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8§ 0. Introduction. It is the purpose of this paper to extend the Galois
theory of commutative rings given by S. U. Chase, D. K. Harrison and A.
Rosenberg [4] to non-commutative case. In what follows, for the sake of
simplicity, we shall state main results for directly indecomposable rings: Let
A>1 be a directly indecomposable ring, G a finite group of automorphisms of
A, and B=A%= {zx€A; o(x)=x for all ¢ in G.}. We call A/B a G-Galois
extension if there are elements a,, -+, a,; a;, *-,a} in A such that }];a;,-¢(a})=
8, ,.(c€G), where §,, means Kronecker’s delta. If V,(B)=C (the center of A),
then A/B is a G-Galois extension if and only if the mapping x®y—zy from
A®zA to A splits as an A-A-homomorphism (Th. 1.5). Let A/B be a G-
Galois extension, and A’ a G-invariant subring of A, i.e., ¢(A’)=A’ for all
o in G, and put B'=A'¢. If A'/B' is a G-Galois extension and B’ is a direct
summand of A’z., then there hold the following. (1) For any subgroup H of
G, AP=BRzA""=A""QRzB. (2) Let {T} be the set of all G-invariant inter-
mediate rings of A/A’, and {T'} the set of all intermediate rings of B/B’ such
that A'T=TA’. Then, T—T NB and T—A'T=TA’ are mutually converse
order isomorphisms between {7’} and {7}, and T/T NB) is a G-Galois
extension (Th. 5.1).

Let A/B be a G-Galois extension, V,(B)=C, and Bj a direct summand
of A;. Then there hold the following: (1) G coincides with the set of all
B-automorphisms of A (Th. 4.2). (2) For any subgroup H of G, {c€G;
oc|A%=1,}=H. (3) If T is an intermediate ring of A/B, the following are
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equivalent: (a) T'=A“ for some subgroup H of G. (b) The mapping
x®y—>zxy from T®zA to A splits as a T-T-homomorphism (Th. 2.6). (c)
AT is a projective Frobenius extension (in the sence of Kasch), and 7 is
a direct summand of A, (Th. 3.2). In case zBj is a direct summand of Aj,
the next is also equivalent to (a). (b") The mapping xQy—>xy from TR ;T
to 7 splits as a 7-7-homomorphism (Th. 2.9). (4) For any subgroup H of
G, every B-isomorphism from AZ to A can be extended to a B-ring automor-
phism of A (Th. 4.2). (5) If Ay is finitely generated and free, and B is
a semi-primary ring (i.e. B/R(B) satisfies the minimum condition for left ideals,

where R(B) means the Jacobson radical of B), then A has a normal basis
(Th. 1.7).

Let 4=4(A, G)= 3 .ca®Au, be the trivial crossed product of A with G.
G is said to be completely outer if ,Au,, and 4Au., have no isomorphic non-
zero subquotients provided ¢#7. If G is completely outer, then A/B is a G-
Galois extension and V,(B)=C (Prop. 6.4). If A is commutative, then A/B
is a G-Galois extension if and only if G is completely outer (Th. 6.6). In case
A is two-sided simple, G is completely outer if and only if A/B is a G-Galois
extension and V ,(B)=C (Cor. to Prop. 6.4).

The auther wishes to express his best thanks to Dr. H. Tominaga for
helpful suggestions.

§ 1. Galois extension and normal basis.

Throughout the present paper, all rings have identities, modules are unitary.
A subring of a ring will mean one containing the same identity. By a ring
homomorphism, we mean always a ring homomorphism such that the image
of 1is 1. Let A be a ring, C the center of A, G a finite group of automor-
phisms of A which acts on the left side, and B=A%= {x€A; o(x)=x for all
¢ in G}. For any subgroup H of G, 6z, means the mapping from G to
{1, 0} (£ A) such that d;,=1 if and only if ceH.

Let B’ and 7" be subrings of a ring A’ such that B'C7T. A’ is said to
be (B', T)-projective, if the mapping 3 ,z,Qv,—~ X ,x,;4; from T® A’ to A’
splits as a 7-T-homomorphism. As is easily seen, A’ is (B’, T)-projective if
and only if there are elements ¢#,,---,¢,€ T and a},---,a,€A’ such that Y ,ta,=1
and szti®a,’;- 2itiQaix (€ET®gzA') for all x in T. When this is the case,
{#, @)} s i=1,---,n} is called a (B, T)-projective coordinate system for A’.
If A is (B, A')-prOJectlve, then we call A’/B’ a separable extension.

Let f and g be ring homomorphisms from a ring A’ to a ring A”. f
and ¢ are called strongly distinct if, for any non-zero central idempotent e of
A", there is an element x in A’ such that f(x)e#g(x)e. Let & be a set of
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ring homomorphisms from A’ to A”. & is called strongly distinct it any
distinct £, g in & are strongly distinct.

A4d=A4(A, G) denotes the trivial crossed product of A with G: 4=
3@ Au,, uu.=u, (o, €G), ux=ac(x)u, (x€A). By j, we denote the ring
homomorphism from 4 to Hom (Az, A) defined by j(zu,) (y)=x-0(y) for z,
vy in A and ¢ in G.

A/B is called a G-Galois extension if there are elements a,,:--,a,;
at,---,a¥ in A such that Y,a,0(a})=8,, for all ¢ in G. When this is the
case, {(a;, a}): i=1,---,n} is called a G-Galois coordinate system for A[B.
Then the following is known: A/B is a G-Galois extension if and only if
Ay is finitely generated and projective and j is an onto isomorphism (cf. [6]).
When this is the case we identify 4 with Hom (A, Az): 4=A,G=AG,
where A, means the set of all left multiplications by elements of A. If A/B
is G-Galois and C=V,(B) (the centralizer of B in A), it is called outer G-
Galois. If A/B is G-Galois (resp. outer G-Galois) and H is a subgroup of G,
then A/AZ is evidently H-Galois (resp. outer H-Galois).

Proposition 1.1. Let A’ and A" be rings, T a subring of A', f a
ring homomorphism from T to A", and g a ring homomorphism from A’
to A”. If there are elements t,, -, t,€T and a,, ---,a,€ A’ such that 3 ;ta,=1
and Y..f(t)g(a)=0, then f and g|T (the restriction of g to T) are strongly
distinct.

Proof. Let e be a central idempotent of A” such that f(x)e=g(x)e for
all zin T. Since Y.:;%a,=1, we have X ,g(¢)g(a;)=1, and therefore e=el =
Se-gt)gla)= e f(t)g(a)=0. Thus, f and ¢|T are strongly distinct.

Proposition 1.2. Let B' and T be subrings of a ring A’ such that
B'CT, and A" an extension ring of B' such that V ,.(B)=V 4.(A"), where
V ..(B') means the centralizer of B' in A"”. Let A’ be (B, T)-projective, and
{(t, a)); i=1,---,n} a (B, T)-projective coordinate system for A'. Let [ be
a B'-ring homomorphism from T to A", g and ¢’ B'-ring homomorphisms
from A’ to A". We set e=3,f(t)g(a) and & =2.f(t;)9'(a;). Then there
hold the following:

(1) e is a central idempotent in A'".

(2) flx)e=e-g(x) for all x in T.

(3) ed=eX.g(t)9g ()

(4) f and g|T are strongly distinct if and only if e=0.

(5) If g|T and ¢'|T are strongly distinct, then ee'=0.

