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Introduction. As has been observed by Jacobson the set $\mathfrak{V}=\mathfrak{P}(A)$ of
all primitive ideals of a ring $A$ may be made into a topological space
endowed with Stone’s topology, and recently, concerning topological pro-
perties of the structure space, Suli\’{n}ski [8] obtained some structure theo-
rems of a semi-simple ring which is represented as a subdirect sum of
simple rings with unity.

In this note, we shall extend his results to semi-prime rings and
give necessary and sufficient conditions for a semi-prime ring to have
a minimal decomposition set.

\S 1. First of all, we shall prove the following extension of $\sim[1$ ,
Theorem 1].

Lemma 1. Let $T$ be an ideal of a ring $A$ .
(1) If $p$ is a prime ideal of A then $T_{\cap}p$ is a prime ideal of the

ring $T$ and if moreover $p$ does not contain $T$ then $(p\cap T:T)^{1)}=p$ .
(2)2) If $p_{1}$ is a prime ideal of the ring $T$, then there exists a prime

ideal $p$ of $A$ such that $p\cap T=p_{1}$ and, if $p_{1}\neq T$, then $(p_{1} : T)=p$ .
Proof. (1) By [6, Lemma 2], $T\cap p$ is a prime ideal of the ring $T$.

Assume that $p$ does not contain $T$. Then $T\cdot(p\cap T:T)\subseteqq p$ implies $(p\cap T:T)$

$\subseteqq p$ and hence we have $(p\cap T:T)=p$ .
(2) Let $B$ be the ideal of $A$ generated by $p_{1}$ and let $x$ be an arbi-

trary element of $B_{\cap}T$. Since $xTxTx\subseteqq TBT\subseteqq p_{1}$ and $p_{1}$ is a prime ideal
in $T,$ $x$ belongs to $p_{1}$ , and hence $T\leftrightarrow B=p_{1}$ . The complement $C$ of $p_{1}$ in
$T$ is an m-system (in $T$ whence) in $A$ and does not meet $B$ . By Zorn’s
lemma, there exists a prime ideal $p$ of $A$ containing $B$ such that $p$ does
not meet $C$ and satisfies $T_{\cap}p=p_{1}$ . Moreover, if $p_{1}\neq T$ then $P$ can not
contain $T$, and hence, by (1), we have $(p_{1} : T)=p$ .

A ring $A$ is called a semi-prime ring if it is isomorphic to a sub-
direct sum of prime rings, $i.e.$ , if there exist prime ideals P. $(\alpha\in\Lambda)$ of

1) We shall denote by $(p\leftrightarrow T:T)$ the set $\{a\epsilon A;Ta\subseteqq p\leftrightarrow T\}$ .
2) Cf. [3] and [7].
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$A$ such that $\bigcap_{a\in A}p_{\alpha}=0$ .
As is easily seen, the annihilator of a non-zero ideal in a semi-prime

ring is always represented as the intersection of all prime ideals which
contain the annihilator. However, we have

Corollary 1. A non-zero ideal $T$ of a semi-prime ring $A$ is a prime
ring if and only if the annihilator $(0:T)$ is a prime ideal in $A$ .

Let $A$ be an arbitrary ring and let $\mathfrak{Q}=\mathfrak{Q}(A)$ be the set of all prime
ideals of $A$ other than $A$ . For any non-empty subset $\mathfrak{N}$ of $\mathfrak{Q}$ , we define
the closure $\overline{\mathfrak{N}}$ of $\mathfrak{N}$ as the totality of those prime ideals $p$ in $\mathfrak{Q}$ which
contains $I(\mathfrak{N})$ , where $I(\mathfrak{N})$ denotes the intersection of all prime ideals
belonging to $\mathfrak{N}$ . $\mathfrak{Q}$ becomes a topological space relative to this closure

operation $\mathfrak{N}\rightarrow\overline{\mathfrak{N}}$ , and is called the structure space of the ring $A$ .
For the lower radical $R=I(\mathfrak{Q})$ of $A$ , we set $\tau*=(R:T)$ for any

ideal $T$ of $A$ . If $A$ is semi-prime, then the lower radical $R$ of $A$ is
equal to $0$ and hence $\tau*$ coincides with the right annihilator $r(T)$ of $T$

as well as the left annihilator $l(T)$ of $T$.
Lemma 2. Let $A$ be a ring. Then, for any subset $\mathfrak{N}$ of $\mathfrak{Q}$ , we have

$I(\mathfrak{N})^{*}=I(\mathfrak{Q}-\overline{\mathfrak{N}})^{4)}$ .
In particular, we have $I(\mathfrak{N})^{*}\cap I(\mathfrak{N})=R$ .
Proof. $I(\mathfrak{N})\cdot I(\mathfrak{Q}-\overline{\mathfrak{N}})\subseteqq I(\mathfrak{N})\cap I(\mathfrak{Q}-\overline{\mathfrak{N}})=I(\overline{\mathfrak{N}})\cap I(\mathfrak{Q}-\overline{\mathfrak{N}})=I(\mathfrak{Q})=R$.

