EXAMPLES OF NON MINIMAL POINTS ON RIEMANN
SURFACES OF PLANER CHARACTER.

by

Zenjiro KURAMOCHI

The Martin’s topologies on Riemann. surfaces have been discussed by many
authors and some examples of boundary points have been given. Prof. M.
Brelot? gave a domain D in the z-plane such that there exist two sequences
Qin m=1,2,---)(¢=1,2) in D tending to g, as n—>o0, ¢,*q, which determine
the same K-Martin’s boundary point to show that the K-Martin’s topology is
not necessarily finer than the euclidean topology. Also we constructed ex-
amples in the z-plane to show that N-Martin’s topology is neither finer than
the K-Martin’s topology and K-Martin’s topology is nor finer than the N-Martin’s
topology®. As for non minimal points, R. S. Martin presented an example
of K-non minimal point in 3-dim. euclidean space® and we gave a Riemann
surface of infinite genus contained in the classH.2.P.” in which there exists
atleast one K- andN-non minimal point®. But the examples of non minimal
point in a domain of planer character have not been given. Mr. Ikegami
proposed the following problem :

Does there exist a non minimal point on Riemann surfaces of planer
character ¢

The purpose of the present paper is to discuss the relation between the
classes of positive harmonic functions of some classes in R and R’ when R
varies to R’ and also is to give examples of non minimal points of Riemann
surfacs of planer character.

Lemma 1. (An estimation of the harmonic measure of an arc on
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a curve). Let C be a unit circle, C: |z|<1 and let S' be a straight in C
with endpoints, A’ and B’ such that S': Imz=0, a’ <Re 2<b', where a’' =

—% and b’z—l—, Let I' be a circle in C: ]z]=~11§— Let T be a straight

on S such that T': Imz=0, —d<Re2=4. Suppose 5<1—8—. Then w(T, =),

H.M. (harmonic measure) of T with respect to C—8' satisfies

70
Ising|, =z=-—.

w(T, 2) < 0.664
T 12

Proof. Let S be a straight on the real axis, S: Im2=0, ———:];:-gRe 2=

—‘;—. Then S'DS. Let 2, be the complementary set of S in the z-plane. By
brief consideration, when & is sufficiently small, .
we see w* (T, z) has almost same value as w(7T, 2)
on I', where w*(T, z) is HM. of T with respect
to 2,. Clearly w(7,z2)=w*(T,2). Map®, by

z+L

onto £2,, where 2, is the comple-

— "
3

mentary domain of the straight: Imw=0, 0

Rew=<oo. Then I'—- a circle: lw——G—l<L Fig. 1.

Map 2, by {=4/w onto £2,: Im{>0. Also map 2, by &= g:z onto |&|<1.
Z

Then T is mapped onto 7,+ 7, and I' is mapped onto I',+ I, respectively,

where 7;: e(‘b’)for—326<<3?2(S T,: ( )for

— 325 geg 325 , I’y and I', are curves in the lower

and upper semicircles respectively. Let w*(7}, &) be
HM. of T,. Then w(T,2)< X w* (T, §). We con-
=1

@——3—6
sider w*(7T:,€8) on I'. Then w(T, &= 3
71'——2—5

where
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(-5+%)_
6 = arg ei(_i__a,,‘) 3 . (1)
ez z/—¢
20
We denote by p., the point § on I',. We shall express p, by 2. Let p,=%
on I' in the upper half plane. Then p,, the image of p, is given by Fig. 3 as
P =1€",
where r=\/_____17+80030 and
17—8 cos @
p=cos™’ __15 .
v/17—8 cos @
Let p. be the image of p,,. Then 0,=pe*,
Fig. 3. where 0=12, ¢=—§—.
Let p. be the image of p.. Then p.= Re®, (2)
where R=\/1""02—‘?"05’§n¢ , sin® = 20 cos =0,
1+0*+20sing V1+P'+20%cos 2¢ (3)
cos P = F—1 .
y1+0'+20%cos 2¢
By the shape of I, we see that R is minimal, when &= —%,,i.e. 0=%,
_ 15 . 1 J17 —1
p — 1 s =, R d R = ¥ - . 4
cos ¢ 17 sin ¢ 17 an i (4)
2R sin @ sin—:}i+ sin 36
Now by (1) ©@=tan™! 2 . Put llf'=6——3-2i. Then
R?*+ 2R sin cosi;— + cos 30
(1—R?) sin->-5 (1—R?) sin->_5
tan ¥ = 2 < 2 We have by

1+ R cos—%&—l—ZR sin@+cos%6 2+ R cos—g—é

2sin g < V2 sind. Hence

(2) and 3) (=R = g cosat (17 —8 cos't) T 15 = 5

by 5§_1% and by (4)
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2siné sin-5_§ 842 sing sin-?’—c?
U <tan¥ < 2 _ < 2

15C+R) 7 150517 ) cos 2 o
2 (5)
= 12;/—238in0 < 0.286sin@ .
15(25—417) cos—l%
Hence w* (T, &)= 0'132 d sin @, z=—% on I',. Next clearly
w(T,, 2) £ w*(T, &) on I',, whence
(T, 2) < 0.6643sin6 ~ __ e £=0=0. (6)

2 12’ =
Similar result is obtained for #<0<2z. Thus we have Lemma 1.
Lemma 2. (An estimation of harmonic measure of an arc). Let Q2 be
the semicircle: |z|=<1, Im2=0. Let S be an arc on |z|=1 with endpoints A
and B,A=1—y2 +2J2J2 —1i and B=y2 —1+2J2 /Y2 —1i. Let
;

ed

5 0<0=r. Let w(S,=z) be HM. of S with respect

I be a semicircle: ==

to Q. Then
w (S, 2) = 2 min( T_ | 24 sinﬁ) on [I'.
3 12 25
Map 2 by w=2T1 onto 2., map 2,, by {=w* onto 2, and map 2, by
—z

§=—§—:i: onto |¢|<1. Then A and B are mapped onto e and e* of &—
i

7]

plane respectively. Let p=%: 7=60=0 and let p,, p. and p. be the images
of p in w, { and &-plane. Then we have p,,=re”, where A S B
cosp=—— S . = [b+4cosh
v 25—16 cos*@ 5—4 cos@ N\
De=Pe", Fig. 4.

