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By Hiroshi KIMURA 

1. This note is a continuation of [12]. We shall use the same notation. 

The purpose of this note is to prove the following. 

THEOREM. Let @ be a doubly transitive permutation group of odd 

degree sati，りシing the following conditions. 

(1) @口 is of even order, 
(2) All Sylow subgroψs of @1 ,2 are cyclic, 
( 3 ) X (1') contains a regular normal subgroup, 
(4) @ hω one class of involutions, 
( 5 ) @1 ,Z has unique involution. 

Then @ contains a regular normal subgro~ρ. 

From this and [12, Theorem] we obtain the following. 
COROLLARY. Let @ be a doubly transitive permutation group of odd 

degree satisjシing the above conditions (1), (2) and (3). Then @ contains a 
regular normal subgroψ or it is isomoゅhic to one of the groups S5 with 

n=5 and PSL (2, 11) with n=l1. 

2. Assume @ does not contain a regular normal subgroup. By [12, 
Theorem 1] we may assume that [st: [ > 2 and st:o = (r). Thus d/2 is odd. 
From the condition (4) a Sylow 2・subgroup of C@(1') is also a Sylow 2・

subgroup of @. 

LEMMA 1. A Sylow 2・subgroup of C@(1') is not metacyclic. 

PROOF. Let c0 be a Sylow 2・subgroup of Cl>l(1') containingく氏 1) and 

let C0' be a cyclic normal subgroup of c0 such that C0/C0' is cyclic. If 
[C0/C0'[ >2, then @ is solvable by [11]. Therefore C0=くよC0'). Since st: *-くの，
[C0'[ >2. If c0 is abelian, then @ is solvable by the Burnside's splitting 
theorem. If c0 is dihedral or semi-dihedral, then st:。手くの， which is a con・

tradiction. If S1 = Sτfor a generator S of C0', @ is solvable by [13]. Thus 
c0 is not metacylic. 

LEMMA 2. X1(1') is contained in C,( (1). 

PROOF. Assume that there exists a Sylow q-subgroup 争q ofχ 1(1') such 

that くわム 1) is dihedral. Let C0' be a Sylow 2・subgroup of c,"M (争~) containing 
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1" and 13 a Sylow 2・subgroup of N@(め~) containing 13'. By the Frattini 

argument it may be assumed that 13 is a Sylow 2・subgroup of C((1"). Since 
Aut (わ~) is cyclic, so is 13/13'. Assume 13' is not cyclic. If 13' contains an 
involution η( ギヴ)， then take ηinstead of 1, and d=2d(可) is not divisible by 

q , which is a contrasiction. Thus 13' is a generalized quaternion. Let (, 
and ~ be elements of 13' such that (,2=çz= 1" and ';::=';:-1. If α(.;:)~2， then 

let a and b be two points in ~(.;:) such that (, has the cycle structure 

(a, b) ・・・ . a and b are contained in ~(1"). Let l' be an involution with cycle 

structure (a, b)… Then (, is an element in 1'@n.b ・ Therefore く(，，~) is a 

subgroup of <1', @α ， ò)' Since a Sylow 2-subgroup of く1'， @α ， ò) is conjugate 

to く~， 1) ， くと，r;) is not a quaternion group, which is a contradiction. If 
α((，)~2 and α(.;:) = 1, then (, acts on the set of transpositions which appear 
in the cycle structure of r;. Thus there exist two points a and b in ~((，) 
such that r; has the cycle structure (a, b) ・・・ Therefore r; is an element of 

1'@α ， ò ， where l' is an involution with the cycle structure (a, b),… Again 
we have a contradiction. Next assume ~((，)=~(ご)=~((，r;)= {α} .αis a point 

of ~(1"). Consider a homorphismρof く("r;) intoχ(1")α=Cr}d1")/χ1(1"). Then 

kerρ= く1"). Since χ(1") contains a regular normal subgroup, くと， .;:)/くのさ

く(".;:)χ1 (1")/χ1(1") is a Frobenius complement. Thus it must be cyclic or a 

(generalized) quaternion, which is a contradiction. Hence 13' must be cyclic 
and 13 is metacyclic. This contradicts Lemma 1. This proves the lemma. 

