A remark on doubly transitive groups

To Professor Yoshie Katsurada on the occasion of her 60th birthday

By Hiroshi KIMURA

1. This note is a continuation of [12]. We shall use the same notation. The purpose of this note is to prove the following.

THEOREM. Let \(\mathbb{G} \) be a doubly transitive permutation group of odd degree satisfying the following conditions.

- (1) $\mathfrak{G}_{1,2}$ is of even order,
- (2) All Sylow subgroups of $\mathfrak{G}_{1,2}$ are cyclic,
- (3) $\chi(\tau)$ contains a regular normal subgroup,
- (4) S has one class of involutions,
- (5) $\mathfrak{G}_{1,2}$ has unique involution.

Then & contains a regular normal subgroup.

From this and [12, Theorem] we obtain the following.

COROLLARY. Let \mathfrak{G} be a doubly transitive permutation group of odd degree satisfying the above conditions (1), (2) and (3). Then \mathfrak{G} contains a regular normal subgroup or it is isomorphic to one of the groups S_5 with n=5 and PSL (2, 11) with n=11.

2. Assume \mathfrak{G} does not contain a regular normal subgroup. By [12, Theorem 1] we may assume that $|\mathfrak{R}| > 2$ and $\mathfrak{R}_0 = \langle \tau \rangle$. Thus d/2 is odd. From the condition (4) a Sylow 2-subgroup of $C_{\mathfrak{G}}(\tau)$ is also a Sylow 2-subgroup of \mathfrak{G} .

Lemma 1. A Sylow 2-subgroup of $C_{\mathfrak{G}}(\tau)$ is not metacyclic.

PROOF. Let \mathfrak{S} be a Sylow 2-subgroup of $C_{\mathfrak{S}}(\tau)$ containing (\mathfrak{R}, I) and let \mathfrak{S}' be a cyclic normal subgroup of \mathfrak{S} such that $\mathfrak{S}/\mathfrak{S}'$ is cyclic. If $|\mathfrak{S}/\mathfrak{S}'| > 2$, then \mathfrak{S} is solvable by [11]. Therefore $\mathfrak{S} = \langle I, \mathfrak{S}' \rangle$. Since $\mathfrak{R} \neq \langle \tau \rangle$, $|\mathfrak{S}'| > 2$. If \mathfrak{S} is abelian, then \mathfrak{S} is solvable by the Burnside's splitting theorem. If \mathfrak{S} is dihedral or semi-dihedral, then $\mathfrak{R}_0 \neq \langle \tau \rangle$, which is a contradiction. If $S' = S\tau$ for a generator S of \mathfrak{S}' , \mathfrak{S} is solvable by [13]. Thus \mathfrak{S} is not metacylic.

Lemma 2. $\chi_1(\tau)$ is contained in $C_{\mathfrak{G}}(I)$.

PROOF. Assume that there exists a Sylow q-subgroup \mathfrak{F}_q' of $\mathfrak{X}_1(\tau)$ such that $\langle \mathfrak{F}_q', I \rangle$ is dihedral. Let \mathfrak{S}' be a Sylow 2-subgroup of $C_{\mathfrak{S}}(\mathfrak{F}_q')$ containing

