# ON A DIFFERENTIAL-DIFFERENCE EQUATION 

## By

Saburô Uchiyama

In connexion with the study of certain incomplete sums of multiplicative functions, N. G. de Bruijn and J. H. van Lint [3] have introduced the function $f_{s}(x)(s \geqq 0)$ satisfying the set of conditions:
(i) $f_{s}(x)=0$ for $x<0$,
(ii) $f_{s}(x)$ is continuous for $x>0$,
(iii) $f_{s}(x)=x^{3-1}$ for $0<x \leqq 1$,
(iv) $\quad x f_{s}^{\prime}(x)=(s-1) f_{s}(x)-s f_{s}(x-1)$ for $\quad x>1$.
(The function $f_{s}(x)$ is originally defined in [3; II, §2] only for $x>0$; it will be convenient, however, to define $f_{s}(x)=0$ for $x<0$ for our purpose.)

On the other hand, N. G. de Bruijn [1 and 2] has investigated in detail the property and behaviour of $f_{s}(x)$ for $s=1$. In particular, there he obtained an explicit formula for $f_{1}(x)$ :

$$
f_{1}(x)=\frac{e^{\sigma}}{2 \pi i} \int_{-i \infty}^{i \infty} \exp \left(-x t+\int_{0}^{t} \frac{e^{z}-1}{z} d z\right) d t \quad(x>0)
$$

where $C$ is Euler's constant,

$$
C=\lim _{n \rightarrow \infty}\left(\sum_{m=1}^{n} \frac{1}{m}-\log n\right)
$$

In the present note we shall prove an analogous formula for $f_{s}(x)$ with general $s>0$.

Remark. For $s=0$ it is easy to see that $f_{s}(x)=f_{0}(x)=x^{-1}(x>0)$. We may suppose, therefore, that $s>0$ throughout in the following.

1. Lemmata. We require two lemmas independent of one another.

Lemma 1. If $\phi(s)$ is a (complex valued) continuous function defined for $s>0$ and satisfying the functional equation

$$
\phi(s+r)=\phi(s) \phi(r) \quad(s>0, r>0)
$$

then there is an integer $A$ independent of $s$ such that

$$
\phi(s)=e^{? \pi i A s}(\phi(1))^{s} \quad(s>0)
$$

Proof. We may assume without loss of generality that $\phi(s)$ does not vanish for $s>0$ and hence that $\phi(1) \neq 0$. Consider the continuous function

$$
\phi(s)=\frac{\phi(s)}{(\phi(1))^{s}} \quad(s>0)
$$

where $z^{s}=\exp (s \log z)$ and the branch of $\log z$ is taken in such a way that $\log z$ is real for real $z>0$. We have for any $s>0$

$$
\phi(s+1)=\frac{\phi(s+1)}{(\phi(1))^{s+1}}=\frac{\phi(s)}{(\phi(1))^{s}}=\phi(s) .
$$

Thus, if we put

$$
\alpha(s)=\frac{1}{1+|\log | \psi(s)| |},
$$

then

$$
\begin{equation*}
\int_{0}^{1} \alpha(s) d s=\int_{0}^{1} \alpha(2 s) d s \tag{1}
\end{equation*}
$$

Indeed, we have

$$
\begin{aligned}
\int_{0}^{1} \alpha(s) d s & =\int_{0}^{1} \alpha(s+1) d s=\int_{1}^{2} \alpha(s) d s \\
& =2 \int_{1 / 2}^{1} \alpha(2 s) d s=2 \int_{0}^{1} \alpha(2 s) d s-\int_{0}^{1} \alpha(s) d s,
\end{aligned}
$$

which is equivalent to (1). Since $\psi(2 s)=(\psi(s))^{2}$, we deduce from (1) that

$$
\int_{0}^{1} \frac{|\log | \psi(s)| |}{(1+|\log | \psi(s)| |)(1+2|\log | \psi(s)| |)} d s=0
$$

and this implies that $\log |\psi(s)|=0$ almost everywhere on $(0,1)$. It follows that $|\psi(s)|=1$ everywhere on $(0, \infty)$. This means that, if we set