Proof. Since X ,xt;,Qa,= 2.:;t;Qax (e T®zA’') for all x in T,
S flat)Rg (@)= L. f(t)Rglax) (€EA"®zA") for all x in T. Therefore,
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flx)e=e-g(x) for all x in T, in particular, ye=ey for all y in B’. Hence, by as-
sumption, e is contained in the center of A”. Since X, ,f(£,)(2:f(t)Rg(a.) g’ (a;)
=(Zft)®g(a)) 2;9(t)9' (a,), we obtain ee' =33 ,f(¢)e-g'(a)=eX ;9(t,) g (a)).
If we put g=g’, then we have e’=e, and so e is a central idempotent of A"’
such that f(x)e=e-g(x) for all # in T. Therefore f and ¢|7T are strongly
distinct if and only if e=0 (Prop. 1.1). Now, it is left only to prove (5). If
g|T and ¢'|T are strongly distinct, then 3 ,¢(z,)¢'(a;)=0 by (4), and so ee =
e2.;9(¢5)g'(a;)=0.

Evidently, the mapping x®y—x> %,y from A®zA to 4 is an A-A-
homomorphism. We denote this homomorphism by 4. One may remark here
that 4 is a 4-A-homomorphism. In fact, u.xY],u,y=1(x)w. Y. uy=1(x) Y u.y.

Proposition 1.3. Let A/B be a G-Galois extension, and let {(a,, a});
t=1,---,ntbe a G-Galois coordinate system for A/B. Then h is a 4-A-
isomorphism, h™'(3],xu,)=2.,0 %, 0(a,)Qaf for every Y, .xu, in 4, and
{(a;, af); i=1,---,n} is a (B, A)-projective coordinate system for A.

Proof. To be easily seen, (3,2, x, 0(a;)®a)f)=>,,x.u,, and hence h is
onto. Letx, ybein A. Then };,),x0(y)o(a,)Raf=xR X..2:.0W)o(a,)a} =
x®vy, whence we can easily see that A is 1-1. Hence, & is a 4-A-isomor-
phism. Since A(}];a,®af)=wu, and h is an A-A-isomorphism, },ra,Qa}=
da;@®afx for any x in A.

Proposition 1.4. Assume V ,B)=C (the center of A), and let a,, af
(i=1,---,n) be elements of A. Then the following conditions are equivalent:
(1) {(as, al); i=1,---,n} is a G-Galois coordinate system for A/B. (i)
{(as, af); i=1,---,n} is (B, A)-projcetive coordinate system for A/B and G is
strongly distinct.

Proof. (i)=(ii) follows from Prop. 1.3 and Prop. 1.1. (ii)=>(i) follows
from Prop. 1.2 (4).

Restating the above proposition we obtain the following theorem.

Theorem 1.5. (Cf.[4; Th.1.3)) Let V,(B)=C. Then following con-
ditions are equivalent:

(1) A/B is a G-Galois extension.
(i) A/B is a separable extension and G is strongly distinct.

Remark. To prove the part (i)=>(ii) we do not need the condition
VA(B)=C.

Proposition 1.6. (Cf. [4; Th. 4.2).) If A/B is a G-Galois extension
and zA=yB™ for some natural number m, thenzeBG™= z,A™.

Proof. Let A=2,,®Bd,; (i=1,---,n), and zB= zBd, by the correspondence
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y—>yd; (yeB). Then 4=, ®u,A=3,,Du,Bd;= 3., DBu,d;= 3, (2.,Bu,)d,
and (3,Bu,)d;= Y. ,Bu, as Y,,Bu,left modules. Hence,zed= zeBG™. On the
other hand, 4= ,AR ;A= ,ARz(B")=,A"(Prop. 1.3). We obtain therefore
86BG™ = ggA™.

Theorem 1.7. Let A/B be a G-Galois extension and zA=zB™ for
some natural number m. If B is semi-primary (i.e., B/R(B) satisfies the
minimal condition for left ideals, where R(B) means the Jacobson radical
of B), then peBG=zcA, that is, A has a normal basis.

Proof. By Prop. 1.6, zeBG™= zqA™. Since R(B)G-BG™=(R(B)G)"—
(R(B)A)” under the above isomorphism, (BG/R(B)G)"=(A/R(B)A)™ as
BG/R(B)G-left modules. Since BG/R(B)G is B/R(B)-left finitely generated
and B is semi-primary, BG/R(B)G satisfies the minimal condition (and the
maximal condition) for left ideals. Hence, by Krull-Remak-Schmidt’s theorem,
we have BG/R(B)G=A/R(B)A as BG-left modules. Since z¢BG and zzA
are finitely generated and projective and R(B)G S R(zeBG) and R(B) A R(zc4),
BG=A as BG-left modules by the uniqueness of projective cover (cf. [11])."

§ 2. The first characterization of fixed-subrings.

For any subgroup H of G, the mapping x—>) . a7(x) from A to A¥ is
evidently an AZ-AZ-homomorphism. We denote this by #g.

Let A/B be a G-Galois extension. Then (3,u#,)A=Hom (Ag, Bz) by j
(cf. [6]). From this fact, one will easily see that By is a direct summand of
Ay if and only if there exists an element ¢ in A such that #;(c)=1. Further,
since j(X,u,)V4(B)=Hom (zAz, sBs), zBr is a direct summand of Ay if
and only if there exists an element ¢ in V,(B) such that z;(c)=1.

Let ¢ be an element of A such that #,(c)=1, H a subgroup of G, and
G = Ho,U --- U Ho, the right coset decomposition of G. If we set X,0,(c)=d,
then z5(d)=1. Hence, if A/B is G-Galois and By is a direct summand of
Ajg, then A%, is a direct summand of A .

For any G-left module M and any subgroup H of G, we denote by M<
{uecM; r(u)=u for all - in H}. If A/B is a G-Galois extension, then A:
AR A =qd, (Prop. 1.3), and evidently (A® A)#«- 47 under h.

Proposition 2.1. Let A/B be a G-Galois extension. If H is a sub-
group of G, then 4°={},ux,; if Ho=Hr then x,=x.} and (AQA) =
AR A.

Proof. The first assertion is evident. We shall prove the second one.
Evidently AFQAC(ARA). Let {(a; af);i=1,---,n} be a G-Galois coordi-
nate system for A/B. If @ is an element of G, then 3} ,xu,€47 and
AN eroths) = 2acerr 22470 (@) @a = 2 o(Dentp(@)®ai € A"®A.  Noting that A
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is an A-right isomorphism, we have (AQA)YCA"R®A. Thus (ARA)=
ARRQA.
Proposition 2.2. Let A/B be G-Galois. If H is a subgroup of G,

then there are elements ¢, ---,t,€ A% and af,---,a*€A such that Ditia(al)=
On,, for all ¢ in G, and {oeG; o|A"=1 gz} =H.

Proof. Let {(a;, a}); i=1,---,n} be a G-Galois coordinate system for
A/B. If we put t,=tg(a;), then ¢, A% and 2iteo(al)=0g, I o|A"=1 4
then 1=20(t)o(al)= X tir0(a})=0g,. Hence o€ H.

Theorem 2.3. Let A/B be G-Galois, and By a direct summand of Ag.
If H is a subgroup of G and T is an intermediate subring of A|B such
that TS A", then the following conditions for T are equivalent.