22 H. Kimura

 τ and \mathfrak{S} a Sylow 2-subgroup of $N_{\mathfrak{S}}(\mathfrak{F}_q)$ containing \mathfrak{S}' . By the Frattini argument it may be assumed that \mathfrak{S} is a Sylow 2-subgroup of $C_{\mathfrak{B}}(\tau)$. Since Aut (\mathfrak{S}'_{o}) is cyclic, so is $\mathfrak{S}/\mathfrak{S}'$. Assume \mathfrak{S}' is not cyclic. If \mathfrak{S}' contains an involution $\eta(\neq \tau)$, then take η instead of I, and $d=2d(\eta)$ is not divisible by q, which is a contrasiction. Thus \mathfrak{S}' is a generalized quaternion. Let ζ and ξ be elements of \mathfrak{S}' such that $\zeta^2 = \xi^2 = \tau$ and $\xi^{\xi} = \xi^{-1}$. If $\alpha(\xi) \geq 2$, then let a and b be two points in $\mathfrak{F}(\xi)$ such that ζ has the cycle structure $(a,b)\cdots$ a and b are contained in $\mathfrak{F}(\tau)$. Let I' be an involution with cycle structure $(a, b) \cdots$. Then ζ is an element in $I' \otimes_{a,b}$. Therefore $\langle \zeta, \xi \rangle$ is a subgroup of $\langle I', \mathfrak{G}_{a,b} \rangle$. Since a Sylow 2-subgroup of $\langle I', \mathfrak{G}_{a,b} \rangle$ is conjugate to $\langle \Re, I \rangle$, $\langle \zeta, \xi \rangle$ is not a quaternion group, which is a contradiction. If $\alpha(\zeta) \ge 2$ and $\alpha(\xi) = 1$, then ζ acts on the set of transpositions which appear in the cycle structure of ξ . Thus there exist two points a and b in $\Im(\zeta)$ such that ξ has the cycle structure $(a, b) \cdots$. Therefore ξ is an element of $I'\mathfrak{G}_{a,b}$, where I' is an involution with the cycle structure $(a,b),\cdots$. Again we have a contradiction. Next assume $\Im(\zeta) = \Im(\xi) = \Im(\zeta\xi) = \{a\}$. a is a point of $\mathfrak{F}(\tau)$. Consider a homorphism ρ of $\langle \zeta, \xi \rangle$ into $\chi(\tau)_a = C_{\mathfrak{G}_a}(\tau)/\chi_1(\tau)$. ker $\rho = \langle \tau \rangle$. Since $\chi(\tau)$ contains a regular normal subgroup, $\langle \zeta, \xi \rangle / \langle \tau \rangle \cong$ $\langle \zeta, \xi \rangle \chi_1(\tau) / \chi_1(\tau)$ is a Frobenius complement. Thus it must be cyclic or a (generalized) quaternion, which is a contradiction. Hence S' must be cyclic and S is metacyclic. This contradicts Lemma 1. This proves the lemma.

LEMMA 3. If \Re is not contained in $\chi_1(\tau)$, then p is prime to d and d-1. PROOF. Since $\chi_1(\tau)$ does not contain \Re , $\chi(\tau)$ satisfies the conditions (1), (2) and (3) in Theorem. $\chi(\tau)$ has two classes of involutions since \Re is cyclic. Let K be an element of \Re not contained in $\chi_1(\tau)$ such that K^2 is contained in $\chi_1(\tau)$. Apply [12, Lemma 8] to $\chi(\tau)$. If $\langle I, \Im_q \rangle \chi_1(\tau)$ and $\langle K, \Im_q \rangle \chi_1(\tau)$ is dihedral, then $\chi_1(\tau)$ is even and $\chi_2(\tau)$ on the other hand, since $\chi_1(\tau)$ contains a regular normal subgroup, $\chi_1(\tau)$ must be equal to a power of $\chi_1(\tau)$ is abelian and if $\chi_1(\tau)$ is dihedral, then $\chi_1(\tau)$ is dihedral, then $\chi_1(\tau)$ is abelian. Hence $\chi_1(\tau)$ is abelian and if $\chi_1(\tau)$ is dihedral, then $\chi_1(\tau)$ is abelian. Hence $\chi_1(\tau)$ is divisible by $\chi_1(\tau)$ and $\chi_1(\tau)$ is prime to $\chi_1(\tau)$. Since $\chi_2(\tau)$ is divisible by $\chi_1(\tau)$ is prime to $\chi_1(\tau)$ and $\chi_2(\tau)$ is divisible by $\chi_1(\tau)$ is prime to $\chi_1(\tau)$ and $\chi_2(\tau)$.

LEMMA 4. If \Re is contained in $\chi_1(\tau)$ and $d \neq 2$, then d is a factor of i-1.

PROOF. Let \mathfrak{S} be a Sylow 2-subgroup of $N_{\mathfrak{S}}(\mathfrak{R})$ containing I. Since $\overline{\mathfrak{S}} = \mathfrak{S}/\mathfrak{R} \cong \mathfrak{S}\chi_1(\mathfrak{R})/\chi_1(\mathfrak{R})$ is a Frobenius complement, it is cyclic or a (generalized) quaternion group. Let q be a prime factor of d/2 which is prime to i-1. By Lemma 2 and the Frattini argument $\langle \mathfrak{S}_q, K \rangle$ is abelian. As in the proof of [8, Lemma 3. 9] we may prove that $\overline{\mathfrak{S}}$ is cyclic. That is, \mathfrak{S}

is metacyclic. This contradicts Lemma 1. This proves the lemma.

COROLLARY 5. d is prime to p.

PROOF. If d is divisible by p, them \Re is not contained in $\chi_1(\tau)$ by Lemma 4. This contradicts Lemma 3.

By Corollary 5 if $\mathfrak{F}_p \neq 1$, then $\langle \mathfrak{F}_p, I \rangle$ is abelian.

