NOTE ON DECOMPOSITION SETS OF SEMI-PRIME RINGS

By

Kazuo KISHIMOTO and Yoshiki KURATA

Introduction. As has been observed by Jacobson the set $\mathfrak{P} = \mathfrak{P}(A)$ of all primitive ideals of a ring A may be made into a topological space endowed with Stone's topology, and recently, concerning topological properties of the structure space, Suliński [8] obtained some structure theorems of a semi-simple ring which is represented as a subdirect sum of simple rings with unity.

In this note, we shall extend his results to semi-prime rings and give necessary and sufficient conditions for a semi-prime ring to have a minimal decomposition set.

§ 1. First of all, we shall prove the following extension of [1, Theorem 1].

Lemma 1. Let T be an ideal of a ring A.

(1) If p is a prime ideal of A then $T \frown p$ is a prime ideal of the ring T and if moreover p does not contain T then $(p \frown T: T)^{1} = p$.

 $(2)^{2}$ If p_1 is a prime ideal of the ring T, then there exists a prime ideal p of A such that $p \frown T = p_1$ and, if $p_1 \neq T$, then $(p_1: T) = p$.

Proof. (1) By [6, Lemma 2], $T \frown p$ is a prime ideal of the ring T. Assume that p does not contain T. Then $T \cdot (p \frown T: T) \subseteq p$ implies $(p \frown T: T) \subseteq p$ and hence we have $(p \frown T: T) = p$.

(2) Let B be the ideal of A generated by p_1 and let x be an arbitrary element of $B \frown T$. Since $xTxTx \subseteq TBT \subseteq p_1$ and p_1 is a prime ideal in T, x belongs to p_1 , and hence $T \frown B = p_1$. The complement C of p_1 in T is an *m*-system (in T whence) in A and does not meet B. By Zorn's lemma, there exists a prime ideal p of A containing B such that p does not meet C and satisfies $T \frown p = p_1$. Moreover, if $p_1 \neq T$ then p can not contain T, and hence, by (1), we have $(p_1:T) = p$.

A ring A is called a semi-prime ring if it is isomorphic to a subdirect sum of prime rings, i.e., if there exist prime ideals p_{α} ($\alpha \in \Lambda$) of

2) Cf. [3] and [7].

¹⁾ We shall denote by $(p \frown T: T)$ the set $\{a \in A; Ta \subseteq p \frown T\}$.

A such that $\bigcap_{\alpha \in A} p_{\alpha} = 0$.

As is easily seen, the annihilator³⁾ of a non-zero ideal in a semi-prime ring is always represented as the intersection of all prime ideals which contain the annihilator. However, we have

Corollary 1. A non-zero ideal T of a semi-prime ring A is a prime ring if and only if the annihilator (0: T) is a prime ideal in A.

Let A be an arbitrary ring and let $\mathfrak{Q} = \mathfrak{Q}(A)$ be the set of all prime ideals of A other than A. For any non-empty subset \mathfrak{N} of \mathfrak{Q} , we define the closure $\overline{\mathfrak{N}}$ of \mathfrak{N} as the totality of those prime ideals p in \mathfrak{Q} which contains $I(\mathfrak{N})$, where $I(\mathfrak{N})$ denotes the intersection of all prime ideals belonging to \mathfrak{N} . \mathfrak{Q} becomes a topological space relative to this closure operation $\mathfrak{N} \to \overline{\mathfrak{N}}$, and is called the *structure space* of the ring A.

For the lower radical $R=I(\mathfrak{Q})$ of A, we set $T^*=(R:T)$ for any ideal T of A. If A is semi-prime, then the lower radical R of A is equal to 0 and hence T^* coincides with the right annihilator r(T) of T as well as the left annihilator l(T) of T.

Lemma 2. Let A be a ring. Then, for any subset \Re of Ω , we have $I(\Re)^* = I(\Omega - \overline{\Re})^{4}$.

In particular, we have $I(\mathfrak{N})^* \frown I(\mathfrak{N}) = R$.

