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0. Introduction

In this paper we study the analytic wavefront set of solutions of certain
differential equations with multiple characteristics. In many situations one
can obtain very general results in the analytic theory while the correspond-
ing results in the C^{\infty} theory are much more complicated. As an example
we can mention the very general theorem about propagation of analytic
singularities for microhyperbolic operators, due to Kashiwara-Kawai [8].

This result only requires a hyperbolicity assumption on the principal symbol
of the operator. (The results in the C^{\infty} theory are more complicated, less
complete, and depend in general on the lower order symbols of the operator).
In [14], [15] we developped some methods to handle situations where only
the principal symbol has to be considered. A common point in the various
proofs is the inversion of a suitable elliptic problem. Here we will study
problems where a reduction to an elliptic problem seems impossible (at least
sometimes), and instead we study perturbations of the given problem which
are non-elliptic but for which suitable a priori estimates can be obtained.

To be more specific, the class of operators that we shall study (in the
analytic case) is the one introduced by Boutet de Monvel, Grigis, Helffer [2].
These authors obtained a very general and satisfactory result concerning the
C^{\infty}-hypoellipticity with minimal loss of derivatives. On the other hand
Tr\‘eves [19], Tartakoff [17] and more generally G. Metivier [11] proved the
analytic regularity when the characteristic variety is symplectic. We shall
give a new proof of Metiviers result. The readers conclusion will hopefully
be that the analytic regularity in this case is an easy consequence of facts
which are essentially known from the C^{\infty}-theory. We will also give some
new results in non-symplectic situations. An interesting feature here is the
use of Lagrangian manifolds which are only of Lipschitz cJass. (If we had
restricted the attention to Metivier’s theorem a shorter proof could certainly
have been given). We will also give an extension of a theorem of \hat{O}aku
[13]. We beleive that the general method of this paper can and will be
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applied to many other C^{\infty}-hypoelliptic operators: (At least in certain cases
it should be possible to study the Kohn Laplacian \coprod_{b} , when this operator
is h . e . with loss of more than 1 derivative).

In section 1-3 we developp some general arguments. In section 4 we
give the various applications and perform the additional geometric arguments
required in each particular case. The results of this paper are announced
in [16], the last section of [16] gives some remarks that will not be repr0-
duced here.

1. A priori estimates for a localized operator

Let \varphi be a real quadratic form on C^{n} , strictly plurisub-harmonic (s. p1 .
s . h .). We also assume for simplicity that \varphi is convex although this last
assumption certainly can be eliminated. Let \Sigma^{C}\subset C^{2n}=C_{x}^{n}\cross C_{\xi}^{n} be a complex
subspace of codimension d, such that \Sigma=\Sigma^{C}\cap\Lambda_{\varphi} is of real codimension d
in \Lambda_{\varphi} . Here \Lambda_{\varphi}\subset C^{2n} is the I-Lagrangian and R-symplectic space given by
\xi=\frac{2}{i}\frac{\partial\varphi}{\partial x} . (We shall use as much as possible the terminology of [14]).

Our last assumption implies that \Sigma is a totally real subspace of maximal
dimension in \Sigma^{C} .

Let P= \sum_{|\alpha+\beta|\leq m}a_{\alpha\beta}x^{\alpha}D^{\beta} be a differential operator of order m in C^{n},

D=( \frac{1}{i}\frac{\partial}{\partial x_{1}} , \cdots , \frac{1}{i}\frac{\partial}{\partial x_{n}}), a_{\alpha\beta}\in C. We assume that P(x, \xi)=|\alpha+\beta|<m\sum_{\sim}a_{\alpha\beta}x^{\alpha}\xi^{\beta} is
invariant under all translations parallel to \Sigma^{C} , or in other words that P is
a symbol on C^{2n}/\Sigma^{C} . The principal symbol in the global sense p(x, \xi)=

\sum_{\downarrow\alpha+\beta|=m}a_{\alpha\beta}x^{\alpha}\xi^{\beta} is then also invariant under \Sigma^{C}-translations and we make the
assumption of transversal ellipticity:

(1. 1) p(x, \xi)\neq 0 for (x, \xi)\in\Lambda_{\varphi}\backslash \Sigma

Let

Tu(x)= \int e^{i\Phi(x,y)}u(y)dy

be a “metaplectic” Fourier-Bros-Iagolnitzer transform whose associated linear
canonical transformation maps R^{2n} onto \Lambda_{\varphi} . More precisely we require that
\Phi(x, y) is a quadratic form on C_{x}^{n}\cross C_{y}^{n} such that det \Phi_{xy}’\neq 0 , Im \Phi_{2}’.’ y>0 and
the associated canonical transformation is defined as the map \mathscr{F}_{T} : (y, - \frac{\partial\Phi}{\partial y})

arrow(x, \frac{\partial\Phi}{\partial x}). For such a form \Phi we have \Lambda_{\varphi}=\mathscr{F}_{T}(R^{2n}) if \varphi(x)=- Im \Phi(x,y(x)) .
Here y(x)\in R^{n} denotes the minimum point of yarrow{\rm Im}\Phi(x, y) . That for a
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given st. pi . s . h . quadratic form \varphi we can find a form \Phi(x,y) can be seen
as follows: Let \mathscr{A} be an R-symplectic linear map R^{2n}arrow\Lambda_{\varphi} and denote also by
\mathscr{F} its C-symplectic linear extension C^{2n}arrow C^{2n} . By (\overline{y,\eta}) we denote the ordi-

nary complex conjugate of (y, \eta) and by (\hat{x,\xi}) the complex conjugate of (x, \xi)

with respect to \Lambda_{\varphi} . If \mathscr{F}_{T}(y, \eta)=(x, \xi) then \mathscr{A}_{T}(\overline{y,\eta})=(\hat{x,\xi}) . Hence

\frac{1}{i}\sigma ((x, \xi) , ( \hat{x,\xi}))=\frac{1}{i}\sigma((y, \eta), (\overline{y,\eta})) . In [14] we saw that the C-Lagrangian

plane x=0 is strictly negative with respect to \Lambda_{\varphi}i . e . \frac{1}{i}\sigma((0, \xi) , (0\hat{\xi},))\nearrow<0 for

all \xi\in C^{n} , \xi\neq 0 . On the other hand \frac{1}{i}\sigma((0, \eta) , (0, \overline{\eta}))=0 so if \mathscr{F}_{T}((0, \eta))=(0, \xi)

we have necessarily \eta=0 , \xi=0 . It is then clear that \mathscr{F}_{T} is given by a
unique complex quadratic form \Phi(x, y) . Since \{x=0\} is st. negative with

respect to \Lambda_{\varphi} its preimage \{\eta=-\frac{\partial\Phi(0,y)}{\partial y}\} is strictly negative with respect

to R^{2n} , hence -Im \Phi_{yy}’<0 .
If P, \varphi , T are as above there exists a unique operator P= \sum_{\sim}\tilde{a}_{\alpha\beta}y^{\alpha}D_{y}^{\beta}|\alpha+\beta|<m

such that PTu=TPu for all u\in \mathscr{S}(R^{n}) . Moreover P^{w}\circ \mathscr{F}_{T}=P^{w} if P^{w}(x, \xi)

and P^{w}(y, \eta) denote the Weyl symbols of P and \tilde{P} respectively. Since P^{w}

is clearly invariant under \Sigma^{C} -translations, P^{w} is invariant under \tilde{\Sigma}^{C}-translations
where \tilde{\Sigma}=\mathscr{A}_{T}^{-1}(\Sigma^{C}) . Moreover \tilde{p}=\sum_{|\alpha+\beta|=m}\tilde{a}_{\alpha\beta}y^{\alpha}\eta^{\alpha}=p\circ \mathscr{F}_{T} is non-vanishing

on R^{2n}\backslash \tilde{\Sigma}, where \tilde{\Sigma}=\Sigma^{\sim_{C}}\cap R^{2n} .
We assume through out this section that P satisfies the equivalent con-

ditions of Theorem 3. 1 of Boutet de Monvel-Grigis-Helffer [2]. Then,

using also the results of H\"ormander [5] there exists a symbol O on R^{2n}/\tilde{\Sigma}

of order - m such that \otimes\# P^{w}=1=P^{w}\# Q where \# denotes Weyl composition
of symbols. Using the stability of the conditions of their Theorem 3. 1 that
B-G-H also established it is easy to see that \tilde{Q} admits a holomorphic exten-
sion to a domain of the form \{(x+z, \xi+\zeta);(x, \xi)\in R^{2n}, (z, \zeta)\in C^{2n}, |(z, \zeta)|\leq

const. >0} and that the symbols Q(z+\cdot, \zeta+\cdot\cdot) form a bounded set S^{-m}

(R^{2n}/\tilde{\Sigma}) when (z, \zeta) varies in the ball |(z, \zeta)|\leq const .. Since Weyl-composition
of symbols commutes naturally with linear canonical transformations, if we
put Q=Q\circ \mathscr{F}_{T}^{-1} , then Q\# P^{w}=1=P^{w}\# Q and Q is holomorphic in a set of
the form \{(x+z, \xi+\zeta) ; (x, \xi)\in\Lambda_{\varphi}, (z, \zeta)\in C^{2n}, |(z, \zeta)|\leq const.\} , moreover the
symbols Q(z+\cdot, \zeta+\circ\cdot) form a bounded set in S^{-m}(\Lambda_{\varphi}/\Sigma) when |(z, \zeta)|\leq

const..
Let H_{\varphi} be the space of entire function on C^{n} , square-integrable with

respect to e^{-2\varphi(x)}L(dx) , where L is the Lebesque measure on C^{n} . When
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working with holomorphic functions having (approximately) this growth at
infinity we could try to realize Q as a pseudodifferential operator:

Qu(x)= \frac{1}{(2\pi)^{n}}\int\int Q(\frac{x+y}{2}, \theta)e^{i(x-y)\theta}u(y)dyd\theta

\theta=\frac{2}{i}\frac{\partial\varphi}{\partial x}(\frac{x+y}{2}) .

This is no doubt possible since we have e^{-\varphi(x)+\varphi(y)}|e^{i(x-y)\theta}|=1 along the inte-
gration contour. For the limited purposes of this paper we ratHer choose
an approximate realization with a slightly better contour:

(1. 2) Q_{R,\chi}u(x)= \frac{1}{(2\pi)^{n}}\int\int Q(\frac{x+y}{2}, \theta)e^{i(x-y)\theta}\chi(\frac{x-y}{R})u(y)dyd\theta

\Gamma_{x} : \theta=\frac{2}{i}\frac{\partial\varphi}{\partial x}(\frac{x+y}{2})+\frac{i}{R}(\overline{x-y}) . 1^{\kappa}.

Here \chi\in C_{0}^{\infty}(C^{n}) is equal to 1 near 0. If the support of \chi is small enough

then (y, \theta) remains in the domain of definition of Q when (y, \theta)\in\Gamma_{x}, \chi(\frac{x-y}{R})

\neq 0 .
We shall study Q_{R,\chi}\circ Pu(x) , when u is holomorphic in a neighborhood

of supp \chi (\frac{x-}{R}

. ). In order to compute Q_{R,\chi}(D_{y_{j}}u)(x) we notice that

\frac{1}{i}d_{(y,\theta)}(Q(\frac{x+y}{2}, \theta)e^{i(x-y)\theta}\chi(\frac{x-y}{R})u(y)(-1)^{j-1}dy_{1}\wedge\cdots\hat{dy}_{j}\Lambda\cdots\Lambda dy_{n}d\theta)

\iota

=D_{y_{j}}(Q( \frac{x+y}{2}, \theta)e^{i(x-y)\theta}\chi(\frac{x-y}{R})u(y)dyd\theta

+Q(\frac{x+y}{2}, \theta) e^{i(x-y)\theta} \chi(\frac{x-y}{R})D_{y_{f}}udyd\theta

+ \sum_{\nu\in finiteset}Q (\frac{x+y}{2}, \theta) e^{i(x-y)\theta} \frac{1}{R}\chi_{\nu,j}(\frac{x-y}{R})\omega_{\nu f}, ,

where \chi_{\nu’ j} are first order derivatives of \chi and \omega_{\nu,j} are 2n-forms in (y, \theta)

with constant coefficients (not necessarily of type (2n, 0)). On \Gamma_{x} we have

dyd \theta=\frac{1}{i^{n}} det ( \frac{\partial^{2}\varphi}{\partial\overline{x}\partial x}+\frac{1}{R}I)dyd_{\overline{l/}} ,

so dyd\theta|_{\Gamma_{x}} is non-degenerate and

\omega_{\nu,j}|_{\Gamma_{x}}=((c_{\nu,j}+\mathscr{Q}(\frac{1}{R}))dyd\theta|_{\Gamma_{x}}
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where c_{\nu,j} and the term \mathscr{Q}(\frac{1}{R}) are independent of x, y.
By Stokes’s formula we get

Q_{R,\chi}(D_{y_{f}}u)(x)=- \int_{\Gamma_{x}}\int D_{y_{j}}(Q (\frac{x+y}{2}, \theta) e^{i(x-y)\theta} \chi(\frac{x-y}{R})u(y)dy\frac{d\theta}{(2\pi)^{n}}

+_{\nu\epsilon} \sum_{ftntteset}\frac{1}{R}(c_{\nu,j}+\mathscr{Q}(\frac{1}{R}))Q_{R,\chi_{\nu,j}}u(x)1

Simplifying the first term we get

(1. 3) Q_{R,\chi}(D_{\nu_{j}}u)=(Q \#\xi_{f})_{R,\chi}u+\sum_{\epsilon\nu finiteset}\frac{1}{R}(c_{\nu,j}+\mathscr{Q}(\frac{1}{R}))Q_{R,\chi_{\nu,j}}u

where (Q \#\xi_{f})(x, \xi)=\xi_{j}Q(x, \xi)-\frac{1}{2}D_{x_{j}}Q(x, \xi) is the Weyl composition of Q

and \xi_{f} .
We also compute

Q_{R,\chi}(y_{f}u)(x)= \int_{\Gamma}x\int\frac{(x_{f}+y_{J})}{2}Q(\frac{x+y}{2},
\theta)e^{i(x-y)\theta}\chi(\frac{x-y}{R})u(y)dy\frac{d\theta}{(2\pi)^{n}}

- \int_{r_{x}}\int Q (\frac{x+y}{2} , \theta) \frac{(x_{f}-y_{j})}{2}e^{i(x-y)\theta}\chi(\frac{x-y}{R})u(y)\phi\frac{d\theta}{(2\pi)^{n}}

Here the second term is equal to

- \frac{1}{2}\int_{r_{x}}\int Q (\frac{x+y}{2} , \theta) D_{\theta_{f}}(e^{i(x-y)\theta}) \chi(\frac{x-y}{R})u(y)dy\frac{d\theta}{(2\pi)^{n}}

and can be treated as above. We get

(1. 4) Q_{R,\chi}(y_{f}u)=(Q \# x_{f})_{R,\chi}u+\sum_{\nu\in finiteset}\frac{1}{R}(\hat{c}_{\nu,f}+\mathscr{Q}(\frac{1}{R}))Q_{R,\hat{\chi}_{\nu,j}}u

where \hat{c}_{\nu,f} and the terms \mathscr{Q}(\frac{1}{R}) are independent of x and \hat{\chi}_{\nu,j} denote certain

1: st order derivatives of \chi . The Weyl composition Q\# x_{j} is x_{j}Q(x, \xi)+

\frac{1}{2}D_{g_{f}}Q(x, \xi) .

Let U_{f}-- \sum_{1}^{n}a_{f}^{\nu}x_{\nu}+b_{j}^{\nu}D_{x_{y}} , 1\leq j\leq d be operators with linear symbols u_{f}=

\sum_{1}^{n}a_{j}^{\nu}x_{\nu}+b_{j}^{\nu}\xi_{\nu} such that \Sigma^{C} is given by u_{1}(x, \xi)=\cdots=u_{d}(x, \xi)=\theta . Then we

can write

P= \sum_{k\leq m}a_{j_{1\prime\prime}f_{k}}\ldots U_{j_{1}}\circ\cdots\circ U_{j_{k}}
, a_{j_{1’}\cdots f_{k}}\in C .

On the other hand
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Q_{R,\chi}U_{j}=(Q \# U_{j})_{R,\chi}+\sum_{\nu\in finileset}\frac{1}{R}(\overline{c}_{\nu,j}+\mathscr{Q}(\frac{1}{R}))Q_{R,\hat{\chi}_{\nu,j}}

(even if we replace Q by an arbitrary symbol which is holomorphic in
\Lambda_{\varphi}+\{(z, \zeta)\in C^{2n} ; |(z, \zeta)|\leq const.\}) . By iteration we find

(1. 5) Q_{R},{}_{x}P=1_{R,\chi}+

(j,k)\grave{\epsilon}finite’ set

\sum_{1<j\leq m}
\frac{1}{R^{j}}(c_{j,k}+\mathscr{Q}(\frac{1}{R}))(S_{j,k})_{R,\chi_{j,k}}\iota

Here c_{j,k} and the terms \mathscr{Q}(\frac{1}{R}) are independent of x, \chi_{j,k} is a derivative
of \chi : \chi_{j,k}=D_{x}^{\alpha}D_{x}^{\beta}\chi , (\alpha, \beta)\neq(0,0) and S_{j,k} are symbols with the same domain
as Q, such that S_{j,k}(z+\cdot, \zeta+\cdot\cdot) belong to a bounded set in S^{-1}(\Lambda_{\varphi}/\Sigma) when
(z, \zeta) varies in the ball |(z, \zeta)|\leq const ..

Let d_{\Sigma}(x) be the Euclidean distance from (x, \frac{2}{i}\frac{\partial\varphi}{\partial x}(x)) to \Sigma . If \Omega\subset C^{n}

is open and u is a locally square integrable function on \Omega, we put

||u||_{\varphi,\Omega}^{2}= \int_{\rho}e^{-2\varphi(x)}|u(x)|^{2}L(dx),\cdot

|||u|||_{\varphi,\Omega}^{2}= \int_{\rho}e^{-2\varphi(x)}(1+d_{\Sigma}(x))^{2m}|u(x)|^{2}L(dx)
‘

PROPOSITION 1. 1. Let P, \varphi satisfy all the assumptions above. Then
there exists a constant C>0 such that for every R\geq 1 and every function
u, holomorphic in the ball B(0,2R)=\{x\in C^{n} ; |x|<2R\} :

(1. 6) |||u|||_{\varphi,B(0,R)}\leq C(||Pu||_{\varphi,B(0,2R)}+e^{-R/C}||u||_{\varphi,B(0,2R)})

PROOF. We take \chi with support in B(0, \frac{1}{2}) and for v holomorphic in
B(0,2R) we shall first estimate I||||Q_{R,\chi}v|||_{\varphi,B(0,R)} .

