ON A DIFFERENTIAL-DIFFERENCE EQUATION
By

Saburé UCHIYAMA

In connexion with the study of certain incomplete sums of multiplicative
functions, N. G. de Bruijn and J. H. van Lint [3] have introduced the function
fs(x) (s=0) satisfying the set of conditions:

(1) Sfilx)=0 for x<0,

(ii) fs(x) 1is continuous for x>0,

(111) filx)=x"" for O<x=<1, .

(iv) xfi(x) = (s—1)f,(x) —sf,(x—1) for x>1.

(The function f,(x) is originally defined in [3; II, §2] only for £>0; it will
be convenient, however, to define f,(x)=0 for <0 for our purpose.)

On the other hand, N. G. de Bruijn [1 and 2] has investigated in detail
the property and behaviour of f,(x) for s=1. In particular, there he obtained
an explicit formula for £ (x):
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filx)=-C rw exp(——xt#—ﬁ e—1 dz)dt (x>0),
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where C is Euler’s constant,

C=1im(i——1~——logn\

n—oo \m=1 1)} /’.

In the present note we shall prove an analogous formula for f,(x) with general
s>0.

Remark. For s=0 it is easy to see that f,(x)=f(x)=x2"" (x>0). We
may suppose, therefore, that s>0 throughout in the following.

1. Lemmata. We require two lemmas independent of one another.

Lemma 1. If ¢(s) is a (complex wvalued) continuous function defined
Sor s>0 and satisfying the functional equation

P(s+7)=¢(s) p(r) (s>0, »>0),
then there is an integer A independent of s such that

B (s) = €4 (p(1))° (s>0).
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Proof. We may assume without loss of generality that ¢(s) does not
vanish for s>0 and hence that ¢(1) 0. Consider the continuous function

ols) = 20 (s>0),

where 2*=exp (slog z) and the branch of log=z is taken in such a way that
log z is real for real 2>0. We have for any s>0

g+l gl _
1) = = = .
Sl =Cor " sar OV

Thus, if we put

(s) = .
1+ |log|¢(s)]] ~
then
(1) j:a(s) ds = j:a(zs)ds.

Indeed, we have

fa(s)ds — j’a(s+ Uds = ra(s)ds

0

1

—2j a(25)ds = 2 f (23)ds—j als)ds ,

which is equivalent to (1). Since ¢(2s)=(¢(s))’, we deduce from (1) that
|log | (s) g

jo (1+ log | (s)1)(1 +2]log | (s)1])

and this implies that log|¢(s)]| =0 almost everywhere on (0,1). It follows that
l¢(s)| =1 everywhere on (0, co). This means that, if we set

b

(2] =
then @(s) is a real valued continuous function of s>0 satisfying the congruence .
O(s+7r)=806(s)+80(r) (mod1) (s>0, r>0).
Hence, there is a constant ¢=0 (mod 1) such that
O(s+7r)=0(s)+0(nN+c (s>0, r>0),

and it follows from this that the limit

lim 6(s) = —c¢

8—+0
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exists. Thus, if we put

then 6*(s) satisfies the equation
0* (s +7) = 6% (s) +6* () (s>0, »>0).

Since 6*(s) is continuous for s>0, we find by a well-.known theorem (which
is in fact easy to prove) that #*(s)=As (s>0) for some real constant A, so
that 6(s)=60*(s) —~c=As—c. But, in view of (2), we may take ¢c=0. Finally,
the constant A must be integral, since ¢**4=1. This completes the proof of
the lemma.

Lemma 2. We have

_ I'(s+n = .
ﬂ+r(x)—mj0ﬁ(y)fr(x vdy  (s>0, r>0).
Proof. Put
fla) = flfle—y)ay.

Apparently, f(x)=0 for £<0 and f(x) is continuous for £>0. For 0<z<1
we have

Sflx) = x"*"‘les“(l —2)" 'dz

T(s)I'(r)

=fosr(@) TG +7)

Suppose now that z>1 and write
(@) = [ uh it le—vdy + [ i) e—vf.z—vdy
~ [ e—ufle—vrwar+ [ fwe—o)f @—v)dy
=1,+1,
say. We have

dl,
dx

[ (e—wrie—v+fie—u)fwa

[: (—y)ff (x—v)f-(v)dy + f:fs(x—y)fr (v)dy

= (s —1)f(x) —sflx—1)+ flx)
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and, by symmetry,

ji = rf(x)—rflz—1).

Since (xf (x))l =xf" (x) +f(x), we thus obtain
zf' (@) = (s+r—=1)flx)—(s+rflx—1).