Proof. $I(\mathfrak{N}) \cdot I(\mathfrak{Q} - \overline{\mathfrak{N}}) \subseteq I(\mathfrak{N}) \cap I(\mathfrak{Q} - \overline{\mathfrak{N}}) = I(\overline{\mathfrak{N}}) \cap I(\mathfrak{Q} - \overline{\mathfrak{N}}) = I(\mathfrak{Q}) = R.$ Conversely, for any prime ideal $p \in \mathfrak{Q} - \overline{\mathfrak{N}}$, we have $I(\mathfrak{N}) \cdot I(\mathfrak{N})^* \subseteq R \subseteq p$ and hence $I(\mathfrak{N})^* \subseteq p$, thus $I(\mathfrak{N})^* \subseteq I(\overline{\mathfrak{Q}} - \mathfrak{N})$.

Lemma 3. Let A be a ring and let p be in Ω . Then the following conditions are equivalent:

(1) $p^* \neq R$.

(2) $p^{**} = p$.

(3) $\overline{\{p\}}$ contains a non-empty open subset \mathfrak{N} of \mathfrak{Q} .

Moreover, if this is the case, p is a minimal prime ideal of A.

Proof. (1) \gtrsim (2). Assume that $p^* \neq R$. Then $p^* \notin p$ and, since $p^*p^{**} \subseteq R \subseteq p$, we have $p^{**} \subseteq p$ and hence $p^{**} = p$. Conversely, assume that $p^{**} = p$ and $p^* = R$. Then p = A, a contradiction.

(1) \gtrsim (3). $p^* \neq R$ means $\overline{\Omega - \{\overline{p}\}} \neq \Omega$. Thus, $\Re = \Omega - \overline{\Omega} - \{\overline{p}\}$ ($\subseteq \{\overline{p}\}$) is

3) In a semi-prime ring, the right annihilator r(T) of any ideal T coincides with its left annihilator l(T).

4) We shall denote by $\Omega - \overline{\mathfrak{n}}$ the set theoretical complement of $\overline{\mathfrak{n}}$ in Ω .

open. Conversely, let \mathfrak{N} be a non-empty open subset of $\{\overline{p}\}$. Then $p^* = I(\mathfrak{Q} - \{\overline{p}\}) \supseteq I(\mathfrak{Q} - \mathfrak{N}) \not\supseteq R$ because $\mathfrak{Q} - \mathfrak{N}$ is closed. Thus $p^* \neq R$.

Now assume that $p^* \neq R$ and let p_1 be a prime ideal of A such that $p_1 \cong p$. Since $p_1 \notin \overline{\{p\}}$, $p^* = I(\Omega - \overline{\{p\}}) \subseteq p_1$, and hence $p^* \subseteq p$, which is a contradiction.

Corollary 2. Let A be a semi-prime ring and let p be a prime ideal in A such that $p^* \neq 0$. Then p^* is a prime ring, and is maximal in the set of those ideals of A which are prime as ring.

Proof. From Lemma 3 and Corollary 1, p^* is a prime ring. Let T be an ideal in A which is prime as a ring and $T \not\equiv p^*$. Then $T \frown p$ and p^* are non zero ideals in the prime ring T and $(T \frown p) \cdot p^* = 0$. This is a contradiction.

Lemma 4. Let A be a ring and let $\mathfrak{N} = \{p_{\alpha}\}_{\alpha \in A}$, be a set of different minimal prime ideals in A. If $I(\mathfrak{N})=0$ then $r(p_{\alpha})=l(p_{\alpha})=I(\mathfrak{N}-\{p_{\alpha}\})$ for each $\alpha \in \Lambda'$.

Proof. Let p_{α} be in \mathfrak{N} . Then for each p_{β} in \mathfrak{N} , we have either $p_{\alpha} \subseteq p_{\beta}$ or $r(p_{\alpha}) \subseteq p_{\beta}$. Since p_{β} is a minimal prime ideal in A, $r(p_{\alpha}) \subseteq p_{\beta}$ for all p_{β} with $\beta \neq \alpha$. Therefore $r(p_{\alpha})$ (\subseteq whence)= $I(\mathfrak{N}-\{p_{\alpha}\})$. Similarly, we have $l(p_{\alpha})=I(\mathfrak{N}-\{p_{\alpha}\})$.

