IMMERSIONS OF TOPOLOGICAL MANIFOLDS

BY

Masahiro KURATA

1. Introduction, Definitions and Notation.

Let M and Q be topological manifolds, with $\dim M \leq \dim Q$. In [2] Gauld proved the classification theorem of M' immersions for M, when topological manifold M' is given such as M a locally flat submanifold of the interior of M' and $\dim M' = \dim Q$. An M' immersion means an immersion of V in Q, where V is a neighbourhood of M in M' and two such are identified if they agree over a common neighbourhood of M. cf. Lashof [6], Less [7] and Kirby [5].

Considering an induced neighbourhood of an immersion $I^r \times M \rightarrow I^r \times Q$ with uniformity, we obtain the classification theorem for immersions of topological manifolds instead of M' immersion, where topological manifold is paracompact Hausdorff. Similar result was proven by Hirsh [4] in differentiable case, and by Haefliger and Poenaru [3] in PL case.

Theorem 1. Let M^m , Q^q be manifolds with dim $M < \dim Q$. Let N be a closed subset of M. Suppose

$$\theta: U \longrightarrow O$$

be an immersion of a neighbourhood of N in M. Then the correspondence which assigns to an immersion

$$f: M \longrightarrow Q$$

its differential

$$df: TM \longrightarrow TQ$$

induces a bijection between the regular homotopy classes relative to N of immersions of M in Q and the homotopy classes relative to N of representations from TM to TO.

We define two (complete) semi-simplicial complexes $\mathfrak{F}_{\theta}(M,Q)$ and $\mathfrak{R}_{\theta}(M,Q)$. Definition of $\mathfrak{F}_{\theta}(M,Q)$. A typical k-simplex of $\mathfrak{F}_{\theta}(M,Q)$ is a map

$$f: \Delta^k \times M \longrightarrow \Delta^k \times O$$

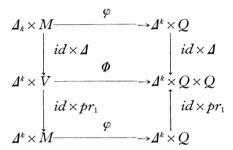
which has the uniform immersion property with respect to Δ^k , i.e. for each $(t, x) \in \Delta^k \times M$, there exists a neighbourhood U of t in Δ^k and local charts

$$g: U \times R^m \longrightarrow U \times M$$

 $h: U \times R^q \longrightarrow U \times O$

such that g and h commute with the projection on U. Furthermore f must agree with $id_{A^k} \times \theta$ on some neighbourhood of N in M.

Definition of $\Re_{\theta}(M, Q)$. This is an s.s. complex of representative germs of TM in TQ, a k-simplex of $\Re_{\theta}(M, Q)$ is represented by a pair (Φ, φ) such that the following diagram commutes.



where $\Delta: M \rightarrow M \times M$ is the diagonal map, and V is a neighbourhood of $\Delta(M)$ in $M \times M$. φ and Φ must satisfy the following properties.

They commute with the projection on the Δ^k , φ agrees with $id \times \theta$ on $\Delta^k \times$ (a neighbourhood of N in M), Φ agrees with $id \times \theta \times \theta$ on $\Delta^k \times$ (a neighbourhood of $\Delta(N)$ in $M \times M$), and the map: $\Delta^k \times V \rightarrow \Delta^k \times M \times Q$ given by $(t, x, x') \rightarrow (t, x, pr_3 \Phi(t, x, x'))$ has the uniform immersion property with respect to Δ^k .

Face operations are defined by restrictions to a paticular face. Each of the above s. s. complexes is a Kan complex without degeneracies. cf. Rourke and Sanderson [10].

A 0-simplex of $\mathfrak{F}_{\theta}(M,Q)$ is called an immersion. Two immersions $f, f': M \rightarrow Q$ are regularly homotopic relative to N if and only if they determine vertices of the same 1-simples of $\mathfrak{F}_{\theta}(M,Q)$. Two representations

$$(\Phi, \varphi), (\Phi', \varphi') : TM \longrightarrow TQ$$

are homotopic relative to N if and only if they determine vertices of the same 1-simplex of $\Re_{\theta}(M, Q)$. When $N = \phi$, we omit the subscript θ .