24 sin @ ~ 24 sin @

here 0=7* and ¢ =2¢, sin g= =
where r°and ¢ ¥, SIN @ 5516 cos’d 25

and %gpgg. (7)
PézReiO’

where sz/1+P’—2!’sin¢  sin® = 2cos ¢
14+0°+20singp V 14+0°4+20% cos’p

W%

0 (8)
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and R is minimal, when =0, i.e. r=1, P=1, sing=

24 and R———
A 25 7
‘ =

Put @=argi”;‘bf. Then by (8 6= (1+
eTi—Pe

_ 3;_;_];2 —3 ) On the other hand, we see easily
— sin
Fig. 5. tan(—2—+%)§1+s for Ogsg%, whence
egi+min( z 1K )
4 12" 4(R*—y 2 Rsin®)
By (8) and (7) 1—R)= 4P sin ¢ > 4Psing - 48 sinf, becacse

1+0°+20sing  (1+0? ~ 25

4 <1 for L <p=o.
1+ 02 9
Also by (8) @>—+m1n( ﬁsinﬁ . Hence
4 127 25
: 7z
w(T, 2) = 4 _ 4 min( T 24s1n0), . €
3 3 1 25 2
4

Lemma 3. Let C,C', C" and C" be circles, C: |z|<1, C': [z]<—§—,

C: lz[<? C. |z|<—i-2— Let I'y and I', be straights on the real axis
such that I'': a<Rez<-—0, I';: —0=<Rez=<b, where a_g—%—, b;—%

and let T be a closed set in C—C'. Let T: Imz2=0, —6<Re 2=<6 and let
U(z) be a positive harmonic function in C'—I',—1T, vanishing on ')+ 1T,
and let w(T,z) be HM. of T with respect to
C—T. Then there exists a constant M such that

MoU(z) = (supU( NVw(T,z) on oC'".

to 371, e’iﬂ
Let F= F+F and F,: =, 22 >¢9=>" | F,: £,

6 4 4 6
74” =0= 54” . MapC'—I',—TI'; onto |[§|<1 so that
2=0—>¢=0 and let I';, F, and C.” be the images
of I''+I,, Fi+F, and C'" respectively. Let CI, Fig. 6.
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be the complementary periphery of I'.. Since dist(CI', F;)>0, there exists

1—7 =K, for £€F, &=re”, whence
1—2rcos(@—¢)+7r’
min U(z)=min U(¢)=K,U,(0). Also since dist(dC”, CI';)=0, there exists

2E I, + F, ¢eF;

a const. K; such that

a const. K such that 1 <K, for £€€9C;”’, whence sup U(§)=
1—2rcos(@—¢)+1r? cesc,”
K,(1—7r*)U:(0). Hence putting M’=£‘— we have M’ min U(z)= sup U(z).
K, 2EF, + F, 2€3C" "

Put A= sup U(z) and B= min U(z). Then Bg%. Clearly U(2)= Bw(F,

z€aC’’’ 2EF, + F,
. (1
2) in C"” and by Lemma 2 U(2)=BC,siné for z=%20—, where w(F, z) is HM.
of F,+ F, with respect to C"—I',—I,—7T and C2=—4—min ., 24 .
3 12" 25
, where w(T,2) is HM. of T with

26
Lemma 1, w(7T,2)<Cdsinf for z= iZ

0.664 . w (T, 2) AC,
C and C,— . H > BC, sin 0= BC, >
respect to C an . ence U(z)= sinf= Co 'C.o
w(T, 2) %:15 (sup Ule)w(T,2) forz=2. Put M= —_MCC Then
MsU(z) = (sup Ulz)w(T, z), for == o .
2€3C" " ‘ 12

Let R be a Riemann surface with positive boundary and let {R,} be its
exhaustion with compact relative boundary R, (z=1,2,:--). Let G be a sub-
domain (in this paper we suppose the relative boundary G of G consists of
enumerably infinite number of analytic curves clustering nowhere in R). Let
P.H.(G) and P.H.(G) be the sets of positive harmonic function (is abbreviated
to PH.) in G and P.H. in G vanishing on 3G. Let U(z)eP.H.(G) and let
U,(z) be the least positive harmonic function (is abbreviated to L.P.H.) in
R—(GN(R—R,)) such that U,(z)=U(z) on GN(R—R,). Then U,(z)% a limit
function denoted by EU(z). Let V(2)eP.H.(R) and let V,(z) be the L.P.H.
in G—(R—R,) such that V,(2)=V(2) on GN(R—R,). Then V,(2)]|IV(2).
Then we have the following

Theorem 1. a). If EU(z)<od, IEU(2)=U(z)®.

b). Let V(2)eP.H.(R). Let D be a domain in R and let V,(z) be L.P.H.
in R—D such that Vy(z)=V(2) on D. Let Ulx)eP.H.(G) and EU(2)< oo.
Then liin canr-r,EU(2)=0.

6) Z. KURAMOCHI: Relations betweeh harmonic dimensions. Proc. Japan Acad. 30,
576-580 (1954).
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This means EU(z) tends to zero as' z—BNCG (BNCG means the ideal
boundary determined by a domain CG) except a set of harmonic measure
zero). '

Let V(z)eP.H.(R). If lim Vgni-r,(2)=V(z), we say Vz)=0 a.e. on
(BNCG). Next let w(z) be LP.H. in G such that w(2)=V(z) on 6G. Let
@W,(z) be LP.H. in R—(GN(R—R,)) such that @,(z)=w(z) on GN(R—R,).
If lim @, (2)=0, we say V(2) is regular relative to G. Then we have

"c). Let V(2)eP.H.(R). Suppose V(z)=0 a.e. on CGNB and V(2) is
regular relative to G. Then if IV(2)>0, then EIV(z)=V(2).

d). If EU(2)<oo, then EU(2) is regular relative to G.

e). Let V()eP.H.(R). If there exists at least one U(z)” in P.H.(G)
such that V(2)<EU(z) and if IV (2)>0s then EIV(2)= V(2).