§ 2. Definition 1. Let A be a ring. We shall denote by \mathfrak{D} the set of all prime ideals $p \in \mathfrak{Q}$ such that $p^* \neq R$, and call it the decomposition set for A.

Definition 2. Let A be a semi-prime ring. A subset \mathfrak{N} of \mathfrak{Q} will be called a minimal decomposition set for A if $I(\mathfrak{N})=0$ and $I(\mathfrak{N}-\{p\})$ $\neq 0$ for all p in \mathfrak{N} (Goldie [1]).

In [4, Theorem 3], one of the present authors proved that a semiprime ring has at most one minimal decomposition set for A, and, if it exists, it should coincide with \mathfrak{D} .

Now we shall give necessary and sufficient conditions for a semiprime ring to have a minimal decomposition set.

Theorem 1. If A is a semi-prime ring, then the following conditions are equivalent:

(1) There exists a minimal decomposition set \mathfrak{M} for A.

(2) Every non-zero ideal T of A contains a non-zero ideal B of the ring T which is prime as a ring.

(3) The annihilator of the ideal generated by all those non-zero

ideals of A which are prime as ring is zero.

(4) There exists a subset \mathfrak{N} of \mathfrak{D} such that $I(\mathfrak{N})=0$.

Proof. $(1) \rightarrow (2)$. Let T be any non-zero ideal of A. There exists a prime ideal p in \mathfrak{M} such that $T \not\subseteq p$. Then $T \cdot p^*$ is a non-zero ideal of the ring T. For otherwise, $p^* \neq R$ and so $p^{**} = p$ by Lemma 3, which would imply $T \subseteq p$. Besides, $T \cdot p^*$ is prime as a ring by Lemma 1 (1) because of $(T \cdot p^*) \frown p \subseteq (T \frown p^*) \frown p = T \frown (p^* \frown p) = 0$.

 $(2) \rightarrow (3)$. It is easily seen, by Corollaries 1 and 2, that the ideal generated by all those non-zero ideals of A which are prime as ring coincides with the ideal $\sum p^*$ generated by all p^* with $p \in \mathbb{D}$. Now $(\sum p^*)^* = \bigcap p^{**} = \bigcap p = I(\mathbb{D})$ by Lemma 3.

Next, suppose that $I(\mathfrak{D}) \neq 0$. Then, by our assumption, there exists a non-zero ideal B of the ring $I(\mathfrak{D})$ which is prime as a ring. By Lemma 1 (2), there exists a prime ideal $p \notin \mathfrak{D}$ such that $0 = (p \frown I(\mathfrak{D})) \frown B$ $= p \frown B$. B contains a non-zero ideal B' of A by [2, Proposition IV. 3.2]. Since $B' \frown p = 0$, we have $p^* \supseteq B' \neq 0$, which contradicts $p \notin \mathfrak{D}$.

 $(3) \rightarrow (4)$. This is clear by the proof of $(2) \rightarrow (3)$.

 $(4) \rightarrow (1)$. Since every prime ideal p belonging to \mathfrak{D} is a minimal prime ideal by Lemma 3, Lemma 4 yields our implication.

Corresponding to [8, Theorem 5], we have

Theorem 2. Let A be a semi-prime ring and let T be a non-zero ideal of A. Then we have $I(\mathfrak{D}_T)=I(\mathfrak{D}) \frown T$, where \mathfrak{D}_T denotes the decomposition set for the ring T.

Proof. Let \mathfrak{N} be the set of all p in \mathfrak{O} such that $p \supseteq T$. Then we have $I(\mathfrak{D}) \frown T = I(\mathfrak{D} - (\mathfrak{D} \frown \mathfrak{N})) \frown I(\mathfrak{D} \frown \mathfrak{N}) \frown T = I(\mathfrak{D} - (\mathfrak{D} \frown \mathfrak{N})) \frown T$. Now assume that $p' \in \mathfrak{D} - (\mathfrak{D} \frown \mathfrak{N})$ and $(T \frown p')^* \frown T = 0$. Then $(T \frown p')^* \subseteq p'$ because $p' \supseteq T$ contradicting $p' \in \mathfrak{D}$. Hence, $(T \frown p')^* \frown T \neq 0$ and we have $T \frown p' \in \mathfrak{D}_T$. Thus $I(\mathfrak{D}) \frown T = I(\mathfrak{D} - (\mathfrak{D} \frown \mathfrak{N})) \frown T \supseteq I(\mathfrak{D}_T)$.

