A remark on doubly transitive groups

To Professor Yoshie Katsurada on the occasion of her 60th birthday

By Hiroshi KiMmUra

1. This note is a continuation of [12]. We shall use the same notation.
The purpose of this note is to prove the following.

THEOREM. Let & be a doubly transitive permutation group of odd
degree satisfying the following conditions.

(1) ., is of even order,

(2) All Sylow subgroups of &, , are cyclic,

(3) X(r) contains a regular normal subgroup,

(4) & has one class of involutions,

(5) O,, has unique involution.

Then & contains a regular normal subgroup.

From this and [12, Theorem] we obtain the following.

COROLLARY. Let & be a doubly transitive permutation group of odd
degree satisfying the above conditions (1), (2) and (3). Then & contains a
regular normal subgroup or it is isomorphic to one of the groups Ss; with
n=>5 and PSL (2, 11) with n=11.

2. Assume & does not contain a regular normal subgroup. By [12,
Theorem 1] we may assume that |®|>2 and &=(z). Thus d/2 is odd.
From the condition (4) a Sylow 2-subgroup of Cg(z) is also a Sylow 2-
subgroup of &.

Lemma 1. A Sylow 2-subgroup of Cg(z) is not metacyclic.

Proor. Let © be a Sylow 2-subgroup of Cg(z) containing{®, I) and
let & be a cyclic normal subgroup of & such that &/&" is cyclic. If
|S/&'| >2, then ® is solvable by [11]. Therefore &=(I,&"). Since R+ {z),
|&'|>2. If & is abelian, then & is solvable by the Burnside’s splitting
theorem. If & is dihedral or semi-dihedral, then R,%#¢{z>, which is a con-
tradiction. If S'=Sr for a generator S of &, ® is solvable by [13]. Thus
& is not metacylic.

LEMMA 2. Xy(z) is contained in Cg(I).

Proor. Assume that there exists a Sylow g-subgroup 9, of X,(z) such
that {9, I) is dihedral. Let & be a Sylow 2-subgroup of Cg(9,) containing
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r and & a Sylow 2-subgroup of Ng(9;) containing &'. By the Frattini
argument it may be assumed that & is a Sylow 2-subgroup of Cg(z). Since
Aut (9;) is cyclic, so is &/&'. Assume & is not cyclic. If &' contains an
involution %(#7), then take 7 instead of I, and d=2d(5) is not divisible by
g, which is a contrasiction. Thus &' is a generalized quaternion. Let {
and £ be elements of & such that {*=&=¢ and &=¢£". If a(f)=2, then
let @ and & be two points in (&) such that ¢ has the cycle structure
(a,b)---. aand b are contained in J(r). Let I’ be an involution with cycle
structure (a, b)---. Then { is an element in I'®,,. Therefore (£ &) is a
subgroup of {I',®,,>. Since a Sylow 2-subgroup of {I',®,,> is conjugate
to (R, I, {{,& is not a quaternion group, which is a contradiction. If
a()=2 and «a(€)=1, then { acts on the set of transpositions which appear
in the cycle structure of &. Thus there exist two points a and & in J()
such that & has the cycle structure (a, b)---. Therefore £ is an element of
I'S,,, where I' is an involution with the cycle structure (a, b),---. Again
we have a contradiction. Next assume J({)=J(6)=3(L&)= {a}. a is a point
of J(z). Consider a homorphism £ of <, &) into X(z),=Cg,(r)/X:(r). Then
ker o={z). Since X(r) contains a regular normal subgroup, <, &)/{z)=
&, )X (t)/X(z) is a Frobenius complement. Thus it must be cyclic or a
(generalized) quaternion, which is a contradiction. Hence & must be cyclic
and & is metacyclic. This contradicts Lemma 1. This proves the lemma.

Lemma 3. If 8 is not contained in X,(z), then p is prime to d and d-1.

Proor. Since X;(r) does not contain &, X(r) satisfies the conditions (1),
(2) and (3) in Theorem. X(r) has two classes of involutions since & is cyclic.
Let K be an element of & not contained in X,(z) such that K? is contained
in %,(z). Apply [12, Lemma 8] to X(z). I {I, 9 Xi(r) and <K, D> ¥ (7)
is dihedral, then a({9,,7)) is even and p=¢g. On the other hand, since
X(r) contains a regular normal subgroup, a ({9,, z)) must be equal to a power
of p, which is a contradiction. Thus if {I, $,> X,(z) is dihedral, then (K,
9> Xi(z) is abelian and if <K, §,> X,(r) is dihedral, then {I, > X,(z) is abelian.
Hence i=¢(8'(s’—1)/7"+1), where ¢ =a(K) and d/2=0[1". Since i=p™,
d/2—1 is divisible by p and hence p is prime to d and d—1.

LemMma 4. If 8 is contained in X\(cv) and d+2, then d is a factor of
1—1.

Proor. Let & be a Sylow 2-subgroup of Ng(R®) containing I. Since
S=6/R=61(R)/1,(®) is a Frobenius complement, it is cyclic or a (gener-
alized) quaternion group. Let ¢ be a prime factor of d/2 which is prime to
i—1. By Lemma 2 and the Frattini argument {§,, K} is abelian. As in
the proof of [8, Lemma 3. 9] we may prove that @ is cyclic. That is, &
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is metacyclic. This contradicts Lemma 1. This proves the lemma.
COROLLARY 5. d is prime to p.

Proor. If d is divisible by p, them & is not contained in X(r) by
Lemma 4. This contradicts Lemma 3.

By Corollary 5 if ©,#1. then {(9,,I) is abelian.
LeEMMA 6. (n, |D]) is a power of p.

ProOOF. Assume (n,| §|) is not a power of p. Let g be a prime factor
(#£p) of (n, |D]). Assume that |X,(z)| is divisible by ¢. Let ; be a Sylow
g-subgroup of X,(r) contained in 9,. If J(r) is proper subset of J(9.),
then a(9,;)=17 (8'(i—1)+1), where §’ is some integer. By inductive hypothesis
X(9;) contains a regular normal subgroup. In particular a(9,) is a power of
p. Since q is a factor of n—a(9,), ¢g=p. If a(r)=a(9,), then ¢g=p since ¢
is a factor of n—1z, which is a contradiction. Thus $,=1. Set X={z, D).
Then J(X) is a proper subset of J(z). If J(X)=J(D,), then g=p since
n—i is divisible by ¢q. If J(X) is proper subset of J(9,), then, as above,
a(D)=aX) (f'(a(X)—1)+1) and a(P,) is a power of a(¥X). Since X(z) con-
tains a regular normal subgroup, «(¥) is a power of p and so is a(9,).
Since n—a(9,) is divisible by ¢, p=¢, which is a contradiction. This proves
the lemma.

As in [8, 4-2] we may prove that ©,=1. Similarly by using Lemma 6
we may prove that if $,=1, then d has a prime factor which is prime to
i—1 and d—1 is divisible by p (see [8, 4-1]). By Lemma 3 & is contained
in %,(z). This contradicts Lemma 4.

This complete a proof of Theorem.
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