"~ Proof of a) is given in the previous paper®.

Proof of b). Let V, ,...(2) be a PH. in R,+((R,..—R,)NG) such that
Vonii(2)=EU(2) on 9R,..NG, V, ,..(2)=0 on (3R,—G)+(dGN(R,.;—R,)).
Let V,nie(2) be a PH. in R,+((R,..—R,)NG) such that V,, .. (2)=EU(2)
on (0R,NCG)+®@GN(R,.;—R,) and V, ,..:(2)=0 on dR,,;,NG. Then

-vn,niﬂt(z) + Vn,n+'t(z) = EU(Z) .

38 T - Z. Kuramochi Y

where G "(z,p) is the Green’s function of R’, because R”- 3] 7.=R+

ng—1

NT.=R. .
In the following we suppose K-Martin’s topologies are defined in R” and
R' by ‘wsing K'(z ) and K'(z,p), where K”(z,p)= 2 B8, Kr(z,p)—
¢ s Glampy T

(G;"((z PP}) and 2, 1s a ﬁxed,,poirvlt in R—fén_ Put B'=R'+ B’ and R”—=R" +
zo’
B, where B' and B" are ideal boundaries of R’ and R respectively.

Let {p;} be a sequence determining a point p’'€e B’ such that p, & Z C .
Then by (10) :

———K”(z, P)=K'(z,p) =2K"(z,p) for z¢ i . (11

Then we can find a subsequence { pi} of { p:} such that {p;} converges to
a point p"’ € B"”. Then

A e < K'(z, p)<2K"(2,p") for z&XC.. (12)



Examples of Non Minimal Points on Riemann Surfaces of Planer Character 35

Proof of d). Let U(z)eP.H.(G) and EU(z)<oo. Let w,(2) be a P.H. in
GNR, such that w,(z)=0 on R,NG, w,(z)=EU(x) on dGNR,. Then
w,(2)+ U(z)<EU(z) on (0GNR,)+(0R,NG). Let n—>oo. Then limw,(2z)=

n

w(z) is LP.H. in G such that w(z)=FEU(z) on dG and w(z)+ U(z)=EU(2)
in G. Let @, ,.(2) bea PH. in R,,,—(GN(R,,;—R,)) such that @, ,,.,;(2)=
w(z) on OR, NG, @, ,.:(2)=0 on (GN(R,,;—R,))+0R,,;—G. Let T, ,..:(2)
be a PH. in R,,,—(GN(R,.c—R,) such that T, ...(2)=U(z) on aR,.NG,
Trn+i(2)=0 on (0GN(R—R,)+(0R,.:—G). Then @, ,.:(2)+ T nre()=w(2)
+U(2) on (0R,,;NG)+(0GN(R,;:—R,)), @Wnnss(2)+ Tpni:(2)SEU(2). Let
i—>oco. Then @, ,..(2)—>®,(2) and T, ,..;(2)=>T,.(2). Now T,(z) is LP.H. in
R—(R—R,)NG) such that T,(2)=U(z) on dGNR,,, whence lim T, (2)=EU(z).

Also #@,(z) is LP.H. in R—(R—R,)NG) such that #@,(2)=w(z) on G NR,.
Let n—>oc0. Then lim%@,(z)+ EU(2)<EU{z) and lim @, (2)=0. Whence EU(2)
is regular relative to G.

Proof of e). By V(2)<EU(z), lim Ve z-z, (2)=0 by (b). Clearly

linm Vcemn—:e,,) () +1lim Venz-r,(2) 2 lim VR—-Rn (=) = V() Z}im Venr-r,(2) -

Hence V(z)=lim Vgn (-2, (2), i.e. V(2)=0 a.e. on CGNB. By V(z)éEU_(z)
and by (d) V(z) is rsgular relative to G. Hence by (c) we have (e).

We denote by P.H.(R) the subclass of V(z) in P.H.(R) such that Y(z)=0
a.e. on CGNB, V(z) is regular relative to G and IV(2)>0 and let P.H.(G)
be the subclass of U(z) in P.H.(G) such that EU(z)<co. Then by a) and c)
we have at once the following .

Corollarly. FP.H.(R) and P.H.(G) are isomorphic with respect to E
and T operations.

Let GG’ be subdomains and let I" and I” be sets consisting of arcs in
G and 9G’ respectively, where I"cI'. ‘Let P.H. (G) be the set of P.H.’s

U(z) in G such that U(z)=0 on aG—T, —a—a~U(z)=O on I Let U,(z) be
n

L.PH. in G’ such that U,(2)=U(z) on G'N(R—R,), Ea_U,, (2)=0 on I'. Put

n
ZJCVU(z)=lim U,(z). Similarly we define }V V(2) from V(z) in PH.(G). Let G

be the symmetric surface of G with respect to G and identify I" and I, the
symmetric image of I. Then we have a doubled surface G+ G which has its
relative boundary (0G—1TI')+ (0G—1I"), where G is the symmetric image of G.
Let £ be the symmetric image of = and put U®)=U(z) in G. Then U(2)
(=U(2) in G and =U(8) in G)eP.H.(G+G). Let G’ to the symmetric image
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of G' with respect to G and identify I” and I”. Then we have (G+&).
Now (G'+G') is contained in (G+G) by G'cG and I"cI', (G'+G') has
relative boundary (6G'—I"+0G'—1I") in (G+G). Hence Theorem 1 is valid

N N N N
for E and I. To avoid repitition we do not state the Theorem 1 for E and I
and we denote it simply by N-Theorem 1.