Conversely, for any prime ideal $p\in \mathfrak{Q}-\overline{\mathfrak{N}}$ , we have $I(\mathfrak{N})\cdot I(\mathfrak{N})^{*}\subseteqq R\subseteqq p$ and

hence $I(\mathfrak{N})^{\star}\subseteqq p$ , thus $I(\mathfrak{N})^{\star}\subseteqq I(\overline{\mathfrak{Q}}-\mathfrak{N})$ .
Lemma 3. Let $A$ be a ring and let $p$ be in $\mathfrak{Q}$ . Then the following

conditions are equivalent:
(1) $p^{*}\neq R$ .
(2) $p^{**}=p$ .
(3) $\overline{\{p\}}$ contains a non-empty open subset $\mathfrak{N}$ of Q.

Moreover, if this is the case, $p$ is a minimal prime ideal of $A$ .
Proof. (1) $\Leftrightarrow(2)$ . Assume that $p^{*}\neq R$ . Then $p^{*}\ovalbox{\tt\small REJECT} p$ and, since $p^{*}p^{**}$

$\subseteqq R\subseteqq p$ , we have $p^{**}\subseteqq p$ and hence $p^{**}=p$ . Conversely, assume that
$p^{**}=p$ and $p^{*}=R$ . Then $p=A$ , a contradiction.

(1) $\Leftrightarrow(3)$ . $p^{*}\neq R$ means $\overline{\mathfrak{Q}-\overline{\{p\}}}\neq \mathfrak{Q}$ . Thus, $\mathfrak{N}=\mathfrak{Q}-\overline{\mathfrak{Q}-\{\overline{p\}}}(\subseteqq\overline{\{p\}})$ is
$--$ $-$

3) In a semi-prime ring, the right annihilator $r(T)$ of any ideal $T$ coincides with its left
annihilator $l(T)$ .

4) We shall denote by $Q-\mathfrak{N}-$ the set theoretical complement of $\backslash $)$1-$ in Q.
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open. Conversely, let $\mathfrak{N}$ be a non-empty open s’ubset of $\overline{\{p}$}. Then $p^{\star}$

$=I(\mathfrak{Q}-\overline{\{p\}})\supseteqq I(\mathfrak{Q}-\mathfrak{N})^{\supset}\neq R$ because $\mathfrak{Q}-\mathfrak{N}$ is closed. Thus $p^{*}\neq R$ .
Now assume that $p^{*\pm}R$ and let $p_{1}$ be a prime ideal of $A$ such that

$ p_{1}\neq p\subset$ . Since $p_{1}\not\in\overline{\{p\}},$ $p^{*}=I(\mathfrak{Q}-\overline{\{p\}})\subseteqq p_{1}$ , and hence $p^{*}\subseteqq p$ , which is a
contradiction.

Corollary 2. Let $A$ be a semi-prime ring and let $p$ be a prime ideal
in $A$ such that $p^{\star}\neq 0$ . Then $p^{*}$ is a prime ring, and is maximal in
the set of those ideals of A which are prime as ring.

Proof. From. Lemma 3 and Corollary 1, $p^{*}$ is a prime ring. Let $T$

be an ideal in $A$ which is prime as a ring and $T=\neq p^{*}\backslash $ . Then $T\cap p$ and
$p^{*}$ are non zero ideals in the prime ring $T$ and $(T’\neg p)\cdot p^{*}=0$ . This is
a contradiction.

Lemma 4. Let $A$ be a ring and let $\mathfrak{N}=\{p_{\alpha}\}_{\alpha\in A}$, be a set of different
minimal prime ideals in A. If $I(\mathfrak{N})=0$ then $r(p_{\alpha})=l(p_{a})=I(\mathfrak{N}-\{p_{\alpha}\})$ for
each $\alpha\in\Lambda^{\prime}$ .

