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The Cauchy problem for effectively

hvperbolic operators

By Richard MELROSE*
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1. Introduction

Following the pioneering work of Oleinik [8], Ivrii & Petkov [5] and
then H\"ormander [2] analysed the structure of the principal symbol of a
weakly hyperbolic differential operator near a double characteristic. In
particular, Ivrii & Petkov conjectured that if the only multiple characteristics
are double and these are effffectively hyperbolic, in the sense that the Hamilton
map has a non-zero real eigenvalue, then the Cauchy problem is well-posed
for any lower order terms; that is, strongly well-posed in C^{\infty} in the sense
of Ivrii [3]. In this paper the well-posedness modulo C^{\infty} of the Cauchy
problem is proved using microlocal energy estimates derived for an anal0-
gously defined class of effectively hyperbolic pseudodifferential operators.
More restricted results in this direction have been obtained, under additional
hypotheses, by Oleinik [8], who dealt with operators in two independent
variables and whose work was subsequently extended by Nishitani, by Ivrii
[4] who employed a form of the principal symbol corresponding to a separa-
tion of variables and by Iwasaki [6] who assumed a slighly weaker, but still
non-trivial, condition of Poisson commutation on the principal symbol see
also Yoshikawa [9]. The necessity of effective hyperbolicity for the strong
well-posedness in C^{\infty} of the Cauchy problem for a differential operator with
only double characteristics was shown by Ivrii & Petkov [5].

To define the notion of an effectively hyperbolic pseudodifferential opera-
tor, let P\in\Psi_{cl}^{m}(X) be a classical pseudodifferential operator on the C^{\infty} mani-
fold X and suppose that P has real principal symbol p\in C^{\infty}(T^{*}X\backslash 0) . If
\overline{\rho}\in T^{*}X\backslash 0 is a double characteristic for P :

p(\overline{\rho})=0 , dp(\overline{\rho})=0

the Hessian of p at \overline{\rho} is well-defined:

Hess (p) : T-M\cross T-Marrow R , M=T^{*}X .
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Since M is a symplectic manifold the symplectic form \omega=d\alpha , where \alpha is the
canonical 1-form on M, defines an isomorphism

T_{\rho}^{*}M\ni\gamma|arrow H_{\gamma}\in T,-,M_{j} \gamma=\omega(\cdot, H_{\gamma})

and using this the Hamilton map of p at \overline{\rho} is defined by

J=J_{\overline{\rho}} : T- M\ni v – H_{\gamma}\in T_{\overline{\rho}}M , \gamma=Hess(p)(v, \cdot)

Now, by definition, P (or p) is effectively hyperbolic at \overline{\rho} if \overline{\rho} has a
conic neighbourhood V in which the following three conditions are vah.d:

\Sigma_{1}(p)\cap V=\{\rho\in V;p(\rho)=0 , dp(\rho)\neq 0\} is dense in \Sigma(p)\cap V=

(1. 1)
\{p\in V;p(\rho)=0\}

There exists t\in C^{\infty}(V;R) , homogeneous of degree 0, \delta>0 and
(1. 2)

a Riemann metric on M such that |H_{p}t|>\delta|H_{p}| on \Sigma_{1}(p)\cap V .
(1. 3) For each \rho\in(\Sigma(p)\cap V)\backslash \Sigma_{1}(p) , J_{\rho} has a non-zero real eigenvalue.

Of course, (1. 2) is actually independent of the choice of Riemann metric on
M.

In general if W\subset T^{*}X\backslash 0 is open, P is said to be effectively hyperbolic
in W if it is effectively hyperbolic at each point \overline{\rho}\in W\cap(\Sigma(p)\backslash \Sigma_{1}(p)) and \Sigma_{1}(p)

consists of non-radial points for p, i . e . dp and \alpha are independent there. In
this case, a time function for p at \overline{\rho} is a function t such that (1. 2) holds
in some neighbourhood of \overline{\rho} . A ray of P in W is a (continuous) curve

\beta : (a, b)arrow W\cap\Sigma(p)

such that the following three conditions hold:

(1. 4) \beta^{-1}(\Sigma(p)\backslash \Sigma_{1}(p))=\{s_{i}\} is discrete in (a, b)(

(1. 5) If t is a time function at \rho_{i}=\beta(s_{i}) , t\circ\beta is monotonic near s_{i}

\beta is C^{\infty} on [s_{i}, s_{i+1}] (and on (a, s_{-N}] or [s_{N}, b) if \{s_{i}\} is finite above
(1. 6) or below) and is a reparametrized bicharacteristic of p on (s_{i}, s_{i+1})

(similarly on (a, s_{-N}) or (s_{N}, b))

(1. 7) THEOREM. If P\in\Psi_{cl}^{m}(X) is effectively hyperbolic in W\subset T^{*}X\backslash 0 then

for any u\in C^{-\infty}(X) , WF(u)\cap ( W\backslash WF (Pu)) is a union of maximally extended
rays of P in W\backslash WF (Pu).

