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In connexion with the study of certain incomplete sums of multiplicative
functions, N. G. de Bruijn and J. H. van Lint [3] have introduced the function
$f_{s}(x)(s\geqq 0)$ satisfying the set of conditions:

(i) $f_{s}(x)=0$ for $x<0$ ,

(ii) $f_{s}(x)$ is continuous for $x>0$ ,
(iii) $f_{s}(x)=x^{n}- 1$ for $0<x\leqq 1$ ,

(iv) $xf_{s}^{\prime}(x)=(s-1)f_{s}(x)-sf_{s}(x-1)$ for $x>1$ .
(The function $f_{s}(x)$ is originally defined in [3; II, \S 2] only for $x>0$ ; it will
be convenient, however, to define $f_{s}(x)=0$ for $x<0$ for our purpose.)

On the other hand, N. G. de Bruijn [1 and 2] has investigated in detail
the property and behaviour of $f_{s}(x)$ for $s=1$ . In particular, there he obtained
an explicit formula for $f_{1}(x)$ :

$f_{1}(x)=\frac{e^{\rho}}{2\pi i}\int_{-i\infty}^{i\infty}$ exp $(-xt+\int_{0}^{t}\frac{e^{z}-1}{z}dz)dt$ $(x>0)$ ,

where $C$ is Euler’s constant,

$C=\lim_{n\rightarrow\infty}(\sum_{m=1}^{n}\frac{1}{m}-\log n)$ .

In the present note we shall prove an analogous formula for $f_{s}(x)$ with general
$s>0$ .

Remark. For $s=0$ it is easy to see that $f_{s}(x)=f_{0}(x)=x^{-1}(x>0)$ . We
may suppose, therefore, that $s>0$ throughout in the following.

1. Lemmata. We require two lemmas independent of one another.
Lemma 1. If $\phi(s)$ is a (complex valued) continuous function defined

for $s>0$ and satisfying the functional equation

$\phi(s+r)=\phi(s)\phi(r)$ $(s>0, r>0)$ ,

then there is an integer $A$ independent of $s$ such that

$\phi(s)=e^{?\overline,iAs}(\phi(1))^{s}$ $(s>0)$ .
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Proof. We may assume without loss of generality that $\phi(s)$ does not
vanish for $s>0$ and hence that $\phi(1)\neq 0$ . Consider the continuous function

$\psi(s)=\frac{\phi(s)}{(\phi(1))^{s}}$ $(s>0)$ ,

where $ z^{8}=\exp$ ( $s$ log z) and the branch of log $z$ is taken in such a way that
log $z$ is real for real $z>0$ . We have for any $s>0$

$\psi(s+1)=\frac{\phi(s+1)}{(\phi(1))^{s+1}}=\frac{\phi(s)}{(\phi(1))^{s}}=\psi(s)$ .

Thus, if we put

$\alpha(s)=\frac{1}{1+|\log|\psi(s)||}$ ,

then

(1) $\int_{0}^{1}$ a $(s)ds=\int_{0}^{1}$a $(2s)ds$ .

Indeed, we have

$\int_{0}^{1}\alpha(s)ds=\int_{0}^{1}$ a $(s+1)ds=\int_{1}^{2}\alpha(s)ds$

$=2\int_{1/2}^{1}$ a $(2s)ds=2,\int_{0}^{1}$ a $(2s)ds-\int_{0}^{1}\alpha(s)ds$ ,

which is equivalent to (1). Since $\psi(2s)=(\psi(s))^{2}$ , we deduce from (1) that

$\int_{0}^{1}\frac{|\log|\psi(s)||}{(1+|\log|\psi(s)||)(1+2|\log|\psi(s)||)}ds=0$ ,

and this implies that log $|\psi(s)|=0$ almost everywhere on $(0,1)$ . It follows that
$|\psi(s)|=1$ everywhere on $(0, \infty)$ . This means that, if we set

(2) $\frac{\phi(s)}{(\phi(1))^{s}}=\theta^{\theta(g)}$ ,

then $\theta(s)$ is a real valued continuous function of $s>0$ satisfying the congruence

$\theta(s+r)\equiv\theta(s)+\theta(r)$ $(m\propto 11)$ $(s>0, r>0)$ .
Hence, there is a constant $c\equiv 0(mod 1)$ such that

$\theta(s+r)=\theta(s)+\theta(r)+c$ $(s>0, r>0)$ .
and it follows from this that the limit

$\lim_{s\rightarrow+0}\theta(s)=-c$
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exists. Thus, if we put

$\theta^{*}(s)=\theta(s)+c$ ,

then $\theta^{*}(s)$ satisfies the equation

$\theta^{*}(s+r)=\theta^{*}(s)+\theta^{*}(r)$ $(s>0, r>0)$ .
Since $\theta^{*}(s)$ is continuous for $s>0$ , we find by a well-known theorem (which
is in fact easy to prove) that $\theta^{*}(s)=As(s>0)$ for some real constant $A$ , so
that $\theta(s)=\theta^{*}(s)-c=As-c$. But, in view of (2), we may take $c=0$ . Finally,
the constant $A$ must be integral, since $e^{2\pi iA}=1$ . This completes the proof of
the lemma.