Lemma 4. Let R* be a Riemann surface with positive boundary. Let

R be a subsurface in R* and let %T,, be a compact set on OR, which is
n=1

compact in R¥. Put R'=R+ 37, Then P.H.R) and P.H.(R) are iso-
morphic.
In fact, let U(z)eP.H.(R). Since % 7. is compact, there exists a number

n' such that ﬁr,,cR;:,, ~where R} (n=1,2, ---) is an exhaustion of R* with
compact relative boundary oR}. Put M= sup U(z). Then M<oo. Let
zGR;;f

w(% 7. 2, R) be HM. of ﬁ 7.. Then U(z)+Mw(% 7. 2, R) is superharmonic

in R" and = U(z), whence EU(?)< U(z)—i—Mw(% 7w 2, R)<oco, where E is
from R to R’. Let V(z)eP.H.(R). Let V’'(z) be LPH. in R such that

V'(z)=V(z) on ;V_O:T,,. Then V’(2)— V(2)>0, because if V(z)=V’(z), then
V’(z) is harmonic in R’ and by the maximum principle V’(z)= V(z)=0.
Whence IV(2)=V(z)—V’'(2)>0, where I is from R’ to R. Next we see
easily that any V(z) is regular relative to R and V(z)=0 a.e. on (CRNB) by
RN (R*—R})=R' N(R*—RZ) for n>n’', where R:ED3'7,.

Theorem 2. Let R* be a Riemann surface with positive boundary.
Let R be a sub Riemann surface of R* with relative boundary oR in R*.
Let C,DC,DC) (n=1,2,---) be discs in R* such that oC,+oC, and oC,
may intersect 0R and C, , are disjoint each other. Let 7, be a continuum
in ORNC;/. Suppose there exists a const. M,, such that

Cn (sup U(2))w (T, 2) < M, U(2) on 8CY

zeacn’
for any P.H. U(z) in CnﬂR+ganishing on 0R,
« =7 where w(T,, 2) is H.M. of 7, with respect

to R"=R+ J7,.
n=1

I S M,<co,
then P.H.(R) and P.H.(R") are isomorphic,
Fig. 7. where R’ is the surface obtained from R by
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adding 3.7, to R, i.e. R'"—R=31, and aR"=3dR— X7,
Proof. Let n, be a number such that ﬁ(l—ZMn)g—éll—. Let RR"=R+

nZ"'_, 17‘,, and R"=R+ f}?‘n. Then RCR'cR”. Since R’ —R=noZlT,, is compact,
P.H.(R) and P.H. (R’) are isomorphic by Lemma 4. We shall prove P>.H.(R’)
and P°.H.(R”) are isomorphic. Let G”(z,p) be the Green’s function of R".
Suppose p¢ 3, C,. Let M=max G (z,p). - Consider G (2, p)—2Mw (T, 2) in

2€48C, 7;

C;. Since G”(z,p) is a P.H. in C,,",‘R'\:anishing on (dR—71,)NC,
G (2, £) = 2Mw (T, ) Z 0 (1,, 2) = 2Mew (T, 2)
M

1—2M,)w(,.,2)>0 on aC,.

n

Put U(2)=G" (2, p)—2Mw(T,, 2) for 2€C? and U (z)=max (G" (=, P)—2Mw(7,,
z),0) in C;. Since G"(z,p)<M and w(r,,z)=1 on 7,, the open set @=E[z:
G" (z, p)—2Mw(7,, 2)<O0] contains 7, and does not tend to dC/, whence U (z)
is continuous in R —7, except endpoints of 7, and p, U(z) is subharmonic
except p and U (2)=0 on 7,. Let G™(z, p) be the Green’s function of R"—7,.
Then G’ (z, p) is L.P.H. except p where G'»(z, p) has a logarithmic singularity.
Hence

G"(2,p) =G (2, p) = G (z, p) —2Mw(T,, 2) .
M

Also G’ (=, p)= w (T, 2) on dC;/. By the maximum principle 2Mzo (7., 2)<
2M,G" (=, p) for znﬁ C;. Hence
- Gz p) = Gz, p) = G (2, p) (1—2M,,) for z¢C).
Replace G"(z, p) and G'»(z, p) by G'™=(z, p) and G'»*7»+1(z, p), where G;n*7n+1(z,
?) is the Green’s function of R”—7,—7,.,. Then as above
G (2, p) =2 G™ (2, p) Z G'n*™ni(z, p) = G (2, p) (1—2M,..)
=G"(z,p)(1—2M,) (1—2M,.,) for z¢C/+C/,,.

In this way we have

G (2 p)Z Gn"(2, ) = G (2, p) T (1 —2MM,) = G/ (Z2). 2]
g (10)

for z¢ > C7,
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where G# "(z,p) is the Green’s function of R’, because R’ 7,=R+

7no—1

L7.=R.
1
In the following we suppose K-Martin’s topologies are defined in R"” and

R’ by ‘using K"(2,p) and K'(z,p), where K"(z,p)= gfz 12) K'(e #)=

—(—;,Ez—’l;% and z, is a fixed point in R—ZTC,,. Put R’=R’'+ B’ and R” R"
o5

B, where B’ and B" are ideal boundaries of R’ and R" respectively.