Let

K(x, y)=Q( \frac{x+y}{2}, \theta)e^{i(x-y)\theta}\chi(\frac{x-y}{R})\det\frac{\partial\theta}{\partial\overline{y}}

be the kernel of Q_{R,\chi}( with\theta=\frac{2}{i}\frac{\partial\varphi}{\partial x}(\frac{x+y}{2})+\frac{i}{R}(\overline{x-y})) . If we are inter-
ested in an inequality ||_{I}^{1}Q_{R,\chi}v|||_{\varphi,B(0,R)}\leq const . ||v||_{\varphi,B(0,2R)} we should then con-
sider the reduced kernel

(1. 7) (1+d_{\Sigma}(x))^{m}e^{-\varphi(x)+\varphi(y)}e^{i(x-y)\theta}Q( \frac{x+y}{2}, \theta)\chi(\frac{x-y}{R})\det\frac{\partial\theta}{\partial y}

We split the integral (1. 2) in two regions :



398 J. Sj\"ostrand

I:|x-y|\leq\frac{R}{C} , II:|x-y|>\frac{R}{C} .

Here C>0 is large enough so that \chi(\frac{x-y}{R})=1 in the 6rst region. In the

second region the absolute value of the reduced kernel can be estimated by
const. (1+R)^{m}e^{-R/C}, so with a new constant independent of v and R\geq 1 ,
we get

(1. 8) |||Q_{R,\chi}^{II}v[||_{\varphi,B(0,R)}\leq Ce^{-R/c}||v||_{\varphi,B(0,2R)}

Here Q_{R,\chi}v=Q_{R,\chi}^{I}v+Q_{R,\chi}^{II}v in the obvious way. To estimate Q_{R,\chi}^{I}v we 6rst

replace \Gamma_{x}\cap\{|x-y|\leq R/C\} by \tilde{\Gamma}_{x}\cap\{|x-y|\leq R/C\} , where \tilde{\Gamma}_{x} is the singular
contour

(1. 9) \theta=\frac{2}{i}\frac{\partial\varphi}{\partial x}(\frac{x+y}{2})+\frac{i}{C}\frac{(\overline{x-y})}{|x-y|}

which coincides with \Gamma_{x} over the sphere |x-y|=R/C. (See [14] for the
details of this deformation argument). We then get a new reduced kernel
whose absolute value can be estimated by a constant times

K(x,y)=(_{\backslash }1+d_{z}(x))^{m}|Q( \frac{x+y}{2}, \theta)|e^{-|x-y1/C(1+|x-y|^{-n})} ,

where \theta is given by (1. 9). Then

|Q(\frac{x+y}{2} , \theta) | \leq C_{1}(1+d_{\Sigma}(\frac{x+y}{2}))^{-m}\leq C_{2}(1+|x-y|)^{m}(1+d_{\Sigma}(x))^{-m}

so

R(x,y)\leq C_{2}(1+|x-y|)^{m}e^{-|x-yI/c}(1+|x-y|^{-n)}

and we conclude that
|||Q_{R,\chi}^{I}v1_{1}||_{\varphi,B(0,R)}\leq C||v||_{\varphi,B(0,2R)}

With (1. 8) we get

(1. 10) |||Q_{R,\chi}v|^{1}||_{\varphi,B(0,R)}\leq C||v||_{\varphi,B(0,2R)}

for R\geq 1 , v holomorphic in B(0,2R) . The constant C is independent of R

and v.
We next study for u holomorphic in supp \chi (\frac{x-}{R}

. ):
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(1. 11) 1_{R,\chi}u(x)=u(x)-

\sum\sum\frac{1}{(2\pi)^{n}}\int_{r_{x}}\int e^{i(x-y)\theta}g((y-x)\cdot(\theta-\frac{2}{i}\frac{\partial\varphi}{\partial x}(x)))(\theta-\frac{2}{i}\frac{\partial\varphi}{\partial x}(x))_{j}

(-1)^{j+n}u(y) \frac{1}{R}\frac{\partial\chi}{\partial\overline{x}}(\frac{x-y}{R})dy\Lambda\Phi\wedge d\theta_{1}\Lambda\cdots d\theta_{f}\cdots\Lambda d\theta_{n} ,

where

g(t)=-( \frac{1}{it}+\frac{(n-1)}{(it)^{2}}+\frac{(n-1)(n-2)}{(it)^{3}}+\cdots+\frac{(n-1)!}{(it)^{n}}) .

In fact, this is formula (12. 45) of [14] valid under the assumptions (12. 38)-

(12. 40) of that same paper, and in the present case (12. 38) and (12. 40) are
evident while (12. 39) follows from some easy ca1cu1^{\mathfrak{j}}ations:

(y-x) \cdot(\theta-\frac{2}{i}\frac{\partial\varphi}{\partial x}(x))=(y-x)(\frac{2}{i}(
\frac{\partial\varphi}{\partial x}(\frac{x+y}{2})-\frac{\partial\varphi}{\partial x}(x))

+ \frac{i}{R}(\overline{x-y}))=-i(y-x)\frac{\partial\varphi}{\partial x}(y-x)-\frac{i}{R}|x-y|^{2} .

Hence

Im (y-x) \cdot(\theta-\frac{2}{i}\frac{\partial\varphi}{\partial x}(x))=-\varphi(y-x)-\frac{1}{R}|x-y|^{2}\leq-\frac{1}{R}|x-y|^{2}

(This is the only place where we use that \varphi is convex, in the non-convex
case, the most efficient way would probably be to prove a substitute for
(12. 45), better adapted to the Weyl calculus).

The reduced kernel for the continuity in the || ||_{\varphi} -norm of the general

term in the double sum of (1. 11) can be estimated by const. e^{-R/C}, Hence

for u holomorphic in B(0,2R) , R\geq 1 :

(1. 12) |||1_{R,\chi}u-u|||_{\varphi,B(0,R)}\leq Ce^{-R/C}||u||_{\varphi,B(0,2R)} ,

where C>0 is independent of u and R.
Finally we notice that

(1. 13) |||(S_{f,k})_{R,\chi_{j.k}}u|||_{\varphi,B(0,R)}\leq Ce^{-R/C}||u||_{\varphi,B(0,2R)}

With v=Pu we get from (1. 10), (1. 13) and (1. 5):

|||1_{R,\chi}u|||_{\varphi,B(0,R)}\leq C(||Pu||_{\varphi,B(0,2R)}+e^{-R/C}||u||_{\varphi,B(0,2R))}

and with (1. 12) we get (1. 6). This completes the proof.

REMARK 1. 2. Let (P, \varphi, T, \Sigma)=(P_{\alpha}, \varphi_{\alpha}, T_{\alpha}, \Sigma_{\alpha}) be C^{\infty} functions of
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parameter \alpha\in M, where M is a manifold. If the assumptions of Proposition
1. 1. are fulfilled for each \alpha , the results of B-G-H on parameter dependence
give locally uniform control on the symbol Q_{\alpha} and we conclude that for
every compact set K\subset M there is a constant C>0 such that (1. 6) holds
with P=P_{\alpha} for all R\geq 1 , \alpha\in K, u holomorphic in B(0,2R) .

REMARK 1. 3. Naturally Proposition 1. 1. still holds if we replace 2R
by \frac{3}{2}R . If (\rho, P, \Sigma) satisfies the assumptions of the Proposition, R\geq 1 ,
P= \sum_{\sim}\tilde{a}_{\alpha\beta}x^{\alpha}D^{\beta}|\alpha+\beta|<m and \Sigma|\tilde{a}_{\alpha\beta}-a_{\alpha\beta}| is sufficiently small as a function of R, then
by Cauchy’s inequalities we have ||(P-P)u||_{\varphi,B(0,\frac{3}{2}R)}\leq e^{-R/C}||u||_{\varphi,B(0,2R)} . Then
P satisfies (1. 6) with a new constant C>0 , independent of R (although the
distance from P to P does depend on R).

2. A priori estimates for a pseudodifferential operator

Let A(x, \tilde{D}_{x}, \lambda),\tilde{D}=\frac{1}{\lambda}D_{x} be a formal classical analytic pseudodifferential
operator of order 0 whose symbol

A(x, \xi, \lambda)=\sum_{0}^{\infty}a_{k}(x, \xi)\lambda^{-k}

is defined in some neighborhood \overline{IJ\nearrow} of (y_{0}, \eta_{0})\in R^{2n} . Let \Sigma\sim_{C\subset C^{2n}} be acomplex
submanifold of codimension d such that (y_{0}, \eta_{0})\in\tilde{\Sigma} and \Sigma-=\tilde{\Sigma}^{C}\cap R^{2n} is a
real analytic submanifold of R^{2n} of real codimension d. Let m>0 be an
integer and assume as in Boutet\cdot Grigis- Helffffer [2] :
(2. 1) a_{k} vanishes to the order m-2k on \Sigma\sim C , when m-2k>0 .
(2. 2) |a_{0}|\sim d_{\Sigma}^{m}- on R^{2n}\cap T^{7},, where d\Sigma-(x, \xi) denotes the distance from

(x, \xi) to \tilde{\Sigma} .
If (z, \zeta)\in\tilde{\Sigma} we put

(2. 3) (A)_{(z,\zeta)}(x, \xi, \lambda)=

|a|+| \beta|=’ m’-2k\sum_{m-2k>0}\lambda^{-k}a_{k(\beta)}^{(\alpha)}(z, \zeta)(x-z)^{\beta}(\xi-\zeta)^{\alpha}/\alpha ! \beta !

and
(2. 4) [A]_{(z,\zeta)}(y, \eta)=

|a|+| \beta|=\acute{m}-,2k\sum_{m-2k>0}a_{k(\beta)}^{(\alpha)}(z, \zeta)y^{\beta}\eta^{\alpha}/\alpha
! \beta !

We can view [A]_{tz,\zeta)} as a symbol on T_{(z,\zeta)}(C^{2n}) , easily seen to be invariant
under translations along T_{(z,\zeta)}(\tilde{\Sigma}) . We assume
(2. 5) For all (z, \zeta)\in\tilde{\Sigma}, [A]_{(z,\zeta)}(y, D_{y}) satisfies the equivalent conditions

of Theorem 3. 1 of [2].
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We next perform FBI-transform. (The explicit choice is without
importance).

(2. 6) Tu(x, \lambda) = \int e^{-\lambda(x-y)^{2}/2}u(y)dy1

The associated canonical transformation is \mathscr{F}_{T} : (y, i(x-y))arrow(x, i(x-y))

and \mathscr{F}_{T}(R^{2n})=\Lambda_{\varphi_{0}} , where \varphi_{0}(x)=\frac{1}{2}(Im x)^{2} is convex and strictly pi. s . h. .

There is a unique formal classical analytic pseudodifffferential operator of order
0; P(x,\tilde{D}_{x}, \lambda) defined near (x_{0}, \xi_{0})=\mathscr{A}_{T}(y_{0}, \eta_{0})\in\Lambda_{\varphi_{0}} , such that forma 1

(2. 7) PT=TA

See [14]. We write P(x, \xi, \lambda)=\sum_{0}^{\infty}p_{k}(x, \xi)\lambda^{-k} and define \Sigma^{C}=\mathscr{F}_{T}(\tilde{\Sigma}^{C}) . Let

W be some sufficiently small complex neighborhood of (x_{0}, \xi_{0}) . Following

Boutet-Grigis-Helffer [2] and Helffer [4] it is easy to establish the following facts.

(2. 8) p_{k} vanishes to the order m– 2k on \Sigma when m–2k>0

(2. 9) |p_{0}|\sim d_{\Sigma}^{m} on \Lambda_{\varphi_{0}}\cup W, where d_{\Sigma} denotes the distance to \Sigma=\Sigma^{C}\cap\Lambda_{\varphi_{0}} .

For (z, \zeta)\in\Sigma we define (P)_{(z,\zeta)} and [P]_{(z,\zeta)} as above. Then if (z, \zeta)=\mathscr{F}_{T}(\tilde{z},\tilde{\zeta})

we have (on \mathscr{S}(R^{n}) )

(2. 10) [P]_{(z,\zeta)}\circ S=S\circ[A]_{(z,\hat{\zeta})}

where S is the “linearized” FBI transform

(2. 11) Su(x)= \int e^{-(x-y)^{2}/2}u(y)dyi

whose associated canonical transformation can be identified with the differ-

ential of \mathscr{F}_{T} at (\tilde{z},\tilde{\zeta}) .
To fix the ideas let us assume that W is of the form |x-x_{0}|<a,

|\xi-\xi_{0}|<b where | \frac{2}{i}\frac{\partial\varphi_{0}}{\partial x}(x)-\xi_{0}|<\frac{b}{2} for |x-x_{0}|<a . Let F : Warrow C^{2n} be

a Lipschitz mapping, with F\in C^{0,1}(\overline{W}; ^{C^{2n}}) : ||F||_{C^{0,1}(\overline{W})}= \sup_{W}||F(w)||+

\sup\underline{||F(w)-F(u)||}<+\infty . We assumed that F is close to the identity map,
W\cross W\backslash \Delta

||w-\omega||

i.e . that ||F-I||_{C^{0,1}(\overline{W})} is small. Then F is bijective Warrow F(W) , F(W) is open and

the inverse of F is also close to the identity in C^{0,1}(\overline{F(W})) . It is clear that
F(\Lambda_{\varphi_{0}}\cap W) is of the form \xi=H(x) , where H\in C^{0,1}(\Pi_{x}\circ F(W\cap\Lambda_{Po})) . If \Omega\subset\subset

B(x_{0}, a) is open we will have \Omega\subset\subset\Pi_{x}\circ F(W\cap\Lambda_{\varphi_{0}}) and H as close as we like

to \frac{2}{i}\frac{\partial\varphi_{0}}{\partial x} in C^{0,1}(\overline{\Omega};C^{n}) provided that F is sufficiently close to the identity



402 J. Sj\"ostrand

in C^{0,1}(\overline{W};C^{2n}) . We shall always assume in this section:
(2. 12) There exists \varphi\in C^{1,1}(\Pi_{x}\circ F(W\cap\Lambda_{\varphi_{0}})) such that F(W \cap\Lambda_{\varphi}\int=\Lambda_{\varphi} .
(2. 13) \Lambda_{\varphi}\cap\Sigma^{C}=F(W\cap\Sigma)

Here C^{1,1} is the space of functions of class C^{1} whose first order derivatives
are in C^{0,1} and we pick the natural norm. Naturally \varphi is unique up to a
constant and if we normalize the choice of \varphi by putting \varphi(x_{0})=\varphi_{0}(x_{0}) , if
\Omega\subset r_{--}B(x_{0}, a) , then \varphi will be as close to \varphi_{0} as we like in C^{1,1}(\overline{\Omega}) , if F is
sufficiently close to the identity in C^{0,1}(W) .

Also if F1^{\cdot}S close to the identity we will still have |p_{0}|\sim d_{\Sigma}^{m}c_{\cap A_{\varphi}} on \Lambda_{\varphi} ,
at least if we restrict the attention to a compact subset, as well do. When
no confusion is possible we write d(x) instead 0\xi\cdot d_{\Sigma}c_{\cap A_{\varphi}}(x, \frac{2}{i}\frac{\partial\varphi}{\partial x}(x)) . If u
is a locally square integrable function on \Omega\Subset B(x_{0}, a) we put

(2. 14) ||u||_{\varphi,\Omega}^{2}= \int_{\Omega}|u(x)|^{2}e^{-2\lambda\varphi(x)}L(dx) ,

(2. 15) |||u|||_{\varphi,\Omega}^{2}= \int_{\Omega}|u(x)|^{2}(\lambda^{-1/2}+d(x))^{2m}e^{-2\lambda\varphi(x)}L(dx)

Let L_{\varphi}^{2}(\Omega) and L_{\varphi}^{2,m}(\Omega) denote the corresponding spaces.
If u is holomorphic in \Omega , \Omega_{1}\subset\subset\Omega we can define Pu(x, \lambda) for x\in\Omega_{1} by

(2. 16) Pu(x, \lambda) =( \frac{\lambda}{2\pi})^{n}\int\int e^{i\lambda(x-y)\theta}P(x, \theta, \lambda)u(y)dyd\theta

\theta=\frac{2}{i}\frac{\partial\varphi}{\partial x}(x)+iT(\overline{x-y)}, |x-y|\leq r .

Here T>0 , r>0 are independent of u . r is small enough so that
dist ( \Omega_{1}, \int\sqrt)>r and (x, \theta) is well inside W, while T is large enough so that

e^{-\lambda(\varphi(x)-\varphi(y))}|e^{i\lambda(x-y)\theta}|\leq e^{-C\lambda Ix-y1^{2}}

along the contour, where C>0 . P(x, \theta, \lambda) denotes a realisation of the symbol
([14]). It is then easy to prove that
(2. 17) ||Pu||_{\varphi,\Omega_{1}}\leq(const.)|||u|||_{\varphi,\Omega}

for all u as above and \lambda\geq 1 . Indeed the same type of estimates as we shall
develop in the proof of Theorem 2. 1 give (2. 17).