(i) T=AE

(i) There are elements t,,---,t,€T and a}, ---,a*€A such that 2itiro(af)
=0m,, for all ¢ in G.

(i) TQA=AZRA in AR A.

Proof. (i)=(ii) follows from Prop. 2.2. (ii)=(iii) Evidently TQAC
A"®A in AQzA. If p is in G, then 2t @p Y af)eT®A and
h(Z:t.807'(af))=X.emu,. Noting that ~ is an A-right homomorphism, we
know that A(T®A)=4% and hence T®A=AZ®A (Prop. 2. 1). ()= (i)
There is an element ¢ of A such that te(c)=1. For any x in A%, x®cc AZR A
=T®A. Therefore, there are elements x,’s€7T, y,s€A such that x®c=
21;x;Qy;. By making use of the mapping 1®%;, we can easily see x=
x-tg()= 2 ;x5 te(y,)e T-B=T. Hence T= A~

Proposition 2.4. Let A/B be a G-Galois extension. If H is a sub-
group of G, then G|A" is strongly distinct and the mapping xQy—xy from
A"QpA to A splits as an AP-A"-homomorphism (i.e. A is (B, AF)-projective).

Proof. Let {(a;, af); i=1,---,n} be a G-Galois coordinate system for
A[B. If we set t,=ty(a,), then t,€ A¥ and 2itira(al)=6y, for every ¢ in G.
Therefore, by Prop. 1.1, G|A” is strongly distinct. Now, £;&®1 is an AZ-A-
homomorphism from A® A to A7 ® pA. Since ), xa,RQa}f=3,a;,Ralx
(€EA®3zA) for all x in A (Prop. 1.3), Zivt:®a;=2.t,Qafy (€ AR zA) for
all ¥ in A”. Hence the mapping x— 2 :;t,Qafx from A to AFR A is an
A”-A-homomorphism, and Y,zafxr=x. Hence the mappmg xQ@y—xy from
A"®pzA to A splits as an A7-A-homomorphism.

Proposition 2.5. Let A/B be outer G-Galois, and T an intermediate
ring of A|B. If G|T is strongly distinct, and A is (B, T)-projective then
there are elements t,,---,t,€T and af,-,ar€A such that Y ,t;yo(a})=dy,
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for all ¢ in G, where H={s€G; o|T=1,}. |

Proof. Let {(t;,a}); i=1,---;n} be a (B, T)-projective coordinate system
for A. Then, by Prop. 1.2, 3¢, 0(a})=0 for every o+ H. Whereas, if o€ H,
then 1=3,0(t)o(al)=Zstso(al).

Combining Props 2.4, 2.5 with Th. 2.3, we readily obtain the following:

Theorem 2.6. Let A/B be outer G-Galois, and By a direct summand
of Ag. If T is an intermediate ring of A[B, then the following conditions
are equivalent :

(i) There is a subgroup H of G such that T=A".

(i) A is (B, T)-projective and G|T 1is strongly distinct.

Lemma 2.7. Let S and T be subrings of a ring R such that S2T.

(1) If R|T is separable, then so is R/S.

(2) If S|T is separable, then R is (T, S)-projective.

(3) If both R|S and S|T are separable, then so is R/T.

Proof. (1) will be easily seen. (2) Since SQSQsR=SR R and SQR=
R, this is obvious. (3) Since the mapping s®s—ss’ from S®»S to S splits
as an S-S-homomorphism, the mapping 7®7'—r®7’ from R®,R to RQsR
splits as an R-R-homomorphism. Since R/S is separable, the mapping &7’ -—>rr’
from R®,R to R splits as an R-R-homomorphism.

Proposition 2.8. Let A/B be outer G-Galois, and pBg ‘a direct sum-
mand of zAz. If H is a subgroup of G, then A¥ is an A"-A®-direct sum-
mand of A, and AZ|B is a separable extension.

Proof. Since zBj is a direct summand of zAz, there is an element ¢ of
C such that z;(c)=1. Let G=Hog, U---U Ho, be the right coset decomposition
of G. If we set d=3.,0:(c), then £5(d)=1 and deC. Hence A¥ is an A%-
H direct summand of A. Let {(a;, a)); i=1,---,n} be a (B, A)-projective
coordinate system for A/B. Then, {(a;, a}); i=1,--,n} is a G-Galois coordi-
nate system for A/B (Prop. 1.4). The mapping x—t4z(dx) from A to A% is
an AZ-AZ-homomorphism. We denote this by #. Then, the mapping #:®¢%
from AR A to AZRQzAZ is evidently an AZ-AZ-homomoryhism, and there-
fore the mapping y— 3, 2a(ya,)®¢ (af)= Y .tula,) D¢ (afy) from A¥ to AR A"
is an AZ-AZ-homomorphism. Since 3 tx(a,)t (afy)=21: 2 en0(@)z(al)z(d)y
= Yoen Neo(@)t(ad)r(@)y=Z.xr(d)y=y for all y in A%, A¥/B is a separable
extension.
By Th. 2.6, Lemma 2.7 and Prop. 2.8, we obtain at once the following:

Theorem 2.9. (Cf. [4; Th. 2.2]). Let A/B be outer G-Galois, and pBg
a direct summand of zAz. If T is an intermediate ring of A[B, then the
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Sfollowing conditions are equivalent :

(i) There is a subgroup H of G such that T= A~
(i) T/B is a separable extension and G|T is strongly distinct.

§ 3. The second characterization of fixed-subrings.

Let R be a ring, S a subring of R. R/S is called a projective Frobenius
extension if Ry is finitely generated and projective and ¢R,=Hom (Rg, S¢x
(cf. [10]). If A/B is a G-Galois extension, then (pA,=) . u,)A =
sHom (A, Bg)a by j. Hence, A/B is a projective Frobenius extension. Now,
we shall state the next lemma without proof.

Lemma 3.1. Let R/S be a projective Frobenius extension, and 1<t
under an isomorphism ¢Rp=¢Hom (Rs, Sg)r. Then teHom (yRy sSs), Hom (R,
Sg)=tR and Hom (R, Rs)=RtR. ‘

Theorem 3.2. Let A/B be outer G-Galois, and By a direct summand
of As. If T is an intermediate ring of A|B, then the following conditions
are equivalent.

(i) There is a subgroup H of G such that AZ="TT.

(i) A/T is a projective Frobenius extension, Ty is a direct summand
of Az, and G|T is strongly distinct.