$$
\begin{equation*}
\frac{\phi(s)}{(\phi(1))^{s}}=e^{2 \pi i \theta(s)} \tag{2}
\end{equation*}
$$

then $\theta(s)$ is a real valued continuous function of $s>0$ satisfying the congruence

$$
\theta(s+r) \equiv \theta(s)+\theta(r) \quad(\bmod 1) \quad(s>0, r>0)
$$

Hence, there is a constant $c \equiv 0(\bmod 1)$ such that

$$
\theta(s+r)=\theta(s)+\theta(r)+c \quad(s>0, r>0)
$$

and it follows from this that the limit

$$
\lim _{s \rightarrow+0} \theta(s)=-c
$$

exists. Thus, if we put

$$
\theta^{*}(s)=\theta(s)+c
$$

then $\theta^{*}(s)$ satisfies the equation

$$
\theta^{*}(s+r)=\theta^{*}(s)+\theta^{*}(r) \quad(s>0, r>0)
$$

Since $\theta^{*}(s)$ is continuous for $s>0$, we find by a well-known theorem (which is in fact easy to prove) that $\theta^{*}(s)=A s(s>0)$ for some real constant $A$, so that $\theta(s)=\theta^{*}(s)-c=A s-c$. But, in view of (2), we may take $c=0$. Finally, the constant $A$ must be integral, since $e^{2 \pi i A}=1$. This completes the proof of the lemma.

Lemma 2. We have

$$
f_{s+r}(x)=\frac{\Gamma(s+r)}{\Gamma(s) \Gamma(r)} \int_{0}^{x} f_{s}(y) f_{r}(x-y) d y \quad(s>0, r>0)
$$

Proof. Put

$$
f(x)=\int_{0}^{x} f_{s}(y) f_{r}(x-y) d y
$$

Apparently, $f(x)=0$ for $x<0$ and $f(x)$ is continuous for $x>0$. For $0<x \leqq 1$ we have

$$
\begin{aligned}
f(x) & =x^{s+r-1} \int_{0}^{1} z^{s-1}(1-z)^{r-1} d z \\
& =f_{s+r}(x) \frac{\Gamma(s) \Gamma(r)}{\Gamma(s+r)}
\end{aligned}
$$

Suppose now that $x>1$ and write

$$
\begin{aligned}
x f(x) & =\int_{0}^{x} y f_{s}(y) f_{r}(x-y) d y+\int_{0}^{x} f_{s}(y)(x-y) f_{r}(x-y) d y \\
& =\int_{0}^{x}(x-y) f_{s}(x-y) f_{r}(y) d y+\int_{0}^{x} f_{s}(y)(x-y) f_{r}(x-y) d y \\
& =I_{1}+I_{2}
\end{aligned}
$$

say. We have

$$
\begin{aligned}
\frac{d I_{1}}{d x} & =\int_{0}^{x}\left((x-y) f_{s}^{\prime}(x-y)+f_{s}(x-y)\right) f_{r}(y) d y \\
& =\int_{0}^{x}(x-y) f_{s}^{\prime}(x-y) f_{r}(y) d y+\int_{0}^{x} f_{s}(x-y) f_{r}(y) d y \\
& =(s-1) f(x)-s f(x-1)+f(x) \\
& =s f(x)-s f(x-1)
\end{aligned}
$$

and, by symmetry,

$$
\frac{d I_{2}}{d x}=r f(x)-r f(x-1)
$$

Since $(x f(x))^{\prime}=x f^{\prime}(x)+f(x)$, we thus obtain

$$
x f^{\prime}(x)=(s+r-1) f(x)-(s+r) f(x-1)
$$

Hence the function $\frac{\Gamma(s+r)}{\Gamma(s) \Gamma(r)} f(x)$ satisfies all the conditions (i)-(iv) with $s+r$ in place of $s$, and, since these conditions uniquely determine the function $f_{s+r}(x)$, it follows that