THEOREM 2. 1. Fix an open set \Omega_{0}\subset\subset B(x_{0}, a) and assume that P, F, \varphi_{0},
\varphi satisfy all the assumptions above ((2. 1), (2. 2), (2. 5), (2. 12), (2. 13)) . If F
is sufficiently close to the identity in the C^{0,1}-norm we have the following
conclusion: Let \Omega_{2}\subset\subset\Omega_{1}\subset\subset\dot{\Omega}\subset\subset\Omega_{0} be open sets and defifine a realisation of P
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as in (2. 16). Then there is a constant C>0 such that

(2. 18) |||u|||_{\varphi,1?_{2}}\leq C(||Pu||_{\varphi,\Omega_{1}}+|||u|||_{\varphi,\Omega\backslash \Omega_{2}})

for all \lambda\geq 1 and all holomorphic functions u on \Omega .
PROOF. For \lambda in a bounded set, (2. 18) follows easily from the maximum

principle, so we will have to prove (2. 18) only for \lambda large. We shall first
prove an a priori inequality in the elliptic region. Write P= \sum_{m-2k\geq 0}\lambda^{-k}p_{k}(x, \xi)

+\mathscr{Q}(\lambda^{-m/2}) . We shall estimate

Ku(x, \lambda)=\int\int(P(x, \eta, \lambda)-p(x, \frac{2}{i}\frac{\partial\varphi}{\partial x}))e^{i\lambda(x-y)\eta}dyd\eta

\eta=\frac{2}{i}\frac{\partial\varphi}{\partial x}(x)+iT(\overline{x-y})

\}x-y|\leq r

We split :

P(x, \eta, \lambda)-p(x, \frac{2}{i}\frac{\partial\varphi}{\partial x})=[p(x, \eta)-p(x, \frac{2}{i}\frac{\partial\varphi}{\partial x})]+[P(x, \eta, \lambda)-p(x, \eta)]

and write Ku=K_{1}u+K_{2}u for the corresponding decomposition of Ku. By
a Taylor expansion to the order m we get

|p(x, \eta)-p(x, \frac{2}{i}\frac{\partial\varphi}{\partial x}(x))|\leq C(d(x)^{m-1}|x-y|+|x-y|^{m})

and the reduced kernel of K_{1} for the continuity L_{\varphi}^{2,m}(\Omega) -arrow L_{\varphi}^{2}(\Omega J can be
estimated by a constant times

\frac{\lambda^{n}(d(x)^{tn-1}|x-y|+|x-y|^{m})}{(\lambda^{-12}+d(y))^{m}},e^{-\lambda|x-y1^{2}/C_{0}}

\leq\lambda^{n}\frac{(d(x)^{m-1}|x-y|+|x-y|^{m})}{(\lambda^{-12}+d(x))^{m}},(1+C\lambda^{1/2}|x-y|)^{m}e^{-\lambda|x-yI^{2}/C_{0}}

\leq\lambda^{n}(\frac{|x-y|}{d(x)}+(\frac{|x-y|}{d(x)})^{m})(1+C\lambda^{1/2}|x-y|)^{m}e^{-\lambda 1x-y1^{2}/C_{0}}

Now restrict x to \Omega_{1,\lambda,R}=\{x\in\Omega_{1} : d(x) \geq\frac{1}{2}R\lambda^{-1/2}\} . Here R\geq 1 will be
chosen large and independent of \lambda later on. Then the reduced kernel of
K_{1} can be estimated by

C \lambda^{n}\frac{1}{R}(\lambda^{1/2}|x-y|+(\lambda^{1/2}|x-y|)^{m})(1+C\lambda^{1/2}|x-y|)^{m}e^{-\lambda Ix-y1^{2}/C_{0}}

and we conclude that
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(2. 19) ||K_{1}u||_{\varphi,\Omega_{1,R,\dot{x}}} \leq\frac{C}{R}|||u|||_{\varphi,\Omega} ,

where C>0 is independent of u, \lambda\geq 1 and R\geq 1 .

Let d_{\Sigma}c(x, \xi) be the distance from (\#, \xi) to \Sigma^{C} . Then for \eta=\frac{2}{i}\frac{\partial\varphi}{\partial x}(x)

+iT(\overline{x-y}) , we have

|P(x, \eta, \lambda)-p(x, \eta)|\leq C_{1}(\lambda^{-1}d_{\Sigma}c(x, \eta)^{m-2}+\lambda^{-zn/2})\leq

\leq C_{2}(’\lambda^{-1}d(x)^{m-2}+\lambda^{-m/2}+\lambda^{-1}|x-y|^{m-2})

The reduced k^{-}erneI^{-} of K_{2} can therefore be estimated by a constant times

\lambda^{n}\frac{(\lambda^{-m/2}+\lambda^{-1}d(x)^{m-2}+\lambda^{-1}|x-y|^{m-2})}{(\lambda^{-1/2}+d(y))^{m}}e^{-\lambda|x-y|^{2}/C_{0}}

\leq\lambda^{n_{\frac{(\lambda^{-m/2}+\lambda^{-1}d(x)^{m-2}+\lambda^{-1}|x-y|^{m-2})}{(\lambda^{-1/2}+d(x))^{m}}(n}}1+C\lambda^{1/2}|x-y|’)e^{-\lambda 1x-y1^{2}/C_{0}}

For x\in\Omega_{1,R,\lambda} the last expression is bounded by

\frac{C}{R}(1+(’\lambda^{1/2}|x-y|)^{m-2})(1+(\lambda^{1/2}|x-y|))^{m}e^{-\lambda 1x-y|^{2}/C_{0}}\lambda^{n}

so (2. 19) is also valid for K_{2} . Hence

(2. 20) ||Ku||_{\varphi,\Omega_{1}},R, \lambda\leq\frac{C}{R}||||u|||_{\varphi,\Omega}

It is easy to see as in [14] and in the preceeding section that

||Lu||_{\varphi,,R,\grave{\lambda}}\Omega_{1}\leq Ce^{-\lambda/C}|||u|||_{\varphi,\Omega}

if u is holomorphic in f2 and

Lu(x)=u(x)-( \frac{\lambda}{2\pi})^{n}\int\int e^{i\lambda(x-y)\eta}u(y)dyd\eta

\eta=\frac{2}{i}\frac{\partial\varphi}{\partial x}(x)+iT(\overline{x-y})

|x-y|\leq r .
Hence with (2. 20) we get

(2. 21) ||Pu-p(x, \frac{2}{i}\frac{\partial\varphi}{\partial x})u||_{\varphi,\Omega_{1,R,\lambda}}\leq C(\frac{1}{R}+e^{-\lambda/C})|_{1}^{1}|u|||_{\varphi,\Omega} ,

when u is holomorphic in \Omega , \lambda\geq 1 , R\geq 1 . Here C>0 is independent of \lambda

and R. Since
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C||p (x, \frac{2}{i}\frac{\partial\varphi}{\partial x}(u)) u||_{\varphi,,R,\dot{x}}a_{1}\Omega_{1}\geq|||u||1_{\varphi,,R,x} ,

it follows that

(2. 22) |||u|||_{\varphi,\Omega_{1,R_{\grave{\lambda}}}}, \leq C(||Pu||_{\varphi,\Omega_{1,R_{\overline{J}}}},+(\frac{1}{R}+e^{-\lambda/C})|||u|||_{\varphi,\Omega)} .

Let now (z, \zeta)\in\Lambda_{\varphi}\cap\Sigma^{C}, z\in\Omega_{1} and write P_{z}(x, \xi, \lambda) instead of P_{(z,\zeta)}(x, \xi, \lambda)

for the localized symbol, defined as in (2. 3). Then

(2. 23) |(P-P_{z})(x, \xi, \lambda)|\leq C(|x-z|^{m+1}+|\xi-\zeta|^{m+1}+\lambda^{-\frac{m}{2}-\frac{\iota}{2})} .

If we define P_{z} as a pseudodifferential operator with the same contour as
P, then for |x-z|\leq 2R\lambda^{-1/2}, the reduced kernel for the continuity L_{\varphi}^{2,m}(\Omega)arrow

L_{\varphi}^{2}(B(z, 2R\lambda^{-1/2})) , can be estimated by

(2. 24) C\lambda^{n}R^{m+1}\lambda^{-(m+1)/2}(\lambda^{-1/2}+d(y))^{-m}e^{-t|x-yI^{2}/C}

\leq CR^{m+1}\lambda^{-1/2}\lambda^{n}e^{-\lambda|x-y|^{2}/C}

(We assume tacitly that \lambda^{1/2}\geq\frac{1}{\epsilon_{0}}R where \epsilon_{0}>0 is small and fixed).

Let x_{1} , \cdots , x_{N}\in\Pi_{x}(\Sigma^{C}\cap\Lambda_{\varphi})\cap\Omega_{1} have the property that no point x is in
more than N_{0} of the balls B(x_{j}, 2R\lambda^{-1/2}) . If D^{N}UB(x_{j}, 2R\lambda^{-1/2}) denotes the

1
disjoint union of these balls and \varphi is considered also as a function on this
set, we can identify unitarily:

\bigoplus_{1}^{N}L_{\varphi}^{2}(B(x_{j}, 2R\lambda^{-1/2}))\sim-L_{\varphi}^{2}(_{1}D^{N}UB(x_{j}, 2R\lambda^{-1/2}))t

With this identification the map

(2. 25) L_{\varphi}^{2,m}(\Omega)\ni uarrow((P-P_{x_{1}})u, \cdots , (P-P_{x_{N}})u) \in\bigoplus_{1}^{N}L_{\varphi}^{2}(B(x_{j}, 2R\lambda^{-1/2}))

has a reduced kernel K(x, y) , that we can estimate by (2. 24). Then

\int_{DU}|K(x, y)|L(dx)\leq CN_{0}\lambda^{-1/2}R^{\gamma n+1}

\int_{\Omega}|K(x, y)|L(dy)\leq C\lambda^{-1/2}R^{m+1} ,

so the norm of the map (2. 25) is at most C\lambda^{-1/2}\sqrt{N_{0}}R^{m+1} .
Let \overline{P}_{x_{j}}u=P_{x_{j}} (x, \frac{D_{x}}{\lambda}, \lambda) u be P_{x_{j}} as a differential operator.

Then as in [14] we see that
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(2. 26) ||(P_{x_{j}}-\overline{P}_{x_{j}})u||_{\varphi,B(x_{j\prime}2R\lambda^{-1/t_{)}}}\leq Ce^{-\lambda/C}|||u|||_{\varphi,\Omega}

The result of the preceesing section gives

Lemma 2. 2. There is a constant C>0 such that for every R\geq 1 , if
F is close enough to the identity as a function of R, then for all \lambda large
enough and all z\in\Pi(\Lambda_{\varphi}\cap\Sigma^{C})\cap\Omega_{1} , we have

(2. 27) |||u|||_{\varphi,B(z,R\lambda^{-1/2}})\leq C(||\overline{P}_{z}u||_{\varphi,B(z,2R\lambda^{-1/2}})+e^{-R/C}|||u|||_{\varphi,B(z,2R\lambda^{-1/2}}))

when ever u is a holomorphic function in B(z, 2R\lambda^{-1/2}) .

PROOF. Let U be the operator u=u(x)- v(t) where u=e^{i\lambda(x-z)\zeta}v,
x=z+\lambda^{-1/2}t . Then

U\circ(\tilde{D}_{x}-\zeta)=\lambda^{-1/2}D_{t^{O}}U, U\circ((x-z)\cdot)=(\lambda^{-1/2}t\cdot)\circ U ,

so U\circ P_{z}=\lambda^{-m/2}[P]_{z}\circ U. If \Phi(t)=\lambda(\varphi(x)-\langle\nabla\varphi(z), (x-z)\rangle) , t=\lambda^{1/2}(x-z) , then

|u(x, \lambda)|e^{-\lambda\varphi(x)}=|v(t, \lambda)|e^{-\theta(t)}

so
(2. 27) ||u||_{\varphi,B(gR\lambda^{-1/2}},)=\lambda^{-n/2}||v||_{\Phi,B(0,R)}

and similarly with R replaced by 2R. (The norm to the right is defined
as in section 1).

If ||F-I||_{C^{0,1}}=\mathscr{Q}(\epsilon) , then \nabla\varphi(x+h)-\nabla\varphi(x)=(\nabla^{2}\varphi_{0}+\mathscr{Q}(\epsilon))h , hence \Phi(t)=

\varphi_{0}(t)+\mathscr{Q}(\epsilon)t^{2} and so for instance

||v||_{\Phi,B(0,R)}=(1+\mathscr{Q}_{R}(\epsilon))||v||_{\varphi_{0’}B(0,R)}

where \mathscr{Q}_{R}(\epsilon) indicates a term which in absolute value is bounded by C_{R}\cdot\epsilon .
Here C_{R} is independent of \lambda , v . Let (z, \zeta)=F(\tilde{z},\tilde{\zeta}) , (x, \xi)=F(\tilde{x},\overline{\xi})\in\Lambda_{\varphi} . If
d_{\varphi_{0}} denotes the distance to \Lambda_{\varphi_{0}}\cap\Sigma^{C}=\Sigma and d_{\varphi} that to \Lambda_{\varphi}\cap\Sigma^{C} , we have
d_{\varphi}(x, \xi)=(1+6(\epsilon))d_{\varphi_{0}}(\tilde{x},\overline{\xi}) . Assume in addition that |x-z|\leq 2R\lambda^{-1/2}, and
let us remember that x– z=(I+\mathscr{Q}(\epsilon))(\tilde{x}-\tilde{z}) . The point (y, \eta) in \Sigma which
realizes the distance d_{\varphi_{0}}(\tilde{x},\tilde{\xi}) is at a distance at most (const.) R\lambda^{-1/2} from
(\tilde{z},\tilde{\zeta}) . Hence d((y, \eta), (\tilde{z},\tilde{\zeta})+T_{(z,\tilde{\zeta})}(\Sigma))=\mathscr{Q}(R^{2}\lambda^{-1}) . Similarly, if (y’ , \eta\acute{)}\in

(\tilde{z},\tilde{\zeta}) +T_{(Z,\tilde{\zeta})}(\Sigma) is at minimal distance to (x, \xi) and |(y’, \eta’)-(\tilde{z},\tilde{\zeta})|=Or(R\lambda^{-1/2}) ,

then d_{\varphi_{0}}(y’, \eta’))=\mathscr{Q}(R^{2}\lambda^{-1}) . It follows that

d_{\varphi_{\theta}}(\tilde{x},\overline{\xi})=d((\tilde{x}-\tilde{z},\overline{\xi}-\tilde{\prime\zeta}), T_{(z,\tilde{\zeta})}(\Sigma))+\mathscr{Q}(R^{2}\lambda^{-1})

Now write (\tilde{x}-\tilde{z},\tilde{\xi}-\tilde{\zeta})=\lambda^{-1/2}(\tilde{t},\tilde{\tau}) , where \tilde{\tau}=\frac{2}{i}\frac{\partial\varphi_{0}}{\partial\tilde{t}}(\tilde{t}) and t=(I+\mathscr{Q}(\epsilon))\tilde{t} .
Then
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d_{\varphi_{0}}(\tilde{x},\overline{\xi})=\lambda^{-1/2}d((t, \tau), T_{(_{-\prime}\overline{\zeta})},(\Sigma))+\mathscr{Q}(\epsilon R\lambda^{-1/2}+R^{2}\lambda^{-1})

if \tau=\frac{2}{i}\frac{\partial\varphi_{0}}{\partial t}(t) . Hence for \epsilon>0 small enough and \lambda large enough as a func-
tion of R and \epsilon we get

\lambda^{-1/2}+d_{\varphi}(x, \xi)=(1+\mathscr{Q}_{R}(\epsilon))\lambda^{-1/2}(1+d((t, \tau), T_{(z,\tilde{\epsilon})}(\Sigma)))

when \xi=\frac{2}{i}\frac{\partial\varphi}{\partial x} , t=\lambda^{1/2}(x-z) , \tau=\frac{2}{i}\frac{\partial\varphi_{0}}{\partial t}(t) , |x-z|\leq 2R^{-1/2} . We then get

(2. 28) |||u|||_{\varphi,B(z,R\lambda^{-1/2=\lambda^{-m/2-n/2}}})(1+\mathscr{Q}_{R}(\epsilon))|||v||_{\downarrow\varphi_{0’}B(0,R)}^{1}

where the norm to the right is defined as in section 1. Since (z, \zeta)=(\tilde{z},\tilde{\zeta})+

\mathscr{Q}(\epsilon) we can consider [P]_{z} as a small perturbation of [P]_{z} . Proposition 1. 1
and the Remarks 1. 2 and 1. 3 then give

t_{\}_{1}}^{I}v|||_{\varphi_{0’}B(0,R)}\leq C(||[P]_{z}v||+e^{-R/C}||v||_{\varphi_{0\prime}B(0,2R))}\varphi_{0’}B(0,2R)

when \epsilon is small enough as a function of R. Using the equivalence of the
various norms for v=Un and u as well as the fact that [P]_{z}v=\lambda^{m/2}UP_{z}u

we get (2. 27) and the Lemma is proved.
When F is sufficiently close to the identity as a function of R and \lambda is

large enough, we get :

\sum_{1}^{N}|||u|||_{\varphi,B(x_{j},R\lambda^{-1/2}}^{2})\leq

\leq C\sum_{1}^{N}||\overline{P}_{x_{j^{u||_{\varphi,B(x_{j\prime}2R\lambda^{-1}}^{2})}}}/2+e^{-R/C}||_{1}^{1}u|||_{\varphi,B(x_{j},2R\lambda^{-1/2}}^{2})

\leq 2C\sum_{1}^{N}||Pu||_{\varphi}^{2} , B(x_{j},2R \lambda^{-1/2})+2C\sum_{1}^{N}||(P_{x_{j}}-P)u||_{\varphi,B(x_{j},2R\lambda^{-1/z_{)}}}^{2}

+CNe^{-\lambda/C}|||u|||_{\varphi,\Omega}^{2}+C \sum_{1}^{N}e^{-R/C}|||u_{I1^{||_{\varphi,B(x_{j},2R\lambda^{-1/2}}^{2})}}^{I}

Here we use the estimate of the norm of (2. 25) to get

(2. 29) \sum_{1}^{N}|||u|||_{\varphi,B(x_{j},R\lambda^{-1/2}}^{2}\leq)CN_{0}||Pu||_{\varphi,\cup _{j}^{-1/z_{)}}1+}^{2N}B(x,2R\lambda

,

+(C\lambda^{-1}N_{0}R^{2(m+1)}+CNe^{-\lambda/C}+CN_{0}e^{-R/C})|||u|||_{\varphi,\Omega}^{2} .
This estimate is valid with a constant C>0 independent of R, x_{1} , \cdots , x_{N} , \lambda ,
u , provided that F is close enough to the identity as a function of R and \lambda

sufficiently large as a function of R. We now claim that there exist C_{0} ,
N_{0}>0 such that for \lambda\geq 1 , R\geq 1 , 4R \lambda^{-1/2}<\min(r, d(\Omega_{2},8\Omega j)) we can find
x_{1} , \cdots , x_{N}\in\Pi(\Lambda_{\varphi}\cap\Sigma^{C})\cap(\Omega_{2}+B(0, R\lambda^{-1/2})) such that N\leq C_{0}\lambda^{n} ,
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\bigcup_{1}^{N}B(x_{j}, R\lambda^{-1/2})\supseteq\{x\in\Omega_{2} ; d(x, \Pi(\Sigma^{C}\cup\Lambda_{\varphi}))\leq\frac{1}{2}R\lambda^{-1/2}\}=\Omega_{2}\backslash \Omega_{1,R,\lambda}
,\cdot

such that no point is in more than N_{0} of the balls B(x_{j}, 2R\lambda^{-1/2}) . In fact,

we cut the space into closed cubes with disjoint interiors of diagonal \frac{1}{4}R\lambda^{-1/2} .
For each such cube which intersects \Pi(\Sigma^{C}\cap\Lambda_{\varphi})\cap(\Omega_{2}+B(0, R\lambda^{-1/2})) , we take
a point x_{j} in the intersection. The above properties of the covering are
then almost immediate.