Proof. It suffices to prove that (ii)=(i) (cf. §2). We identify Hom (A,
Ajp) with 4, and set 4,=Hom (A,, A;), which is a subring of 4. Let z=3,c,,
be the image of 1 under the isomorphism ,A,=,Hom (A,, T;). Then, tA=
Hom (A, T;), AtA=4, and ¢€ Hom (,A,, ;T;) (Lemma 3.1). Since xt=tx
for-all x in T, we have x¢,=c,-6(x) for all x in T and ¢ in G, in particular,
yc,=c,y for y in B. Therefore, by assumption, each ¢, is an element of C.
Since AtA=4,, there are elements ¢,’s, d;’s in A such that Y,c,¢d,=u,. From
this fact, ¢, is an inversible element of C. Now, the mapping a: d—>0dcy! is
a 4,-A-homomorphism from 4, to 4, and the mapping 8: X.,z,u,— Y., Z.cou,
is evidently an A-A-endomorphism of 4. For any v in A and 2 in T, we
have 3, z.cu,(yz)= 2. x.c0(y)o(2)= 2,2, 0(y)c, 0(2)= T, x,0(y)2c, = 5. x,0,r
o(y)z=(2.x,cu,(y)z, which means B(4CS4,. If xRy is in AR A, then
Bh(x®vy)=B(x(X.u)y)=B(Z.x0(y)u)= T, x0(y)cu,=x T, cuy=xty. For
any J, in 4, and any =z in A, we have Jyxty(z)=20,(xt(y2))=20,(x) t(yz)=
0o(x)ty(z). Thus, ph is a 4,-A-homomorphism from A®zA to 4,, and so B
is a 4,-A-homomorphism from 4 to 4,. Since Ba(u,)=puci)=u,, Ba=1,,
Thus, we have 4=Ima® Ker 8=4,®(3, P Ann,(c,)-»,), where Ann,(c,)=
{re A; xc,=0}. Now, let{(a,, a}); i=1,---,n} be a G-Galois coordinate
system for A/B. If 7 is in G, then 4,=AtA> Y ,7(a,)ta} =cu., and so d,=
21 Acu,, whence it follows that A= Ac,®Ann,(c,). Let Ac,=Ae, with a



122 Y. Miyashita

central idempotent ¢, in A. Then, ¢,-6(y)=e¢,y for any y in 7. By assumption,
if ¢|T+#1, then e,=0, and so 4y=),..zsP® Au,, where H={reG; ¢|T=1,}.
Since 7T, is a direct summand of A,, End (,, A)=7T, the set of all right
multiplications by elements of 7" (see [1; Th. A. 2]). On the other hand,
since 4y= X .cx® Au,, End (; A)=(A%),. Hence, T'=A"

§ 4. Extension of isomorphisms.

Theorem 4.1. Let A/B be G-Galois, and A’ an extension ring of B
such that V4 (B)=V_(A"). Assume that there exists at least one B-ring
homomorphism from A to A’.

(1) If H is a subgroup of G such that A%y is a direct summand of
A z. Then every B-ring homomorphism from A¥ to A’ can be extended to
a (B-)ring homomorphism from A to A’.

(2) If f and g are B-ring homomorphisms from A to A’. Then A’
contains orthogonal central idempotents e,(6€G) such that 2 ,e,=1 and
flx)=2X,90(x)e, for all x in A. (Cf. [4; Th. 3.1])

Proof. There are elements a,, af (i=1,---,n) in A such that }},xa,Qaf =
S, a.Qafx(€AQpA) for all x in A and X ,a,0(af)=0,, for all ¢ in G
(Prop. 1.3). If we set t,=tz(a,), then t,€ A% 3}t 0(a))=0g, (6€G) and
Sext,Qaf =2 t,Qarx (EAQzA) for all x in A®.  Let f be a B-ring
homomorphism from AZ to A’, and g a B-ring homomorphism from A to A’
If we set e,=2X.,f(t)go(a}), then each e, is a central idempotent in A’ (Prop.
1.2). By Prop. 1.2 (3), e,e.=e,9(2 ;0(¢;)7(a})) for any o, z in G. Therefore,
if 67'z¢ H then e,e.=0, and if ¢7'z€¢H then e¢,=e,. Recalling that A%, is
a direct summand of A = there is an element d of A such that z;(d)=1. Since
N nitiQo(ald) = Xt Qtslald) = 2t telaid)Q1 = 2 Zetra(al))e(d®1 =
ta(d®1=1®1 in A"®zA, we have 2..20,f(t,)Rgo(a;d)=1Q1 (e A'RA),
and therefore 3.,2..f(t,)go(aid)=1 (€ A’). Let G=¢,HU:--Uo,H be the left
coset decomposition of G. Then, 1=73],2,f(%)g0(atd)= 21+ X cene,,goit(d)=
Yx€, 90 ta(d)= 2 e, . Since flx)e,=e, go(x) for all x in A (Prop. 1. 2),
we have f(x)= X, f(x)e,,= L rg0:(x)e,, for all x in A®. Evidently, the map-
ping z—> Y, go.(2)e,, is a B-ring homomorphism from A to A’, and an extension
of f.

Now, the following theorem will follow at once from Th. 4. 1.

Theorem 4.2. Let A/B be an outer G-Galois extension, and let A be
directly indecomposable. If H is a subgroup of G such that A%y is a direct
summand of Au, then every B-ring homomorphism from A¥ to A can be
extended to an element of G. In particular, G is the set of all B-ring
automorphisms of A.
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§ 5. Heredity of Galois extensions.

Theorem 5.1. Let A/B be G-Galois, A' a G-invariant subring of A,
and B'=A'9. Assume that there are elements a,,--,a,; af, --,ar and c in
A’ such that Y ;a,0(af)=6,, and tg(c)=1.

(1) A'[B' is a G-Galois extension, and AF=BR® zA'F=A'"2Q zB for
any subgroup H of G, in particular, A=BRzA'=A'Q zB.

(2) Let {X} be the set of all A'G-left submodules of A, and {X} the
set of all B'-left submodules of B. Then, X—X NB and X-A'X=A'"QzX
are muturally converse order isomorphisms between {X} and {X}.

(3) Let {Y} be the set of all G-invariant intermediate rings of AJA’,
and {Y} the set of all intermediate rings of B|B' such that A’Y=YA'
Then, Y /(Y NB) is G-Galois, and Y—Y NB and Y—A'Y=YA’ are mutually
converse order isomorphisms between {Y} and {Y}.

Proof. (1) Evidently, G=G|A’, and G may be regarded as a finite group
of automorphisms of A’. Hence, A’/B’ is G-Galois. Let G=Hag,U --- U Hao,
be the right coset decomposition of G. If we put d= Y, 0.(c) and ¢,=tz(a,), then
ta(d)=1 and > ;t,6(af)=0n,(0€G). If xis in AZ, then A'2.-B> 3, ¢t te(ardy)
= (Zitro(al)) o(dr)=ty(dxr)=tu(d)x=x. Thus, we obtain Ax=A'"".B. To
be easily seen, the mapping 2] ,x,Qy,— 2 ,x,v; from A”"®zB to A'"-B=A"
is well-defined and },4,®¢¢(a}d X ;x,y,)=2,;2,8y;. Hence, AP QB =
A'"".B=A*" by the mapping ) ,x;Qvy,;— 2.,x;¥;. Symmetrically, it follows
AZ=BR® A" (2) Let X be an A'G-left submodule of A. Evidently, X2
A'(XNB), and X NB is a B'-left submodule of B. If x is in X, then z4(a}x)
is in X NB, and hence x=,a,-ty(a;x)€ A'(X NB). Hence, X=A'(XNB),
and the mapping X ,x,Qv,—~ X2 ,;x,¥; from A’®z (X NB) to A/(XNB)=X is
onto. Moreovr, to be easily seen, },a;Qts(af X ,x,m,)=2;2;8v;.- Hence,
X=A'"®z(XNB). Now, let X be a B'-left submodule of B. Then, A’X
is an A’G-left submodule of A, and A’XNB2X. If J,x,y; (x;€A’, y;€X)is
in A’XNB, then 3} ,x,y,=ta(c)(X,;x,9,)=2.,0(c) 2 ;0(x,)y; =_ZJ_€G(C‘2:J) y;€X.
Hence, A’XNBC X, namely, A’XNB=X. (3) Evidently, (Y/YNB) is G-
Galois. Hence Y=A'(Y NB)=(Y NB)A’ by (1), and then our assertion is an
easy consequence of (2).