Lemma 2. We have

$f_{s+r}(x)=\frac{\Gamma(s+r)}{\Gamma(s)\Gamma(r)}\int_{0}^{x}f_{s}(y)f_{r}(x-y)dy$ $(s>0, r>0)$ .

Proof. Put

$f(x)=\int_{0}^{x}f_{s}(y)f_{r}(x-y)dy$ .

Apparently, $f(x)=0$ for $x<0$ and $f(x)$ is continuous for $x>0$ . For $0<x\leqq 1$

we have

$f(x)=x^{s+r-1}\int_{0}^{1}z^{S-1}(1-z)^{r-1}dz$

$=f_{s+r}(x)\frac{\Gamma(s)\Gamma(r)}{\Gamma(s+r)}$ .

Suppose now that $x>1$ and write

$xf(x)=\int_{0}^{x}yf_{s}(y)f_{l}.(x-y)dy+\int_{0}^{x}f_{s}(y)(x-y)f_{r}(x-y)dy$

$=\int_{0}^{x}(x-y)f_{s}(x-y)f_{r}(y)dy+.r_{0}^{x}f_{s}(y)(x-y)f_{r}(x-y)dy$

$=I_{1}+I_{2}$ ,

say. We have

$\frac{dI_{1}}{dx}=\int_{0}^{x}((x-y)f_{\delta}^{\prime}(x-y)+f_{\delta}(x-y))f_{r}(y)dy$

$=\int_{0}^{x}(x-y)f_{s}^{\prime}(x-y)f_{r}(y)dy+\int_{0}^{x}f_{s}(x-y)f_{r}(y)dy$

$=(s-1)f(x)-sf(x-1)+\beta(x)$

$=sf(x)-s\beta(x-1)$ ,
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and, by symmetry,

$\frac{dI_{2}}{dx}=rf(x)-rf(x-1)$ .

Since $(xf(x))^{\prime}=xf^{\prime}(x)+f(x)$ , we thus obtain

$xf^{\prime}(x)=(s+r-1)f(x)-(s+r)f(x-1)$ .

Hence the function $\underline{\Gamma(s+r)}f(x)$ satisfies all the conditions $(i)-(iv)$ with $s+r$
$\Gamma(s)\Gamma(r)$

in place of $s$ , and, since these conditions uniquely determine the function $f_{s+r}(x)$ ,

it follows that
$f_{s+r}(x)=\frac{\Gamma(s+r)}{\Gamma(s)\Gamma(r)}f(x)$ ,

which is the required result.
Remark. The substance of Lemma 2 is a particular case of a slightly

more general result. Thus, let $h(x)=h(x;c)$ be a function defined by the
following conditions, $c=(c_{0}, c_{l}, \cdots, c_{n})$ being an $(n+1)$-tuple of constants $(n\geqq 0$

fixed):

(i) $h(x)=0$ for $x<0$ ,

(ii) $h(x)$ is continuous for $x>0$ ,

(iii) $\lim_{x\rightarrow 0}xh(x)=0$ ,

(iv) $xh^{\prime}(x)=(c_{0}-1)h(x)+\sum_{j=1}^{n}c_{j}h(x-j)$ for all $x>0$ ,

$x\neq m(1\leqq m\leqq n)$ .

(Obviously the above conditions for $h(x)=h(x;c)$ imply that $c_{0}>0$ and $h(x)$

$=Bx^{c_{0}-1}$ for $0<x\leqq 1$ with $B$ a constant and, for $x>1,$ $h(x)$ is uniquely
determined once $B$ is fixed. We shall be concerned with those functions $h(x)$

only which are not identically zero.) Then we have

$h(x;a+b)=K\int_{0}^{x}h(y;a)h(x-y;b)dy$ $(x\neq 0)$ ,

where $K$ is a constant and where we set

$a+b=(a_{0}+b_{0}, a_{1}+b_{1},\cdots,a_{n}+b_{n})$

if
$a=(a_{0},a_{1}, \cdots,a_{n})$ and $b=(b_{0}, b_{1}, \cdots, b_{n})$ .

2. The Explicit Formula. We now consider the Laplace transform of
$f_{s}(x)$ ,
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$F_{s}(\xi)=\int_{0}^{\infty}e^{-\xi x}f_{s}(x)dx$ ,

where $\xi$ is a complex variable. The integral defining $F_{s}(\xi)$ is absolutely con-
vergent on the line ${\rm Re}\xi=0$ (cf. \S 3 below). Also, $F_{s}(\xi)$ is, as a function of
$s$ , continuous for $s>0,$ $\xi({\rm Re}\xi\geqq 0)$ being fixed.