With such a covering (2. 29) implies (with a new constant C):

(2. 30) |||u||_{\varphi,\Omega_{2}\backslash \Omega_{1.R_{\dot{\lambda}}}}^{2}|,\leq C(||Pu||_{\varphi,\Omega_{1}}^{2}+(\lambda^{-1}R^{2(m+1)}+e^{-\lambda/C}+e^{-R/C})|||u||_{\varphi,\Omega)c}^{|2}

This with (2. 22) gives

(2. 31) |||u|||_{\varphi,\Omega_{2}}^{2}| \leq C(||Pu||_{\varphi,\Omega_{1}}^{2}+(\frac{1}{R}+\lambda^{-1}R^{2(m+1)}+e^{-\lambda/C}+e-R/c)|||u_{1}^{1}||_{\varphi,\Omega)}^{2}

Here we chose successively R and \lambda large enough so that

C( \frac{1}{R}+\lambda^{-1}R^{2’m\dagger 1)}+e^{-\lambda/c}+e^{-R/C})\leq\frac{1}{2}

and (2. 18) follows. The proof of Theorem 2. 1 is complete.

REMARK 2. 3. If P’ is another realisation of P such that ||Pu-P’u||_{\varphi,\Omega_{1}}

\leq\frac{1}{\epsilon}e^{-e\lambda}|||u||_{\varphi,\Omega}|
’ for some \epsilon>0 independent of \lambda, then from (2. 18) we see

that (2. 18) is also valid with P replaced by P’ , provided that we change
the constant C.

3. Some geometric preparations

We shall first verify that the standard local Hamilton-Jacobi theory is
valid when the Hamiltonian is of class C^{1,1} . The Hamilton field is then of
class C^{0,1} and we start by recalling some easy estimates for C^{0,1} vector fields.
Let \Omega\subset R^{n} be an open set and v\in C^{0,1}(\overline{\Omega};R^{n}) a Lipschitz vector field. If
K\subset\Omega is compact there is an \epsilon>0 such that the problem \dot{x}(t)=v(x(t)) ,
x(0)=x_{0},0\leq t\leq\epsilon has a unique solution for every x_{0}\in K. Take now two
Lipschitz fields v_{1} and v_{2} on \overline{\Omega} with ||v_{j}||_{C^{0,1}(} -

)
\leq C, ||v_{1}-v_{2}||_{C^{0}(^{-})} \leq D, and

consider two integral curves \dot{x}_{j}(t)=v_{j}(x_{j}((t)) (always assumed to stay in
some fixed compact set that we do not specify). Then

\dot{x}_{1}(t)-.\dot{x}_{2}(t)=(v_{1}(x_{1}(t))-v_{1}(x_{2}(t)))+(v_{1}(x_{2}(t))-v_{2}(x_{2}(t))

so
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We can then

(3. 1) |\grave{x}_{1}(t)-i_{2}(t)|\leq C|x_{1}(t)-x_{2}(t)|+D ,

which implies

(3. 2) |x_{1}(t)-x_{2}(t)| \leq e^{Ct}|x_{1}(0)-x_{2}(0)|+D\frac{(e^{Ct}-1)}{C}

If we let \Phi_{j,t} : x_{j}(0)arrow x_{j}(t) be the flow of v_{j} (defined for x_{j}(0)\in K, 0\leq t\leq\epsilon_{K}

>0) , (3. 2) shows that

(3. 3) || \Phi_{1,t}-\Phi_{2,t}||_{C^{0}}\leq D\frac{(e^{C^{0}}-1)}{C}

Suppose that v_{1}=v_{2}=v , ||v||_{C^{0,1}}\leq C. Then (3. 2) gives

|x_{1}(t)-x_{2}(t)|\leq e^{Ct}|x_{1}(0)-x_{2}(0)|

and (3. 1) gives

|\dot{x}_{1}(t)-\dot{x}_{2}(t)|\leq Ce^{c\iota}|x_{1}(0)-x_{2}(0)| .

Hence

(3. 4) |(x_{1}(t)-x_{2}(t))-(x_{1}(0)-x_{2}(0))|\leq(e^{Ct}-1)|x_{1}(0)-x_{2}(0)| .

Since |x(t)-x(0)|\leq Ct we get

(3. 5) ||\Phi_{t}-I|\lfloor_{C^{0,1}}\leq 2(e^{Ct}-1) ,

where \Phi_{t}(x\langle 0))=x(t) is the flow of v. Using the group property we also
get ||\Phi_{t}^{-1}-I||_{C^{0,1}}\leq 2(e^{Ct}-1) .

Let p\in C^{1,1}(\overline{W};R) where W now is an open set in R^{2n} . Then we can
apply the above estimates to H_{p}\in C^{0,1}(W;R^{2n}) . Let \Omega\subset R^{n} be an open ball
\varphi_{0}\in C^{2}(\overline{\Omega};R) and assume that \Lambda_{0}=\{(x, \frac{\partial\varphi_{0}}{\partial x});x\in\Omega\}\subset\subset W.
define \Lambda_{t}=\Phi_{t}(\Lambda_{0}) for 0\leq t\leq\epsilon>0 , if \Phi_{t} is the flow of H_{p} . For t small enough,
\Lambda_{t} will be of the form \xi=h_{t}(x) where h_{t}\in C^{0,1}(\Pi_{x}(\Lambda_{t})) and if K\subset\subset\Omega we have
K\subset\Pi_{x}(\Lambda_{t}) when t is small enough. Let \chi\in C_{0}^{\infty}(R^{2n})with.\backslash \cdot\chi dxd\xi=1 , \chi.=

\epsilon^{-2n}\chi(x/\epsilon, \xi/\epsilon) . After decreasing W slightly we can define p_{\text{\’{e}}}=\chi_{\epsilon}*p on W for
0\leq\epsilon\leq\epsilon_{0} and \{p_{\epsilon}\} is a bounded family in C^{2} while p_{e}arrow p in C^{1} . Hence H_{p}arrow

H_{p} in C^{0}(W) and (3. 3) shows that \Phi iarrow\Phi_{t} in C^{0} for the corresponding flows,
uniformly for t in some small interval [0, t_{0}] . On the other hand \Lambda_{t}^{\epsilon}=\Phi_{t}^{\epsilon}(\Lambda_{0})

is of the form \xi=h_{t}^{\epsilon}(x) with h_{t}^{\epsilon}\in C^{0,1} forming a bounded family (when re-
stricted to K\subset\subset\Omega) and h_{t}^{\text{\’{e}}}arrow h_{t} in C^{0} uniformly in t when \epsilonarrow 0 . Now \Lambda_{t}^{\epsilon} is

of the form \xi=\frac{\partial\varphi_{e}(t,x)}{\partial x} where \varphi_{\text{\’{e}}}\in C^{2} solves the characteristic equation
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Then after replacing \Omega by

\frac{\partial\varphi_{\text{\’{e}}}}{\partial t}+p_{\text{\’{e}}} (x, \frac{\partial\varphi_{\epsilon}}{\partial x}(t, x))=0,0\leq t\leq t_{0} , x\in\Pi_{x}(\Lambda_{t}^{\text{\’{e}}}) , with \varphi_{e}(0, x)=\varphi_{0}(x) . It is then

clear that \varphi_{e} converges in C^{1}([0, \epsilon_{K}]\cross K) as \epsilonarrow 0 . If \varphi is the limit we have
\frac{\partial\varphi}{\partial x}(t, x)=h_{t}(x) and in the limit we get

\frac{\partial\varphi}{\partial t}+p (x, \frac{\partial\varphi}{\partial x})=0 , \varphi|_{t=0}=\varphi_{0} .

Clearly \varphi\in C^{1,1} . It is not hard to show that ||\varphi(t, \cdot)-\varphi_{0}||_{C^{1,1}(K)}arrow 0 as
tarrow 0 . (It is essential that \varphi_{0}\in C^{2}, the proof is particularly simple when \varphi_{0}

is a second order polynomial so that \Lambda_{0} is linear and we shall only use this
particular case below).

We now translate the preceeding discussion into the “I-Lagrangian”
terminology. Let r\in C^{1,1}(W;C) where W is an open neighborhood of
(x_{0}, \xi_{0})\in C^{2n} . Let \varphi_{0}\in C^{2}(\Omega;R) where \Omega is an open neighborhood of x_{0} and

assume that \Lambda_{\varphi_{0}}=\{ (x, \frac{2}{i}\frac{\partial\varphi_{0}}{\partial x}(x)) ;x\in\Omega\}\subset W.

a relatively compact open subset we can solve the problem

(3. 6) \frac{\partial\varphi}{\partial t}-({\rm Re} r)(x, \frac{2}{i}\frac{\partial\varphi}{\partial x})

. =0, \varphi(0, x)=\varphi_{0}(x)

for x\in\Omega , 0\leq t\leq\epsilon_{0}>0 and the solution is of class C^{1,1}([0, \epsilon]\cross\Omega;R) . The real

symplecticfo rm we use here is d\tau\Lambda dt- Im d$Adx, and \Lambda_{\varphi_{t}}=\{

x\in\Omega\} is equal to exp (tH_{{\rm Re} r}^{{\rm Im}\sigma})(\Lambda_{\varphi_{0}}) . Here H_{{\rm Re} r}^{{\rm Im}\sigma} denotes the H
(x, \frac{2}{i}\frac{\partial\varphi}{\partial x}(t, x));
amilton field of

Re r with respect to Im \sigma={\rm Im} d\xi\wedge dx . We refer to [14] for more

details. At a point where \overline{\partial.}r=0 we have H_{{\rm Re} r}^{{\rm Im}\sigma}=\hat{H_{ir}} , where H_{ir} is the
complex standard Hamilton field of ir (of type (1, 0)) and H_{ir} is the associ-
ated real vector field which gives the same result when applied to holomor-
phic functions in (x, \xi) . If r is holomorphic in W we can actually solve the
problem

(3. 7) 2^{\frac{\partial\varphi}{\partial t}}-r(x, \frac{2}{i}\frac{\partial\varphi}{\partial x})=0 , \varphi(0, x)=\varphi_{0}(x)

for t\in C, |t|\leq\epsilon_{0} , where \frac{\partial}{\partial t}=\frac{1}{2}(\frac{\partial}{\partial{\rm Re} t}+\frac{1}{i}\frac{\partial}{\partial{\rm Im} t}) and the solution of

(3. 6) is then the restriction to the positive real axis of the solution of (3. 7).

\Lambda_{\varphi_{t}} , defined as before, is now equal to exp (\hat{itH}_{r})(\Lambda_{\varphi_{0}}) .
We assume from now on that r is real valued on \Lambda_{\varphi_{0}} and that \overline{\partial}r=0

at every point of \Lambda_{\varphi_{0}} . A compact set H\subset\Lambda_{\varphi_{0}} will be called a barrier if
there is a constant C>0 such that
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(3. 8) |\nabla r(x, \xi)|^{2}\leq Cr(x, \xi) for all (x, \xi)\in H_{1}

If H is such a barrier and \delta_{0}>0 is a sufficiently small constant, then for
(x, \xi)\in H, |(y, \eta)-(x, \xi)|\leq\delta_{0}|\nabla r(x, \xi)| we have

|\nabla r(y, \eta)|=(1+6(\delta_{0}))|\nabla r(x, \xi)| , Re r(y, \eta)=(1+\mathscr{Q}(\delta_{0}))r(x, \xi)

and in particular Re r(y, \eta)\geq 0 . If \epsilon_{0}>0 is small enough, 0\leq t\leq\epsilon_{0} and (x, \xi)

\in H, then exp (-tH_{{\rm Re} r}^{{\rm Im}\sigma})(\Lambda_{\varphi_{0}}\cap B((x, \xi) , \frac{1}{2}\delta_{0}|\nabla r(x, \xi)| ) )\subset B((x, \xi) , \delta_{0}|\nabla r(.x-, \xi)|)

and the projection of this set contains x. Hence Re r(x, \frac{\partial\varphi_{t}(x)}{\partial x})\geq 0 and
(3. 6) shows that \varphi(t, x)\geq\varphi_{0}(x) . Thus we have proved :

\{

PROPOSITION 3. 1. Let r be of class C^{1,1} in an open set containing \Lambda_{\varphi_{0}}=

(x, \frac{2}{i}\frac{\partial\varphi_{0}}{\partial x}(x)) ;x\in\Omega\} where 12 is open in C^{n} and \varphi_{0}\in C^{2}(\Omega) . Let H\Subset\Lambda_{\varphi_{0}}

be a barrier. Then there exists \epsilon_{0}<0 such that \varphi(t, x)\geq\varphi_{0}(x) for all (t, x)\in
[0, \epsilon_{0}]\cross\Pi_{x}(H) . Here \varphi(t, x) is the solution of (3. 6).

A local situation that we shall encounter in the next section is the
following: Let \Gamma\subset\Lambda_{\varphi_{0}} be an analytic submanifold of codimension d, passing
through (x_{0}, \xi_{0}) and given by the equations f_{1}(x, \xi)=\cdots=f_{d}(x, \xi)=0 , where
f_{j} are real (on \Lambda_{\varphi_{0}}). Let W be a small complex neighborhood of (x_{0}, \xi_{0}) and
let r\in C^{1,1}(W) be real on \Lambda_{\varphi_{0}}\cap W and holomorphic in W_{\epsilon}=\{(x, \xi)\in W ;
|{\rm Im}\vec{f}(x, \xi)|<\epsilon|{\rm Re}\vec{f}(x, \xi)|\} where \epsilon>0 , and \vec{f}=(f_{1^{ }},\cdots,f_{a}) . Then (near ( x_{0}, \xi_{0})),

\partial r \partial r

\overline{\partial}r vainshes at the points of \Gamma^{C} and
\overline{\partial x_{j}}

,
\overline{\partial\xi_{j}}

are holomorphic on \Gamma^{C} . As-
sume that

(3. 9) H_{r} is tangent to \Gamma

Then we can consider H_{r} as a vector field with holomorphic coefficients of
type (1, 0) on \Gamma^{C} and for small values of t we have near (x_{0}, \xi_{0}) ; exp (\hat{itH_{r}})(\Lambda_{\varphi_{0}})

\subset W_{\text{\’{e}}} , exp \hat{(itH}_{r}) (\Gamma)\subset\Gamma^{C} . This means that we can solve the problem
(3. 7). If in addition \Gamma\subset\Sigma\subset\Lambda_{\varphi_{0}} with \Sigma^{C} as above, and H_{r} is tangent to \Sigma

\nearrow\sim

then exp (itH_{t})(\Sigma)\subset\Sigma^{C} .
We now assume in addition that \gamma : [–e,\epsilon] arrow\Gamma_{} \gamma(0)=(x_{0}, \xi_{0}) , \gamma(t)=

(x(t), \xi(t)) is an integral curve of H_{r} on which r vanishes. Then \Pi_{x}|_{\gamma}c is
a local holomorphic diffeomorphism onto \Pi_{x}(\gamma^{C}) which is then also a com-
plex curve. If we imbed \gamma in a “real” Lagrangian manifold \Lambda\subset\Lambda_{\varphi_{0}} then
\Lambda^{C}=\Lambda_{\psi} where \psi\leq\varphi_{0} with equality on \Pi_{x}(\Lambda)\supset(\Pi_{x}(\gamma) . On \Pi_{x}(\gamma^{C}) we have
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(x, \frac{2}{i}\frac{\partial\psi}{\partial x})\in\gamma^{C} , \psi|_{\Pi}x^{(_{\gamma})}=\varphi_{0} and these properties determine \psi uniquely on

\Pi_{x}(\gamma^{C}) . Since \psi is pluri-harmonic, its restriction to \Pi_{x}(\gamma^{C}) is harmonic and
since \varphi_{0} is strictly plurisubharmonic, we conclude easily that on \Pi_{x}(\gamma) :
(\varphi_{0}-\psi)(x)\sim d(x, \Pi_{x}(\gamma))^{2} . (See [14] and Lebeau [10]).

Let \varphi(t, x) be the solution of the problem (3. 7). Then at the point

(t, x(-it))\in C\cross\Pi_{x}(\gamma^{C}) we have \frac{\partial\varphi}{\partial t}=0 , \frac{2}{i}\frac{\partial\varphi}{\partial x}=\xi (-it) = \frac{2}{i}\frac{\partial\psi}{\partial x} (x(- it))

Following the complex curve tarrow(t, x it) ) we find \varphi (t, x( -it)) =\psi (x( -it))

for t\in C, |t|\leq\epsilon . Since r is real on \Lambda_{\varphi_{0}} and hence on \Lambda_{\varphi_{t}} , we have \varphi(t, x)=

\varphi({\rm Re} t, x) by (3. 7) and hence

(3. 10) \psi(x(s-it))=\varphi(t, x(s-it)) , (s, t)\in R^{2}, |(s, t)|\leq\epsilon .

In this relation \Pi_{x}(\gamma^{C}) is identified locally with C and \Pi_{x}(\gamma) with the real
axis. A trivial consequence is that if \epsilon_{0}>0 is given and if x\in\Pi_{x}(\gamma^{C}) is
sufficiently close to \Pi_{x}(\gamma) and has a positive t coordinate (when writing

x=x(s -it) ) then

(3. 11) \psi(x)\leq_{0_{\backslash }}\min_{*_{0}<t\leq}\varphi(t, x)

As matter of fact, we even have equality in (3. 11).