Conversely, let p_1 be in \mathfrak{D}_T . Then there exists, by Lemma 1 (2), a prime ideal p in \mathfrak{Q} such that $T \frown p = p_1$ and $(T \frown p)^* \frown T \neq 0$. Since $(((T \frown p)^* \frown T) \frown p)^2 = ((T \frown p)^* \frown (T \frown p))^2 \subseteq (T \frown p)^* \cdot (T \frown p) = 0$, $((T \frown p)^* \frown T)$ $\frown p = 0$ and hence $(T \frown p)^* \frown T \subseteq p^*$. Thus $p^* \neq 0$, showing that $I(\mathfrak{D}_T)$ contains $T \frown I(\mathfrak{D})$. This completes our proof.

As a corollary of Theorem 2, we have the following second necessary and sufficient condition for a semi-prime ring to have a minimal decomposition set.

Corollary 3. A semi-prime ring A has a minimal decomposition set

if and only if A has an ideal T such that $T^*=0$ and T has a minimal decomposition set.

Proof. Let \mathfrak{M} be a minimal decomposition set for A and let $T = \sum p_{\alpha}^{*}$ with $p_{\alpha} \in \mathfrak{M}$. Then $T^{*}=0$ by Theorem 1 and for $\alpha \neq \beta$, $p_{\alpha}^{*} \frown p_{\beta}^{*} \subseteq p_{\alpha}^{*} \frown p_{\alpha} = 0$ since $p_{\beta}^{*} = I(\mathfrak{M} - \{p_{\beta}\}) \subseteq p_{\alpha}$ by Lemma 4. Thus for each α , $T = p_{\alpha}^{*} \bigoplus T_{\alpha}$ with $T_{\alpha} = \sum_{\beta \neq \alpha} p_{\beta}^{*}$. Moreover, $\bigcap T_{\alpha} \subseteq \bigcap p_{\alpha} = I(\mathfrak{M}) = 0$. Hence, T is isomorphic to a special subdirect sum of p_{α}^{*} with $p_{\alpha} \in \mathfrak{M}$, by [5, Theorem 15]. Therefore, T has a minimal decomposition set for T by [4, Corollary to Theorem 4].

Conversely, let T be an ideal of A such that $T^*=0$ and $I(\mathfrak{D}_T)=0$. By Theorem 2, $I(\mathfrak{D}) \frown T = I(\mathfrak{D}_T) = 0$ and hence $I(\mathfrak{D}) = 0$ because $T^*=0$. By Theorem 1 this completes our proof.

Definition 3. Let A be a ring. We shall denote by \mathfrak{D}_0 the intersection of all dense subsets of \mathfrak{D} and call it the minimal set for A. (Suliński [8]).

Lemma 5. Let A be a ring. Then $p \in \mathfrak{D}_0$ if and only if $\{p\}$ is open in \mathfrak{Q} .

Proof. If we assume that $\{p\}$ is not open, then $\overline{\Omega-\{p\}}=\Omega$, and hence $\Omega-\{p\}\cong \mathfrak{D}_0$. Thus $p \notin \mathfrak{D}_0$.

Conversely, assume that $\{p\}$ is open in \mathbb{Q} and $p \not = \mathbb{D}_0$. Then there exists a dense subset \mathfrak{N} of \mathbb{Q} such that $\mathfrak{N} \not = p$. Accordingly $\mathfrak{N} \subseteq \mathbb{Q} - \{p\}$ and $\mathbb{Q} = \overline{\mathfrak{N}} \subseteq \overline{\mathbb{Q}} - \{p\} = \mathbb{Q} - \{p\}$. This contradiction shows $p \in \mathbb{D}_0$.

In general, the minimal set \mathfrak{D}_0 is contained in the decomposition set \mathfrak{D} by Lemmas 3 and 5. However, in case the structure space of A is a T_1 -space, \mathfrak{D} coincides with \mathfrak{D}_0 .