LEMMA 3. 1f ~ is not contained in X 1 (τ) ， then ρis prime to d and d-1. 

PROOF. Since χ1(1") does not contain ~， χ(1") satis五es the conditions (1), 
(2) and (3) in Theorem. X (τ) has two classes of involutions since ~ is cyclic. 

Let K be an element of ~ not contained in X1(1") such that K2 is contained 
in X1(1"). Apply [12, Lemma 8] to X(1"). Ifくよわq)χ1(1") and くK， 争q)χ1(1") 

is dihedral, then α(くわq ，1")) is even and p = q . On the other hand, since 
χ(1") contains a regular normal subgroup， α(くわq ，1")) must be equal to a power 

of ρ ， which is a contradiction. Thus if くよわq) χ1(1") is dihedral, then くK，

争q) χ1(1") is abelian and if くK， 争q) χ1 (τ) is dihedral, then くよ争q) χ1(1") is abelian. 

Hence i = i' (゚' (i' -1) /7' + 1), where i' 口 α(K) and d/2 = ゚' /7'. Since i = Pぺ
d/2 -1 is divisible by p and hence ρis prime to d and d-1. 

LEMMA 4. 1f ~ is contained 印刷τ) and d手 2， then d is a factor of 

i-1. 

PROOF. Let 13 be a Sylow 2・subgroup of N@(~) containing 1. Since 

② =13/~~13χ1(~)/χ1(~) is a Frobenius complement, it is cyclic or a (generｭ
alized) quaternion group. Let q be a prime factor of d/2 which is prime to 

i-1. By Lemma 2 and the Frattini argument くやq ， K) is abelian. As in 

the proof of [8, Lemma 3. 9] we may prove that <0 is cyclic. That is, 13 
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is metacyclic. This contradicts Lemma 1. This proves the lemma. 

COROLLARY 5. d is prime to p. 

PROOF. If d is divisible by p, them ~ is not contained in X1(',) by 
Lemma 4. This contradicts Lemma 3. 

By Corollary 5 if 争p手1. then <争p ，1) is abelian. 

LEMMA 6. (n , 1 や 1 )ゐ a po叩er of p. 

PROOF. Assume (n， 1 争1) is not a power of p. Let q be a prime factor 
(=1=ρ) of (n, 1 争1). Assume that IX1 (,)1 is divisible by q. Let 争~ be a Sylow 

q-subgroup of X1(,) contained in 争q・If 3(τ) is proper subset of 3(~~) ， 

then α(や~)=i (ß'(i-1)+1), where ゚' is some integer. By inductive hypothesis 
x(わ~) contains a regular normal subgroup. In particular α(や~) is a power of 

p. Since q is a factor of n一α(や~)， q=p. If α(，)=α(争~)， then q=p since q 

is a factor of n-i , which is a contradiction. Thus 争~ =1. Set 主=<"争q).

Then 3(主) is a proper subset of S(,). If 3(主)=3(争q) ， then q=p since 
n-i is divisible by q. If 3(主) is proper subset of 3(争q) ， then, as above, 
α(争q)= α(I) (゚' (α(主)-1)+1) and α(争q) is a power of α(I). Since χ(τ) con・

tains a regular normal subgroup, α叫(毘舟) iおs a powe町r of p and s叩o 1おs α叫(争J 
Since n一α叫(~争~q) is divisible by q, 1ρfJ =q ， which is a contradiction. This proves 

the lemma. 

As in [8, 4-2] we may prove that 争p= 1. Similarly by using Lemma 6 

we may prove that if 争p= 1, then d has a prime factor which is prime to 
i-1 and d-1 is divisible by p (see [8, 4-1]). By Lemma 3 ~ is contained 
in X1 (τ). This contradicts Lemma 4. 

This complete a proof of Theorem. 
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