When M is a manifold with boundary, M is a submanifold of the interior of M', for some manifold M' with dim $M = \dim M'$. For instance such a manifold M' is obtained from the disjoint union of M and $\partial M \times I$ by identifying $x \in \partial M$ with $(x, 0) \in \partial M \times I$. Moreover if M'' is other manifold of dim M containing M in its interior, then there exists a homeomorphism of a neighbourhood of M in M' onto a neighbourhood of M in M''

fixing M. By an immersion of a manifold M with boundary in Q, we mean an immersion

$$f: V \longrightarrow Q$$

where V is a neighbourhood of M in M', and such two immersions are identified if they agree over a common neighbourhood of M. The tangent bundle TM of M is defined by TM'|M. In this case $\mathfrak{F}_{\theta}(M,Q)$ and $\mathfrak{R}_{\theta}(M,Q)$ are independent on the choice of M'.

Definition. The differential

$$d: \mathfrak{F}_{\theta}(M, Q) \longrightarrow \mathfrak{R}_{\theta}(M, Q)$$

is an s.s. map as follows. For k-simplex $f \in \mathfrak{F}_{\theta}(M, Q)$, $d(f) = \Phi$, where

$$\Phi: \Delta^k \times TM \longrightarrow \Delta^k \times TO$$

is defined by $\Phi(t, x, x') = (t, pr_2f(t, x), pr_2f(t, x'.))$.

Now the main theorem is the following.

Theorem 2. Let $\dim M < \dim Q$.

The map

$$d: \mathfrak{F}_{\theta}(M, Q) \longrightarrow \mathfrak{R}_{\theta}(M, Q)$$

is a homotopy equivalence.

Theorem 2 implies Theorem 1 as an immediate corollary. When $\dim M = \dim Q$, the theorem is obtained in Gauld [2]. Therefore we suppose $\dim M < \dim Q$.

2. Proof of Theorem 2.

First we prove when M-N is a handle body, that is, there exists a sequence of manifolds $N=M_0,\ M_2\cdots,M_l=M\ (l\leq \infty)$ such that M_i is obtained from M_{i-1} by adding a handle. Suppose that M is obtained from M_0 by adding a k-handle and $\dim M=\dim M_0<\dim Q$.

Lemma 3. The map

$$i^*: \mathfrak{J}(M, Q) \longrightarrow \mathfrak{J}(M_0, Q)$$

is a fibration.

Lemma 4. The map

$$i^*: \Re(M, Q) \longrightarrow \Re(M_0, Q)$$

is a fibration, where i* is the restriction map induced by the inclusion

$$i: M_0 \subset \longrightarrow M$$
.

Lemma 5. The map

$$d: \mathfrak{F}_{\theta}(B^k \times B^{m-k}, Q) \longrightarrow \mathfrak{R}_{\theta}(B^k \times B^{m-k}, Q)$$

is a homotopy equivalence, where θ is an immersion of $\partial B^k \times B^{m-k}$ in Q.

Lemma 6. The map

$$d: \mathfrak{F}(B^m, Q) \longrightarrow \mathfrak{R}(B^m, Q)$$

is a homotopy equivalence.

The fibres of the fibrations

$$i^*: \mathfrak{F}(M, Q) \longrightarrow \mathfrak{F}(M_0, Q)$$

 $i^*: \mathfrak{R}(M, O) \longrightarrow \mathfrak{R}(M_0, O)$

are isomorphic to $\mathfrak{F}_{\theta}(B^k \times B^{m-k}, Q)$ and $\mathfrak{R}_{\theta}(B^k \times B^{m-k}, Q)$ respectively. By Lemma 5 of Gauld [2], a homotopy equivalence

$$d: \mathfrak{F}(M_0, Q) \longrightarrow \mathfrak{R}(M_0, Q)$$

implies the homotopy equivalence

$$d: \mathfrak{F}(M, Q) \longrightarrow \mathfrak{R}(M, Q)$$

By induction, we obtain theorem 2 when M-N is a finite handle body. When M-N is an infinite handle body, consider the projective system of homotopy equivalences given by the above. Taking the limite, the required result is obtained. cf. Philips [9].

In the general case the proof is similar to Gauld [2].

Proofs of Lemma 4-6 are similar to those of Gauld [2]. We need only to prove Lemma 3.

3. Induced neighbourhood by an immersion.

Suppose a map

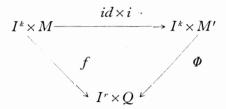
$$F: I^k \times M \longrightarrow I^k \times Q$$

has an uniform immersion property.

