$ Therefore $x\in F_{x_{i}}=F$. If $x\in M-F-K$, then the case is more
simple than the preceding. Thus the proof has been completed.

Let us riemannianize $M$ by any Riemannian metric. Let $M$ be the comple-
ment of the set of all the non-removable critical points. Then by means of
Theorem 5. 1, we see that there exists a universal covering space of $M$ which
has the form $(S^{n-1}\times R, \pi)$ , where $\pi$ satisfies the conditions:

(1) It takes $u\times R$ onto an orthogonal trajectory to the leaves for each
$u\in S^{n-1}$ .

(2) It takes $S^{n-}xt$ onto a leaf for each $t\in R$ .
Let $u_{0}\in S^{n}$ 1 and let $D$ be the Poincar\’e group of this covering space. By

putting $d(u_{0}, t)=(d(u_{0}), d(t))$ where $d\in D,$ $D$ may be considered to be a trans-
formation group acting on $S^{n-1}$ or $R$ .

We can see the following easily.
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I. If $d\in D$ has no fixed point in $R$ , then $d$ acts trivially, $i.e.,$ $d(t)=t$ for
any $t\in R$ . As a result we have $d=e$ , where $e$ is the identity element of $D$ .

II. If $d\in D(d\neq e)$ has a fixed point $t_{0}$ in $R$ , then $d(S^{n-1}\times t_{0})=S^{n-1}\times t$ .
Actually $d$ is a fixed point free transformation of $S^{n-1}\times t_{0}$ . Consequently
a trajectory coming from the left goes back to the left. We see that $d$ has
one and only one fixed point in $R$ . Then $d^{2}(t)=t$ for any $t\in R$ . Hence $d^{l}=e$ .

We can conclude the above in this way: If there exists at least one
non-removable critical point, then $D=\{e\}$ or $D=\{e, \sigma\}$ where $\sigma$ is an element
idempotent and different from $e$ . (1) In the case where $D=\{e\}$ , the manifold
is homeomorphic to the n-sphere and the number of the non-removable critical
points is 2. (2) In the case where $D=\{e, \sigma\}$ , the manifold is homeomorphic
to the real projective space and the number of the non-removable critical
points is 1.

Remark. According to J. Milnor [4] “homeomophic” in the above can
not be replaced by “diffeomorphic”.

Finally we show that Theorem $G$ is a generalization of Theorem B. In
other words.

Theorem 6. 1. Any differentiable function on a compact differentiable
manifold satisfies Lipshitz condition (see the introduction).

Actually this is a direct consequence of the following proposition.

Proposition 6. 1. Let $M$ be an arbitrary differentiable mamfold and
let $V$ be a relatively compact domain in M. Let $f$ be a differentiable function
over M. Then the following inequality holds in $V$ :

(6. 5) $|X\Vert df\Vert|\leqq L\Vert X\Vert$ for any vector field $X$ ,

where $L$ is a constant over $V$.

Proof. By means of schwartz’s inequality

$|X\Vert df\Vert|=|<X,$ $ d||df\Vert>|\leqq\Vert X\Vert\Vert d\Vert df\Vert\Vert$ .

If we denote the maximum of $\Vert d\Vert df\Vert\Vert$ in $\overline{V}$ by $L$ , we get (6. 1).
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