Proof. Let $p_{a}$ be in R. Then for each $p_{\beta}$ in $\mathfrak{N}$ , we have either
$p_{\alpha}\subseteqq p_{\beta}$ or $r(p_{\alpha})\subseteqq p_{\beta}$ . Since $p_{\beta}$ is a minimal prime ideal in $A,$ $r(p_{a})\subseteqq p_{\beta}$

for all $p_{\beta}$ with $\beta\neq\alpha$ . Therefore $r(p_{\alpha})(\subseteqq whence)=I(\mathfrak{N}-\{p_{\alpha}\})$ . Similarly,
we have $l(p_{\alpha})=I(\mathfrak{N}-\{p_{a}\})$ .

\S 2. Definition 1. Let $A$ be a ring. We shall denote by $\mathfrak{D}$ the set
of all prime ideals $p\in \mathfrak{Q}$ such that $p^{*}\neq R$ , and call it the deeomposition
set for $A$ .

Definition 2. Let $A$ be a semi-prime ring. A subset $\mathfrak{N}$ of $\mathfrak{Q}$ will
be ealled a minimal decomposition set for $A$ if $I(\mathfrak{N})=0$ and $I(\mathfrak{N}-\{p\})$

$\neq 0$ for all $p$ in $\mathfrak{N}$ (Goldie [1]).

In [4, Theorem 3], one of the present authors proved that a semi-
prime ring has at most one minimal decomposition set for $A$ , and, if it
exists, it should coincide with $\mathfrak{D}$ .

Now we shall give necessary and sufficient conditions for a semi-
prime ring to have a minimal decomposition set.

Theorem 1. If $A$ is a semi-prime ring, then the following condi-
tions are equivalent:

(1) There exists a minimal decomposition set $\mathfrak{M}$ for $A_{4}$

(2) Every non-zero ideal $T$ of $A$ eontains a non-zero ideal $B$ of the
ring $T$ which is prime as a ring.

(3) The annihilator of the ideal generated by all those non-zero
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ideals of A which are prime as ring is zero.
(4) There exists a subset $\mathfrak{N}$ of $\mathfrak{D}$ such that $I(\mathfrak{N})=0$ .
Proof. (1) $\rightarrow(2)$ . Let $T$ be any non-zero ideal of $A$ . There exists

a prime ideal $p$ in $\mathfrak{M}$ such that T$ $p$ . Then $T\cdot p^{*}$ is a non-zero ideal
of the ring $T$. For otherwise, $p^{*}\neq R$ and so $p^{\star*}=p$ by Lemma 3, which
would imply $T\subseteqq p$ . Besides, $T\cdot p^{*}$ is prime as a ring by Lemma 1 (1)
because of $(T\cdot p^{*})\leftrightarrow p\subseteqq(T\leftrightarrow p^{*})\cap p=T\cap(p^{*}\cap p)=0$ .

(2) $\rightarrow(3)$ . It is easily seen, by Corollaries 1 and 2, that the ideal
generated by all those non-zero ideals of $A$ which are prime as ring
coincides with the ideal $\sum p^{*}$ generated by all $p^{*}$ with $p\in \mathfrak{D}$ . Now
$(\sum p^{*})^{*}=\cap p^{**}=\cap p=I(\mathfrak{D})$ by Lemma 3.

Next, suppose that $I(\mathfrak{D})\neq 0$ . Then, by our assumption, there exists
a non-zero ideal $B$ of the ring $I(\mathfrak{D})$ which is prime as a ring. By
Lemma 1 (2), there exists a prime ideal $p\not\in \mathfrak{D}$ such that $0=(p\cap I(\mathfrak{D}))\cap B$

$=p\cap B$ . $B$ contains a non-zero ideal $B^{\prime}$ of $A$ by [2, Proposition IV. 3.2].

Since $B^{\prime}\leftrightarrow p=0$ , we have $p^{*}\supseteqq B^{\prime}\neq 0$ , which contr\’adicts $p\not\in \mathfrak{D}$ .
(3) $\rightarrow(4)$ . This is clear by the proof of (2) $\rightarrow(3)$ .
(4) $\rightarrow(1)$ . Since every prime ideal $p$ belonging to $\mathfrak{D}$ is a minimal

prime ideal by Lemma 3, Lemma 4 yields our implication.
Corresponding to [8, Theorem 5], we have

Theorem 2. Let $A$ be a semi-prime ring and let $T$ be a non-zero
ideal of A. Then we have $I(\mathfrak{D}_{T})=I(\mathfrak{D})\cap T$ , where $\mathfrak{D}_{T}$ denotes the de-
composition set for the ring $T$.