Definition. A neighbourhood of M induced by f is a triple (M', i, Φ) such that M' is a manifold with dim $M' = \dim Q$, $i: M \rightarrow M'$ is a locally flat embedding into the interior of M', a map

$$\Phi: I^k \times M' \longrightarrow I^k \times Q$$

has an uniform immersion property with respect to I^k , and the following diagram commutes.



In this section we prove the existance and the uniqueness of an induced neighbourhood by f, when M is compact.

Lemma 7 and 8 are due to Haefliger and Poenaru [3].

Lemma 7. Suppose

$$F: I^r \times M \longrightarrow I^r \times O$$

han an uniform immersion property, and X is compact. Then for any $t \in I^r$ there exist a cubic neighbourhood I_t of t in I^r and an induced neighbourhood (M', i, Φ) by $F | I_t \times M$.

Proof. Fix $t \in I^r$. For any $x \in M$, there are a neighbourhood U(x) of t in I^r and V'(x) in M such that $F|U(x) \times V'(x)$ is an embedding of $U(x) \times V'(x)$ in $I^r \times Q$. Define the metric on M.

For the open covering $\{V'(x)\}_{x\in M}$ of M, there is p>0 such that any open ball $V_p(x)$ with the radius p and the center x is contained in some V'(x'). We can choose a finite covering $\{V_{p/3}(x_1), \cdots, V_{p/3}(x_l)\}$ of M. Let the covering $\{V_1, \cdots, V_l\}$ of M be a refinement of $\{V_{p/3}(x_1), \cdots, V_{p/3}(x_l)\}$ such that $\overline{V}_l \subset V_{p/3}(x_l)$ and $V_l \cap V_j = \emptyset$ implies $\overline{V}_l \cap \overline{V}_j = \emptyset$.

There are a neighbourhood U_i of t in I^r and an open set $N_i \subset Q$ such that $U_i \subset U(x_i)$, $F(U_i \times V_i) \subset U_i \times N_i$, and if $\overline{V}_i \cap \overline{V}_j = \phi$ and $\overline{V}_i \cup \overline{V}_j \subset V'(x)$ for some $x \in M$ then $N_i \cap N_j = \phi$. Let $I_i \subset \bigcap_i U_i$ be a cubic neighbourhood of t in I^r . Then the open coverings $\{V_i\}$, $\{N_i\}$ satisfy

- 1. $F|(I_t \times V_i)$ is an embedding of $I_t \times V_i$ into $I_t \times N_i$.
- 2. If $V_i \cap V_j = \phi$ and $V_i \cap V_l \neq \phi$, $V_j \cap V_l \neq \phi$ for some V_l , then $N_i \cap N_j = \phi$.

Now we construct a q-manifold M' as follows. Consider the disjoint sum $\bigcup_i \{i\} \times N_i$. The relation which identifies (j, x) and (k, y) if x = y and $V_j \cap V_k \neq \phi$, is an equivalence relation. The quotient space M' of $\bigcup_i \{i\} \times N_i$ by this relation is q-manifold. The point represented by (j, x) is denoted by [j, x].

The map

$$\varphi:M'\longrightarrow Q$$

where $\varphi([j, x] = x$ is an immersion.

The map

$$G: I_{\bullet} \times M \longrightarrow I_{\bullet} \times M'$$

defined by $G(t', x) = (t', [i, pr_2F(t', x)])$ with $x \in V_i$ is well-defined and an embedding commuting with the projection on the I_t factor. Moreover

$$(id_{I_t} \times \varphi) \circ G = F | (I_t \times M).$$

Let the map

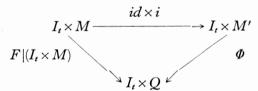
$$i: M \longrightarrow M'$$

is the embedding given by $i(x)=pr_2 \circ G(t,x)$. By the Isotopy Extension Theorem of Edward and Kirby [1], there is a cube of homeomorphisms

$$H: I_t \times M' \longrightarrow I_t \times M'$$

such that $G = H \circ (id_{I_{\bullet}} \times i)$.

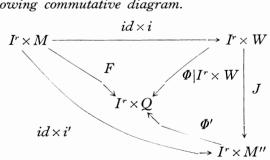
Let $\Phi = (id_{I_t} \times \varphi) \circ H$. Then Φ has an uniform immersion property with respect to I_t , and the following diagram commutes.