Corollary. Let A/B be G-Galois, and B'=Vg(B). Assume that there
are elements a;, af (i=1,---,n) in V4(B) such that Y ,a,0(af)=90,,.

(1) V. B)/B' is G-Galois, AF=B® 5V .(B)¥ for any subgroup H of G,
and the center of AF coincides with the center of V.B).. In particular,
A=B®gzV,(B), and B'<C. :

(2) Let {Y} be the set of all G-invariant intermediate rings of AJV 4(B),
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and {Y} the set of all intermediate rings of BIB'. Then Y—Y NB and
Y-V, (B) Y=V (B)®gzY are mutually converse order isomorphisms between
{Y} and {Y}.

(3) A/V(B) is separable if and only if B is a separable B'-algebra.

Proof. If remains to prove (3). If B/B’ is separable, then A/B’ is sepa-
rable, because both A/B and B/B’ are separable (Lemma 2.7). Hence A/V (B)
is separable. Conversely, assume that A/V ,(B) is separable. Then, since both
A/V 4(B) and V ,(B)/B' are separable, A/B’ is separable, or equivalently, A is
a separable B’-algebra (Lemma 2.7). Since A=B® 5z V4(B), by [2; Prop. 1.7
and its Remark], B is a separable B’-algebra.

Remark. The above corollary contains Kanzaki [8; Th. 5].

Let A, A’ be R-algebras over a commutative ring R such that A® ,A’+#0.
Assume that A/B is a G-Galois extension such that R-1C B and Bj is a direct
summand of Az, and assume that A’/B’ is a G’-Galois extension such that
R-1€ B’ and B’y is a direct summand of A’s. Let{(a,, a}); i=1,---,n} and
{d;,d;); j=1,---,m} be a G-Galois coordinate system for A/B and a G’-
Galois coordinate system for A’/B’, respectively. For any ¢x7z in GxG’, we
can define ox7-2,2,Qy;= 2,0(x;)®c(y;) (x;€ A, y;€A’). Then, since
2i03a;®d;) (0 x 7)(af @d))=(2ara(al)R(2L,d;7(d]),(A® rA")[(ARA" T
is a G x G'-Galois extension. Now, let H and H' be subgroups of G and
G’, respectively. Then, by assumption, there are elements ¢, ¢’ in A and A’,
respectively such that ) ,.zo(c)=1 and 2 .pz(c)=1. If X ,z,®y, is in
(AQAY™, then 2 2 QUr=(Lweno () ®(Lert(c) LrZs@Yr= 2Lenlicema(c)
Rz(c) s (6 X TNk xe @ Yie)= 24 (2eea0 (cxi) @ Lrerm t(c'yr) € AFQ A¥.  Hence,
(ARANTH = AHQ AF. Thus, we have the following:

Theorem 5.2. Let A and A’ be algebras over a commutative ring R
such that AR RA'#+0. If A/B is a G-Galois extension such that R-1CB
and By is a direct summand of Az, and A’'|B' a G’'-Galois extension such
that R-1C B and B’y is a direct summand of A’z , then (ARrA")/(BRB’)
is a G x G'-Galois extension, and (AQA'™¥ =AZQA'"™ for any subgroup
H of G and any subgroup H' of G’ (cf. [2;Th. A. 8]).

Corollary. Let A/B be a G-Galois extension such that BCC. If A’
is a B-algebra, then (A'Q rA)/(A’'®1) is a G-Galois extension, and (A'Q A=
A'Q A" for any subgroup H of G.

Proposition 5.3. Let A/B be a G-Galois extension. If H, K are sub-
groups of G, and A"* is an A""¥-left direct summand of A, then A=
A7 AX=AX.A".

Proof. By assumption, there is an element ¢ in A such that zzx(c)=1.



Finite Quter Galois Theory of Non-Commutative Rings 125

Evidently, A#0¥2D A% A¥. Let {(a;, a});i=1,---,n} be a G-Galois coordinate
system for A/B. I x is in AZ%, then A% -A¥33;tgla,)tx(afcx)=
Derticxiil(a)o(af)o(cx) = tynxg(c)r=x. Hence AZF¥ = A¥X.A%. Sym-
metrically we have AZ"¥=A#. A%,

Corollary. Let A/B be a G-Galois extension. If H and K are sub-
groups of G such that HN K= {1}, then A=A%-AX=AX.A%,

Theorem 5.4. Let A/B be a G-Galois extension, and By a direct
summand of Ag. If G=KH and KN H= {1} for a normal subgroup K
and a subgroup H, then there hold the following :

(1) A=A*RzAF=AZRQ A¥.

(2) A*/B is an H-Galois extension.

(3) For any subgroup H, of H and any subgroup K, of K such that
N(Ky)2H (where N(K,) means the normalizer of K, in G), A%&o=A%ER
pAFF = A*LQ ,A%E and A*|A%H {s an H-Galois extension.

Proof. Let {(a;, a%); i=,---,n} be a G-Galois coordinate system for A/B.
Since By is a direct summand of A, there is an element ¢ in A such
that z4(c)=1. Put t,=tx(a,), tf =tx(a}), and d=t,(c). Then, tz(d)=1 and
2tit(ty)=0,, for = in H. N(K,)2H implies that z(A%)=A% for all r in
H. Hence, by Th. 5.1, A%/A%# is an H-Galois extension. By Th. 5.1,
Afo=AZRQ pAFHo = AFHQ zA”.  Since K\H,= K.HN KH,, A¥# = A%H". A" =
AFH. A¥H (Prop. 5.3). Since AZDAXH and A%H is an AXHright direct
summand (of A, and so) of AF, AXH = AKEQ AX  Similarly, we have
AFH = AR Q) AKH

Corollary. Let A/B be a G-Galois extension, By a direct summand of
Ag, and G=N,x---xN,. If H;=N;x :-- x]\\’fix -+xX N, (i=1,---,7), then
A%i[B is Nyi-Galois, A=A%Rz - QgATr, and AF:-- - Fr=ALKQ 4 - R pAT%r
for each subgroup K, of N;.

Proposition 5.5. Let A/B be outer G-Galois. By a direct summand of
Ag, and A directly indecomposale. Let T and T' be intermediate rings of
A[B such that A=TQzT". If H={06€G; 6|T=1;} and H=4{0c€G; ¢|T' =
1.}, then T=A% and T'=A%.

Proof. Since T®zT"=A, we have ,T®zA*=,ARA,. Since A/T"
is a separable extension, A is (B, T)-projective. Hence, by Th. 2.6, T'=A~.
Symmetrically we have 7"= A¥.

Let A/B be a G-Galois extension, B, a direct summand of Az, and A
a G-invariant proper ideal of A. Let {(a;, af);i=1,---,n} be a G-Galois
coordinate system for A/B. For any x in A we denote z+U (€ A/A) by Z.
If we define ¢(%)=o(x), then Y ,a,0(af)=6,, for ¢ in G, and therefore
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(A/A (AN is a G-Galois extension. By assumption, for any subgroup H
of G there is an element ¢ in A such that z;(c)=1. If z is in (A/A)% then
=% eat(@) =2 eat (&) =ty(xc)€ (AZ+A)/A. Thus, we prove the following :

Theorem 5.6. Let A/B be a G-Galois extension, By a direct summand
of Az, and W a G-invariant proper ideal of A. Then (A/N)/(B+A)/A) is
a G-Galois extension, and (A|/N)F=(A"+W)/N for any subgroup H of G.

