REMARKS ON COMPLETENESS OF CONTINUOUS FUNCTION LATTICE

By

Takashi ITÔ

Let E be an arbitrary topological space and C(E) be a vector lattice of all real valued continuous functions on E. In general the lattice C(E) is neither conditionally complete¹) nor conditionally σ -complete²). H. Nakano shows in [1] that a sufficient condition for C(E) to be conditionally σ -complete (conditionally complete) is that E is σ -universal (universal), that is, every open F_{σ} -set has an open closure (every open set has an open closure) (cf. [2] Chap. VII, Theorem 41.1, Theorem 41.4). Under the assumption that E is normal (completely regular) σ -universality (universality) of E is a necessary condition for C(E) to be conditionally σ -complete (conditionally complete). L. Gillman and M. Jerison in their book [3] show that for a completely regular space Ethe necessary and sufficient condition for C(E) to be conditionally σ -complete is that E is basically disconnected, that is, every cozero-set³⁾ has an open closure ([3] p. 51, 3N). In this note we shall remark the necessary and sufficient topological condition for C(E) on an arbitrary topological space E to be conditionally σ -complete or conditionally complete.

In the sequel a cozero-set P of $f \in C(E)$ will be denoted by P(f); $P(f) = \{x | f(x) \neq 0\} = \{x | |f|(x) > 0\}.$

Theorem 1. C(E) is a conditionally σ -complete lattice if and only if the following two conditions are satisfied

a) there exists the smallest open-closed set U(P) containing P for any cozero-set P.

b) if $P_1 P_2 = \phi$ for two cozero-sets P_1 and P_2 , then $U(P_1) U(P_2) = \phi$.

Proof. Suppose C(E) is conditionally σ -complete and P is a cozero-set of some $f \in C(E)$, P = P(f), then by the conditional σ -completeness of C(E) f gives the orthogonal decomposition of the constant function **1** as follows

$$1 = [f]1 + [f]^{\perp}1$$

¹⁾ every family with an upper bound in C(E) has a supremum in C(E).

²⁾ every countable family with an upper bound in C(E) has a supremum in C(E).

³⁾ $\{x \mid f(x)=0\}$ is a zero-set of $f \in C(E)$, cozero-set is a complement of a zero-set.

where $[f]\mathbf{1} = \bigcup_{n=1}^{\infty} (\mathbf{1}_n | f|)$ and $[f]^{\perp}\mathbf{1} = \mathbf{1} - [f]\mathbf{1}$. $[f]\mathbf{1}_n [f]^{\perp}\mathbf{1} = 0$ implies that $[f]\mathbf{1}$ is a characteristic function χ_U for some open-closed set U, and $|f|_n [f]^{\perp}\mathbf{1} = 0$ implies $U \supset P(f)$. The fact that $[f]\mathbf{1}_n |g| = 0$ for all $g \in C(E)$ such that $|f|_n |g| = 0$ shows that U is the smallest open-closed set containing P(f). If $P_1 \cap P_2 = \phi$ for cozero-sets $P_1 = P(f_1)$ and $P_2 = P(f_2)$, then by $|f_1|_n |f_2| = 0$ we have $[f_1]\mathbf{1}_n [f_2]\mathbf{1} = 0$, namely $U(P_1)$ and $U(P_2)$ are disjoint from the above argument $\chi_{U(P_1)} = [f_1]\mathbf{1}$ and $\chi_{U(P_2)} = [f_2]\mathbf{1}$.

Conversely, let a) and b) satisfied. To prove the conditional σ -completeness of C(E) it is sufficient to show the existence of an infimum $\bigcap_{n=1}^{\infty} f_n$ for any sequence $\{f_n\}$ of non-negative continuous functions. If we put $E_{\alpha}^{(n)} = \{x \mid f_n(x) < \alpha\}$ and $E_{\alpha} = \bigcup_{n=1}^{\infty} E_{\alpha}^{(n)}$ for all $\alpha > 0$, then obviously E_{α} is a cozero-set of a continuous function $g_{\alpha} = \sum_{n=1}^{\infty} \frac{1}{2^n} (\alpha 1 - f_n)^{+4}$. Hence from a) we can find the smallest open-closed set U_{α} containing E_{α} ($\alpha > 0$). We have then

(1)
$$U_{\alpha} \supset U_{\beta} \quad (\alpha > \beta > 0),$$
 (2) $\bigcup_{\alpha > 0} E_{\alpha} = E$

If we put $f_0(x) = \inf_{x \in U_{\alpha}} \alpha$ ($x \in E$), then by (2) f_0 is a non-negative real valued function on E, and by (1) we see

$$\{x|f_0(x)b>0}U_eta,\qquad \{x|f_0(x)\leqlpha\}=\capigcup_{eta>lpha}$$
 $(lpha>0)$.