Let {p;} be a sequence determining a point p'€B’ such that p, & Z C
Then by (10) :

K"z p)SK (@p)S2K'(mp)  for =g }’ic;;. 1)
Then we can find a subsequence {p;} of {p;} such that {p;} converges to
a point p”' € B"”. Then : ’

—;—.K”(z,p”)§K’(z,p')§2K"(z,p”) for zéfC{,, (12)

i.e. there exists at least one point p’€B’ corresponding to any p'€B'.
Suppose p,€C,. Then Kg (z,p,)=K'(z,p,) for z¢C, and K¢ (z,p) is
representable by a positive mass distribution g#,,(q) on 6C,, such that Sd,apt (@=1

by K'(z., p)=1 and K¢, (2, pi)= SK (2, p)dpy,(q) for z¢ C,,, where K¢, (2, p) is
Cm

L.P.H. in R’ larger than K'(z,, p) on C,,.. Now since g ¢& C,,, by (10) —;—K" (=,
q)=K'(z,q)<2K" (2, q), whence

%J-K" (2, @) dpp, (@) = K' (2, p) = jK' (2, @) dpp,(q) =< ZJK”.(z, q)dp,,(q)
for =z¢C,.. (13)°

Let {p;} be a sequence in R’ determining a point p’€B’. Then by (11) and
(13) we can find an weak limit p, (q) on B’ of {g,,(q)} such that

LG Qg lg) SK (=, #) S 2 [ K" (5 0)dpay @) for z€ TCL. (14

Let U(z)eP.H.(R') and U(z,)=1. Then U(z) is representable by a positive
mass g on B’ such that #=0 on 0R'=0dR" + 2 7,, Sd/,e=1 and

= [K(p)du(p).
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Hence by (14) there exists a function V(z)eP’.H.(R"”) such that
S V@RISUR=S2V(E) for zgXCL, (15)

where

V() = ( | K7(2,9)dpy (@) du(p) and  Vim)=

B!
Similarly for any V(z)eP.H.(R”), V(2)=1 we can find a U(z)eP,.H. (R'),
U(z,)=1 such that '

% Ulz)<V(2)<2U(z) ' for z¢3C,. (16)

Proof of the theorem. As for non constant positive function A(z), we
can suppose without loss of generahty A(z,)=1. To define E (from R’ to R")

and I (from R" to R’ ) operations We can use decreasing sequence {v,}: v,=
(R*—R}— Z C..) instead of (R*—R}) by the maximum principle, where {R}}

is an exhaustion of R*. For example EU(z)=limU,(z) for U(z)eP.H.(R’),

where U,(z) is LP.H. in R'—wv, such that U,(2)=U(z) on v,. IV(z) is
defined similarly. y
Let U(z)eP.H.(R'). Then by (15) there exists a V(z)eP.H.(R") such that
U(z)=2V(z) on v,. Hence
EU=Z=2V(z)< . (a)

Let V(z)eP,.H.(R"). Then by (16) there exists an U(z)eP.H.(R’) such that

_UT@)_ <V(iE@=<Ui) on v,,

hence 0< U?fz) <IV(2). (b, 1)

Also by (15) there exists another V (z)eP.H.(R") depending on U(z) such that
2V(2)2U(z). Hence V(2)<2U(2)<4V (z), whence V(2)<2EU(z)<4V (2)< oo
and V(z) S 2EU(2). (b, 2)

Thus the conditions, a), b, 1) and b, 2) are verified. Hence by the corollérly
of Theorem 1 P.H.(R') and P.H.(R") are isomorphic and P H.(R) and ﬁH
(R’ ’) are isomorphic.

~—

Corollarly. Under the condition of Theorem 2 any positive minimal
harmonic function in R" vanishing on 3R" is the image of a uniquely deter-
mined minimal function in R vanishing on R by the operation E and
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conversely any minimal function in R wvanishing on O0R is the image of
a uniquely determined minimal function in R’ vanishing on oR" and the
correspondence is one-to-one manner.

Example 1. Let R* be a unit circle, R*: |z|<1 and let I be a straight
on the real axis, I: Im2=0, 0=<Rez<1. Put R=R*—-1 LetC,(n=1,2, --'-)

be a hyperbolic circle with centre at g,: 1 ——41—7;— and with hyperbolic radius

1 z—1+ —17 1
—, ie. C,: 4 <—. Then C, intersects I at 1—
1 3
1— (11— )=
4
4 2
3 and 1— 3 and {C,,} are disjoint each other.
n( 2 1 ! 1 ; _
4[24 4n (2 —
3 3 x4* 3 3 x4”
Let 5, be a straight on I of hyperbolic length 25,,<—1—12— with its middle point
at q,,s,: Imz=0,1— 1+0, <Rezxz1— 1—0, . Let R"=
47 [1—5,+ % 4 1+5,,—in—)
4 4~

R+ 3s,. Suppose K-Martin’s topology is defined in R"” and

| §6n<oo.

Then R' has the following properties.
Sn 1). There exist only two minimal points p”
and p* on z=1.
2). Let{p7} (:=1,2, ) ({p7}) be a sequence
in R" —f}Cn tending to z=0 such that the im-
aginary part of p7, Im p7>0 (Im pf<0). Then
K" (z, p)—K" (2, p") and K"(z, p{)—>K"(z, p*) as
i—o0, where K" (z, p¥) and K" (2, p*) are minimal
functions corresponding to p” and p* and K'"(z,p,) are normalized as

1
K'[—L, p)=1.
( 2 ”)

3). Let pieisn. Then Kz, p)— —;—(K” (z, p7)+ K" (=, p")), i.e. any

Fig. 8.

sequence {p;} on Y.s, determines a non minimal point. Let D, (n=1,2,---)
be a domain >q, and {(D,—gq,)} are all conformally equivalent. Let {p.}
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be a fundamental sequence in Y, D,. Then {p,} determines a non minimal
n
boundary point on z=1.

