
REMARKS ON COMPLETENESS OF CONTINUOUS
FUNCTION LATTICE

By

Takashi IT\^O

Let $E$ be an arbitrary topological space and $C(E)$ be a vector lattice of
all real valued continuous functions on $E$. In general the lattice $C(E)$ is
neither conditionally complete1) nor conditionally $\sigma$-complete2). H. Nakano
shows in [1] that a sufficient condition for $C(E)$ to be conditionally $\sigma$-complete
(conditionally complete) is that $E$ is $\sigma$-universal (universal), that is, every open
$F_{\sigma}$-set has an open closure (every open set has an open closure) (cf. [2] Chap.
VII, Theorem 41.1, Theorem 41.4). Under the assumption that $E$ is normal
(completely regular) $\sigma$-universality (universality) of $E$ is a necessary condition
for $C(E)$ to be conditionally $\sigma$-complete (conditionally complete). L. Gillman
and M. Jerison in their book [3] show that for a completely regular space $E$

the necessary and sufficient condition for $C(E)$ to be conditionally $\sigma$-complete
is that $E$ is basically disconnected, that is, every cozero-set3) has an open
closure ([3] p. 51, $3N$ ). In this note we shall remark the necessary and suf-
ficient topological condition for $C(E)$ on an arbitrary topological space $E$ to
be conditionally a-complete or conditionally complete.

In the sequel a cozero-set $P$ of $f\in C(E)$ will be denoted by $P(f);P(f)$

$=\{x|f(x)\neq 0\}=\{x||f|(x)>0\}$ .

Theorem 1. $C(E)$ is a conditionally a-complete lattice if and only if
the following two conditions are satisfied

a) there exists the smallest open-closed set $U(P)$ containing $P$ for any
cozero-set $P$.

b) if $ P_{1\cap}P_{2}=\phi$ for two cozero.sets $P_{1}$ and $P_{2}$ , then $ U(P_{1})_{\cap}U(P_{2})=\phi$

Proof. Suppose $C(E)$ is conditionally a-complete and $P$ is a cozero-set of
some $f\in C(E),$ $P=P(f)$ , then by the conditional a-completeness of $C(E)f$ gives
the orthogonal decomposition of the constant function 1 as follows

$1=[f]1+[f]^{\perp}1$

1) every family with an upper bound in $C(F_{\lrcorner})$ has a supremum in $C(E)$ .
2) every countable family with an upper bound in $C(E)$ has a supremum in $C(E)$ .
3) $\{x|f(x)=0\}$ is a zero-set of $f\in C(E)$ , cozero-set is a complement of a zero-set.
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where $[f]1=\bigcup_{n-1}(1_{\cap}n|f|)$ and $[f]^{L}1=1-[f]1$ . $[f]1_{\cap}[f]^{L}1=0$ implies that $[f]1$

is a characteristic function $\chi_{U}$ for some open-closed set $U$, and $|f|_{\cap}[f]^{\perp}1=0$

implies $U\supset P(f)$ . The fact that $[f]1_{\cap}|g|=0$ for all $g\in C(E)$ such that $|f|_{\cap}$

$|g|=0$ shows that $U$ is the smallest open-closed set containing $P(f)$ . If $P_{1\cap}$

$ P_{2}=\phi$ for cozero-sets $P_{1}=P(f_{1})$ and $P_{2}=P(f_{2})$ , then by $|f_{1}|_{\cap}|f_{2}|=0$ we have
$[f_{1}]1_{\cap}[f_{2}]1=0$ , namely $U(P_{1})$ and $U(P_{2})$ are disjoint from the above argument
$x_{C^{r}(P_{1})}=[f_{1}]1$ and $x_{U(P_{2})}=[f_{2}]1$ .

Conversely, let a) and b) satisfied. To prove the $co\grave{n}$ditional a-comple-
teness of $C(E)$ it is sufficient to show the existence of an infimum $\bigcap_{n--1}^{\infty}f_{n}$ for
any sequence $\{f_{n}\}$ of non-negative continuous functions. If we put $E_{a}^{(n)}=\{x$

$|f_{n}(x)<\alpha\}$ and $E.=\bigcup_{n=1}E_{\alpha}^{(n)}$ for all $\alpha>0$ , then obviously $E_{\alpha}$ is a cozero-set of

a continuous. function $g_{\alpha}=\sum_{n=1}^{\infty}\frac{1}{2^{n}}(\alpha 1-f_{n})^{+4)}$ . Hence from a) we can find the

smallest open-closed set U. containing E. $(\alpha>0)$ . We have then

(1) $U_{\alpha}\supset U_{\beta}(\alpha>\beta>0)$ , (2) $\bigcup_{\alpha>0}E_{a}=E$ .

If we put $f_{0}(x)=\inf\alpha(x\in E)$ , then by (2) $f_{0}$ is a non-negative real valued func-
tion on $E$, and $by(1)\in U_{\alpha}$ we see

$\{x|f_{0}(x)<\alpha\}=\bigcup_{\alpha>\beta>0}U_{\beta}$ , $\{x|f_{0}(x)\leqq\alpha\}=\bigcap_{\beta>\alpha}U_{\beta}(\alpha>0)$ .

This implies the continuity of $f_{0}$ . Since $E_{a}^{(n)}\subset E_{\alpha}\subset U.\subset\{x|f_{0}(x)\leqq\alpha\}(n=1,2$ ,
; $\alpha>0$ ), we have $f_{n}\geqq f_{0}(n=1,2, \cdots)$ , that is, $f_{0}$ is a lower bound of $\{f_{n}\}$ .