Proof. Let $\mathfrak{N}$ be the set of all. $p$ in $\mathfrak{Q}$ such that $p\supseteqq T$. Then we
have $I(\mathfrak{D}\cap T=I\mathfrak{D}\mathfrak{D}\mathfrak{N}))\cap I(\mathfrak{D}\sim \mathfrak{N})\cap T=I(\mathfrak{D}-(\mathfrak{D}\cap \mathfrak{N}))\cap T$. Now as-
sume that $p^{\prime}\in \mathfrak{D}-(\mathfrak{D}\cap \mathfrak{N})$ and $(T\leftrightarrow p^{\prime})^{*}\cap T=0$ . Then $(T\cap p^{\prime})^{*}\subseteqq p^{\prime}$ because
$p^{\prime}\ovalbox{\tt\small REJECT} T$ contradicting $p^{\prime}\in \mathfrak{D}$ . Hence, $(T\cap p^{\prime})^{*}\cap T\neq 0$ and we have $T\cap p^{\prime}\in \mathfrak{D}_{T}$ .
Thus $I(\mathfrak{D})\cap T=I(\mathfrak{D}-(\mathfrak{D}\cap \mathfrak{N}))\cap T\supseteqq I(\mathfrak{D}_{T})$ .

Conversely, let $p_{1}$ be in $\mathfrak{D}_{T}$ . Then there exists, by Lemma 1 (2), a
prime ideal $p$ in $\mathfrak{Q}$ such that $T\cap p=p_{1}$ and $(T\cap p)^{*_{\cap}}T\neq 0$ . Since
$(((T\cap p)^{*}\cap T)\cap p)^{2}=((T\cap p)^{*}\cap(T_{\cap}p))^{2}\subseteqq(T\cap p)^{*}\cdot(T\cap p)=0,$ $((T\cap p)^{*}\cap T)$

$\cap p=0$ and hence $(T\cap p)^{*}\cap T\subseteqq p^{*}$ . Thus $p^{*}\neq 0$ , showing that $I(\mathfrak{D}_{T})$

contains $T\cap I(\mathfrak{D})$ . This completes our proof.
As a corollary of Theorem 2, we have the following second necessary

and sufficient condition for a semi-prime ring to have a minimal de-
composition set.

Corollary 3. A semi-prime ring $A$ has a minimal decomposition set
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if and only if $A$ has an ideal $T$ such that $T^{*}=0$ and $T$ has a minimal
decomposition set.

Proof. Let $\mathfrak{M}$ be a minimal decomposition set for $A$ and let $T$

$=\sum p_{\alpha}^{*}$ with $p_{\alpha}\in \mathfrak{M}$ . Then $T^{*}=0$ .by Theorem 1 and for $\alpha\neq\beta,$ $p_{\alpha}^{*}\cap p_{\beta}^{*}$

$\subseteqq p_{\alpha}^{*}\cap p_{\alpha}=0$ since $p_{\beta}^{*}=I(\mathfrak{M}-\{p_{\beta}\})\subseteqq p_{\alpha}$ by Lemma 4. Thus for each $\alpha,$
$T$

$=p_{a}^{*}\oplus T$. with $T_{\alpha}=\sum_{\beta\neq\alpha}p_{\beta}^{*}$ . Moreover, $\cap T_{a}\subseteqq\cap p_{\alpha}=I(\mathfrak{M})=0$ . Hence,
$T$ is isomorphic to a special subdirect sum of $p_{a}^{*}$ with $p_{\alpha}\in \mathfrak{M}$ , by [5,
Theorem 15]. Therefore, $T$ has a minimal decomposition set for $T$ by
[4, Corollary to Theorem 4].

Conversely, let $T$ be an ideal of $A$ such that $\tau*=0$ and $I(\mathfrak{D}_{T})=0$ .
By Theorem 2, $I(\mathfrak{D})\cap T=I(\mathfrak{D}_{T})=0$ and hence $I(\mathfrak{D})=0$ because $\tau*=0$ . By
Theorem 1 this completes our proof.

Definition 3. Let $A$ be a ring. We shall denote by $\mathfrak{D}_{0}$ the intersec-
tion of all dense subsets of $\mathfrak{Q}$ and call it the minimal set for $A$ .
(Suli\’{n}ski [8]).

Lemma 5. Let $A$ be a ring. Then $p\in \mathfrak{D}_{0}$ if and only if $\{p\}$ is open
$in$ Q.