Lemma 8. Suppose M is a compact manifold and a map

$$F: I^r \times M \longrightarrow I^r \times O$$

has an uniform immersion property with respect to I^r . If (M', i, Φ) and (M'', i', Φ') are neighbourhoods of M induced by F. Then there exist a neighbourhood W of i(M) in M' and a homeomorphish J of $I^r \times W$ onto a neighbourhood of $I^r \times i'(M)$ in $I^r \times M''$ commuting with the projection on X with the following commutative diagram.



Proof. As in [3. §7. Proposition 2], there exist a open covering $\{W_i\}_{i=1\cdots,l}$ of $I^r \times i(M)$ in $I^r \times M'$ and $\{W_i'\}_{i=1\cdots,l}$ of $I^r \times i'(M)$ in $I^r \times M''$ such that the following conditions are satisfied.

- 1. $\Phi_i = \Phi \mid W_i$ and $\Phi'_i = \Phi' \mid W'_i$ are homeomorphisms of W_i and W'_i into $I^r \times Q$ respectively. And image $\Phi_i \subset \text{Image } \Phi'_i$.
- 2. If $W_i \cap W_j = \emptyset$, there is an open set V in $I^r \times M''$ such that $W_i' \cup W_j' \subset V$ and $\emptyset \mid V$ is a homeomorphism.
 - 3. $\Phi_i^{\prime-1}\Phi_i(t, i(x)) = (t, i'(x))$ for $x \in M$.

The local homeomorphism J' of $\bigcup_i W_i$ in $I^i \times M''$ given by $J'(t,x) = \Phi_i'^{-1}\Phi_i(t,x)$ for $(t,x) \in W_i$ is well defined. J' commutes with the projection on I^r . Because J'(t,i(x)) = (t,i'(x)), J' is injective on $I^r \times i(M)$. By Whitehead [11, §4], there is a neighbourhood W of i(M) in M' such that $I^r \times W \subset \bigcup_i W_i$. $J = J' | I^r \times W$ and W satisfy the required conditions.

Lemma 9. Suppose M is compact.

A map

$$F: I^r \times M \longrightarrow I^r \times O$$

has an uniform immersion property with respect to I^r .

Then there is a neighbourhood (M', i, Φ) of M induced by F.

Proof. For any $t \in I^r$, there is a cubic neighbourhood I_t of t in I^r , with a neighbourhood (M_t, i_t, Φ_t) of M induced by $F|I_t \times M$. Let n be a positive integer such that any cube $\bigvee_{k=1}^r [a_k, b_k] \subset I^r$, where $|a_k - b_k| < \frac{2}{n}$, is contained in some I_t . Define the cube $I_t \subset I^r$, $i = 1, \dots, n^r$, as follows.

$$I_i = \bigvee_{k=1}^r \left[\frac{j_k}{n}, \frac{j_k+1}{n} \right]$$

where $i=1+\sum_{k=1}^{r}n^{k}j_{k}, j_{k}=0,\dots,n-1.$

Let

$$X_{\iota} = \bigcup_{i \leq \iota} I_{i}$$
.

Inductively we will construct a neighbourhood X_t' of X_t in I^r and a neighbourhood $(\widetilde{M}_t,\,\widetilde{\imath}_t,\,\widetilde{\ell}_t)$ of M induced by $F|(X_t'\times M)$. When $l=n^r$, $(\widetilde{M}_t,\,\widetilde{\imath}_t,\,\widetilde{\varPhi}_t)$ is the required neighbourhood.

It is clear when l=1.

Suppose we are given X'_{l} and $(\widetilde{M}_{l}, \tilde{\imath}_{l}, \widetilde{\mathscr{C}}_{l})$. X'_{l+1} and $(\widetilde{M}_{l+1}, \tilde{\imath}_{l+1}, \widetilde{\mathscr{C}}_{l+1})$ are given as follows. Cubes $I_{l,i}$ and $I'_{l,i}$ $(1 \le i \le l+1)$ are defined by

$$\begin{split} I_{l,i}' &= \bigvee_{k=1}^r \left[\frac{j_k}{n} - \delta(j_k) \cdot P_l, \ \frac{j_k + 1}{n} + \delta'(j_k) \cdot P_l \right] \\ I_{l,i}' &= \bigvee_{k=1}^r \left[\frac{j_k}{n} - \frac{1}{2} \delta(j_k) \cdot P_l, \ \frac{j_k + 1}{n} + \frac{1}{2} \delta'(j_k) \cdot P_l \right] \end{split}$$