Map C, conformally onto |w]| <%. Then by Lemma 3), there exists

a const. M such that for any positive harmonic function U(w) in ]w[<%

vanishing on the image of I—s, and Mo,U(w)= sup Ulw)w(s,, w), where
lwl=15

w(s,, w) is HM. of the image of s, relative to |w|<1. Put M,=DMs,, then
Y M,<oo. Let P.H.(R”) and P.H.(R) be the sets of P.H. functions in R"
and R vanishing on 1 — E} s, and I respectively. The by Theorem 2 P.H.(R")
and P.H.(R) are isornor;;)lic. It is more convenient to consider the relation
between P.H.(R”) and P.H.(R’), where R'"=R + nzojsn and 7, is a number such
that "

I (1—2M,) = % . (17)

Suppose K-Martin’s topologies are defined in R” and R’ by K" (2, p) and K'(z,
p) respectively, where they are normalized as K"’ (—%, p) =K’ (——%, p) =1.
Let v be a sufficiently small euclidean neighbourhood of z=1. Then since
v N R’ consists of two simply connected domains, there exist only two points
27 and p* on z=1 which are minimal and the corresponding functions, K’(z,

?”) and K'(z, p*) have the properties. 1). K'(z, p")=K'(%, p%), where ¥ is the
conjugate of z. 2). K'(z,pY)—>co as z—1 in the upper half plane and K'(z,

PY)<L<oo in the lower half plane. Let v,,=E[z: |zl>1—~1—:|. Then E
n
and I operations between R’ and R’ are defined with respect to {v,}. Then
by the condition (17)
EU(z)< o and IEU(2)= Uz) for U(x)eP.H.(R),

IV(2) >0 and EIV(z)= V(2) for V(z)eP.H.(R"), (18)

%K’ (2, p) SK"(2,9) <2K'(z,p) for z¢ 5 Cn. (19)

We see at once 1). EK’(z, p”)=EK'(%, p*) and by (19) EK'(z, p”)—>oco as z—1
outside of f} C,. in the upper half plane and EK'(z, p)<2L for z€Y,C, and
Im 2<0. é). EK’(z,p") and EK'(z, p*) are minimal by the minimality of
K'(z,p"”) and K'(z,p"). Let {p;} be a sequence in R’” determining an ideal
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boundary point on z=1, i.e. K’ ! (z p:) converges to a K(z,p) as p—z=1.
Then clearly K"”(z,p)=0 on I—Zs and |z|]=1 except z=1. By (18) and
since there exist only two pomts of the boundary pomts of R' on z=1,
K”(z ) has the form

- IK” (z, p) = aK'(z, p°)+ K (2, p¥) and

20
K"(z, p) = EIK" (2, p) = E(aK'(z, p") + BK' (2, p)) - 20)

Hence there exist only two minimal boundary points of R"” on z=1."
Let {p.} be any sequence in R"”—3C, such that p,—~z=1 and p; lies in

the upper half plane. Let {p;} be a sgln)sequence of {p;} such that K" (2, p,)
—K"(z,p). Then by (19) K"(z,p)<2L in the lower half plane outside_ of

i C,. Whence the representation (20) of K" (2, p) has the form K" (z, p)=

aEK' (z, p”), where a is given by K”(——%, p) =aEK’ (—-é—, p”) and does not
depend on the subsequence {p;}. Hence {p;} converges to p on z=1 of
R" (p corresponds to K''(z,p")). Similarly for any sequence {p;} in R'—
i C, in the lower half plane, K" (z, p,)—>K" (2, p*). Thus we have the pro-

perty (i).
Let {p;} be a sequence on )s,. Then by K" (2, p)=K" (%, p), K" (z, p.)—
%(K”(z, PY)+ K" (z, p*) as i—oo. Let {p;} be a sequence of {p,} in f:D,,

such that p,—>z=1 and K" (2, p,) converges to K" (z,p) as i—>oco. Let ¢, be
the middle point of s,. Then as above K" (z, qi)—»;— (K" (2, p”)+ K" (2, p*)) as

i—>oco. Since G”(z,p) of R"” is a harmonic function of p for fixed z ¢ i D,,

n=n,

there exists by Harnack’s theorem a const. M depending on D, but non on 7
by the conformal equivalency of D, such that

1
G (_____, P)
1 G” (2, p4) <M and 1 < 2 i =M
M G" (=, q.) M G" ~ L Q) B
| | 2 > [
1 . K” (z’ Pi) 2 3
= =M
Hence M: = K" (Z, qi) = _ ‘ for =z & n;Z:nOCn

‘Let i—>co. Then K"(z, p)—K"(z, #) and
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1 (24 (24 144 L

<M, z¢5C,. (21)

<
M - K'(z,p) A ,
Consider K" (z, p) and —;—(K’ "(z, p¥)+ K" (2, p?)) in thé upper half plan’eic’)utside
of f, C.. Then since K" (z, p)<2L, 1\242 gaz v2M >O in the form, K”(

p)=aK" (z, p”)+ BK" (2, p7). Slrnllarly we have ,8>2—§42—- Hence K" (=, P)

non minimal and {p:;} determines a non mlnlmal point of R”. Thus we have
the property (2)

Remark. In Example 1 we can take a circle C,, of hyperbolic radlus T
with centre at ¢, (r, and g, depend on 7n) instead of C,. Let I,=FE[z: 1+
rn€”7] (n=1,2,---), 0<r,<—2l,cosé,, 7t>0,,>—2—. Let s,m (m=1,2,---) be
a straight on 7,. Then we can choose s, , so small that there exist infinitely
many K Martin s minimal boundary points of R’ on z=1, where R'’=unit

rcle—ZI +anm N

In Example 1 we discussed P.H. (R’ ) by P.H.(R), when R inci'eas_ed to
R”. We show an example to consider P.H.(R”) by P.H.(R), when R
decreases to R’. '

Example 2. Let R: |2|<1 and let C, be a hyperbolic circle with hyper-

bolic radius —%— and its' centre at g, also let S, be a concentric hyperbolic

circle with hyperbolic radius &,. Suppose C,’s are disjoint each other and

— 1
>3 —log s, <o
Put R"=R— Z}S Let P.H.(R) be the class of PH Junctions in |z|<1 and

let P.H.(R") be of P.H. functioons vanishing on Z‘,S Then P.H.(R) and
P.H.(R") are isomorphic. Especially there exist only one K-Martin’s bound-
ary point of R'" which is minimal at e®.