Hence the function Ls+n) flx) satisfies all the conditions (i)—(iv) with s+7
I'(s)I'(7)

in place of s, and, since these conditions uniquely determine the function £, (),
it follows that
I'(s+7)

Jorl =TTy

Sflx),

which is the required result.

Remark. The substance of Lemma 2 is a particular case of a slightly
more general result. Thus, let A(x)=h(x; c) be a function defined by the
following conditions, c¢=(c,, ¢, +*,¢,) being an (n +1)-tuple of constants (=0

fixed):

(i) h(iz)=0 for x<0,
(ii) h(x) 1is continuous for x>0,
(iii) lim xh(x)=0, '

z—+0
n

(iv) xh! (x)=(co—1)h(x)+ 2 c;h(x—j) for all x>0,
j=1
x#+m 1Em<n).
(Obviously the above conditions for A(x)=h(x; ¢) imply that ¢,>0 and A(x)
=Bx*"' for 0<x<1 with B a constant and, for x>1, A(x) is uniquely
determined once B is fixed. We shall be concerned with those functions % (x)
only which are not identically zero.) Then we have

hizsa+b)=K| hly; @hlz—ysb)dy  (@#0),

where K is a constant and where we set
a+b=(a,+b,a+b,,,a,+b,)
if
a=(ana, ,a, and b= (b, -,b,).

2. The Explicit Formula. We now consider the Laplace transform of

.f;' (x),
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F@)=| e“fizdze,

where £ is a complex variable. The integral defining F,(£) is absolutely con-
vergent on the line Re&=0 (cf. §3 below). Also, F,(£) is, as a function of
s, continuous for s>0, & (Re&£=0) being fixed.

In view of Lemma 2 we have

I's+7)

F,.. (&)= s I

F,(§) F,(§) (s>0, »>0)

or

Fo..(§) _ F,(§) F.(6)
Ts+r Tl I §>0, 7>0).

(
Hence, by applying Lemma 1 to ¢(s)=F,(&)/I"(s), we get for s>0
(

or

F,@ =TI()(F @),

the constant A being necessarily zero since for any s>0 F,(&) has a positive
real value for real £=0.
We see from the explicit formula for f;(x) ([2; §1]) that

F,(&) =éeexp (J_e e—1 dz) .

0 zZ

Therefore,

(3) F,(6) = I'(s)e” exp (s [t dz) (s>0).

0 Z

By a standard inversion formula for the Laplace transform, we thus obtain
the following result.

Theorem. We have for s>0

fo(2) = lim L )™ j" exp<—xt+sr_ez“1 dz)dt (0} .

Ioo 27'[7: —iT 0 P4
3. Notes. 1) We note that for s=1 the right-hand side of the equality

in the theorem is equal to é— at x=0 and for s>1 it is equal to 0 at =x=0.

Also, if s=1 then we have
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filx) = < jm eXp<—xt+Y e—1 dz)dz

277.'i (] 4

—doo

for all =0, and if s>1 then
Solx) = Is)e” foo exp (——xt—i— sjt—ez—__——l— dz) dt

2t z

—geo
for all z, —oco<x< oo, £,(0) being defined to be equal to O.

2) de Bruijn and van Lint [3;I] have also considered the function g,(x)
(s=0) defined by the conditions:

(1) g.(x)=0 for x<O0,
(ii) gs(x) is continuous for x=0,
iii) gs(x)=2* for O0=x<1,

(
(
As is noted in [3; II, §2], we have for s>0

gs(x) = Sj:fs(y)dy .

They showed in [3;1, §2] that if s=0 then g,(x)=g.(x)=1 for all >0 and
if s>0 then g¢,(x) is a positive, monotone increasing function of £ for £>0.
It is also proved there that we have

limg,(x) = I'(s+1)e™ (s>0)

x—00

iv) xg4(x) = sg,(x)—sg,(x—1) for x>1.

and this implies at once that
|“fl@dz =r)e (s>0),

which clearly agrees with (3). And in the course of its proof they found
a formula which is essentially the same as (3). (In fact, using the relation
between f,(z) and g,(s), we can show that F,(¢) (s>0) satisfies as a function
of & the differential equation

EFJ(§) =s(e*—1)F.(8),

and, by integrating this equation, we get the formula (3).) Thus, our main
interest of this note is in deriving the explicit formula for f,(x) from a some-
what different point of view, that is, on the basis of Lemma 2 which shows
an interesting interrelation existent among the functions f;(x) (s>0).
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