$$
f_{s+r}(x)=\frac{\Gamma(s+r)}{\Gamma(s) \Gamma(r)} f(x)
$$

which is the required result.
Remark. The substance of Lemma 2 is a particular case of a slightly more general result. Thus, let $h(x)=h(x ; c)$ be a function defined by the following conditions, $c=\left(c_{0}, c_{1}, \cdots, c_{n}\right)$ being an ( $n+1$ )-tuple of constants ( $n \geqq 0$ fixed) :
(i) $\quad h(x)=0 \quad$ for $\quad x<0$,
(ii) $\quad h(x)$ is continuous for $x>0$,
(iii) $\lim _{x \rightarrow+0} x h(x)=0$,
(iv) $\quad x h^{\prime}(x)=\left(c_{0}-1\right) h(x)+\sum_{j=1}^{n} c_{j} h(x-j)$ for all $x>0$,

$$
x \neq m(1 \leqq m \leqq n)
$$

(Obviously the above conditions for $h(x)=h(x ; c)$ imply that $c_{0}>0$ and $h(x)$ $=B x^{c_{0}-1}$ for $0<x \leqq 1$ with $B$ a constant and, for $x>1, h(x)$ is uniquely determined once $B$ is fixed. We shall be concerned with those functions $h(x)$ only which are not identically zero.) Then we have

$$
h(x ; a+b)=K \int_{0}^{x} h(y ; a) h(x-y ; b) d y \quad(x \neq 0)
$$

where $K$ is a constant and where we set

$$
a+b=\left(a_{0}+b_{0}, a_{1}+b_{1}, \cdots, a_{n}+b_{n}\right)
$$

if

$$
a=\left(a_{0}, a_{1}, \cdots, a_{n}\right) \quad \text { and } \quad b=\left(b_{0}, b_{1}, \cdots, b_{n}\right)
$$

2. The Explicit Formula. We now consider the Laplace transform of $f_{s}(x)$,

$$
F_{s}(\xi)=\int_{0}^{\infty} e^{-\xi x} f_{s}(x) d x
$$

where $\xi$ is a complex variable. The integral defining $F_{s}(\xi)$ is absolutely convergent on the line $\operatorname{Re} \xi=0$ (cf. $\S 3$ below). Also, $F_{s}(\xi)$ is, as a function of $s$, continuous for $s>0, \xi(\operatorname{Re} \xi \geqq 0)$ being fixed.

In view of Lemma 2 we have

$$
F_{s+r}(\xi)=\frac{\Gamma(s+r)}{\Gamma(s) \Gamma(r)} F_{s}(\xi) F_{r}(\xi) \quad(s>0, r>0)
$$

or

$$
\frac{F_{s+r}(\xi)}{\Gamma(s+r)}=\frac{F_{s}(\xi)}{\Gamma(s)} \frac{F_{r}(\xi)}{\Gamma(r)} \quad(s>0, r>0) .
$$

Hence, by applying Lemma 1 to $\phi(s)=F_{s}(\xi) / \Gamma(s)$, we get for $s>0$

$$
\frac{F_{s}(\xi)}{\Gamma(s)}=e^{v \pi z d s}\left(\frac{F_{1}(\xi)}{\Gamma(1)}\right)^{s}
$$

or

$$
F_{s}(\xi)=\Gamma(s)\left(F_{1}(\xi)\right)^{s},
$$

the constant $A$ being necessarily zero since for any $s>0 \quad F_{s}(\xi)$ has a positive real value for real $\xi \geqq 0$.

We see from the explicit formula for $f_{1}(x)([2 ; \S 1])$ that

$$
F_{1}(\xi)=e^{\sigma} \exp \left(\int_{0}^{-\xi} \frac{e^{z}-1}{z} d z\right) .
$$

Therefore,

$$
\begin{equation*}
F_{s}(\xi)=\Gamma(s) e^{r_{s}} \exp \left(s \int_{0}^{-\xi} \frac{e^{z}-1}{z} d z\right) \quad(s>0) \tag{3}
\end{equation*}
$$

By a standard inversion formula for the Laplace transform, we thus obtain the following result.