In view of Lemma 2 we have

$F_{s+r}(\xi)=\frac{\Gamma(s+r)}{\Gamma(s)\Gamma(r)}F_{s}(\xi)F_{r}(\xi)$ $(s>0, r>0)$

or

$\frac{F_{s+r}(\xi)}{\Gamma(s+r)}=\frac{F_{s}(\xi)}{\Gamma(s)}\frac{F_{r}(\xi)}{\Gamma(r)}$ $(s>0, r>0)$ .

Hence, by applying Lemma 1 to $\phi(s)=F_{s}(\xi)/\Gamma(s)$ , we get for $s>0$

$\frac{F_{s}(\xi)}{\Gamma(s)}=e^{\pi iAs}’(\frac{F_{1}(\xi)}{\Gamma(1)})^{s}$

or

$F_{s}(\xi)=\Gamma(s)(F_{1}(\xi))^{s}$ ,

the constant $A$ being necessarily zero since for any $s>0F_{s}(\xi)$ has a positive
real value for real $\xi\geqq 0$ .

We see from the explicit formula for $f_{1}(x)([2$ ; \S 1] $)$ that

$F_{1}(\xi)=e^{C}$ exp $(\int_{0}^{-\xi}\frac{e^{z}-1}{z}dz)$ .

Therefore,

(3) $F_{s}(\xi)=\Gamma(s)e^{c_{S}}$ exp $(s\int_{0}^{-\xi}\frac{e^{z}-1}{z}d_{Z})$ $(s>0)$ .

By a standard inversion formula for the Laplace transform, we thus obtain
the following result.

Theorem. We have for $s>0$

$f_{s}(x)=\lim_{T\rightarrow\infty}\frac{\Gamma(s)e^{\Omega}}{2\pi i}\int_{-iT}^{iT}$exp $(-xt+s\int_{0}^{t}\frac{e^{x}-1}{z}dz)dt$ $(x\neq 0)$ .

3. Notes. 1) We note that for $s=1$ the right-hand side of the equality
in the theorem is equal to $\frac{1}{2}$ at $x=0$ and for $s>1$ it is equal to $0$ at $x=0$ .
Also, if $s=1$ then we have
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$f_{1}(x)=\frac{e^{(j}}{2\pi i}\int_{-i\infty}^{i\infty}\exp(-xt+\int_{0}^{t}\frac{e^{l}-1}{z}dz)dt$

for all $x\neq 0$ , and if $s>1$ then

$f_{s}(x)=\frac{\Gamma(s)e^{c_{S}}}{2\pi i}r_{-l\infty}^{\infty}\exp(-xt+s\int_{0}^{t}\frac{e^{t}-1}{z}dz)dt$

for all $x,$ $-\infty<x<\infty,$ $f_{s}(0)$ being defined to be equal to $0$ .
2) de Bruijn and van Lint $[$3; $I]$ have also considered the function $g_{s}(x)$

$(s\geqq 0)$ defined by the conditions:

(i) $q_{s}(x)=0$ for $x<0$ ,

(ii) $q_{s}(x)$ is continuous for $x\geqq 0$ ,

(iii) $g_{s}(x)=x^{s}$ for $0\leqq x\leqq 1$ ,

(iv) $xq_{s}^{\prime}(x)=sq_{s}(x)-sq_{s}(x-1)$ for $x>1$ .

As is noted in [3; II, \S 2], we have for $s>0$

$g_{s}(x)=s\int_{0}^{x}f_{s}(y)dy$ .

They showed in $[$3; $I$ , \S 2 $]$ that if $s=0$ then $q_{s}(x)=q_{0}(x)=1$ for all $x>0$ and
if $s>0$ then $g_{s}(x)$ is a positive, monotone increasing function of $x$ for $x>0$ .

It is also proved there that we have

$\lim_{\rightarrow\infty}g_{s}(x)=\Gamma(s+1)e^{\prime_{\lrcorner}s}$ $(s>0)$

and this implies at once that

$\int_{0}^{\infty}f_{8}(x)dx=\Gamma(s)e^{Cs}$ $(s>0)$ ,

which clearly agrees with (3). And in the course of its proof they found
a formula which is essentially the same as (3). (In fact, using the relation
between $f_{s}(x)$ and $q_{8}(s)$ , we can show that $F_{s}(\xi)(s>0)$ satisfies as a function
of $\xi$ the differential equation

$\xi F_{s}^{\prime}(\xi)=s(e^{-\xi}-1)F_{s}(\xi)$ ,

and, by integrating this equation, we get the formula (3).) Thus, our main
interest of this note is in deriving the explicit formula for $f_{s}(x)$ from a some-
what different point of view, that is, on the basis of Lemma 2 which shows
an interesting interrelation existent among the functions $f_{s}(x)(s>0)$ .
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