 $\delta(j_{\mathbf{k}}) = 0 \quad \text{if} \quad j_{\mathbf{k}} = 0 \; , \qquad \delta(j_{\mathbf{k}}) = 1 \quad \text{if} \quad j_{\mathbf{k}} \neq 0$

 $\delta'(j_k) = 0$ if $j_k = n-1$, $\delta'(J_k) = 1$ if $j_k \neq n-1$

and P_i is a positive number such that $P_i < \frac{1}{4n}$ and, $I_{i,i} \subset X_i'$ for any $i \le l$.

 $Y_l = \bigcup_{i \leq l} I_{l,i}$ and $Z_l = \bigcup_{i \leq l} I'_{l,i}$ are neighbourhoods of X_l in I^r , and contained in X_i' . For $I_{i,i-1}$, there exists $t_{i+1} \in I^r$ such that $I_{i,i+1} \subset I_{t_{i+1}}$.

Let $\varphi_l: I_{l,l+1} \to I^r$ and $\varphi': I^r \to \left[0, \frac{1}{2}\right] \times I^{r-1}$ be homeomorphisms such that

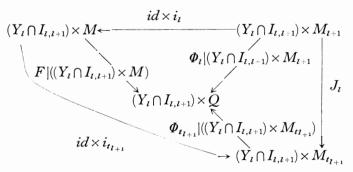
$$\begin{split} & \varphi_t(Y_t \cap I_{t,t+1}) = \left[0,\,\frac{1}{2}\right] \times I^{r-1}, \; \varphi_t(Z_t \cap I_{t,t-1}) = \left[0,\,\frac{1}{4}\right] \times I^{r-1} \\ & \varphi \left/ \left(\left[0,\,\frac{1}{4}\right] \times I^{r-1}\right) = id \,. \end{split} \right.$$

The homeomorphism defined by

$$\varphi = \varphi_{\iota}^{-1} \circ \varphi' \circ \varphi_{\iota} : I_{\iota, \iota+1} \longrightarrow Y_{\iota} \cap I_{\iota, \iota+1}$$

satisfies $\varphi|(Z_i \cap I_{i,i+1}) = id$.

For neighbourhoods $(\widetilde{M}_{t}, i_{t}, \widetilde{\varphi}_{t}|((Y_{t} \cap I_{t,t+1}) \times \widetilde{M}_{t}))$ and $(M_{t_{l+1}}, i_{t_{l+1}}, \varphi_{t_{l+1}})$ $((Y_i \cap I_{i,i+1}) \times M_{i,i+1})$ of M induced by $F|((Y_i \cap I_{i,i+1}) \times M)$, there is a neighbourhood \widetilde{M}_{t+1} of $\widetilde{\iota}_t(M)$ in \widetilde{M}_t and a homeomorphism J_t of $(Y_t \cap I_{t,t+1}) \times M_{t+1}$ into $(Y_i \cap I_{l,l+1}) \times M_{t_{l+1}}$ commuting with the projection on $Y_i \cap I_{l,l+1}$, with the following commutative diagram;



Let $X'_{l+1} = \operatorname{Int} Z_l \cup \operatorname{Int} I_{l,l+1}$ and $\tilde{\imath}_{l+1} = \hat{\imath}_l$, where $\operatorname{Int} Z_l$ and $\operatorname{Int} I_{l,l+1}$ are interiors of Z_i and $I_{i,i+1}$ in I^r respectively.