Proof. If we assume that $\{p\}$ is not open, then $\overline{\mathfrak{Q}-\{p\}}=\mathfrak{Q}$ , and
hence $\mathfrak{Q}-\{p\}\supseteqq \mathfrak{D}_{0}$ . Thus $p\not\in \mathfrak{D}_{0}$ .

Conversely, assume that $\{p\}$ is open in $\mathfrak{Q}$ and $p*\mathfrak{D}_{0}$ . Then there
exists a dense subset $\mathfrak{N}$ of $\mathfrak{Q}$ such that $\mathfrak{N}\$ p$ . Accordingly $\mathfrak{N}\subseteqq \mathfrak{Q}-\{p\}$

and $\mathfrak{Q}=\overline{\mathfrak{N}}\subseteqq\overline{\mathfrak{Q}-\{p\}}=\mathfrak{Q}-\{p\}$ . This contradiction shows $p\in \mathfrak{D}_{0}$ .
In general, the minimal set $\mathfrak{D}_{0}$ is contained in the decomposition set

$\mathfrak{D}$ by Lemmas 3 and 5. However, in case the structure space of $A$ is
a $T_{1}$-space, $\mathfrak{D}$ coincides with $\mathfrak{D}_{0}$ .

The following is an extension of [8, Theorem 7].

Theorem 3. Let $A$ be a semi-prime ring. Then the following condi-
tions are equivalent:

(1) $\mathfrak{D}$ is empty.
(2) $A$ has no non-zero ideal which is prime as a ring.

Proof. Assume that $\mathfrak{D}$ is empty and there exists a non-zero ideal
$T$ of $A$ which is prime as a ring. Then, by Lemma 1 (2), there is a
prime ideal $p$ of $A$ such that $T\leftrightarrow p=0$ . Hence $p^{*}\supseteqq T\neq 0$ , a contradiction.

The converse is easy from Corollary 2.

\S 3. Finally, we shall consider the case where $I(\mathfrak{D})\neq 0$ and $\mathfrak{D}\neq\phi$ ,
that is, the case where $A$ is neither special n\’or completely non-special in
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Suli\’{n}ski’s sense [8].

Lemma 6. Let $A$ be a semi-prime ring and let $T$ be a non-zero
ideal of $A$ such that $\tau*\neq 0$ .

(1) If the ring $T$ has a minimal decomposition set, then the semi-
prime ring $A/T^{*5)}$ has a minimal decomposition set too.

(2) If both $T$ and $T^{*}$ have minimal decomposition sets, then the
ring $A$ has a minimal decomposition set too.

Proof. Let $\mathfrak{N}$ and $\mathfrak{N}^{\prime}$ be the sets of all prime ideals $p\in \mathfrak{Q}$ such that
$p\supseteqq T$ and $p\supseteqq T^{*}$ respectively. Since $T\neq 0$ and $T^{*}\neq 0$ , both $\mathfrak{N}$ and $\mathfrak{N}^{\prime}$

are not empty, and $\mathfrak{N}^{\cup}\mathfrak{N}^{\prime}=\mathfrak{Q}$ and $(\mathfrak{D}\sim \mathfrak{N})\cap(\mathfrak{D}\sim \mathfrak{N}^{\prime})=\phi$ .
Let $\tilde{p}$ be a prime ideal in the ring $A/\tau*$ . Then there exists a prime

ideal $p\in \mathfrak{N}^{\prime}$ such that $p/T^{*}=\tilde{p}$ , and $\tilde{p}^{*6)}=0$ if and only if $(T^{*} : p)=T^{*}$ .
(1) Suppose that $T$ has a minimal decomposition set. Then, by

Theorems 1 and 2, $0=I(\mathfrak{D}_{T})=I(\mathfrak{D})\cap T=I(\mathfrak{D}-(\mathfrak{D}\cap \mathfrak{N}))\cap T$ as was seen in
the proof of Theorem 2 and these are equal to $I(\mathfrak{D}\cap \mathfrak{N}^{\prime})\cap T$. Hence
$I(\mathfrak{D}\cap \mathfrak{N}^{\prime})$ ( $\subseteqq T^{*}$ whence) $=T^{*}$ . Now, let $p$ be in $\mathfrak{D}_{\cap}\mathfrak{N}^{\prime}$ . Then $\tilde{p}^{*}\neq 0$ .
For otherwise, we would have $p^{*}\subseteqq(T^{*} : p)=T^{*}\subseteqq p$ . Thus $\tilde{p}$ is contained
in the decomposition set of the ring $A/\tau*$ . Therefore $I(\mathfrak{D}_{A/T^{*}})\subseteqq I(\mathfrak{D}\cap \mathfrak{N}^{\prime})/\tau*$

and hence we have $I(\mathfrak{D}_{A/T^{*}})=0$ .
(2) Suppose that both $T$ and $T^{*}$ have minimal decomposition sets.