In fact, map C, onto |Cl<% and let U({) be a P.H. in |C]<-é—. Then
there exists a const. M such that max U({)<MminU(Z). Let C, and C;’ be

1
Il=+5 ltl=%

concentric circles as C, with hyperbolic radius —(1—5— and —115 respect1ve1y Then

w(S,, z)=—-12g£ on 9C;/, where w(S,,z) is HM. of S, relative to |z|<1.
-~ —logé, : -
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Put M,=M M. Then M, min U(z)=max U(z)w(S,, 2). Hence by The-
—logd, 2€3C,, =€aC,;
orem 1, P.H.(R) and P.H.(R”) are isomorphic and there exists only one
boundary point R at e which is minimal.
Let R be a Riemann surface with positive boundary and let R, be
a compact disc. Let N(z,p) be an N-Green’s function in R—R, such that
N(z, p)=0 on 9R,, N(z,p) has a logarithmic singularity at p and N(z, p) has
minimal Dirichlet integral (Dirichlet integral is taken about N(z, p)+log|z—p|
in a neighbourhood of p). Suppose the N-Martin’s® topology is defined on
R—R,. We shall construct a Riemann surface of planer character in which
there exist non IN-minimal points.

Example 3. Let C be a unit circle, C: |z|<1. Let s, (n=1,2,:--) be
a straight, s,: Im2=0, 0<a,<Rez=b,, a,<b, - <a,<b,=1 in C and let
t,: Imz=0, b,,,,<Rez=<a,. Let §, and £, be symmetric images of s, and ¢,
with respect to the imaginary axis. Let I be a straights such that I: Re =0,

0<Im z<—;- and 0>Im=z> ———;—.

Condition. z=0 is contained in the closure of }.s, and J.s, is so
thinly distributed as z=0 is an irregular point for the Dirichlet problem

in C—i(s,,+§,,). Put R—RO=C—I—Z°°;(t,,+$,,). Then there exist four N-

minimal points and non N-minimal points of R—R, on z=0.

Let p,=re". Suppose r-—0 as i—oo and —n—>0¢>5>0. Then p, deter-
mines an N-minimal point®. Similar fact occurs in each sector S;: 0<
3R, lz| <1, (JZ 1) Sargz< 77»'2J (7=1, 2, 3, 4).

Let N(z,p) be an N-Green’s function of
s R—R. Then N(z2)=0on iR, ai Nz, p)=
on X (z,+%,)+ 1

Let G(z, p) be the Green’s function of C.
Then '

Nz, p)+ N(z, )+ Nz, p)+ Nz, )
Fig. 9. ' = G (2, p) + G(2, )+ Gz, p)+ Gz, §J)
where 7 and » are the conjugate of p and the symmetric image of p with

respect to I.
Let p—>p on z=0. Then

9) See (8).
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N(z, p)+ N(z, )+ N(z, p)+ N(z, p)= —4log|z|.
Let C’' be a circle, C': |z|<% and put .Qs=C’——§(sn+§,,). Let G'(z, p) be
the Green’s function of £,. By the condition, =0 is an irregular point for
also the Dirichlet problem in £2,. Hence there exists a sequence {p,} such

that lim G’ (2, p)=G' (2, p)>0. Let v,,=[z: |z]<i] We define E and 1
P n

operations between C and £, with respect to {v,}. Then by G(z, p)=G'(z,
2:), EG'(z,p)<oo. Now EG’(z,p) is harmonic in C except =0, whence
EG’'(z, p) must be a(—log|z|) (@ is a positive constant <1). By IEG’(z, p)=
G’ (z,p), I(—log|z|) is a harmonic function in 2, such that I(—log|z|)=

(~loglzl), I(~log|z))=0 on L(s,+5), —-I(~loglz)=0 on I+ E(t+2)
n
Hence for any p on 2=0: p=I1im p,,
Z

—4log|z| = N(z, p) + N(z, p)+ N(z, p)+ N(z, p) = 4I(—log|z[)>0. (22)

Let R’ be the part of R—R, over |z|<—§—. Put R,=R'— 3 (s,+3,). Then

R, consists of four components, R} (j=1, 2, 3,4), where R7C.S;. Suppose
p:€R]. Let N°(z,p;) be an N-Green’s function in R, such that N°’(z, p;) is
harmonic in R,, N*(z, p;) has a logarithmic singularity at p;, N°(z, p;)=0 on
0

=, —N?*(z, p;)=0 on Z( +%,)+1 and N*(z, p;)=
3 on

o0

2. (s,+5, and on |z|=

\S]

in R}, for /#j. Then
—410g(z|glim( *(2, p)+ N°(z, $)+ N*(, p)+N* (2, B.))

=11m( "2, 2) + G (2, Bo) + G2, )+ G2 ZZ))

Z

= dal(—log|z]), (23)

a depends on {p’} and 1=a=0.
We shall use I"'" and E”" operations between R—R, and R,, where I"'=

I+i}(t+in). Since I(—log|z|)=0 on i(sn+§n), Ea—l(—log]zl)=0 on I+
w n

2 (.. +2,), I can be defined and we have by (22)
IN*’(lign Nz, p)) >0 for any p,—>p on z=0. (24)
Suppose lign N*(z, p,) exists and >0. Then by (23)
ENT (lim N*(z, p)) >0 . (25)
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We can find a sequence {p,} such that lim G’ (2, p;)=pI(—log|z|)>0. Then
by (23) ENr(hm (N*® (2, p;)+N°(z, p;)+ N°* (z Pe) +N , D)) =A4BEI(—log|z|).