4. Applications

Let P be a differential operator of order M with analytic coefficients
defined near a point x_{0}\in R^{n} . We shall study P microlocally near a point
(x_{0}, \xi_{0})\in T^{*}R^{n}\backslash 0 . Let \Sigma\subset R^{2n} be an analytic submanifold of codimension d,

passing through (x_{0}, \xi_{0}) and let \Sigma^{C} be its complexification. We assume
throughout this section that P is of class S^{M,m}(\Sigma) (see [2]), transversally

elliptic, and that P satisfies the necessary and sufficient conditions of microl0-
cal hypoellipticity with loss of m/2 derivatives of Boutet de Monvel-Grigis-

Helffer [2]. Possibly after replacing P by P^{*}P and (M, m) by (2M, 2m) , if

we put A(x,\tilde{D}_{x}, \lambda)=P(x,\tilde{D}_{x}, \lambda)=\lambda^{-M}P(x, D_{x}) then we are precisely in the

situation described in the beginning of section 2. We shall frequently apply

the FBI-transform (2. 6) and by abuse of notation we denote the transformed
operator still by the letter P, the image of (x_{0}, \xi_{0}) still by (x_{0}, \xi_{0}) and so on.
It will be clear from the context if we work on the transform side or not.

As a first application we give a new proof of ffie analytic hypoellipticity
in the symplectic case. This result was proved for m=2 by F. Tr\‘eves [19]

and D. Tartakoff [17] and later by G. Metivier [11] in the following general
form, using a different method. Tartakoff [18] has also extended his methods
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to cover the general case.

THEOREM 4. 1. Assume that \Sigma is symplectic. Then if u is a distri-
bution defifined near x_{0} , such that (x_{0}, \xi_{0})\not\in WF_{a}(Pu) , we have (x_{0}, \xi_{0})\not\in WF_{a}(u) .

PROOF. Here as well as below we shall proceed by constructing a suit\grave{a}-

ble “weight-function” r(x, \xi) in order to deform \varphi_{0} as in section 3. The
mapping F introduced in section 2, will then be defined as exp (-tH_{Rer}^{{\rm Im}\sigma}) or
when r is analytic symply as exp (-itH_{r}) . When t is small this mapping
will be close to the identity in Lipschitz norm. To assume the crucial con-
dition F(\Lambda_{\varphi_{0}}\cap\Sigma^{C})=\Lambda_{\varphi_{t}}\cap\Sigma^{C} it suffices in the analytic case that H_{r} be tangent
to \Sigma or in other words that dr|_{T\Sigma}\perp=0 at every point of \Sigma . Here T\Sigma^{\perp} is
the orthogonal space of T\Sigma with respect to the symplectic form. If \Sigma is
given by the equations f_{1}=\cdots=f_{\iota l}=0 where f_{1} , \cdots,f_{a} are analytic and real
on R^{2n} (that we identify with \Lambda_{\varphi_{0}} by using \mathscr{F}_{T}), then we look for analytic
functions r such that

(4. 1) H_{J_{j}}(r)=0 on \Sigma for j=1 , \cdots , d\tau

When \Sigma is symplectic, T\Sigma^{\perp} is transversal to T\Sigma everywhere and we
can prescribe any analytic function \rho on \Sigma and construct locally and analytic
solution r to the problem (4. 1) such that r|_{\Sigma}=\rho . Also if r is a solution of

(4. 1) we can make it more positive outside \Sigma by adding R \sum_{1}^{a}f_{j}^{2} where R^{\backslash \searrow\prime},,0 .
In the symplectic case it is easy to see we have an analytic solution r to the
problem (4. 1) in some neighborhood of (x_{0}, \xi_{0}) such that r|_{R^{2n\sim}}|x-x_{0}|^{2}+

|\xi-\xi_{0}|^{2}. After the FBI transform we have r(x, \frac{2}{i}\frac{\partial\varphi_{0}}{\partial x})\sim|x-x_{0}|^{2} and if we

fix small open sets \Omega\supset\supset\Omega_{1\sim}^{-}\supset\backslash \Omega_{2}\ni x_{0} we can apply Theorem 2. 1 with \varphi=\varphi_{t}

where \varphi_{t}(x)=\varphi(t, x) is the solution of (3. 6) (or (3. 7)). Denoting by u also
the transformed holomorphic function and P a suitable realisation, as in
section 2, of the transformed operator, we have ||u||_{\varphi_{0},\Omega}=\mathscr{Q}(1)\lambda^{N_{0}} , ||Pu||_{\varphi_{0},\Omega_{\theta}}=

\mathscr{Q}(1)e^{-\lambda/c}, C>0 if \Omega_{3} is a sufficiently small neighborhood of x_{0} . Since \varphi_{t}-\varphi_{0}\sim

t|x-x_{0}|^{2} we get ||Pu||_{\varphi_{t},\Omega_{1}}=\mathscr{Q}(1)e^{-\lambda/c_{t}} , C_{t}>0 and also |||u_{1_{\varphi_{t},\Omega\backslash \Omega_{2}}^{||\mathscr{Q}(1)e^{-\lambda/c_{t}}}}^{I}= .
If t>0 is small enough we can apply Theorem 2. 1 and get |||u||_{\varphi_{t},\Omega_{2}}^{1}|=

\mathscr{Q}(1)e^{-\lambda/c_{t}} and hence that ||_{I}u|\varphi_{0}’\Omega_{4}=\mathscr{Q}(1)e^{-\lambda/2C_{l}} if \Omega_{4} is a small neighborhood
x_{0} , where \varphi_{t}\leq\varphi_{0}+1/3C_{t} . Before the FBI transform we than have (x_{0}, \xi_{0})\not\in

WFa(u) . The proof is complete.
The new results of this paper are rather special and concern mostly

the case when \Sigma is of codimension 2. We extend them later to the case
when \Sigma is of higher codimension but dim T\Sigma\cap T\Sigma^{\perp}\leq 2 . Thus let us assume
that \Sigma is given by the two real equations f_{1}(x, \xi)=f_{2}(x, \xi)=0 . \Sigma is then
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non-symplectic precisely at the points where g=\{f_{1},f_{2}\} vanishes. If we
assume first that g (defined on \Sigma) vanishes on a hypersurface \Gamma\subset\Sigma passing
through (x_{0}, \xi_{0}) , then the “generic” situation is that

(4. 2) T\Gamma+(T\Sigma^{\perp}\cap T\Sigma)=T\Sigma at every point of \Gamma

In the case when \Gamma contains an integral manifold of T\Sigma^{\perp}\cap T\Sigma it has been
proved in Grigis-Schapira-Sj\"ostrand [3] ([14]) that analytic singularities of
solutions to the equation Pu=v propagate along this integral manifold in the
complement of WFa\{v). That singular solutions exist was proved by Metivier
[12] when m=2.

Under the assumption (4. 2) T\Gamma\cap T\Sigma^{\perp} is of dimension 1 at every point
and we can choose f_{1} , f_{2} so that this space is generated by H_{f_{1}} at every
point of \Gamma_{\backslash } while H_{f_{2}} is transversal to \Gamma- If we represent \Gamma in \Sigma by an
equation h=0 where h is real, analytic and dh\neq 0 then our last assumption is

(4. 3) There exists an integer \mathscr{F}\geq 1 such that g/h^{\mathscr{H}} is a nonvanishing
analytic function in a neighborhood of (x_{0}, \xi_{0}) in \Sigma .

Let \gamma_{0} : ] -\epsilon , \epsilon[- \Gamma be a segment of the integral curve of H_{f_{1}} with \gamma_{0}(0)=

(x_{0}, \xi_{0}) .
THEOREM 4. 2. Let us assume that \Gamma\subset\Sigma is an analytic hypersurface

containing (x_{0}, \xi_{0}) and that (4. 2), (4. 3) hold. Defifine \gamma_{0} as above, {as an
integral curve of T\Gamma\cap T\Sigma^{\perp}). If u\in \mathscr{D}’(R^{n}) and \gamma_{0}\cap WF_{a}(Pu)=\phi, then
either \gamma_{0}\subset WF_{a}(u) or \gamma_{0}\cap WF_{a}(u)=\phi .

PROOF. The geometric discussion that follows will be local in the real
domain. We can choose real symplectic corrdinates near (x_{0}, \xi_{0})\in\Gamma such that
f_{1}=\xi_{n} and f_{2}=(\xi_{n-1}+r(x, \xi’, \xi_{n})) times an elliptic factor. Dividing out the
elliptic factor and modifying f_{2} in the region where f_{1}\neq 0 we can assume
f_{2}=\xi_{n-1}+r(x, \xi’) . Here \xi’=(\xi_{1^{ }},\cdots, \xi_{n-2}) . We still have H_{f_{2}}\not\in T\Gamma- The new
function g(x, \xi’)=\{f_{1},f_{2}\} , differs from the old one on \Sigma only by an elliptic
factor, and is independent of \xi_{n} , \xi_{n-1} . We can write g=h(x, \xi’)^{\mathscr{H}} where
\Gamma=H\cap\Sigma:f_{1}=f_{2}=h=0 if we define H to be the hypersurface given by
h(x, ?)=0. Since H_{f_{1}} is tangent to \Gamma and h and H_{f_{1}} are invariant under
translations in the (\xi_{n-1}, \xi_{n}) directions we see that H_{f_{1}} is tangent to H. Let
\rho^{0} be a real function on \Gamma satisfying the equation H_{f_{1}}(\rho^{0})=0 . Let G’\subset\Gamma

be a hypersurface transversal to H_{f_{1}} and let G\subset H be a hypersurface with
G\cap\Gamma=\Gamma_{:}’ transverse to H_{f_{1}} and invariant under the H_{h} flow. ( H_{h} is non
tangent to \Gamma since H_{h}(f_{2})\neq 0) .

We can extend \rho^{(0)}|_{G’} to G in a non-unique way such that H_{h}(\rho^{(0)})=0

on G. We then extend this function to a function \rho^{(1)} on H such that
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H_{f_{1}}(\rho^{(1)})=0 . Then \rho^{(1)}|_{\Gamma}=\rho^{(0)} . Since \{f_{1}, h\}=6(h) we have [H_{f_{1}}, H_{h}]=

a(x, \xi)H_{h} on H, hence H_{f_{1}}(H_{h}(\rho^{(1)}))=a(H_{h}(\rho^{(1)})) and H_{h}(\rho^{(1)}) vanishes on H.
We choose local coordinates, centered at (x_{0}, \xi_{0}) , in the following way:

First let z’ be local coordinates on G’ . Then let (z’, t’, t’) be local coordinates

on G such that H_{h}= \frac{\partial}{\partial t}, on G and t=(t’, t’)=0 on G’ . Extend these coor-

dinates to H and add one; z’ so that G is given by z’=0 and H_{f_{1}}=

\frac{\partial}{\partial z},, on H. Then t=(t’, t’) vanishes on \Gamma and the preceding remark about

the commutator of H_{f_{1}} and H_{h} shows that H_{h}=b \frac{\partial}{\partial t}, on H, where b is a

non-vanishing function. Finally extend the coordinates (z, t) to a full neigh-

borhood of (x_{0}, \xi_{0}) and add one coordinate s, in such a way that s=0 on H

and H_{f_{2}}= \frac{\partial}{\partial s} . Clearly s and h differ only by an elliptic factor.

We can choose \rho^{(1)} above so that \rho^{(1)}(z, t)=\rho^{(0)}(d) . If k(z) is an analytic

function on \Gamma

,\cdot to be choosen later, we put

(4. 4) \rho(z, t, s)=\rho^{(1)}(z, t)+k(z)\frac{s^{\mathscr{H}\dagger 1}}{\mathscr{F}+1}

Then

(4. 5) H_{f_{2}}(\rho)=k(z)s^{\mathscr{H}}

We have

[H_{f_{1}}, H_{f_{2}}]=H_{h^{\mathscr{H}}}= \mathscr{F}h^{\mathscr{H}-1}H_{h}=\mathscr{Q}(s^{\mathscr{H}-1})\frac{\partial}{\partial t’}+\mathscr{Q}(s^{\mathscr{H}})(\frac{\partial}{\partial z}, \frac{\partial}{\partial t} , \frac{\partial}{\partial s})

so that

H_{f_{1}}= \frac{\partial}{\partial z’},+\mathscr{Q}(s^{\mathscr{H}})\frac{\partial}{\partial t’}+\mathscr{Q}(s^{\mathscr{H}+1})(\frac{\partial}{\partial z},
\frac{\partial}{\partial t} , \frac{\partial}{\partial s}) .

It follows that

(4. 6) H_{f_{1}}(\rho)=\mathscr{Q}(s^{\mathscr{H}+1})t

If R>0 is a sufficiently large constant we put

(4. 7) r= \rho-\frac{H_{f_{1}}(\rho)}{g}f_{2}+\frac{H_{f_{2}}(\rho)}{g}f_{1}+R(f_{1}^{2}+f^{2}))

which is a real and analytic function satisfying (4. 1).

The bicharacteristic segment \gamma_{0} is given in \Gamma by the equations z’=0.
We now choose \rho^{(0)}=|z\acute{|}^{2} . Then
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(4. 8) H_{r}=( \frac{s}{h})^{\mathscr{H}}k(z)H_{f_{1}}\in T\gamma_{0} on \gamma_{0} .

Let A be a small sphere in \Gamma (for the coordinates z) centered at 0. We
shall choose k vanishing to the second order on A. Then the cylindrical
hypersurface C=\{(z, t, s) ; z\in A\} is a barrier for the weight function (4. 7).
In fact, on C we have H_{f_{1}}(\rho)=\mathscr{Q}(s^{\mathscr{H}\dagger 1}|z’|) so

\frac{H_{f_{1}}(\rho)}{g}f_{2}=\mathscr{Q}(s|z’|f_{2})=\mathscr{Q}(s(|z’|^{2}+f^{2})))

Moreover H_{f_{2}}(\rho)=0 on C, so r\geq 0 is of the same order of magnitude as
|z’|^{2}+f_{1}^{2}+f^{22} on C. Since the gradient of each term in (4. 7) can be estimated
on C by a constant times |z’|+|f_{1}|+|f_{2}| our claim follows.

We now assume that we have worked in a small neighborhood of (x_{0}, \xi_{0})

whose closure is disjoint from WFa(Pu) . Then we perform our FBI-trans-
form and let u be the transformed function while (z, t, s) are considered as
coordinates on \Lambda_{\varphi_{0}} or even on C_{x}^{n} . Let then \Omega_{0}\subset C_{x}^{n} be given by z\in B,
|t|<\alpha, |s|<\alpha where \alpha>0 is small and fixed >0 , B is the open ball with
border A. Since we already know that P is a . h . e . outside \Gamma we know
that there is a function \tilde{\psi} of class C^{2} in a neighborhood of \overline{\Omega}_{0} such that
u\in H_{\sim}^{1oc}\{J

’ and \tilde{\psi}=\varphi_{0} on \Pi_{x}(\Gamma) : t=0, s=0 while \tilde{\psi}<\varphi_{0} elsewhere. Moreover
in some smaller neighborhood of \overline{\Omega}_{0} , we have Pu\sim 0 in H_{7}^{1oc}, if P denotes
a realisation of the transformed operator with a regular contour adapted to
\varphi_{0} as in (2. 16). A boundary point of \Omega_{0} is either in the barrier C, or else
|t| or |s| is equal to \alpha . Hence for 0\leq t\leq\epsilon_{0}>0 small enough we have \varphi_{t}\geq\tilde{\psi}

on \partial\Omega_{0} . Let

(4. 9) P_{\Omega_{0}}u=( \frac{\lambda}{2\pi})^{n}\int\int e^{i\lambda(x-y)\xi}P(x, \xi)\chi(x, y)u(y)dyds

\xi=\frac{2}{i}\frac{\partial\tilde{\psi}}{\partial x}(x)+\frac{i}{C}\frac{(\overline{x-y})}{|x-y|}

be a realisation of P in \Omega_{0} where \chi\in C^{\infty}(\Omega_{0}\cross\Omega_{0}) is equal to 1 and has its
support in two sets of the form \{(x, y)\in\Omega_{0} ; |x-y| \leq\frac{1}{const}

. d(x, Q\Omega_{0})\} .
Then as we saw in [14], section 12 , we have

Pu-P_{\Omega_{0}}u\in L_{\hat{\psi}}^{2,1oc}(\Omega_{0}) ( \hat{p}(x)=\tilde{\psi}(x)-\frac{1}{C}d(x, 8^{Q_{0})}t

It \epsilon_{0}>0 is small enough it follows that

(4. 10) P_{\Omega_{0}}u\in L_{\varphi_{t}}^{2,1oo}(\Omega_{0}) . 0\leq t\leq\epsilon_{0} .
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For \tau>0 define \Omega , \Omega_{1} , \Omega_{2} to be the open subsets of \Omega_{0} , where respectively
d(x, Q\Omega_{0})>\tau , 2\tau , 3\tau . If \epsilon_{0}>0 is small enough, but independent of \tau, we can
apply Theorem 2. 1, with P=P_{\Omega} :

(4. 11) |||u|_{1\varphi_{t’}1?_{2}}|^{l}\leq C_{\tau}(||P_{D}u||_{\varphi_{t’}\Omega_{1}}+|||u|||_{\varphi_{t},\Omega\backslash \Omega_{2}})

Here ||P_{\rho}u||_{\varphi_{t}’\Omega_{1}} is at most of polynomial increase in \lambda as \lambdaarrow\infty , while
|_{i}u|||_{\varphi_{t},\Omega\backslash \Omega_{2}}\leq C_{\tau}e^{0\tau\lambda} , since \varphi_{t}\geq\psi(x) (const.) \tau in \Omega\backslash \Omega_{2} . Letting \tau tend to 0 we
conclude that

(4. 12) u\in H_{\varphi_{t}}^{1oc}(\Omega_{0}) , 0\leq t\leq\epsilon_{0} .

If we choose first k>0 , then K<0 on \gamma_{0}\cap B, we conclude from the dis-

scussion in the end of section 3, that u\in H_{\Phi}^{1oc}(\Omega_{0}) where \Phi is a Lipschitz

function \leq\psi on a neighborhood of \Pi_{x}(\gamma_{0})\cap B in \Pi_{x}(\gamma_{0}^{C}) . Here \psi is the

harmonic function introduced in the end of section 3 (where the bicaracteristic
segment was called \gamma). Using the maximum principle it follows that if u\sim 0

in H_{\varphi_{0}}^{1oc} at a point of \Pi_{x}(\gamma)\cap B , then the same is true at every point in this

set. Translated into the original terms before the FBI-transform, this means
that either \gamma_{0}\subset B is disjoint from, or contained in, the analytic wave front

set of u. Since \gamma_{0} can be covered by a finite number of balls of the type

B, the Theorem follows.
It should be pointed out that we don’t know that the operator in

Theorem 4. 2 is not analytic hypoelliptic at (x_{0}, \xi_{0}) . Such hypoellipticity

would of course then be a stronger result than Theorem 4. 2. The same
uncertainty affects some of the results below.