Lemma 6. $(n, |\mathfrak{S}|)$ is a power of p.

PROOF. Assume $(n, |\mathfrak{F}|)$ is not a power of p. Let q be a prime factor $(\neq p)$ of $(n, |\mathfrak{F}|)$. Assume that $|\mathfrak{X}_1(\tau)|$ is divisible by q. Let \mathfrak{F}'_q be a Sylow q-subgroup of $\mathfrak{X}_1(\tau)$ contained in \mathfrak{F}_q . If $\mathfrak{F}(\tau)$ is proper subset of $\mathfrak{F}(\mathfrak{F}'_q)$, then $\alpha(\mathfrak{F}'_q)=i$ $(\beta'(i-1)+1)$, where β' is some integer. By inductive hypothesis $\mathfrak{X}(\mathfrak{F}'_q)$ contains a regular normal subgroup. In particular $\alpha(\mathfrak{F}'_q)$ is a power of p. Since q is a factor of $n-\alpha(\mathfrak{F}'_q)$, q=p. If $\alpha(\tau)=\alpha(\mathfrak{F}'_q)$, then q=p since q is a factor of n-i, which is a contradiction. Thus $\mathfrak{F}'_q=1$. Set $\mathfrak{X}=\langle \tau,\mathfrak{F}_q\rangle$. Then $\mathfrak{F}(\mathfrak{X})$ is a proper subset of $\mathfrak{F}(\tau)$. If $\mathfrak{F}(\mathfrak{F})=\mathfrak{F}(\mathfrak{F})$, then q=p since n-i is divisible by q. If $\mathfrak{F}(\mathfrak{X})$ is proper subset of $\mathfrak{F}(\mathfrak{F}_q)$, then, as above, $\alpha(\mathfrak{F}_q)=\alpha(\mathfrak{X})$ ($\beta'(\alpha(\mathfrak{X})-1)+1$) and $\alpha(\mathfrak{F}_q)$ is a power of $\alpha(\mathfrak{X})$. Since $\chi(\tau)$ contains a regular normal subgroup, $\alpha(\mathfrak{X})$ is a power of p and so is $\alpha(\mathfrak{F}_q)$. Since $n-\alpha(\mathfrak{F}_q)$ is divisible by q, p=q, which is a contradiction. This proves the lemma.

As in [8, 4-2] we may prove that $\mathfrak{H}_p=1$. Similarly by using Lemma 6 we may prove that if $\mathfrak{H}_p=1$, then d has a prime factor which is prime to i-1 and d-1 is divisible by p (see [8, 4-1]). By Lemma 3 \Re is contained in $\chi_1(\tau)$. This contradicts Lemma 4.

This complete a proof of Theorem.

Department of Mathematics, Hokkaido University

References

- G. GLAUBERMAN: Central elements in core-free groups, J. Alg., 4 (1966), 403–420.
- [2] D. GORENSTEIN: Finite groups, Harper and Row, New York, 1968.
- [3] D. GORENSTEIN and J. H. WALTER: The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Alg., 2 (1965), 85-151, 218-270, 334-393.
- [4] N. ITO: On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 409-417.
- [5] W. M. KANTOR, M. E. O'NAN and G. M. SEITZ: 2-transitive groups in which the stabilizer of two points is cyclic (to appear).
- [6] H. KIMURA: On some doubly transitive permutation groups of degree n and

- order $2^{i}(n-1)n$, J. Math. Soc. Japan, 22 (1970), 263–277.
- [7] H. KIMURA: On doubly transitive permutaion groups of degree n and order 2p(n-1)n, Osaka. J. Math., 7 (1970), 275-290.
- [8] H. KIMURA: On some doubly transitive groups such that the stabilizer of two symbols is cyclic, J. Faculty of Science, Hokkaido University (to appear).
- [9] H. LÜNEBURG: Charakterisierungen der endlichen desargusschen projektiven Ebenen, Math. Zeit., 85 (1964), 419–450.
- [10] H. WIELANDT: Finite permutaion groups, Academic Press, New York, 1964.
- [11] A. R. CAMINA and T. M. GAGEN: Groups with metacyclic Sylow 2-subgroups, Canad. J., 21 (1969), 1234-1237.
- [12] H. KIMURA: A characterization of PSL (2, 11) and S5 (to appear).
- [13] W. J. WONG: On finite groups whose 2-Sylow subgroups has cyclic subgroups of index 2, J. Austral. Math. Soc., 4 (1964), 90-112.

(Received on April 15, 1971)