The map

$$\widetilde{\mathcal{D}}_{t+1}: X'_{t+1} \times \widetilde{M}_{t+1} \longrightarrow X'_{t+1} \times Q$$

given by

$$\widetilde{\boldsymbol{\varPhi}}_{t+1}(t,\,x) = \left\{ \begin{array}{ll} \widetilde{\boldsymbol{\varPhi}}_{t}(t,\,x) & \text{if} \quad (t,\,x) \in (\operatorname{Int} Z_{t}) \times \widetilde{\boldsymbol{M}}_{t+1} \\ \boldsymbol{\varPhi}_{t_{t+1}} \circ (\varphi^{-1} \times id) \circ J_{t} \circ (\varphi \times id)(t,\,x) \\ & \text{if} \quad (t,\,x) \in (\operatorname{Int} I_{t,t+1}) \times \widetilde{\boldsymbol{M}}_{t+1} \end{array} \right.$$

is well defined because J_t commutes with the projection on the first factor, and $\varphi|(Z_t \cap I_{t,t+1}) = id$. Clearly $\widetilde{\mathscr{D}}_{t+1}$ has the uniform immersion property, and commutes with the projection on X'_{t+1} .

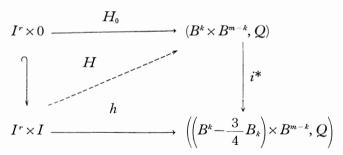
 $J_{t,t} \circ \tilde{\imath}_t(x) = i_{t_{t+1}}(x) \text{ for } (t,x) \in (Y_t \cap I_{t,t+1}) \times M \text{ where } J_{t,t}(x) = pr_2 \circ J_t(t,x).$ Then for $(t,x) \in (\text{Int } I_{t,t+1}) \times M$,

$$\begin{split} (\widetilde{\varPhi}_{t+1} \circ (id \times \widetilde{\imath}_{t+1})(t, \, x) &= \varPhi_{\imath_{t+1}} \Big((t, \, J_{\iota, \varphi(t)} \circ \widetilde{\imath}_{\iota}(x) \Big) \\ &= \varPhi_{\imath_{t+1}} \Big(t, \, i_{\imath_{t+1}}(x) \Big) \\ &= F(t, \, x) \, . \end{split}$$

Therefore $(\widetilde{M}_{t+1}, \widetilde{\imath}_{t+1}, \widetilde{\varPhi}_{t+1})$ satisfies the required conditions.

4. Proof of the fibration lemma for immersions.

Now we will prove Lemma 3 when $M-M_0$ has a k-handle when $\dim M < \dim Q$. It suffices to prove the following lifting problem.



We may assume H_0 , h as follows. cf. Gauld [2. Lemma 3]

$$h: I^r \times I \times \left(2B^k - \frac{1}{2}\mathring{B}^k\right) \times 2B^{m-k} \longrightarrow I^r \times I \times Q$$

$$H_0: I^r \times 0 \times 2B^k \times 2B^{m-k} \longrightarrow I^r \times 0 \times Q$$

such that

$$h\bigg|\bigg(I^r\times 0\times \left(2B^k-\frac{1}{2}\mathring{B}^k\right)\times 2B^{m-k}\bigg)=H_0\bigg|\bigg(I^r\times 0\times \left(2B^k-\frac{1}{2}\mathring{B}^k\right)\times 2B^{m-k}\bigg)$$

and h, H_0 have the uniform immersion property. Our task is to extend h and H_0 to

$$H: I^r \times I \times 2B^k \times 2B^{m-k} \longrightarrow I^r \times I \times O$$

By Lemma 9, there are a neighbourhood (W_1, i_1, \tilde{H}_0) of $2B^k \times 2B^{m-k}$ induced by H_0 and a neighbourhood (W_2, i_2, \tilde{h}) of $\left(2B^k - \frac{1}{2} \mathring{B}^k\right) \times 2B^{m-k}$ induced by h. We may assume that

$$W_1 = 3B^k \times 4B^{n-k}$$

$$i_1 : 2B^k \times 2B^{m-k} \longrightarrow 3B^k \times 4B^{n-k}$$

By Lemma 8, there exist a neighbourhood W_3 of $i_1\left(\left(2B^k-\frac{1}{2}\mathring{B}^k\right)\times 2B^{m-k}\right)$ in $3B^k\times 4B^{n-k}$ and a homeomorphism J of $I^r\times 0\times W_3$ in $I^r\times 0\times W_2$ with the following commutative diagram;

$$id \times i_{1} \longrightarrow I^{r} \times 0 \times W_{3}$$

$$I_{k} \times 0 \times \left(2B^{k} - \frac{1}{2} \mathring{B}^{k}\right) \times 2B^{m-k}$$