We still assume that \Sigma:f_{1}=f_{2}=0 , g=\{f_{1},f_{2}\} . Let \Gamma\subset\Sigma be an analytic

submanifold passing through (x_{0}, \xi_{0}) and assume that there is an even integer

\mathscr{F}>0 such that

(4. 13) g\sim d_{\Gamma}^{?\swarrow} on \Sigma .

where d_{\Gamma} denotes the distance to \Gamma When the codimension of \Gamma in \Sigma is

larger than or equal to 2, then the “generic” situation is that

(4. 14) (T\Sigma\cap T\Sigma^{\perp})\cap T\Gamma=0

at every point of \Gamma Here T\Sigma\cap T\Sigma^{\perp} is the space spanned by H_{f_{1}} , H_{f_{2}} (at

the points of \Gamma). The last assumption is that

(4. 15) \sigma|_{\Gamma} is of constant rank on \Gamma

Then \Gamma has a bicharacteristic foliation of submanifolds whose tangent space

at every point is T\Gamma\cap T\Gamma^{\perp} . When \Gamma is not symplectic, let L be such a
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connected integral manifold containing (x_{0}, \xi_{0}) , and contained in the small
real neighborhood of (x_{0}, \xi_{0}) where the above assumptions are made.

THEOREM 4. 3. We assume (4. 13)-(4. 15).
(a) If \Gamma is symplectic, u\in \mathscr{D}’(R^{n}) , (x_{0}, \xi_{0})\not\in WF_{a}(Pu) , then (x_{0}, \xi_{0})\not\in

WF_{a}(u) .
(b) If \Gamma is non symplectic, L as above, and u\in \mathscr{D}’(R^{n}) satisfifies L\cap

WF_{a}(Pu)=\phi, then either L\subset WF_{a}(u) or L\cap WF_{a}(u)=\phi .
PROOF. In a sufficiently small neighborhood we shall construct a weight

of class C^{1,1} . Let
(4. 16) T\Gamma^{\perp}=\mathscr{T}_{1}\oplus \mathscr{T}_{2}\oplus(H_{f_{1}}, H_{f_{2}})

be a non-unique decomposition in the sense of vector bundles, where \mathscr{T}_{1}=

T\Gamma\cap T\Gamma^{\perp} . Let H\subset R^{2n} be of codimension 2 and such that \Gamma\subset H, \mathscr{T}_{1}\oplus \mathscr{T}_{2}

\subset TH|_{\Gamma} and (H_{f_{1}}, H_{f_{2}}) is transversal to TH. Since \mathscr{T}_{1} is the tangent space
of L at (x_{0}, \xi_{0}) we see that
(4. 17) dim H=\dim\Gamma+\dim \mathscr{T}_{2}+\dim L .
We choose local coordinates centered at (x_{0}, \xi_{0}) in the following way. On \Gamma

we take z=(z’, z’) in such a way that \mathscr{T}_{1} at every point is spanned by the
\frac{\partial}{\partial z},, directions. On H we extend the coordinates z and add the coordinates
t=(t’, t’) in such a way that t=0 on \Gamma and \mathscr{T}_{2} at every point of \Gamma is
spanned by the \frac{\partial}{\partial t},-directions. By (4. 17), we have as many z’ coordinates
as t’ coordinates. After a preliminary reduction to f_{1}=\xi_{n} , f_{2}=\xi_{n-1}+r(x, \xi’) ,
which implies that g=\mathscr{Q}(d_{\Gamma}^{\mathscr{H}’}) in a full neighborhood of (x_{0}, \xi_{0}) , we extend the
coordinates (z, t) to a full neighborhood of (x_{0}, \xi_{0}) and complete by s=(s_{1}, s_{2})

in such a way that s=0 on H, H_{J_{1}}= \frac{\partial}{\partial s_{1}} and s_{2}=0 on \mathscr{F}=\exp(RH_{f_{1}})(H)

and H_{f_{2}}= \frac{\partial}{\partial s_{2}} everywhere. Since g =\mathscr{Q}(d_{\Gamma}^{\mathscr{H}}) and T\Gamma^{\perp} is spanned by the

directions \frac{\partial}{\partial z},, ’
\frac{\partial}{\partial t}, ’

\frac{\partial}{\partial s} , we have

(4. 18) [H_{f_{1}}, H_{f_{2}}]=H_{g}= \mathscr{Q}((t, s)^{\mathscr{H}-1})(\frac{\partial}{\partial z’},, \frac{\partial}{\partial t’} , \frac{\partial}{\partial s})

+Or((t, s)^{\mathscr{H}})( \frac{\partial}{\partial z}, \frac{\partial}{\partial t} , \frac{\partial}{\partial s})

in the sense that the coefficients of \frac{\partial}{\partial z},, ’
\frac{\partial}{\partial t}, ’

\frac{\partial}{\partial s} are analytic functions
which are \mathscr{Q}((t, s)^{\mathscr{H}-1}) and so on.
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Let \rho^{(0)}(z)=\rho^{(0)}(z’) be a real and analytic function on \Gamma with d\rho^{0}|_{\tau rn\tau r\perp}

=0 at every point. Extend \rho^{(0)} to a function \rho^{(1)}(z, t) in such a way that
d\rho^{(1)}|_{F_{1}\oplus ff_{2}}=0 at every point of \Gamma For instance we can take
(4. 19) \rho^{(1)}=\rho^{(0)}(z’)+\vec{b}(z)\cdot t’

where \vec{b} is a real and analytic vector. (The most general choice would be
to add an arbitrary term \mathscr{Q}(t^{2}) in (4. 19) ) . Finally we put

(4. 20) \rho(z, t, s)=\rho^{(1)}(z, t)=\rho^{(1)}(Z, t’)

Then
(4. 21) d\rho|_{T\Gamma}\perp=0 everywhere on \Gamma ,

(4. 22) H_{f_{2}}(\rho)=0 everywhere ,

and H_{f_{1}}(\rho)=0 on \mathscr{F} so that at an arbitrary point:

H_{f_{1}}( \rho)(z, t, s)=\int_{0}^{s_{2}}H_{g}(\rho)(z, t, s_{1}, \sigma) da.

In view of (4. 18), (4. 19) we obtain H_{g}(\rho)=6((t, s)^{\mathscr{H}}\nabla b)+\mathscr{Q}((t, s)^{\mathscr{H}}\nabla\rho^{(0)})arrow+

\mathscr{Q}((t, s)^{\mathscr{H}}\vec{b})

(4. 23) H_{f_{1}}(\rho)(z, t, s)=\mathscr{Q}((t, s)^{\mathscr{H}+1})\nabla\rho^{(0)}+\mathscr{Q}(\backslash (t, s)^{\mathscr{H}+1})\nabla\vec{b}+\mathscr{Q}((t, s)^{\mathscr{H}+1}\vec{b})

Let \tilde{g} be an analytic and real extension of g|_{\Sigma} such that \tilde{g}\sim d_{\Gamma}^{\mathscr{H}} and put

(4. 24) r= \rho-\frac{H_{f_{1}}(\rho)}{\tilde{g}}f_{2}+f^{22} .

Then r is of class C^{1,1} in the real domain and has a holomorphic extension
to domain of the form |z|<\epsilon, |{\rm Im}(t, s)|<\epsilon|{\rm Re}(t, s)|<\epsilon^{2} . Introducting a cut
off function \chi(|{\rm Re}(t, s)|^{-1} Im (t, s)) in front of the middle term in (4. 24), where
\chi\in C_{0}^{\infty} is equal to 1 near 0 and has a sufficiently small support, we achieve
that r is of class C^{1,1} in a full complex neighborhood of (x_{0}, \xi_{0}) , while still
holomorphic and of the form (4. 24) in a (somewhat smaller) complex domain
of the type above, r-\rho vanishes to the second order on \Gamma so (4. 21) shows
that

(4. 25) H_{r}\in T\Gamma everywhere on \Gamma

(Also, H_{r} is tangent to \Sigma by construction).
In the case (a) the proof is now easily concluded. We choose \rho^{(0)}=

|z|^{2}-\delta^{2} where \delta>0 is small enough. The set C=\{(z, t, s);|z|=2\delta, |(t, s)|\leq\delta\}

is easily seen to be a barrier simply because r>0 on C. Applying our FBI-
transform, the general remarks in the end of section 3, Theorem 2. 1 as in
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the end of the proof of Theorem 4. 2, we see that the transformed function
u is of class H_{\varphi_{t}}^{1oc}, in the domain |z|<2\delta , |(t, s)|<\delta when t’>0 is small enough.
Here \varphi_{t’}(x)=\varphi(t’,, x) solves the problem (3. 7), and we have \varphi_{t’}(x_{0})<\varphi_{0}(x_{0})

when t’>0 is small enough, so we conclude that (x_{0}, \xi_{0})\not\in WF_{a}(u) for the
untransformed function. This completes the proof in the case (a).

In the case { b) we recall that L is given by the equations z’=0 in \Gamma

We choose \rho^{(0)}=|z’|^{2} . Then on L we have dr|_{T\Gamma}=0 so H_{r}\in T\Gamma^{\perp} . With
(4. 25) this gives

(4. 26) H_{r}\in TL everywhere on L and r|_{L}=01

We have \dim^{-}L degrees of freedom in the choice of \vec{b} so r can be constructed
so that H_{r} is any analytic section in TL.

Let B\subset\Gamma be the ball |z|<\delta_{0} for some sufficiently small \delta_{0}>0 and let
A be its boundary in \Gamma We choose \vec{b} to vanish to the second order on
A and we shall next verify that for \delta_{1}>0 small enough, C=\{(z, t, s);z\in A ,

|(t, s)|\leq\delta_{1}\} is a barrier. In fact, by (4. 23), (4. 24) we have

r=|d|^{2}+\mathscr{Q}(\delta_{1}|d|\cdot|f_{2}|)+f_{2}^{2}\sim|z’|^{2}+f^{22}

on C, while \nabla r=\mathscr{Q}(1)(|z’|+\delta_{1}|d|+|f_{2}|)\leq \mathscr{Q}(1)r^{1/2} on C. If \gamma_{0}\Subset B is an
analytic curve segment in B, we choose r so that H_{r}\neq 0 on \gamma_{0} and tangent

to \gamma_{0} . Then by the same arguments as in the proof of Theorem 4. 2 we
get that if \overline{B}\cap WF_{a}(Pu)=\phi then either \gamma_{0}\cap WF_{a}(u)--\phi or \gamma_{0}\subset WF_{a}(u) . By

varying \gamma_{0} we obtain that either B\cap WF_{a}(u)=\phi or B\subset WF_{a}(u) . Covering

L by sets of the type B, we obtain the statement in (b) of the Theorem.
The proof is complete.

In the case {b) of Theorem 4. 3, we cannot prove analytic hypoellipticity
using the methods of this section (and the author believes that there is no
such regularity result). Indeed, if r is a C^{1,1} function, of class C^{2}a . e . on \Sigma ,

defined in a real neighborhood of (x_{0}, \xi_{0}) , such that H_{f_{1}}(r)=H_{f_{2}}(r)=0 on \Sigma ,

then r is constant on each bicaracteristic leaf of \Gamma To see this we first
notice that |H_{f_{1}}|H_{f_{2}}(r) , |H_{f_{2}}|H_{f_{1}}(r)=\mathscr{Q}(g) on \Sigma , if

– 1
|H_{f_{1}} |v=lim_{\overline{\epsilon}}\’e\rightarrow 0’

|v\circ\exp(-\epsilon H_{f_{1}})-v|

Hence H_{g}(r)=\mathscr{Q}(g) on \Sigma , since H_{g}=[H_{f_{1}}, H_{f}J . Let u_{1} , \cdots , u_{2n} be coordinates
centered at (x_{0}, \xi_{0}) such that \Gamma is given by u_{1}=\cdots=u_{d+2}=0 , u_{a+1}=f_{1} , u_{d+2}=f_{2} .
If is enough to show that H_{u’}(r)=(H_{u_{1}}(r), \cdots, H_{u_{d}}(r))=(0, \cdots, 0) on \Gamma For
simplicity we may do it only at 0. On \Sigma we have

H_{g}(r)= \sum_{1}^{2n}\frac{\partial g}{\partial u_{f}}H(jr)=\sum_{1}^{d}\frac{\partial g}{\partial u_{j}}H_{u_{j}}(r)+\mathscr{Q}(|u’|^{\mathscr{H}})j
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since H_{u_{d+1}}(r)=H_{u_{d+2}}(r)=0 and \frac{\partial g}{\partial u_{j}}=\mathscr{Q}(|u’|^{\mathscr{H}}) for j\geq d+3 . Thus on \Sigma :

\sum_{1}^{d}\frac{\partial g}{\partial u_{j}}H_{u_{j}}(r)=\mathscr{Q}(|u’|^{\mathscr{H}})

Put u_{d+3}=\cdots=u_{2n}=0 . By Taylors formula and the Euler identity we have

| \sum_{1}^{d}\frac{\partial g}{\partial u_{j}}u_{j}|\sim|u’|^{\mathscr{H}}

We choose u’=(u_{1^{ }},\cdots, u_{d})=\epsilon H_{u’}(r)(0) . Then the above estimate gives

\epsilon^{-1}|H_{u’}(r)(0)|^{\mathscr{H}}=\mathscr{Q}(\epsilon^{\mathscr{H}}|H_{u’}(r)(0)t^{\mathscr{H}})

which implies H_{u’}(r)(0)=0 .
We next look at a complementary case to the two preceeding theorems.

We still assume that \Sigma is of codimension 2, that \mathscr{A} is even >0 and that
(4. 13), (4. 15) are valid, where \Gamma is an analytic submanifold. Thinking in
particular on the case when \Gamma is a hypersurface we replace (4. 14) by the
assumption that

(4. 27) dim T\Gamma\cap T\Sigma^{\perp}=1

at every point of \Gamma We may then recombine f_{1} , f_{2} so that T\Gamma\cap T\Sigma^{\perp}=(H_{f_{1}})

while H_{f_{2}} is transversal to T\Gamma- Let \gamma_{0} be a segment of the integral curve
of H_{f_{1}} , passing through (x_{0}, \xi_{0}) . The following theorem gives a weaker
statement than part (b) of Theorem 4. 3, and it is perfectly legitimate to
wonder if it can be stengthened.

THEOREM 4. 4. Under the assumptions (4. 13), (4. 27), (4. 15) with \mathscr{F}

even, if u\in \mathscr{D}’(R^{n}) , \gamma_{0}\cap WF_{a}(Pu)=\phi then either \gamma_{0}\subset WF_{a}(u) or \gamma_{0}\cap WF_{a}(u)=\phi .
PROOF. Let H be an H_{f_{1}} invariant hypersurface containing \Gamma and

transversal to H_{f_{2}}\tau Then we have a fiberbundle decomposition; TH\cap T\Gamma^{\perp}

=\mathscr{T}_{1}\oplus \mathscr{T}_{2} , where \mathscr{T}_{1}=T\Gamma\cap T\Gamma^{\perp} . Then clearly T\Gamma^{\perp}=\mathscr{T}_{1}\oplus \mathscr{T}_{2}\oplus H_{f_{2}} . Let
G’\subset\Gamma be a hypersurface transversal to H_{f_{1}} and G\subset H a hypersurface trans-
versal to H_{f_{1}} containing G’ and such that TG\supset \mathscr{T}_{2} at every point of G’ .
Let \mathscr{T}_{1}’=\mathscr{T}_{1}\cap TG’ so that \mathscr{T}_{1}=\mathscr{T}_{1}’\oplus(H_{f_{1}}) at every point of G’ . We choose
local coordinates centered at (x_{0}, \xi_{0}) in the following way: Let (z’, z’) be
coordinates on G’ such that \mathscr{T}_{1}’ at every point is spanned by the \frac{\partial}{\partial z’}, di-

rections: \mathscr{T}_{1}’=(\frac{\partial}{\partial z},, ) for short. Extend z’ , z’ to G and complete with coor-

dinates t=(t’, t’) so that t=0 on G’ and \mathscr{T}_{2}=(\frac{\partial}{\partial t},) at every point of G’ .
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Then extend the coordinates z’ , z_{:}^{\acute{\prime}}t to H and add one coordinate z^{\acute{\prime}\prime} in

such a way that z’=0 on G and Hf_{1}= \frac{\partial}{\partial z},,, on H. Since \Gamma is invariant under

the symplectic flow generated by H_{f_{1}} we have t=0 on \Gamma and \mathscr{T}_{1}=(\frac{\partial}{\partial z},, ’
\frac{\partial}{\partial z},,, )

on \Gamma Moreover if we redefine \mathscr{T}_{2} outside G’ on \Gamma as ( \frac{\partial}{\partial t}, ) then we still

have TH\cap T\Gamma^{\perp}=\mathscr{T}_{1}\oplus \mathscr{T}_{2} . Finally we extend z, t to a full neighborhood

of (x_{0}, \xi_{0}) and add a coordinate s such that s=0 on H and H_{f_{2}}=( \frac{\partial}{\partial s}) . Since

g=\mathscr{Q}((t, s)^{\mathscr{H}}) and T \Gamma^{\perp}=(\frac{\partial}{\partial z},, ’
\frac{\partial}{\partial z},,, ’

\frac{\partial}{\partial t}, ’
\frac{\partial}{\partial s}) we have

(4. 28) H_{g}= \mathscr{Q}((t, s)^{\mathscr{H}-1})(\frac{\partial}{\partial z’},, \frac{\partial}{\partial z’},, \frac{\partial}{\partial t’} , \frac{\partial}{\partial s})+\mathscr{Q}(’(t, s)^{\mathscr{H}})(\frac{\partial}{\partial z}, \frac{\partial}{\partial t} , \frac{\partial}{\partial s})t

Hence

(4. 29) H_{f_{1}}= \frac{\partial}{\partial z’},+\mathscr{Q}(s(t, s)^{\mathscr{H}-1})(\frac{\partial}{\partial z’},, \frac{\partial}{\partial z’},, \frac{\partial}{\partial t’}, \frac{\partial}{\partial s})

+ \mathscr{Q}(s(t, s)^{\mathscr{H}})(\frac{\partial}{\partial z}, \frac{\partial}{\partial t} , \frac{\partial}{\partial s})

We next construct a function \rho as before so that \rho|_{T\Gamma}\perp=0 . We start
with \rho^{(0)}=\rho^{(0)}(z\acute{)} on \Gamma- As an extension \rho^{(1)} to H we could take

\rho^{(1)}(z, t)=\rho^{(0)}(z\acute{)}+\vec{b}(z)t’+\mathscr{Q}(t^{2}) ,

but since H_{f_{1}}(\rho) should vanish at least to the order \mathscr{F} on \Gamma,\cdot we are obliged
to take \vec{b}=\vec{b}(z’, z^{\acute{\prime}}) . On the other hand our constructions seem to require
a barrier in \{z\in\Gamma;\rho^{(0)}(z’)=0\} which is not invariant under z’ -translation
and \vec{b}(z’, z’) would have to vanish at this part of the battier. It thus seems
difficult to make any interesting use of the \vec{b}t’ term so we drop it and put
\rho^{(1)}(z, t)=\rho^{(0)}(z\acute{)}=|z\acute{|}^{2} .