Corollary. Let A/B be a G-Galois extension, and By a direct summand
of Agz. If B contains a non-zero central idempotent e of A, then Ae/Be is
a G-Galois extension, and (Ae)?=A"-e for any subgroup H of G.

Proposition 5.7. Let A/B be a G-Galois extension. If N is a normal
subgroup of G such that AY is an A"-right direct summand of A, then
A%|B is a G|/N-Galois extension.

Proof. Let {(a,;,a}); i=1,---,n} be a G-Galois coordinate system for
A/B. By assumption, there is an element ¢ of A such that zy(c)=1. If we
put ty(a;)=t; and ty(afc)=t}, then ¢, and ¢} are A”, and },¢;-0(¢,*)=0y,, for
all ¢ in G. Hence, A¥/B is a G/N-Galois extension (Prop. 2.2).

Let A/B be a G-Galois extension, and 72 a natural number. Then, every
¢ in G induces a ring automorphism in the m x m complete matrix ring (A),,.
Accordingly, G may be regarded as a finite group of automorphisms of (A),,
such that ((A).)*=(B).. Let E be the identity of (A),, and let {(a;, a});
i=1,---,n} be a G-Galois coordinate system for A/B. Then },a,E-c(a}E)=
0, for all ¢ in G. Thus (A),/(B), is a G-Galois extension. (Remark. This
may be considered as a special case of Th. 5.2).

Theorem 5.8. Let A/B be a G-Galois extension, and {e,;; i,j=1,-+-,m}
a system of matrix units contained in B. If A=V, ({ey}), then A,/A¢ is
a G-Galois extension, and B= 7}, ;@ Afe,;.

Proof. Obviously, G induces an automorphism group of A, and B=
> ;AGe;;. Let {(A,.A}); i=1,---,n} be a G-Galois coordinate system for
A/B, Let A;=2,r@m€sn> AF=72;1dsjuesn Qs dise € Ao). Then, ¢(AF)=
21 ,.40(dsse) ey and therefore 37, ,aui-0(ds)=6,, for ¢ in G. Thus A,/A§ is
a G-Galois extension.

§ 6. Completely outer case.

Let R be a ring. If non-zero R-left modules M and N have no non-
zero isomorphic subquotients, we say that pM and RN are unrelated.

Proposition 6.1. Let M be a non-zero R-left module, and M =

M® - --®M, with non-zero R-submodules M,’s of M.
(1) If MJs are unrelated to each other, then each M, is End (xM)-
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admissible and X=73,,(XNM,) for every submodule X of .M.

(2( If X=2X.XNDM,) for every submodule X of .M, then M,s are
unrelated to each other.

Proof. (1) will be rather familiar. We shall prove here (2). To our
end, it suffices to prove that if M=M,®M, and X=(XNM))+(XNM, for
every submodule X of =M then M, and M, are unrelated. Let M)/N, and

»/IN, be non-zero subquotients of M, and M,, respectively. If there exists
an R-isomorphism a; M;/N,=M;/N,, we can define an R-homomorphism 0
M ®M;— M;/N, by the following rule: (mi +m;)p=(m{+ N))a+(m,+ N,).
Then, our assumption yields Ker o= (M N Ker o) +(M;NKer ¢), and so (M| +
M) o = Mo® M,p = M,/N,®M;,/N,, which is a contradiction.

G is said to be completely outer, if each A-A-modules Au,, Au. (x7)
are unrelated.

To be easily seen, Awu, and Au, (o, 7€G) are A-A-isomorphic if and only
if oz7! is an inner automorphism of A, and every A-A-submodule of Awu, is
written as Awx, with some ideal A of A. Therefore, if G is completely outer,
then G contains no inner automorphism of A, and in case A is two-sided
simple, the converse is true. Now, for ¢ in G we set J,={ac A; o(x)a=
ax for all x in A}. Then each J, is a C-submodule of A, and J,=C. In
his paper [9], T. Kanzaki proved the following: Let A/B be a G-Galois
extension. Then V,(B)=3,®J,. Therefore, if A/B is G-Galois, then
V,(B)=C if and only if J,=0 for all ¢ in G such that g=#1.

Proposition 6.2. J,=0 if and only if Hom (AAuq 4 aA4)=0.

Proof. Assume J,=0. If f is in Hom (,Au, > 444), then ¢(x) flu,)=
flo(x)u,)=f(u,x)=f(w,)x for x in A. Hence f(x,)=0, and so f=0. Con-
versely, assume that Hom (,Auw, > 4A4)=0. If ais in J,, then we can easily
see that the mapping xu,—~xa (r€ A) is an A-A-homomorphism from Az, to
A. Hence, by assumption, a=0.

Prop. 6.2 together with Kanzaki’s result cited above yields at once the
following :

Proposition 6.3. If A/B is a G-Galois extension, then the Sollowing
are equivalent. (i) V,(B)=C. (ii) Hom (,Auw, > 4A4) =0 for every o+1
in G.

The following proposition will play a fundamental role in our study.

Proposition 6. 4. If G is completely outer, then A|B is a G-Galois
extension and V ,B)=C.

Proof. At first, V,(B)=C is evident by Prop. 6.3. Since #, €cA(X,u)A
(Prop. 6.1.), there are elements a,, a} (t=1,---,n) in A such that z, =
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S Sou)ar =2 .,(3a0(af)u,. Hence Y ,a,0(af)=6,, for ¢ in G.

Corollary. If A is two-sided simple, then the following conditions are
equivalent: (i) G is completely outer. (ii) G contains no inner automor-
phisms. (i) A/B is an outer G-Galois extension.

Proposition 6.5. If there are elements a;, a; (i=1,---,n) in A such
that Y. ,a.x-0(al)=26,,x for each x in A (6€G), then G is completely outer.

Proof. let X be any A-A-submodule of 4. If },x.u, is in X, then
X353 ,a,(3 ., xu)t  a))=x.u, for each r in G. Hence, by Prop. 6.1, G is
completely outer.

Combining Prop. 6. 4 with Prop. 6.5, we readily obtain the following:

Theorem 6.6. Let A be a commutative ring. If A[B is G-Galois,
then G is completely outer, and conversely.

Proposition 6.7. Let A/B be a G-Galois extension, H a subgroup of
G, and a an element of A. If 6,€G is not contained in H, and axr=
a-a,(x) for all x in A¥, then a=0.

Proof. There are elements ¢,:--,t,€ A% and af,:--,af€A such that
,t,0(a})=04, for any ¢ in G (Prop. 2.2). Hence, a=a};taf =2 a-a(t)a;
=0o(05 (@) Detsr0q ' (af))=0.

Lemma 6. 8. Let S be a subring of a ring R. If Ry is finitely
generated and projective, then End (Ry) is an End (Ry)-left direct summand of
End (R), where End (Rs) and End (R) act on the left side.

Proof. As is well known, there are elements a,€R, f;€Hom (R, Sy)
(i=1,---,n) such that 3 ,a,f,(x)=x for every x in R (cf. [3]). If ¢ is in
End (R), then Y ,g(a.,)f; is in End (Ry), and so the mapping g—2l.9(aJ)f: is
an End (R,)-left homomorphism from End (R) to End (Rs). To be easily seen,
if g is in End(Rg) then 3 ,g(a)f;=g¢g. This implies that End(Ry) is an
End (Ry)-left direct summand of End (R).