This implies the continuity of f_0 . Since $E_{\alpha}^{(n)} \subset E_{\alpha} \subset U_{\alpha} \subset \{x | f_0(x) \leq \alpha\}$ $(n=1, 2, \cdots; \alpha > 0)$, we have $f_n \geq f_0$ $(n=1, 2, \cdots)$, that is, f_0 is a lower bound of $\{f_n\}$. And if $f_n \geq g \geq 0$ $(n=1, 2, \cdots)$, for some $g \in C(E)$, then we have $E_{\alpha} \{x | g(x) > \alpha\} = \phi$ $(\alpha > 0)$. Hence from the assumption b) we see $U_{\alpha} \{x | g(x) > \alpha\} = \phi$ $(\alpha > 0)$, and so $\{x | f_0(x) < \alpha\} \subset U_{\alpha} \subset \{x | g(x) \leq \alpha\}$ $(\alpha > 0)$. hence $g \geq f_0$. Therefore f_0 is an infimum of $\{f_n\}$.

Similarly it is easy to give a necessary and sufficient condition for C(E) to be a conditionally complete lattice.

Let C(E) be conditionally complete, then E satisfies the following condition c) in addition to a) and b) in Theorem 1;

c) all of open-closed sets of E constitutes a complete lattice.

In fact, let U_{λ} ($\lambda \in \Lambda$) be any system of open-closed sets in E, then since $\chi_{U_{\lambda}}$ ($\lambda \in \Lambda$) has an infimum $f = \bigcap_{\lambda \in \Lambda} \chi_{U_{\lambda}}$ and a supremum $g = \bigcup_{\lambda \in \Lambda} \chi_{U_{\lambda}}$ in C(E), easily it is shown that U(P(f)) and U(P(g)) are respectively an infimum and a supremum of U_{λ} ($\lambda \in \Lambda$) in all of open-closed sets of E. Conversely, suppose E

⁴⁾ the positive part of $\alpha \mathbf{1} - f_n$; $(\alpha \mathbf{1} - f_n) \cup 0$.

satisfies a), b) and c), to show the conditional completeness of C(E) only a slight modification of the definition of U_{α} in the proof of Theorem 1 is necessary. Namely, for any system $f_{\lambda} \ge 0$ ($\lambda \in \Lambda$) of non-negative continuous functions, putting $E_{\alpha}^{(\lambda)} = \{x \mid f_{\lambda}(x) < \alpha\}$ and $E_{\alpha} = \bigcup_{\lambda \in \Lambda} E_{\alpha}^{(\lambda)}(\alpha > 0)$, by the condition c) we can define U_{α} as the smallest open-closed set containing E_{α} ; U_{α} is the supremum of $U_{\alpha}^{(\lambda)}(\lambda \in \Lambda)$ in all of open-closed sets, where $U_{\alpha}^{(\lambda)}$ is the smallest open-closed set containing $E_{\alpha}^{(\lambda)}$.

Theorem 2. C(E) is a conditionally complete lattice if and only if E satisfies the conditions a), b) and c).

Finally we shall remark an extension theorem. If we replace cozero-sets in a) and b) by open F_{σ} -sets;

a') there exists the smallest open-closed set U(F) containing F for any open F_{σ} -set F,

b') if $F_1 = \phi$ for two open F_{σ} -sets F_1 and F_2 , then $U(F_1) = \phi$, then we have a purely topological sufficient condition for C(E) to be conditionally σ -complete. Obviously it is weaker than σ -universality in [1].

Under the assumptions a') and b') we have a following extension theorem which is a slight generalization of Theorem 41.2 of [2].

Suppose E satisfies a') and b'), then a continuous function φ defined on an open F_{σ} -set F has a continuous extension ψ over E, provided ψ may take values $+\infty$ and $-\infty$.

To prove this it is sufficient to show that φ has a continuous extension over U(F). Putting $F_{\alpha} = \{x | \varphi(x) < \alpha\} (+\infty > \alpha > -\infty)$ since F is an open F_{σ} set in E, F_{α} is also an open F_{σ} -set in E. Hence by a') we can find the smallest open-closed set U_{α} containing F_{α} for all α , and $\{U_{\alpha}\}$ has the properties $U_{\alpha} \supset U_{\beta}(\alpha > \beta)$ and $U(F) \supset \bigcup_{+\infty > \alpha > -\infty} U_{\alpha} \supset F$. Similarly to the latter part of the proof of Theorem 1 we define $\varphi(x) = \inf_{x \in U_{\alpha}} \alpha \ (x \in \bigcup_{+\infty > \alpha > -\infty} U_{\alpha}), \ \varphi(x) = +\infty \ (x \in U(F) - \bigcup_{+\infty > \alpha > -\infty} U_{\alpha})$, then we see easily φ is a continuous function on U(F) and $\varphi \ge \varphi$ on F. Since by b') $\{x | \varphi(x) > \alpha\}_{\frown} F_{\alpha} = \varphi$ implies $\{x | \varphi(x) > \alpha\}_{\frown} U_{\alpha} = \phi$, we have $\varphi \ge \varphi$ on F.

References

- H. NAKANO: Uber das System aller stetigen Funktionen auf einem topologishen Raum, Proc. Imp. Acad. Tokyo, 17 (1941) pp. 308-310.
- [2] H. NAKANO: Modern spectral theory, Tokyo Mathematical Book Series, Vol. 2, Tokyo, (1950).
- [3] L. GILLMAN, M. JERISON: Rings of continuous functions, The University Series in Higher Mathematics (1960).

(Received July 16, 1963)