Let k(z) be a real valued analytic function on \Gamma and put

\rho(z, t, s)=\rho^{(1)}(z, t)+k(z)\int_{0}^{s}\tilde{g}(z, t, \sigma)d\sigma=|z’|^{2}+\mathscr{Q}(s(t, s)^{\mathscr{H}})

Here \tilde{g} is an extension of g|_{\Sigma} which is of the order of maguitude d_{\Gamma}^{\mathscr{H}} . Then

(4. 30) H_{f_{2}}(\rho)=k(z)\tilde{g}(z, t, s)9

and using (4. 29) we get easily

(4. 31) H_{f_{1}}(\rho)=\mathscr{Q}((t, s)^{\mathscr{H}+1})
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Moreover by construction H_{\rho}\in T\Gamma everywhere on \Gamma Put

(4. 32) r= \rho^{-}\frac{H_{f_{1}}(\rho)}{\tilde{g}}f_{2}+\frac{H_{f_{2}}(\rho)}{\tilde{g}}f_{1}+R(f_{1}^{2}+f^{2}))1

Then r has the same regularity and holomorphic ectension properties as in
the proof of the preceding theorem (and we do the same modification in the
complex region as there). We have H_{r}\in T\Sigma everywhere on \Sigma , H_{r}\in T\Gamma

everywhere on \Gamma and on the set z’=0 in \Gamma. which contains \gamma_{0} , we have
H_{r}=kH_{f_{1}} . Defining A, B, C as before we let k vanish to the second order
on A. Then C is a barrier, because r\sim|z’|^{2}+f_{1}^{2}+f^{22} on this set, while
\nabla r=\mathscr{Q}(1)(|z’|+|f_{1}|+|f_{2}|) on C. (The only non-evident contribution to \nabla r

is \frac{-H_{f_{1}}(\rho)}{\tilde{g}}\nabla f_{2}, but H_{f_{1}}(\rho)=\mathscr{Q}((|t|+|s|)^{\mathscr{H}+1}|z’|) on C so the estimate is easy).

The proof is now completed as before.
We next show how to extend the Theorems 4. 2-4. 4 to the case when

codim \Sigma=d is even >2 . As before we work near a point (x_{0}, \xi_{0})\in\Sigma, where
\Sigma is non symplectic and we assume
(4. 33) dim T\Sigma\cap T\Sigma^{\perp}\leq 2 everywhere on \Sigma

If we represent \Sigma by the d real equations f_{1}=\cdots=f_{d}=0 , and put \mathscr{L}=

(\{f_{j},f_{k}\})_{1\leq j,k\leq d} then \pm\sqrt{\det \mathscr{L}}=g is a analytic function on \Sigma , well defined up
to the sign, and more generally up to an elliptic factor, if we change the
defining functions. (Indeed g=2^{a}d!(\Sigma\{f_{j},f_{k}\}dx_{j}\Lambda dx_{k})^{a/2}/dx_{1}\Lambda\cdots\Lambda dx_{a}).
At the point (x_{0}, \xi_{0}) we can make a linear recombination of f_{1} , \cdots,f_{d} so that
T_{(x_{0},\xi_{0})}\Sigma\cap T_{x_{0},\hat{\epsilon}_{0^{)}}}‘\Sigma^{\perp} is spanned by H_{f_{1}} and H_{f_{2}} . Then \Sigma_{s} ; f_{3}=\cdots=f_{a}=0 is
a symplectic manifold and after a symplectic change of coordinates we may
assume that \Sigma_{s} : x’=\xi’=0 . Changing the functions f_{1} , \cdots,f_{a} once more we
may assume that f_{1}=f_{1}(x’, \xi’) , f_{2}=f_{2}(x, \xi’) , (f_{3}, \cdots,f_{a})=(x’, \xi’) . The function
g is then just the Poisson bracket of f_{1} and f_{2} . If we make the geometric
assumptions of one of our 3 results for the manifold \Sigma\subset R_{(x\xi)}^{2(n-d)+2},,

’ given by
f_{1}=f_{2}=0 , then we construct our weight function r(x’, \xi’) as before and simply
extend it to be constant in the (x’, \xi’) variables. Then r is of class C^{1,1}

in the real domain, and if \Gamma\subset\Sigma is as before then we have a C^{1,1} extension
to a full complex neighborhood of (x_{0}, \xi_{0}) , holomorphic in a set of the form
|{\rm Im}\vec{g}(x’, \xi’)|<\epsilon|{\rm Re}\vec{g}(x’, \xi’)| where \vec{g}=(g_{1}, \cdots, g_{k}) are real defining functions
of \Gamma Since H_{r} is tangent to \Gamma.\hat{\Gamma}. \Sigma we can apply the remarks in the
end of section 3. If C\subset R^{2(n-a)+2} is a barrier, then C=\{(x, \xi);(x, \xi’)\in C\} is
also a barrier. The proofs of our theorems then go through without any
further changes and we get:

THEOREM 4. 2’. Let \Sigma be of even codimension, assume (4. 33) and defifine
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g on \Sigma as above. Let \Gamma\subset\Sigma be an analytic hypersurface containing (x_{0}, \xi_{0})

and assume (4. 2) and (4. 3). Let \gamma_{0} be an integral curve segment of T\Gamma\cap

T\Gamma^{\perp} . If u\in \mathscr{D}’(R^{n}) and \gamma_{0}\cap WF_{a}(Pu)=\phi, then either \gamma_{0}\subset WF_{a}(u) or \gamma_{0}\cap

WF_{a}(u)=\phi .
THEOREM 4. 3’. Let \Sigma be of even codimension, assume (4. 33) and defifine

g on \Sigma as above. Let \Gamma\subset\Sigma be an analytic submanifold containing (x_{0}, \xi_{0})

and assume (4. 13)-(4. 15),
(a) If \Gamma is symplectic, u\in \mathscr{D}’(R^{n}) , (x_{0}, \xi_{0})\not\in WF_{a}(Pu) , then (x_{0}, \xi_{0})\not\in

WF_{a}(u) .
(b) If \Gamma is not symplectic, let L be a connected bicaracteristic leaf of

\Gamma containing (x_{0}, \xi_{0}) . If u\in \mathscr{D}’(R^{n}) , L\cap WF_{a}(Pu)=\phi, then either L\subset WF_{a}(u)

or L\cap WF_{a}(u)=\phi .
THEOREM 4. 4’. Let \Sigma be of even codimension, assume (4. 33) and defifine

g on \Sigma as above. Let \Gamma\subset\Sigma be an analytic submanifold containing (x_{0}, \xi_{0})

and assume (4. 13), (4. 15), (4. 27). Let \gamma_{0} be an integral curve segment of
T\Gamma\cap T\Sigma^{\perp} containing (x_{0}, \xi_{0}) . Then either \gamma_{0}\subset WF_{a}(u) or \gamma_{0}\cap WF_{a}(u)=\phi .

As our last application, we shall consider an operator which is not C^{\infty}

hypoelliptic. Let Q(x, D) be a differential operator with analytic coefficients,
defined near x_{0}\in R^{n} . Let q be the principal symbol and assume that in
a neighborhood of (x_{0}, \xi_{0})\in T^{*}R^{n}\backslash 0 :

(4. 34) q is real valued and vanishes to the second order on a symplectic
submanifold \Sigma\ni(x_{0}, \xi_{0}) which is of codimension 2d.

For \rho\in\Sigma let F_{\rho} be the fundamental matrix of q, defined by q’(t, s)=\sigma(t, F_{\rho}s) ,
\forall t, s\in T_{\rho}(R^{2n}) . Here the Hessian q’ and the symplectic form \sigma are non-
sidered as bilinear forms. We assume

(4. 35) For all \rho\in\Sigma , F_{\rho} is of rank 2d and has no purely imaginary non-
vanishing eigenvalues.

For \rho\in\Sigma , let \Lambda_{+}(\rho) , \Lambda_{-}(\rho)\subset T_{\rho}(R^{2n}) be the d-dimensional isotropic subspaces
whose complecifications are the sum of all complex (generalized) eigenspaces
corresponding to eigenvalues with positive respectively negative, real parts.
Then T_{\rho}(\Sigma)^{\perp}=\Lambda_{+}(\rho)\oplus\Lambda_{-}(\rho) .

We then know (see appendix) that in a neighborhood of (x_{0}, \xi_{0}) there
are H_{q}-incariant, involutive manifolds \mathscr{T}_{+} , \mathscr{T}_{-} of codimension d, such that
\Sigma\subset \mathscr{T}_{\pm} and T_{\rho}(\mathscr{T}_{\pm})=T_{\rho}(\Sigma)\oplus\Lambda_{\pm}(\rho) at every point \rho\in\Sigma . Within \mathscr{T}_{+}(\mathscr{T}

-
) ,

\Sigma is a repulsive (attractive) submanifold for H_{q} , and q|_{\tau_{\pm}}=0 . We can find
symplectic coordinates (x^{\iota}, x’, \xi’, \xi’) centered at (x_{0}, \xi_{0}) such that \Sigma:x’=\xi’

=0, \mathscr{T}_{+}: \xi’=0 , \mathscr{T}-: x^{\acute{\prime}}=0 ; The principal symbol q becomes
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(4. 36) q(x, \xi)=A(x, \xi)d’\cdot\xi’

where A is a real d\cross d-matrix. At a point \rho\in\Sigma the fundamental matrix
restricted to T_{\rho}\Sigma^{\perp-}-R_{(x’\xi)}^{2d},,” becomes

(\begin{array}{ll}A 00 -{}^{t}A\end{array})

and the eigenvalues \lambda_{1}, \cdots , \lambda_{d}

of A are precisely those of F which have real parts >0 . Let \lambda_{\pm}\subset \mathscr{T}_{\pm} be
the bicharacteristic leaves through (x_{0}, \xi_{0})=(0,0) so that \lambda_{+}: x\acute{=}0 , \xi=0 , \lambda_{-}:

\xi’=0 , x=0. We write

(4. 37) H_{q}=A(x, \xi)d’,\frac{\partial}{\partial x^{\iota}}, - {}^{t}A(x, \xi)\xi’\cdot\frac{\partial}{\partial\xi},, +\mathscr{Q}((x’)(\xi’))

(Here \mathscr{Q}((x^{\acute{\prime}})(\xi’)) indicates a term with coefficients in the product of the
two ideals generated respectively by x_{d+1} , \cdots , x_{n} and \xi_{d+1} , \cdots , \xi_{n} .) Let A_{0}=

A(0,0) and put

B= \int_{0}^{\infty}e^{-s^{t}A_{0}}e^{-sA_{0}}ds

which is a positive symetric matrix with the property that

{}^{t}A_{0}B+BA_{0}=Il

If |||x’|||^{2}=\langle Bxd’\prime\prime,\rangle is the corresponding norm, then

A_{0}d’ \cdot\frac{\partial}{\partial x’},(|||x’||^{2}|‘)=||d’||^{2}>0 ,

where ||x’|| is the standard norm. Similary we can find a symetric matrix
C>0 so that

{}^{t}A_{0} \xi’\cdot\frac{\partial}{\partial\xi’},(||^{1}\xi_{1}^{\prime\prime 1}|_{*}^{2})=||\xi’||^{2}>0 ,

if |_{1}^{||},\xi’||_{*}^{2}|=\langle CP’, \xi’\rangle .
Let [0, \eta\ni t- (x(t), \xi(t)) be an integral curve of H_{q}, with |(x(0), \xi(0))|\leq\epsilon ,

|x^{\acute{\prime}}(0)||||> \frac{1}{2}||||\xi’\}(0)||_{*}^{I} , ||_{I}x^{\acute{\prime}}(t)||^{1}\leq\delta_{0} , where \delta_{0}>0 is small but independent of \epsilon .

Then with a constant C_{0}>0 independent of \epsilon we get

\#|\xi’(t)|\Downarrow\leq e^{-t/C_{0|||\xi’(0)|||\leq C_{0}\epsilon e^{-t/C_{0}}}} ,

|||x^{\acute{\prime}}(t)|\Uparrow\geq e^{t/C_{0}}|||x^{\acute{\prime}}(0)|\# , | \frac{d}{dt}(d(t), \xi’(t))|\leq C_{0}\epsilon e^{-t/O_{0}}

From this we see that we can increase T so that |_{1}|d’(T)|_{1}^{1_{1}^{1}}=\delta_{0} and
|(d(t),\xi’(t))|+|\xi’(t)|\leq const . \epsilon , 0\leq t\leq T Hence the distance from (x(t), \xi(t)) to

\lambda_{+} is at most; (const.)e. Naturally we have an analogous result if ||_{1}^{1} \xi’(0)||_{1*}^{I}|>\frac{1}{2}
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|||x’(0)||| and we study the integral curve for negative times, provided that we
replace \lambda_{+} by \lambda_{-} . We shall state and prove a theorem under the assumption

(4. 38) (x_{0}, \xi_{0})\not\in WF_{a}(Qu)j WF_{a}u)\cup(\lambda_{-}\backslash \{(x_{0}, \xi_{0})\})=\phi .

Then the above discussion and the fact that analytic regularity propagates
along the integral curves of H_{q} show that there exists \epsilon>0 such that in our
special coordinates:

(4. 39) \{(x, \xi)\in R^{2n} ; |(x, \xi)|\leq\epsilon, ||| \xi’|||_{*}>\frac{1}{2}||_{1}^{1}x’i\}\cap WF_{a}(u)=\phi .
Let S_{Q} be the subprincipal symbol of Q, invariantly defined on \Sigma and

define \lambda_{1}, \cdots , \lambda_{d} as above. We assume

(4. 40) S_{Q}+ \frac{1}{i}\sum_{1}^{d}(\alpha_{j}+\frac{1}{2})\lambda_{j}\neq 0

everywhere on \Sigma , for all \alpha_{j}\in\{0,1,2, \cdots\} . The folowing result is due to
\hat{O}aku [13] in the case when codim \Sigma=2 .

THEOREM 4. 5. Let Q have the properties above, in particular (4. 34),
(4. 35), (4. 40), and let \lambda_{+}; \lambda_{-} , \Sigma , (x_{0}, \xi_{0}) be as above. If u\in \mathscr{D}’(R^{n}) and (4. 38)
holds, then (x_{0}, \xi_{0})\not\in WF_{a}(u)

PROOF. In the special coordinates above, put

(4. 41) r(x, \xi)=|||d’|||^{2}-|||?’|||_{*}^{2}+|x’|^{2}+|\xi’|^{2} .

Then H_{r} is tangent to \Sigma, (4. 37) and the discussion there after show that

(4. 42) H_{q}(r)=||d’||^{2}+||\xi’||^{2}+\mathscr{Q}((x’, \xi’)^{2}(x, \xi))

Hence on the real dopiain :

(4. 43) q\circ\exp (itHr)=q(x,\xi)-it (||x’||^{2}+||\xi’||^{2}+\mathscr{Q}((x’, \xi’)^{2}(x, \xi)))

+\mathscr{Q}(t^{2}(x’, \xi’)^{2}) ,

so for t>0 small enough,

(4. 44) |{\rm Re} q\circ\exp (it H_{r}) | \leq\frac{C}{t}(- Im q\circ\exp (-it H_{r}) ) .

We noticed above that (4. 39) follows from (4. 38) so we see that the set r\leq 0

is disjoint from WF_{a}(u) in a pointed real neighborhood of (x_{0}, \xi_{0})=(0,0) .
We now perform our usual FBI-transform and use the same notation for

the transformed objects. As before let \varphi_{t}(x)=\varphi(t, x) be the solution to the
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problem (3. 7). Then if \epsilon>0 is small enoull, h , we-have u\sim 0 in H_{\varphi_{t}}^{1oc} in a
neighborhood of |x-x_{0}|=\epsilon , when t>0 is small enough. Indeed at those
points, either r(x, \frac{2}{i}\frac{\partial\varphi_{0}}{\partial x})>0 so \varphi_{t}>\varphi_{0} and there is nothing to prove, or
u\sim 0 in H_{\varphi_{0}} . Since \varphi_{t}(x_{0})=\varphi_{0}(x_{0}) it suffices to show that the conclusion _{p} of
Theorem 2. 1 is valid with \varphi=\varphi_{l} , in order to conclude that u\sim 0 in H_{\varphi_{0}} at
x_{0} (and hence that ( x_{0}, \xi_{0})\not\in WF_{a}(u) in the untransformed notation). However,
the proof of Theorem 2. 1 goes through without changes if we consider \varphi_{t}

as the unperturbed weight (and take t>0 small). (4. 43) shows that |q|_{A_{\varphi_{t}}}

behaves h.ke the square of the distance to \Lambda_{\varphi_{t}}\cap\Sigma^{C} so the estimates in the
elliptic region are unchanged. (4. 44) shows that q|_{A_{\varphi_{t}}} takes its values in an
angle \{z\in C;| arg z+ \frac{\pi}{2}|\leq\alpha\} , \alpha<\frac{\pi}{2} , and (4. 40) then gives an explicit and
wellknown condition which allows us to obtain (2. 27), using only the earlier
arguments. The proof is complete.