Then, $0=I(\mathfrak{D}_{T^{*}}\backslash )=I(\mathfrak{D})\cap T^{*}=I(\mathfrak{D})\cap I(\mathfrak{D}\cap \mathfrak{N}^{\prime})=I(\mathfrak{D})$ since $\tau*=I(\mathfrak{D}\cap \mathfrak{N}^{\prime})$

as was seen above. Thus, $A$ has a minimal decomposition set.
Combining Lemma 6 (1) with Theorem 2, we obtain a generalization

of [1, Theorem 6].

Lemma 7. Let $A$ be a semi-prime ring and let $T$ be a non-zero
ideal of $A$ such that $\tau*\neq 0$ .

(1) If the decomposition set of the ring $T$ is empty, then that of the
semi-prime ring $A/T^{*}$ is also empty.

(2) If the decomposition sets of both $T$ and $\tau*$ are empty, then that
of the ring $A$ is also empty.

Proof. (1) Suppose that $\mathfrak{D}_{T}$ is empty. Then by Theorem 2 $I(\mathfrak{D})$

$\supseteqq I(\mathfrak{D})\cap T=I(\mathfrak{D}_{T})=T$ and hence $I(\mathfrak{D})^{*}\subseteqq T^{*}$ . Let $\mathfrak{N}^{\prime}$ be as in the proof
of Lemma 6. Then $\mathfrak{D}_{\cap}\mathfrak{N}^{\prime}=\phi$ . For otherwise, there would exist a prime
ideal $P$ such that $p\in \mathfrak{D}$ and $p\supseteqq T^{*}$ . Then $p\supseteqq T^{*}\supseteqq I(\mathfrak{D})^{*}$ , and hence $p^{*}$

5) As is remarked in \S 1, $T^{*}=I(\mathfrak{N}),$ $\mathfrak{R}=\{p\epsilon \mathfrak{Q};p\supseteqq T^{*}\}$ , and hence the ring $A/T^{*}$ is semi-
prime.

6) Since no confusion can arise, we shall use this notation in the residue class ring $A/T^{*}$ .
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$\subseteqq I(\mathfrak{D})\subseteqq p$ , because $I(\mathfrak{D})^{**}=I(\mathfrak{D})$ , which is a contradiction. Let $p$ be in
$\mathfrak{N}^{\prime}$ . Then $p\cdot(T^{*} : p)\subseteqq\tau*,$ $ p\cdot$ ( $T^{*}:$ P) $\cdot T=0,$ $(T^{*} : p)\cdot T\subseteqq p^{*}=0$ and hence
( $T^{*}:$ p) $(\subseteqq whence)=T^{*}$ . This completes our proof.

(2) Suppose that both $\mathfrak{D}_{T}$ and $\mathfrak{D}_{T^{*}}$ are empty. Then we have, by
Theorem 2, $T=I(\mathfrak{D}_{T})=I(\mathfrak{D})\cap T\subseteqq I(\mathfrak{D})$ and $T^{*}=I(\mathfrak{D}_{T^{*}})=I(\mathfrak{D})\cap T^{*}\subseteqq I(\mathfrak{D})$ .
Therefore $I(\mathfrak{D})\supseteqq\tau*\supseteqq I(\mathfrak{D})^{*},$ $(I(\mathfrak{D})^{*})^{2}=0$ , and hence $I(\mathfrak{D})^{*}=0$ . Thus $I(\mathfrak{D})$

$=I(\mathfrak{D})^{**}=A$ . This completes our proof.
As an easy consequence of Lemmas 6 and 7, we have the following
Theorem 4. Let $A$ be a semi-prime ring and let $I(\mathfrak{D})\neq 0$ $and\neq A$ .
(1) The ring $I(\mathfrak{D})^{*}$ has a minimal decomposition set.
(2) The decomposition set of the ring $I(\mathfrak{D})$ is empty.
(3)7) The semi-prime ring $A/I(\mathfrak{D})$ has a minimal decomposition set.
(4)7) The decomposition set of the semi-prime ring $A/I(\mathfrak{D})^{*}$ is empty.

Proof. (1), (2) and (3), (4) follow from Theorem 2 and Lemmas 6
(1) and 7 (1) respectively.
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