On the other hand, since a——I (—log|z|)=0 on I+Z( z,), EV"(I(—log |z|)
n

=EI(—log|z))=—log|z]. Put Ul )—%hm(Nﬂ(z )+ N(z, B+ N*(z, B)+

N°®(z, $))>0. Then U(z )=§O on > (s.+8,) and on Izl—% —%U(z)=0 on

I+ 3 (¢, +1%,), EN’FU(z)’-——4log |z] and for any p,—p on z=0"
. E™U()= —4loglz| = N(z, p)+ N(z, B+ N(z, $)+ Niz, B).
Hence by Theorem 1, [N, a) and e) and (24) - L

ENTINTN(z, p) = N(z, p) > 0 for any p on 2=0. (26)

Let f—’.H.N: (R) be the set of positive harmonic function U ( ) of the form
N(z,p) in R—R, except z=0 such that U(z)=0 on 0dR,, —U( )=0 on

2 (tn+?,;)+l and let PHN (R,) be the set of positive harmonlc functlon V(=)
of the form N°(z,p) in R, except 2=0 such that V(z)=0 on ]z|=% and
3 (s.+§,) and wai V(z)=0 on I+ 3 (£,+%,). Then P.H.N.(R) and P.H.N.(R,)
n . P
are isomorphic by (25) and (26).
Let N°(z, p)=1i¢m N*(z, p)>0: p,e R} and p,—p on 2=0. -We shall show

that N° (z, ) is N-minimal in R,. Let U(z) be a superharmonic function in

R, such that N*(z, p)—U(2)>0 is also superharmonic in R,. Now iN (2,

o ON

£)=0 on I+Z( +%,). This means N*(z, p) has no mass on I+ )] (¢,+%,),
whence by the superharmonicity of N*(z, p)— U(=z), »E;Q« U(z)=0 on 1+ i (L. +
7 ,
z).- Put V(2)=N°(z, p)=N*(z, p)=N*(z, p)=N*(z, ) in each R7. Also
define U (z) similarly from U(z) into R—R,. Then U (z) and V (z) is harmonic
in C'— i (s, +§,), where C': Izl<? Now there exists only one linearly
independent harmonic function I(—log|z|) in this surface. Whence U (2)=
aV (z)=pgI(—log|z|) and U(z)=alN°’(z, p) and N*(z2, p) is N-minimal in R,. On
the other hand, in every R}, N°’(z,p) exists denoted by N*(z,p’). Then

clearly N°(z,p?) are linearly independent. Because N*(z, p,)=0 in R}, for
7'#j. Let N(z, p)*—*li?l N(z, p;). Then by (26) I"'" N(z, p)>0, whence I"" (2,
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p)= ﬁ}ajN °(z,p’). Next also by (26) Nz, p)= ﬁ:ajE” TN*(z, p’) and there
existJ =el:xact four N-minimal points of R—R, on z;0.
Property of E¥TN*(z,p’). N°(z, p)=0 in R}, for j/#j. Hence
EMN*(=z, p') = ERIN*(2,5)
where ENF is from R} to R—R, and E*” is from R, to R—R,.
By Theorem N.1). b}
IZ;?EN’PN‘ (2, ) < EIEYN* (2, p') < Eg;;j‘,Eg;j,st (z,p) =0 and

| INTENIN®(z, p) = N (2, p) for k. @7)
J F P

We shall show p,=r,e" (%gﬁj>5>0) €S, determines an N-minimal point p'
of R—R, N(z,p)+N(z, fbi) N(z, p¢)+N fii Ulz, p;) for Imz=0, where

N(z, p;) is harmonic in S, (has no singularity) such that —aﬁ—N (=, p)=0 on
n

I+ i‘(tn_*_zn) and N(z,Pi)éU(z,pi) on i'(s,,—l—§,,)+1’(=E[z: Rez=0, —1=

Im zg—%:') and N(z, p,)= j NC,p,;) NS(C, z)ds in S,, where N*(C,

}"_,S +1I'
2) is a harmonic function in S, such that N® ({ , z) has a logarithmic singularity

at 2, —NS(C, 2)=0 on I+itn and N¥({,2)=0 on |z|=1 and on f}sn+I’.

Put p,=r.". Then by —>0¢>5 —>|1 p%C|> for r.,<—— and | —p|

={sin{. Hence there ex1sts a const. A such that

UL, p)< —2log|C] + A for lrlé%,

NS(C, z) is uniformly integrable on i‘sn—i—l' for |p|= i'—

whence N(, pi) 4

Hence Nz, p') = E; J N(C,p‘)—a%NS(C, 2)ds=U(z) in S,,
X8, +I’
where N(z, p') = lim N(z, p,).
(1
IT."N(z, p')=1lim V, (), where V,(2) is a harmonic function in R{ N E[|z] >

L] such that V,(2)=U(z) on ]z|=—1—, aiV,,(z)=O on I+itn, V.(2)=0 on
n n n



48 Z. Kuramochi

I+ Z”s,, and on ]z|=% Let w,(2) be a harmonic functionin Rﬁ’ﬂE[]z|>

—1—] such that w,(z)=0 on ]z|=-}~ and aiwn(z)=0 on / band w,(2)= U(z)
n . n n
on Zw:s,,—l—l’ and on |z]=-2— Then wn(z)=—1— j N(C,p)—a—Nﬁ(Q,z)ds,
3 2r - on
8, +1I'

Ulz)=w,(2)+ V,(2) and limw,(z)=U(z) by aiNg(c, z)TaiNS(c, 2), where
n 72 n

NS, =) is a function in RY ﬂEl:lz|>—1—] such that N3(Z, z) has singularity
. n

at 2, N5(,2)=0 on I’+§jsn and |z]=—1— and aiNﬁ(C,z)=O on I+Z°}°tn.
n n
Whence lim V,(2)=1I7.7N(z, p)=0. Similarly we have
Ij;ic,rN(z,p‘)=O for k+#1. (28)
Hence in the form N(z,p)=z4]ajEN"N’(z,p”') ‘a,=0: k#¥1 and N(z,p")=
;

a.EVTN*(z, p'). Now by j %N (=, p)ds=2n-,. a, does not depend on special
n
‘ |z| =1

sequence {p,} if —g—garg p:.>06>0. Hence any {p,} determines an N-minimal

point on =0 as p,—~=z=0, if —7—;—>arg p;>06>0. Similar fact occurs in S,
k=2, 3,4.
Let p;€ i s, Then we have at once lim N(z, p,)= %(N (z, p')+ Nz, p")

Z

and {p;} determines a non N-minimal point on z=0.

Remark. It is easy to construct a boundary point =0 on which infi-
nitely many N-minimal points exist as the remark of Example 1.
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