We end this section by giving some examples to the Theorems 4. 2-4. 4.
Let U be an open set in R^{n} or possibly an n-dimensional manifold and
\Sigma=\{(x, \lambda\rho(x));\lambda\in R, x\in U\} where \rho is a non-vanishing 1-form on U. To
fix the ideas, we may assume that P is a second order differential operator
with principal symbol \geq 0 which locally behaves like the square of the
distance to \Sigma . We also assume through out that P is hypoelliptic with loss
of 1 derivative. If \omega=\sum_{1}^{n}\xi_{j}dx_{j} is the fundamental 1-form and we consider
\rho(x) as 1-form on \Sigma in the natural way, then \omega|_{\Sigma}=\lambda\rho and hence \sigma|_{\Sigma}=\lambda d\rho+

d\lambda\Lambda\rho, if \sigma=d\omega is the symplectic form. Let (t_{x}, t_{\lambda}) , (s_{x}, s_{\lambda}) be tangent vectors
to \Sigma at a given point. Then

(4. 45) \langle\sigma|_{\Sigma} , (t_{x}, t_{\lambda})\wedge(s_{x}, s_{\lambda})\rangle=

=\lambda\langle d\rho, t_{x}\Lambda s_{x}\rangle+t_{\lambda}\langle\rho, s_{x}\rangle-s_{\lambda}\langle\rho, t_{x}\rangle 1

Let H\subset U be a submanifold and let \Gamma=\{(x, \lambda\rho(x));x\in H.\} be the correspond-
ing submanifold of \Sigma . We shall only consider 2 pure cases:

(a) \rho|_{H}=0 . Then (4. 45) shows that \Gamma is isotropic.
(b) \rho|_{H}\neq 0 everywhere. Then (0, t_{\lambda}) cannot be in the kernel of \sigma|_{\Sigma}

unless t_{\lambda}=0 . On the other hand, for (t_{x}, t_{\lambda}) to be in the kernel of \sigma|_{\Gamma} at
a point (x_{0}, \lambda_{0}) , the necessary and sufficient condition on t_{x} is that t_{x}\in Ker\rho\cap

TH and that t_{x} is also in the kernel of d_{\rho} restricted to (Ker \rho\cap TH) \cross(Ker\rho\cap

TH). For such vectors t_{x} there is a unique t_{\lambda} such that (t_{x}, t_{\lambda})\in Ker\sigma|_{\Gamma}.
Let \Omega\subset C^{n} be given by f(z)<0 , where f is real and analytic with df\neq^{-}0

on \partial\Omega . We are interested in the case when P has the same characte\dot{r}istic

variety as the Kohn-Laplacian \coprod_{b} . This means that we can take U=\partial\Omega
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and \rho=\frac{1}{i}\partial f|_{\partial\Omega} so d \rho=\frac{1}{i}\overline{\partial}\partial f|_{\partial 9} is the Levi form. Recall in this situation

that the complexification of Ker \rho is T^{1,0}(\partial\Omega)\oplus T^{0,1}(\partial\Omega) , where T^{1,0}(\partial\Omega)(T^{0,1}(\partial\Omega))

is the bundle of holomorphic (anti-holomorphic) tangent vectors. Let Z_{1}, \cdots ,

Z_{n-1} be linearly independent local sections of T^{1,0}(\partial\Omega) . Then we recall that

(4. 46) \langle\frac{1}{i}\overline{\partial}\partial f,\overline{Z}_{f}\Lambda Z_{k}\rangle=\langle\rho, [\overline{Z}_{f}, Z_{k}]\rangle^{d}=^{cf}a_{fk}

and that

\frac{1}{i}\overline{\partial}\partial f|_{Ker’ xKer\rho}=\sum a_{fk}\overline{u}_{f}\Lambda u_{k}

where u_{1}, \cdots , u_{n-1} is the dual system of (1, 0) -forms on Ker \rho . If g_{f} is the
principal symbol of Z_{j} then the matrix a_{jk} is up to an elliptic factor the

same as

G=( \frac{1}{i}\{\overline{g}_{f}, g_{k}\})|_{\Sigma}

The function g, discussed earlier in this section, is then the determinant of
G. Indeed \Sigma is given by f_{1}=\cdots=f_{2d}=0 where f_{j}=g_{j}, 1\leq j\leq d, f_{f}=\overline{g}_{f-d},

d+1<_{\sim}j\leq 2d and

( \frac{1}{i}\{f_{f},f_{k}\})=(\begin{array}{ll}0 -{}^{t}GG 0\end{array})

(The functions f_{J} are not real valued, but their differentials are linearly

independent over C, which is all that is needed here).
1^{o} . Let n=2 and let H\subset\partial\Omega be a curve on which the function g van-

ishes. If \rho|_{H}\neq 0 everywhere, then \Gamma is symplectic by (4. 45) and Theorem
4. 3 (a) gives analytic regularity provided that g\sim d_{H}^{2k}k\in\{1,2, \cdots\} . An

example of this situation is when \Omega:|z_{1}|^{2}+|z_{2}|^{\iota}\leq 1 and H\subset\partial\Omega is given by

z_{2}=0 . Then T^{1,0}( \partial\Omega)=(\frac{\partial}{\partial z_{2}}) at the points of H and g\sim d_{H}^{2}.
2^{o} Let n=2 and let H\subset\partial\Omega be a curve on which g vanishes. If 10|_{H}=0

everywhere, then \Gamma is isotropic by (4.45) and we may choose Z=X+iY
such that X is tangent to H while Y is non-tangent). With f_{1}, f_{2}=principal

symbol of X, Y we have \Pi_{x}(H_{f_{1}}) tangent to H, H_{f_{1}} tangent to \Sigma , so H_{f_{1}}

is tangent to \Gamma, while H_{f_{g}} is not tangent to \Gamma If the function g has the
right degeneration on H, we may apply Theorem 4. 4 to deduce propagation
of analytic regularity along H. An example of this situation is \Omega : Re (z_{1}^{2}+z_{2}^{2})

+(y_{1}^{2}+y_{2}^{2})^{2}\leq 1 , and H\subset\partial\Omega given by y_{1}=y_{2}=0 . The complete Levi-matrix of
the function f, then vanishes for y=0 and satisfies \mathscr{L}_{f}\geq 2y^{2}\mathscr{L}_{y^{2}} . (We define
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\mathscr{L}_{J}=(\frac{\partial^{2}f}{\partial\overline{z}_{f}\partial z_{j}})) . It is therefore clear that g\sim y^{2} . On H we have T^{1,0}(\partial\Omega)=

(x_{2} \frac{\partial}{\partial z_{1}}-x_{1}\frac{\partial}{\partial z_{2}}) and clearly \rho|_{H}=0 .
3^{o} Let n=2 and let H\subset\partial\Omega be a hypersurface on which g vanishes.

The case when H is a complex curve has already been treated by Grigi\grave{s}-

Schapira-Sj\"ostrand [3], M\’etivier [12], and we assume instead that the dimen-
sion of TH\cap Ker\rho is equal to 1 everywhere on H. With the same notation
as in 2^{o} we may assume that this space is given by \Pi_{x}(H_{f_{1}}) , so that h_{f_{1}} is
tangent to \Gamma while H_{f_{2}} is transverse to \Gamma From (4. 45) and the discussion
there after it is clear that Ker \sigma|_{\Gamma} is of dimension 1 and generated by H_{f_{1}} .
Depending on wether g degenerates to odd or even order on \Gamma we may
either apply Theorem 4. 2 or Theorem 4. 4, and conclude that analytic
regularity propagates in the \Pi_{x}(H_{f_{1}}) -direction in H. An example of this is
when \Omega is given by y_{2}>y_{1}^{k} , k\geq 3 and H\subset\partial\Omega is given by y_{1}=0 . At an

arbitrary point of \partial\Omega we have T^{1,0}( \partial\Omega)=(\frac{\partial}{\partial z_{1}}+ky_{1}^{k-1}\frac{\partial}{\partial z_{2}}) and g vanishes on

H to the order k-2 precisely. Moreover TH \cap Ker\rho=(\frac{\partial}{\partial x_{1}}) .
4^{o} Let n=3 and let H\subset\partial\Omega be a curve with \rho|_{H}=0 , on which

\frac{1}{i}\overline{\partial}\partial f|_{Ker_{\rhoxKer}\rho} is of rank 2. We assume that the tangent of H is not in the
kernel of this restricted 2-form. Then \Gamma is an isotropic submanifold of \Sigma

with T\Gamma\cap T\Sigma^{\perp}=0 , while T\Sigma\cap T\Sigma^{\perp} is of dimension 2 along \Gamma If the
function g is locally of the same order of maguitude as d_{H}^{2k} , k\in\{1,2, \cdots\} ,
then we can apply Theorem 4. 3’ (b) and conclude that analytic regularity
propagates along H. As an example of this situation we may define \Omega in
C^{3} by |z_{1}|^{2}+|z_{2}|^{2}+(y_{1}^{2}+y_{2}^{2}+|z_{3}|^{2})^{2}\leq 1 and let H\subset\partial\Omega be the circel given by

y_{1}=y_{2}=0 , z_{3}=0 . Then on H we have T^{1,0}( \partial\Omega)=(\frac{\partial}{\partial z^{3}}, x_{2^{\frac{\partial}{\partial z_{1}}}}-x_{1} \frac{\partial}{\partial z_{2}}),

\rho|_{H}=0 , while \frac{1}{i}\overline{\partial}\partial f=\frac{1}{i}(\overline{dz_{1}}\wedge dz_{1}+\overline{dz_{2}}\wedge dz_{2}) is of rank 2 on Ker \rho\cross Ker\rho,

Ker \rho=(\frac{\partial}{\partial x_{3}} , \frac{\partial}{\partial y_{3}}

:
x_{2^{\frac{\partial}{\partial x_{1}}}}-x_{1} \frac{\partial}{\partial x_{2}} , x_{2^{\frac{\partial}{\partial y_{1}}}}-x_{1} \frac{\partial}{\partial y_{2}} ). The complete Lev\"i

matrix of f is \geq \mathscr{L}_{1z_{1}I^{2}+Iz_{2}1^{2}}+2(y_{1}^{2}+y_{2}^{2}+|z_{3}|^{2})\mathscr{L}_{Iz_{3}I^{2}} so the function g is of the
same order of maguitude as y_{1}^{2}+y_{2}^{2}+|z_{3}|^{2} .
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APPENDIX

In the situation described before Theorem 4. 5, we are going to establish
the local existence of involutive analytic manifolds \mathscr{T}_{\pm} of codimension d,
such that H_{q} is tangent to \mathscr{T}_{\pm} , \Sigma\subset \mathscr{T}_{\pm} and T_{\rho}(\mathscr{T}_{\pm})=T_{\rho}(\Sigma)+\Lambda_{\pm}(\rho) for
every \rho\in\Sigma . At least in the C^{\infty}-case this can be regarded as a consequence
of known results about stable manifolds (see Abraham-Marsden [1]). Never-
theless it might be useful to give a rather short proof in the analytic case,

somewhat in the spirit of B. Lascar-Sj\"ostrand [9].

We may first choose real, analytic coordinates (x, y’) , with x=(x’, x’)

centered at \rho_{0}\in\Sigma , such that \Sigma is given by x’=y’=0 and such that v=H_{q}

is given by

(A. 1) v=Ax’\cdot \frac{\partial}{\partial d’}-A_{*}y’\cdot \frac{\partial}{\partial y’}, + \mathscr{Q}(_{\backslash }.(x, y’)(x’, y’))(\frac{\partial}{\partial x}, \frac{\partial}{\partial y},, ) .

Here Sp(A), Sp(A_{*})\subset\{{\rm Re}\lambda>0\} . As we saw in section 4, there are norms
|||x’||| , ||y’1|\rceil*such that

A_{X}’ \cdot\frac{\partial}{\partial x’},|||x’|||\geq C|||x’||^{1} , A_{*}y’ \cdot\frac{\partial}{\partial y’},|||y’||_{1*}^{1}\geq C_{I}|_{1}y’|||_{*9}

where C>0 . These inequalities are valid also in the complex domain for
the natural “hermitian” extensions of the norms provided that we consider

’\sim ’\sim
the associated real vector fields Ax \cdot\frac{\partial}{\partial x}\prime\prime,, ’

A_{*} \phi’\cdot\frac{\partial}{\partial y},, instead. We now

restrict the attention to a complex region of the form

\Omega=\{(x, y’) ; |||y’|||_{*}<||I|x’|||<f(|d|^{2})\} ,

where 0\sim<f\in C_{0}^{\infty}(\overline{R}_{+}) is >0 at 0, has a sufficiently small support and a Suf-
ficiently small derivative everywhere. From (A. 1) it follows that

(A. 2) \hat{v}(|||d’|||)\geq\frac{C}{2}|||x^{\acute{\prime}}||| in \Omega ,

(A. 3) \hat{v}(|||y’|||_{*})\leq-\frac{C}{2}|||y’||_{1*}| on \partial\Omega\cap\{||(y’|||_{*}=|||x’|||\}

Since we also have \hat{v}(d)=\mathscr{Q}((x, y’)(x’, y’)) and the gradient of f is small,

we see that for every \rho\in\Omega, there is a T(\rho)>0 such that \Phi_{t}(\rho)=\exp t\hat{v}(\rho)def\in\Omega

for 0\leq t<T(\rho) , \Phi_{T(\rho^{\backslash }}(\rho)\in\partial\Omega\cap\{\mathfrak{l}_{I}^{|(x’|||}=f(|d|^{2})\} , while \Phi_{t}(\rho)\not\in\Omega for T(\rho)\leq t\leq

T( \rho)+\frac{1}{C} . Here C>0 is independent of \rho .
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The evolution of a tangent vector (\delta_{x}(t), \delta_{y’}(t)) along an integral curve
of \hat{v} is given by

(A. 4)

-\dot{\delta}_{x’}=A\delta_{x’}+6((x, y’))(\delta_{x}, \delta_{y}\prime\prime)

t) \dot{\delta}_{y}\prime\prime=-A_{*}\delta_{y}\prime\prime+\mathscr{Q}((x, y’))(\delta_{x}, \delta_{y}\prime\prime)

\backslash \dot{\delta}_{x’}=0+\mathscr{Q}((x, y’))(\delta_{x}, \delta_{y}\prime\prime)

If \epsilon_{0}>0 , and \Omega is sufficiently small, then the region, given by

(.A. 5) |^{1}\delta_{y}\prime\prime|||_{*}^{2}\leq\epsilon_{0}^{2}(|_{1}||\delta_{x}\prime\prime|||^{2}+|\delta_{x’}|^{2)1}

is stable under the evolution along an integral curve in \Omega, when the time

increases.
Let \mathscr{T}_{0} : y’=0, x’\in\Pi(\Omega) , where \Pi(\Omega) is given by |||x’|||<f(|d|^{2}) . Let

\mathscr{T}_{t}=\Phi_{t}(\mathscr{T}_{0})\cap\Omega , t\geq 0 . Then using the above remarks, we see that \mathscr{T}_{t} is

given by y’=g_{t}(x) , where g_{t} is holomorphic in \Pi(\Omega) , (A. 5) holds for every

tangent vector to \mathscr{T}_{t} , g_{t}(x’, 0)=0 and |||g_{t}(x)1||* \leq\frac{1}{2}|,||d’||| . By compactness.

there is a sequence t_{j}arrow+\infty such that g_{t_{j}}arrow g in the space of holomorphic

functions on \Pi(\Omega) . We put \mathscr{T}_{+}=\{(x, g(x)) ; x\in\Pi(\Omega)\} .
Let \rho_{t} be an integral curve of \hat{v} , not in \mathscr{T}_{t} . Fix t=l_{0} and let \gamma_{t_{0}} be

the shortest segment joining \varphi_{t_{0}} to \mathscr{T}_{t_{0}} . (We use the metric |\delta_{x’}|^{2}+||||\delta_{x}\prime\prime|||^{2}+

||||\delta_{y},,|||_{*}^{2}) . Since (A 5) holds for every tangent vector of \mathscr{T}_{t_{0}} and \gamma_{t_{0}} is or-

thogonal to T(\mathscr{T}_{t_{0}}) at the point of intersection with \mathscr{T}_{t_{0}} , we see that the

directional vector \nu of \gamma_{t_{0}} satisfies

(A. 6) |||\nu_{y}\prime\prime 1_{\iota}||_{*}^{2}\geq\epsilon_{0}^{-2}(|\nu_{x’}|^{2}+|||\nu_{x^{|_{1}||^{2^{\backslash }})}}\prime\prime

In the region (A. 6) the evolution (A. 4) is contractive, hence \frac{d}{dt}|\gamma_{t}|\leq-C|\gamma_{t}|

at t=t_{0}, if |\gamma_{t}| denotes the length. We conclude that

(A. 7) \frac{d}{dt}d(\rho_{t}, \mathscr{T}_{t})\leq-Cd(\rho_{t}, \mathscr{T}_{t})

for all t . so the integral curves of \hat{v} approach \mathscr{T}_{t} exponentially fast at t

increases. It follows that |g_{t+s}-g_{t}|\leq Ce^{-t/C} for \sigma, l\geq 0 and hence that g_{t}arrow g

exp0nentia1y fast Now it is clear that \mathscr{T}_{+} is invariant under the flow and

that (A 7) holds with \mathscr{T}_{t} replaced by \mathscr{T}_{+} . We can then caracterize \mathscr{T}_{+}

as the set of \rho\in\Omega such that \Phi_{-t}(\rho)\in\Omega for a1’ !t\geq 0 . (moreover \Phi_{-t_{\backslash }}’\rho) arrow\Sigma^{C},

tarrow+\infty when \rho\in \mathscr{T}_{+} ). Moreover q=0 on \mathscr{T}_{+} . If u_{1} , u_{2} are ho_{\wedge}^{1}omorphic

functions vanishing on \mathscr{T}_{+} and \rho\in \mathscr{T}_{+} , then \{u_{1}, u_{2}\}(\rho)=\{u_{1}\circ\Phi_{t:}u_{2}\circ\Phi_{t}\}(\Phi_{-t}(\rho)) .
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Since integral curves of \hat{v} approach \mathscr{T}_{+} exponentially fast we see that
du_{j}\circ\Phi_{t}(\Phi_{-t}(\rho)) tends to zero as tarrow\infty , hence \{u_{1\backslash }u_{2}\}(\rho)=0 , and we have
proved that \mathscr{T}_{+} is involutive. Studying the evolution of T_{\rho}(\mathscr{T}_{t}) when \rho\in\Sigma

we easily see that T_{\rho}(\mathscr{T}_{+})=T_{\rho}(\Sigma)\oplus\Lambda_{+} in the real domain.
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