The following is an extension of [8, Theorem 7].

Theorem 3. Let A be a semi-prime ring. Then the following conditions are equivalent:

(1) \mathfrak{D} is empty.

(2) A has no non-zero ideal which is prime as a ring.

Proof. Assume that \mathfrak{D} is empty and there exists a non-zero ideal T of A which is prime as a ring. Then, by Lemma 1 (2), there is a prime ideal p of A such that $T \frown p = 0$. Hence $p^* \supseteq T \neq 0$, a contradiction.

The converse is easy from Corollary 2.

§ 3. Finally, we shall consider the case where $I(\mathfrak{D}) \neq 0$ and $\mathfrak{D} \neq \phi$, that is, the case where A is neither special nor completely non-special in

Suliński's sense [8].

Lemma 6. Let A be a semi-prime ring and let T be a non-zero ideal of A such that $T^* \neq 0$.

(1) If the ring T has a minimal decomposition set, then the semiprime ring A/T^{*5} has a minimal decomposition set too.

(2) If both T and T^* have minimal decomposition sets, then the ring A has a minimal decomposition set too.

Proof. Let \mathfrak{N} and \mathfrak{N}' be the sets of all prime ideals $p \in \mathfrak{Q}$ such that $p \supseteq T$ and $p \supseteq T^*$ respectively. Since $T \neq 0$ and $T^* \neq 0$, both \mathfrak{N} and \mathfrak{N}' are not empty, and $\mathfrak{N} \smile \mathfrak{N}' = \mathfrak{Q}$ and $(\mathfrak{D} \frown \mathfrak{N}) \frown (\mathfrak{D} \frown \mathfrak{N}') = \phi$.

Let \tilde{p} be a prime ideal in the ring A/T^* . Then there exists a prime ideal $p \in \mathfrak{N}'$ such that $p/T^* = \tilde{p}$, and $\tilde{p}^{*6} = 0$ if and only if $(T^*: p) = T^*$.

(1) Suppose that T has a minimal decomposition set. Then, by Theorems 1 and 2, $0=I(\mathfrak{D}_T)=I(\mathfrak{D}) \frown T=I(\mathfrak{D}-(\mathfrak{D} \frown \mathfrak{N})) \frown T$ as was seen in the proof of Theorem 2 and these are equal to $I(\mathfrak{D} \frown \mathfrak{N}') \frown T$. Hence $I(\mathfrak{D} \frown \mathfrak{N}') (\subseteq T^* \text{ whence}) = T^*$. Now, let p be in $\mathfrak{D} \frown \mathfrak{N}'$. Then $\tilde{p}^* \neq 0$. For otherwise, we would have $p^* \subseteq (T^*: p) = T^* \subseteq p$. Thus \tilde{p} is contained in the decomposition set of the ring A/T^* . Therefore $I(\mathfrak{D}_{A/T^*}) \subseteq I(\mathfrak{D} \frown \mathfrak{N}')/T^*$ and hence we have $I(\mathfrak{D}_{A/T^*}) = 0$.

(2) Suppose that both T and T^* have minimal decomposition sets. Then, $0=I(\mathfrak{D}_{T^*})=I(\mathfrak{D}) \frown T^*=I(\mathfrak{D}) \frown I(\mathfrak{D} \frown \mathfrak{N}')=I(\mathfrak{D})$ since $T^*=I(\mathfrak{D} \frown \mathfrak{N}')$ as was seen above. Thus, A has a minimal decomposition set.

Combining Lemma 6 (1) with Theorem 2, we obtain a generalization of [1, Theorem 6].

Lemma 7. Let A be a semi-prime ring and let T be a non-zero ideal of A such that $T^* \neq 0$.

(1) If the decomposition set of the ring T is empty, then that of the semi-prime ring A/T^* is also empty.

(2) If the decomposition sets of both T and T^* are empty, then that of the ring A is also empty.