Theorem. We have for $s>0$

$$
f_{s}(x)=\lim _{T \rightarrow \infty} \frac{\Gamma(s) e^{\tau_{s}}}{2 \pi i} \int_{-i T}^{i T} \exp \left(-x t+s \int_{0}^{t} \frac{e^{z}-1}{z} d z\right) d t \quad(x \neq 0) .
$$

3. Notes. 1) We note that for $s=1$ the right-hand side of the equality in the theorem is equal to $\frac{1}{2}$ at $x=0$ and for $s>1$ it is equal to 0 at $x=0$. Also, if $s=1$ then we have

$$
f_{1}(x)=\frac{e^{c}}{2 \pi i} \int_{-i \infty}^{i \infty} \exp \left(-x t+\int_{0}^{t} \frac{e^{z}-1}{z} d z\right) d t
$$

for all $x \neq 0$, and if $s>1$ then

$$
f_{s}(x)=\frac{\Gamma(s) e^{\gamma_{s}}}{2 \pi i} \int_{-i \infty}^{i \infty} \exp \left(-x t+s \int_{0}^{t} \frac{e^{z}-1}{z} d z\right) d t
$$

for all $x,-\infty<x<\infty, f_{s}(0)$ being defined to be equal to 0 .
2) de Bruijn and van Lint $[3 ; \mathrm{I}]$ have also considered the function $g_{s}(x)$ $(s \geqq 0)$ defined by the conditions:

$$
\begin{equation*}
g_{s}(x)=0 \quad \text { for } \quad x<0 \tag{i}
\end{equation*}
$$

(ii) $g_{s}(x)$ is continuous for $x \geqq 0$,
(iii) $g_{s}(x)=x^{s}$ for $0 \leqq x \leqq 1$,
(iv) $\quad x g_{s}^{\prime}(x)=s g_{s}(x)-s g_{s}(x-1) \quad$ for $\quad x>1$.

As is noted in $[3 ; \mathrm{II}, \S 2]$, we have for $s>0$

$$
g_{s}(x)=s \int_{0}^{x} f_{s}(y) d y
$$

They showed in [3; I, §2] that if $s=0$ then $g_{s}(x)=g_{0}(x)=1$ for all $x>0$ and if $s>0$ then $g_{s}(x)$ is a positive, monotone increasing function of $x$ for $x>0$.

It is also proved there that we have

$$
\lim _{x \rightarrow \infty} g_{s}(x)=\Gamma(s+1) e^{c_{s}} \quad(s>0)
$$

and this implies at once that

$$
\int_{0}^{\infty} f_{s}(x) d x=\Gamma(s) e^{c_{s}} \quad(s>0)
$$

which clearly agrees with (3). And in the course of its proof they found a formula which is essentially the same as (3). (In fact, using the relation between $f_{s}(x)$ and $g_{s}(s)$, we can show that $F_{s}(\xi)(s>0)$ satisfies as a function of $\xi$ the differential equation

$$
\xi F_{s}^{\prime}(\xi)=s\left(e^{-\xi}-1\right) F_{s}(\xi)
$$

and, by integrating this equation, we get the formula (3).) Thus, our main interest of this note is in deriving the explicit formula for $f_{s}(x)$ from a somewhat different point of view, that is, on the basis of Lemma 2 which shows an interesting interrelation existent among the functions $f_{s}(x)(s>0)$.

## References

[1] N. G. DE BRUIJN: On the number of positive integers $\leqq x$ and free of prime factors $>y$. Kon. Nederlandse Akad. Wetensch. Proc. Ser. A, vol. 54 (1951), pp. 50-60.
[2] N. G. DE BRUIJN: The asymptotic behaviour of a function occurring in the theory of primes. Journ. Indian Math. Soc., vol. 15 (1951), pp. 25-32.
[3] N. G. DE Bruijn and J. H. van Lint : Incomplete sums of multiplicative functions. I, II. Kon. Nederlandse Akad. Wetensch. Proc. Ser. A, vol. 67 (1964), pp 339-347, 348-359.

Department of Mathematics, Hokkaidô University

(Received August 10, 1965)