Let T be an intermediate ring of A/B. G|T is said to be *-strongly
distinct if, for any non-zero idempotent e in A such that eAC Ae and any
distinct o,  in G, there is at least an element x in T such that e-g(x)#e ().
If A/B is a G-Galois extension, then G|A” is *-strongly distinct for any sub-
group H of G (Prop. 6.7).

Theorem 6.9. Let G be completely outer, By a direct summand of
Ay, and T an intermediate ring of A|/B. Then the following conditions are
equivalent.

(i) T=AZ for some subgroup H of G.

(ii) Ag is finitely generated and projective, and Ty is a direct summand
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of Ay and G|T is*-strongly distinct.

Proof. Since A/A" is H-Galois, it remains to prove (ii)=>(i). If we put
4,=End (A;), then 4, is a subring of 4. Since 4, is an A-A-submodule of
4, 4,= 3, W,u, with some ideals A, of A. By Lemma. 6.8, ,4, is a direct
summand of ,4, so that each ,u, is a direct summand of ,4. Therefore
each ,A,u, is a direct summand of ,A,x,. Hence . is a direct summand
of 4A. Let UA,=Ae, with an idempotent ¢, in A. Then, since e, is in
4,, e,0(xy)=e, 0(x)y for each x in A and y in T, in particular, e, a(y)=ey
for each y in 7. Therefore, if we set H={oc€G; ¢|T=1;}, then e,=0 for
o not contained in H. Evidently A,=A for each ¢ in H. We obtain there-
fore 4y=73, .cx@®Au., and hence End (4, A)=(A").. On the other hand, since
T, is a direct summand of A,, End (, A)=T., (cf. [1]). Hence we obtain
T=AE,

Now, if A is a semi-prime ring (i.e., A has no nilpotent ideals) and e is
an idempotent in A such that eAC Ae, then eA=Ae so that e is a central
idempotent in A. Noting this fact, Th. 6.9 yields at once the following:

Theorem 6.10. Let A be a semi-prime ring. If G is completely outer,
By a direct summand of Az, and T an intermediate ring of A/B, then the
Jollowing conditions are equivalent.

(i) T=A" for some subgroup H of G.

(i) Ay is finitely generated and projective, and Ty is a direct summand
of Ay, G|T is strongly distinct.

Proposition 6.11. The following are equivalent:

(1) G is completely outer.

(i) For any x,y in A and any ¢ in G such that o+1, there are
elements a;, a; (i=1,---,n) in A such that Y ,a,xa,=x and 3 ,a;y-0(a))=0.

Proof. (i)=>(ii) Let x,y be in A, and ¢ any element of G such that
o#1. We set X=A(xu, +yu,)A, which is an A-A-submodule of Aw, + Au,.
By Prop. 6.1, xu, € X, and hence there are elements a,, a, ((=1,---,7) in A
such that },a,(xu, +vyu,)a;=xu,. Then, 3 ,a,xa,=x and dsay-ola)=0.
(ii)=>(i) Let o, ¢ be distinct elements in G, and X any A-A-submodule of
Au,+Au.. Let xu,+yu. be any element of X. For ¢ !(x) and ¢ '(y), there
are elements a,,a; (i=1,---,n) in A such that Y,a,0 '(x)a;=¢ '(x) and
21:a;0”H(y)o 't (a)=0. Then, Y,0(a)z0(a)=x and 3,0,(a,)y-v(a))=0, and
so X3 2,0(a)(xu,+yu,)a;=xu,. Thus, by Prop. 6.1, Awu, and Au, are
unrelated.

Theorem 6.12. Let G be completely outer, and N a proper normal
subgroup of G such that A” is an A¥-right direct summand of A. Then,
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G/N is completely outer as an automorphism group of A”.

Proof. Let z,y be in A¥. Since xu, € A(X . nZU.+ 2 canytt.) A (Prop.
6.1), there are elements x;, y; (¢=1,---,n) in A such that 3}, x,(X.exxu. +
Nwa/nY)¥s =xu;. Then X, zx-t(y)=26,.x (r€N) and 3,x,y-0(y;)=0
6€G\N). By assumption, there is an element ¢ in A such that zy(c)=1.
We set ty(x,)=x; and ty(y;c)=vy;, then x;, y; (i=1,---,n) are in A¥. To be
easily seen, Y, zixy;=x and Y, x;y-P(y;)=0 for any ,€G\N. Thus, by Prop.
6.11, G/N is completely outer as an automorphism group of A?.

§ 7. Several results.

The following lemma is well known.

Lemma 7.1. Let S be a subring of a ring R. If Sy is a direct sum-
mand of Ry, then RINS=I for any left ideal 1 of S.

Lemma 7.2. Let S be a subring of a ring R such that Sg is a direct
summand of Ry and ¢R is finitely generated. If R satisfies the minimal
condition (resp. the maximal condition) for left ideals, then so does S, and
conversely.

Proof. If R satisfies the minimal condition (resp. the maximal condition)
for left ideals, then so does S (Lemma 7.1). Conversely, if S satisfies the
minimal condition (resp. the maximal condition) for left ideals then ¢R satisfies
the minimal condition (resp. the maximal condition) for S-left submodules, so
that R satisfies the minimal condition (resp. the maximal condition) for left
ideals.

A ring R is called a semi-primary ring if R/R(R) satisfies the minimal
condition for left ideals, where R(R) means the Jacobson radical of R. If R
is semi-primary, then (R), and eRe are semi-primary rings, where 7 is a natural
number and e is a non-zero idempotent in R (cf. [7]). Therefore, in case R
is semi-primary, if an R-right module M is finitely generated and projective
then End (M) is semi-primary. As to notations and terminologies used in
below, we follows [11].

Proposition 7.3. (1) Let R be a semi-primary ring, and S a subring
of R. If Sy is a direct summand of Ry, then S is a semi-primary ring.

(2) Let R be a ring, and S a subring of R such that Ry is finitely
generated and projective. If S is semi-primary, then so is R.

Proof. (1) Let {l,; i=1,---,n} be a d-independent set of maximal left
ideals of S (cf. [11]). Then, {Rl,; i=1,---,n} is a d-independent set of
proper left ideals of R (Lemma 7.1). Since each RI, is contained in a maximal
left ideals of R, n< max-dim rR=d-dim LR (cf. [11]). Thus d-dim S< d-
dim RR<§,, and hence S is semi-primary ([11; Prop. 5.14]. (2) Since S
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is semi-primary, End (R) is semi-primary. By Lemma 6.8, =AR: (the set of
all left multiplications by elements of R) is a direct summand of #End (Ry).
Hence, by (1), R(=R,) is semi-primary.

Remark. Let A/B be a G-Galois extension, and B, a direct summand
of A. If A is a semi-primary ring, then so is B, and conversely (cf. Th.
1.7). .
Let R be a ring, and .S a subring of R. R/S is called a free Frobenius
extension if Ry is finitely generated and free and (R,= Hom (R, Ss)z (Kasch
[10]).

Lemma 7.4. Let R/S be a free Frobenius extension.

(1) End(Rg)/R,; is a free Frobenius extension.

(2) If Ry is injective, then so is Ss, and conversely.