And if $f_{n}\geqq g\geqq 0(n=1,2, \cdots)$ , for some $g\in C(E)$ , then we have $E_{a\cap}\{x|g(x)>$

$\alpha\}=\phi(\alpha>0)$ . Hence from the assumption b) we see $ U_{\alpha\cap}\{x|g(x)>\alpha\}=\phi$

$(\alpha>0)$ , and so $\{x|f_{0}(x)<\alpha\}\subset U_{a}\subset\{x|g(x)\leqq\alpha\}(\alpha>0)$ . hence $g\geqq f_{0}$ . Therefore
$f_{0}$ is an infimum of $\{f_{n}\}$ .

Similarly it is easy to give a necessary and sufficient condition for $C(E)$

to be a conditionally complete lattice.
Let $C(E)$ be conditionally complete, then $E$ satisfies the following condi-

tion c) in addition to a) and b) in Theorem 1;
c) all of open-closed sets of $E$ constitutes a complete lattice.
In fact, let $U_{\lambda}(\lambda\in\Lambda)$ be any system of open-closed sets in $E$, then since

$\chi_{U_{\lambda}}(\lambda\in\Lambda)$ has an infimum $f=\bigcap_{\lambda\in A}\chi_{o_{\lambda}}$ and a supremum
$g=\bigcup_{\lambda\in\Lambda}\chi_{U_{\lambda}}$ in $C(E)$ , easily

it is shown that $U(P(f))$ and $U(P(g))$ are respectively an infimum and a su-
premum of $U_{\lambda}(\lambda\in\Lambda)$ in all of open-closed sets of $E$ . Conversely, suppose $E$

4) the positive part of $\alpha 1-f_{n}$ ; $(\alpha 1-f_{n})$ UO.
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satisPes a), b) and c), to show the conditional completeness of $C(E)$ only a
slight modification of the definition of $U_{a}$ in the proof of Theorem 1 is neces-
sary. Namely, for any system $f_{\lambda}\geqq 0(\lambda\in\Lambda)$ of non-negative continuous func-
tions, putting $E_{\alpha}^{(\lambda)}=\{x|f_{\lambda}(x)<\alpha\}$ and $E_{\alpha}=\cup E_{\alpha}^{\iota\lambda)}(\alpha>0)$ , by the condition c) we
can define $U_{\alpha}$ as the smallest $open- close^{J}d^{\epsilon\Lambda}$ set containing $E_{a}$ ; $U_{a}$ is the su-
premum of $U_{\alpha}^{(J)}(\lambda\in\Lambda)$ in all of open-closed sets, where $U_{\alpha}^{(\lambda)}$ is the smallest
open-closed set containing $E_{\alpha}^{(\lambda)}$ .

Theorem 2. $C(E)$ is a conditionally complete lattice $\iota f$ and only $\iota fE$

satisfies the condions a), b) and c).
Finally we shall remark an extension theorem. If we replace cozero-sets

in a) and b) by open F.-sets;
$a^{\prime})$ there exists the smallest open-closed set $U(F)$ containing $F$ for any

open F.-set $F$,
$b^{\prime})$ if $ F_{1\cap}F_{2}=\phi$ for two open $F_{\sigma}$-sets $F_{J}$ and $F_{2}$ , then $ U(F_{1})_{\cap}U(F_{z})=\phi$ ,

then we have a purely topological sufficient condition for $C(E)$ to be conditionally
a-complete. Obviously it is weaker than $\sigma$-universality in [1].

Under the assumptions $a^{\prime}$ ) and $b^{\prime}$ ) we have a following extension theorem
which is a slight generalization of Theorem 41.2 of [2].

Suppose $E$ satisfies $a^{\prime}$ ) and $b^{\prime}$), then a continuous function $\varphi$ defined on
an open F.-set $F$ has a continuous extension $\psi$ over $E$, provided $\psi$ may take
values $+\infty$ and $-\infty$ .

To prove this it is sufficient to show that $\varphi$ has a continuous extension
over $U(F)$ . Putting $F_{\alpha}=\{x|\varphi(x)<\alpha\}(+\infty>\alpha>-\infty)$ since $F$ is an open $F_{\sigma}-$

set in $E,$ $F_{\alpha}$ is also an open F.-set in $E$ . Hence by $a^{\prime}$ ) we can find the smal-
lest open-closed set U. containing $F_{a}$ for all $\alpha$ , and $\{U_{a}\}$ has the properties
$U_{\alpha}\supset U_{\beta}(\alpha>\beta)$ and $ U(F)\supset$ $\cup$ $U_{\alpha}\supset F$. Similarly to the latter part of the

$\vdash\infty>a>-\infty$

proof of Theorem 1 we define $\psi(x)=\inf_{x_{\vee}^{c_{U_{a}}}}\alpha(x\in \cup U_{\alpha}),$
$\psi(x)=+\infty(x\in$

$+\infty>\alpha>-\infty$

$U(F)-$ $\cup$ $U_{\alpha}$ ), then we see easily $\psi$ is a continuous function on $U(F)$ and
$+\infty>\alpha>-\infty$

$\varphi\geqq\psi$ on $F$. Since by $b^{\prime}$ ) $\{x|\varphi(x)>\alpha\}_{\cap}F_{a}=\phi$ implies $\{x|\varphi(x)>\alpha\}_{\cap}U_{\alpha}=\phi$ , we
have $\psi\geqq\varphi$ on $F$.
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