$$H_{t}|(I^{r} \times 0 \times W_{3})$$

$$I^{r} \times 0 \times Q$$

$$h|(I^{r} \times 0 \times W_{2})$$

$$\rightarrow I^{r} \times 0 \times W_{2}$$

where

$$\begin{split} h' = h \bigg| \bigg(I^r \times 0 \times \left(2B^k - \frac{1}{2} \, \ddot{B}^k \right) \times 2B^{m-k} \bigg) = H_0 \bigg| \bigg(I^r \times 0 \times \left(2B^k - \frac{1}{2} \, \mathring{B}^k \right) \times 2B^{m-k} \bigg) \,. \end{split}$$
 We may assume
$$W_1 = \left(3B^k - \frac{1}{4} \, \ddot{B}^k \right) \times 4B^{n-k} \,. \end{split}$$

Let $J_t(x) = pr_3 \circ J(t, 0, x)$. The map

$$\tilde{h}': I^r \times I \times \left(3B^k - \frac{1}{4}\mathring{B}^k\right) \times 4B^{n-k} \longrightarrow I^r \times I \times Q$$

given by $\tilde{h}'(t, t', x) = \tilde{h}(t, t', J_t(x))$ has the uniform immersion property, and

$$\begin{split} \widetilde{h}'\Big(t,\,t',\,i_1(x)\Big) &= \widetilde{h}\Big(t,\,t'\,\,J_t \circ i_1(x)\Big) \\ &= \widetilde{h}\Big(t,t',\,i_2(x)\Big) \\ &= h(t,\,t',\,x) \end{split}$$

for
$$(t, t', x) \in I^r \times I \times \left(2B^k - \frac{1}{2}\mathring{B}^k\right) \times 2B^{m-k}$$
.

Moreover

$$\left. \widetilde{H}_0 \right| \left(I^r \times 0 \times \left(3B^k - \frac{1}{4} \, \mathring{B}^k \right) \times 4B^{n-k} \right) = \left. \widetilde{h}' \right| \left(I^r \times 0 \times \left(3\mathring{B}^k - \frac{1}{4} \, \breve{B}^k \right) \right) \times 4B^{m-k} \right).$$

By Gauld [2], there exists an extension of \widetilde{H}_0 and

$$\tilde{h}' \left| \left(I^r \times I \times \left(2B^k - \frac{2}{3} \tilde{B}^k \right) \times 2B^{n-k} \right) \right|$$
 with the uniform immersion property;

$$\widetilde{H}: I^r \times I \times 3B^k \times 4B^{n-k} \longrightarrow I^r \times I \times Q$$
.

The composition

$$H = \widetilde{H}_0 \circ (id \times i_1) : I^r \times I \times 2B^k \times 2B^{m-k} \longrightarrow I^r \times I \times Q$$

is a required extension of
$$H_0$$
 and $h | (I^r \times I \times (2B^k - \frac{2}{3}\mathring{B}^k) \times 2B^{m-k}).$

References

- [1] R. EDWARDS and R. KIRBY: Deformations of spaces of imbeddings, (to appear).
- [2] D. GAULD: Mersions of topological manifolds, Trans. Amer. Mth. Soc., 149 (1970), 539-560.
- [3] A. HAEFLIGER and V. POENARU: La classification des immersions combinatoires, Pablications Mathematiques, 23 (1964), 75-91.
- [4] M. HIRSH: Immersions of manifolds, Trans. Amer. Math. Soc. (1959), 242-276.
- [5] R. KIRBY: Lectures on triangulations of manifolds, Appendix, Mersions of topological manifolds. (mimengraphed note)
- [6] R. LASHOF: Lees' immersion theorem and the triangulation of manifolds, Bull. Amer. Math. Soc., 75 (1969), 529-534.
- [7] J. LEES: Immersions and surgery of topological manifolds. ibid, 529-534.
- [8] J- P. MAY: Simplicial objects in algebraic topology, Van Nostrand Math. Studies, #11. Von Nostrand, Princeton, 1967.
- [9] A. PHILIPS: Submersions of open manifolds, Topology, 6. (1967), 171-206.
- [10] C. ROURKE and B. SANDERSON: 4-sets I: homotopy theory (to appear).
- [11] J. H. C. WHITEHEAD: Manifolds with transversal fields in Euclidean space, Ann of Math., 73, (1961)154-212.

Department of Mathematics, Hokkaido University

(Received December 25, 1970)