Proof. (1) and the if part of (2) are given in [10]. Assume that Rj is
injective. By (1) and the if part, we can easily see that End (Ry) is End (Ry)-
right injective. Let Ry=.S%. Then, End (Ry)=(S),., and hence we readily see
that Sy is injective (cf. [11]).

Proposition 7.5. Let R be a ring, and S a subiing of R. If Sy is
a direct summand of Rg, then R(R)NSCSR(S).

Proof. If R(R)NSZLR(S), then (R(R)NS)+I=S for some maximal left
ideal I of S. Since RR(R)NS)+RI=R and RRR)NS)SR(R), we have
RI=R. 1If follows then a contradiction I=RINS=S (Lemma 7.1).

Proposition 7.6. The set of all maximal A-A-submodules of A coin-
cides with {N,e(B); B ranges over all maximal ideals of A}.

Proof. Let X be a maximal 4-A-submodule of A. Take a maximal ideal
P, such that P.OX. Then, N,¢(P,)2X, and so N,s(P,)=X. Now, let P
be a maximal ideal of A, and Y a maximal 4-A-submodule of A such that
Y2 N,e(PB). Then Y= No(P,) for some maximal ideal B, of A. If N,o(P,)=2
N,a(P), then P2N,6(P,), and so P+N,s(P,)=A, whence it follows a con-
tradiction M,¢(P)+N, o (P,)= A.

Proposition 7.7. Let A/B be a G-Galois extension, and By a direct
summand of Ag. Let {X} be the set of all A-submodules of A and {X}
be the set of all left ideals of B. Then X—XNB and X—-AX=AR® X
are mutually converse order isomorphisms between {X} and {X}.

Proof. This is a special case of Th. 5.1 (2).

Proposition 7.8. Let A/B be a G-Galois extension, and By a direct
summand of Ag. If A-R(B) is an ideal of A, then R(A)=A-R(B).

Proof. By Prop. 7.7 and Prop. 7.5, R(A)=ARANBCA-R(B).
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Since Ay is finitely generated, A-R(B) is d-dense in Az, and so d-dense in
A, (cf. [11]). Hence A-R(B)SR(A).

Theorem 7.9. Let A/B be a G-Galois extension such that BCC. If
A’ is a B-algebra, then R(A'QzA)=R(A"NQA.

Proof. By Cor. to Th. 5.2, (A’®3A)/(A'®1) is a G-Galois extension.
Since (A’/®A) (RAN®1)=RANR®A is an ideal of A’'®A, RA'QA)=
R(ANQA by Prop. 7.8.

Now, assume that G is completely outer and By is a direct summand of
Az I A is an A-A-submodule (resp. 4-A-submodule) of 4, then 4= 3,2,
for some ideals A, of A (resp. A=4UA=73,u,N for some ideal A of A), and
conversely. In particular, if 4 is an ideal of 4, then 4A=4A=A4 for some
G-invariant ideal A of A, and conversely (cf. §6 and [13]). Now, let {4} be
the set of all ideals of 4, {a} the set of all ideals of B, and {U} the set of
all G-invariant ideals of A. Then, there exists an order isomorphism A<-a
between {4} and {a} such that 4(A)=Aa (cf. [1; Prop. A. 5]). Consequently,
there exists an order isomorphism A< A—a between {A} and {a} such that
(4) (A)= Aa, namely, A=Aa. Hence, A->BNA and a—Aa=aA are mutually
converse order isomorphisms between {2} and {a} (cf. Th. 5.1 (2)). Ac-
ordingly, if A is semi-prime, (prime, two-sided simple) then so is B. Since
A-R(B)=R(B)A is an ideal of A, Prop. 7.8 implies R(A)=A-R(B)=R(B)A.
Next, we shall consider R(d). There exists A'e {A} such that R(AH)=WdAd=4U".
Since Wu,= RN Au, CR(Au,)=R(A)u, by Prop. 7.5, we obtain R(4)=
AW CA-R(A)=R(A)4. On the other hand, noting that 4, is finitely generated
and 4-R(A) is an ideal of 4, we see that 4-R(A)SR(4) (cf. the proof of Prop.
7.8). Hence, we have R(4)=4-R(A)=R(A)4. Since RULAN=RA)=
(R(A)D) (A)=R(,4.) (A)=A-R(B3) by Prop. 7.6, we have R(1A)=A-R(3Bs)
=R(zBz)A and R(LA)NB=R(zBp). Summarizing the above, we state the
following theorem. '

Theorem 7.10. If G is completely outer, and By a direct summand
of Ag, then R(A)=A-R(B)=R(B)A, R(ANB=R(B), R(LAL)=R-R(3zBz)=
R (5Bx) A, R(LANNB=R(Bz), RA)=4-R(A)=R(A)4, and R(,4)=4-R(AL)
=R(LAN4.

Proposition 7.11. Let B be directly indecomposable, and let A =
AU D--- DU, be a direct sum of minimal ideals. If N is a minimal ideal of
A, then {o(); 0eG}={N,,---, W}, and n divides (G: 1). If B is a maximal
ideal of A, {6(P); 6€G} coincides with the set of all maximal ideals.

Proof. Note that {20, -, %} coincides with the set of all minimal ideals
of A. For any %,, we set 3,0(2,)=3B. Then, B=Ae with some non-zero
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central idempotent ¢ of A. Since ¢(B)=B for all ¢ in G, o(e)=e for all ¢
in G, so that e€ B, which means e=1. Hence B=A, which implies that
{o(A,); 0eG}={A,,---,A}. If we set H={oc€G; o(A,)=U}, then #{s(A,);
o€ G} =(G: H), which divides (G: 1). Let P and P’ be maximal ideals of A.
Then A=APP=A'PP’ with some minimal ideals A, A’ of A. There is an
element ¢ in G such that ¢(A)=A’. Then A=A'Do(P)=WPDP’, so that
o(P)="P'.

Corollary. 1. Let G be completely outer, and By a direct summand
of Ag. If B is a two-sided simple rings, then A is a direct sum of iso-
morphic two-sided simple rings, and the number of components divides (G: 1).

Proof. let B be a maximal ideal of A. Then N,oc(P) is a 4-A-
submodule of A. As we remarked above, A is 4-A-simple, and so we have
N,o(P)=0. Hence A is a direct sum of two-sided simple rings.

Corollary 2. Let A/B be a G-Galois extension, and B a division ring.
Then A is a direct sum of isomorphic (Artinian) simple rings.

Proof. Let & be a maximal left ideal of A. Then N, (R) is a 4-submodule
of A. Since ,A is simple (Prop. 7.7), N,6(®)=0. Hence, as is easily seen,
4A is completely reducible, so that A is a direct sum of simple rings.

Let A/B be a G-Galois extension, A a commutative ring, and A’ a B-
algebra. Then, by Prop. 6.5 and Th. 5.2, (A’®3A)/(A’®1) is G-Galois and
G is completely outer (as an automorphism group of A’®A). Further, if A’
is two-sided simple, then A’® A is a direct sum of isomorphic two-sided
simple rings (Cor. 1. to Prop. 7.11). Thus we have the following:

Theorem 7.12. Let A/B be a G-Galois extension, A commutative, and
A" a B-algebra. If A’ is two-sided simple, then A'® zA is a direct sum of
isomorphic two-sided simple rings, and the number of components devides

(G: 1)
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