Proof. (1) Suppose that \mathfrak{D}_T is empty. Then by Theorem 2 $I(\mathfrak{D}) \cong I(\mathfrak{D}) \frown T = I(\mathfrak{D}_T) = T$ and hence $I(\mathfrak{D})^* \subseteq T^*$. Let \mathfrak{N}' be as in the proof of Lemma 6. Then $\mathfrak{D} \frown \mathfrak{N}' = \phi$. For otherwise, there would exist a prime ideal p such that $p \in \mathfrak{D}$ and $p \supseteq T^*$. Then $p \supseteq T^* \supseteq I(\mathfrak{D})^*$, and hence p^*

⁵⁾ As is remarked in §1, $T^* = I(\mathfrak{N})$, $\mathfrak{N} = \{p \in \mathfrak{Q} : p \supseteq T^*\}$, and hence the ring A/T^* is semiprime.

⁶⁾ Since no confusion can arise, we shall use this notation in the residue class ring A/T^* .

 $\subseteq I(\mathfrak{D}) \subseteq p$, because $I(\mathfrak{D})^{**} = I(\mathfrak{D})$, which is a contradiction. Let p be in \mathfrak{N}' . Then $p \cdot (T^*: p) \subseteq T^*$, $p \cdot (T^*: p) \cdot T = 0$, $(T^*: p) \cdot T \subseteq p^* = 0$ and hence $(T^*: p) (\subseteq whence) = T^*$. This completes our proof.

(2) Suppose that both \mathfrak{D}_T and \mathfrak{D}_{T^*} are empty. Then we have, by Theorem 2, $T=I(\mathfrak{D}_T)=I(\mathfrak{D}) \frown T \subseteq I(\mathfrak{D})$ and $T^*=I(\mathfrak{D}_{T^*})=I(\mathfrak{D}) \frown T^* \subseteq I(\mathfrak{D})$. Therefore $I(\mathfrak{D}) \supseteq T^* \supseteq I(\mathfrak{D})^*$, $(I(\mathfrak{D})^*)^2 = 0$, and hence $I(\mathfrak{D})^* = 0$. Thus $I(\mathfrak{D}) = I(\mathfrak{D})^{**} = A$. This completes our proof.

As an easy consequence of Lemmas 6 and 7, we have the following Theorem 4. Let A be a semi-prime ring and let $I(\mathfrak{D}) \neq 0$ and $\neq A$. (1) The ring $I(\mathfrak{D})^*$ has a minimal decomposition set.

(2) The decomposition set of the ring $I(\mathfrak{D})$ is empty.

(3)⁷⁾ The semi-prime ring $A/I(\mathfrak{D})$ has a minimal decomposition set.

(4)⁷⁾ The decomposition set of the semi-prime ring $A/I(\mathfrak{D})^*$ is empty.

Proof. (1), (2) and (3), (4) follow from Theorem 2 and Lemmas 6 (1) and 7 (1) respectively.

References

- [1] A.W. GOLDIE: Decompositions of Semi-Simple Rings, J. London Math. Soc., Vol. 31 (1956), 40-48.
- [2] N. JACOBSON: Structure of Rings, Providence (1956).
- [3] C.W. KOHLS: The Space of Prime Ideals of a Ring, Fundamenta Math., Vol. 45 (1957), 17-27.
- Y. KURATA: Decompositions of Semi-Prime Rings and Jordan Isomorphisms, Osaka Math. J., Vol. 9 (1957), 189-193.
- [5] N.H. MCCOY: Subdirect Sums of Rings, Bull. Amer. Math. Soc., Vol. 53 (1947), 856 -877.
- [6] N. H. MCCOY: Prime Ideals in General Rings, Amer. J. Math., Vol. 71 (1949), 823-833.
- [7] M. NAGATA: On the Theory of Radicals in a Ring, J. Math. Soc. Japan, Vol. 3 (1951), 330-334.
- [8] A. SULIŃSKI: On Subdirect Sums of Simple Rings with Unity I, Bull. Acad. Polonaise Sci., Ser. Sci., Math., Astr. et Phys., Vol. 8 (1960), 223-228.
- [9] A. SULIŃSKI: On the Classification of Semi-Simple Rings, Bull. Acad. Polonaise Sci., Ser. Sci., Math., Astr. et Phys., Vol. 9 (1961), 1-6.

Department of Mathematics, Hokkaido University

١

(Received April 30, 1962)

7) Cf. [9].