It is straightforward to give a version of Theorem 1. 7 for wavefront
sets relative to appropriate Sobolev spaces. Then, following the model of
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Duistermaat and H\"ormander [1], if one requires that W be suitably convex
with repect to rays, one obtains microlocal existence results and in the case
W=T^{*}\Omega semiglobal existence results, modulo finite kernels and cokernels.
This is not carried out below. Rather, the main application of Theorem
1. 7 is to differential operators. Consider P\in Diffff^{m}(X) and t\in C^{\infty}(X) . P is
(weakly) t -hyperbolic if for each \overline{x}\in X the principal symbol p(\overline{X}^{ },\cdot)\in C^{\infty}(T_{\overline{x}}^{\star}X)

is a hyperbolic polynomial with respect to dt .

(1. 8) PROPOSITION. Suppose P\in Diffff^{m}(X) and t\in C^{\infty}(X) satisfy:
(1. 9) P is weakly t-hyperbolic.
(1. 10) P has no radial points, i . e . dp and \alpha are independent on \Sigma_{1}(p) .

At each \rho\in\Sigma(p)\backslash \Sigma_{1}(p) the Hamilton map has a non-zero real(1. 11)
eigenvalue.

Then P is effectively hyperbolic in T^{*}X\backslash 0 .

The conjecture of Ivrii & Petkov is partially answered in the affirmative
by the following result.
(1. 12) THEOREM. Suppose that P\in Diffff^{m}(X) is effectively hyperbolic in the
sense that (1. 9), (1. 10) and (1. 11) hold for some t\in C^{\infty}(X) . Then each
\overline{x}\in X has a neighbourhood A\subset X such that if A_{\pm}=\{x\in A; \pm t(x)\geq 0\}

then P is an isomorphism on { f\in C^{\infty}(A) ; supp (f)\subset A_{\pm} } and on { f\in C^{-\infty}(A) ;
supp(f)\subset A_{\perp,L},\} , modulo fifinite kernels and cokernels.

This result is proved in Section 5 below, after the microlocal structure
of effectively hyperbolic pseudodifferential operators has been considered in
Section 2, the microlocal energy estimates following from this have been
deduced in Section 3 and the proof of Theorem 1. 7 has been given in
Section 4. The proof of Proposition 1. 8 is straightforward and is left to
the reader.

2. Preparation

In this section it is shown that a classical pseudodifferential operator
P with real principal symbol, p, satisfying (1. 1), (1. 2) and (1. 3) can be
reduced to a special form for which these conditions are transparently valid.
This reduced form is extended to the operator itself and is used in the next
section for the proof of microlocal energy estimates.
(2. 1) LEMMA. Suppose p\in C^{\infty}(M) , M=T^{*}X\backslash 0 , is real and satisfifies (1. 1),
(1. 2) and (1. 3) near \beta\in\Sigma(p)\backslash \Sigma_{1}(p) . Then the Hessian polynomial of p at
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\overline{\rho} , p_{\overline{\rho}}\in C^{\infty}(T- M) satisfifies (1. 1), (1. 2) and (1. 3) with t replaced by its lineari-
zation at \overline{\rho} , t_{\overline{\rho}}=dt .

PROOF. The Hamilton map of p at \beta depends only on the Hessian at
\overline{\rho} so (1. 3) certainly holds for p- at o\in\Sigma(p-)\backslash \Sigma_{1}(p-) . By translation on T_{\overline{\rho}}M

the Hessian of p- at any point of \Sigma(p-)\backslash \Sigma_{1}(p-) , its null space, is reduced to
p_{\overline{\mu}} itself and since each translation is a symplectic map, p- satisfies (1. 3).

For any semidefinite quadratic polynomial the Hamilton map has purely
imaginary eigenvalues so it follows from (1. 3) that p- is not semi-definite.
It therefore satisfies condition (1. 1). In any local coordinates x, in M, for
which p is the origin,

p_{\overline{\rho}}(x)=q(0, x) q(s, x)=s^{-2}p(sx)

in terms of the induced coordinates on T_{\overline{\rho}}M. Here, q is C^{\infty} in all variables
so if x’ is a simple zero of p- q(s, x)=0 has a unique C^{\infty} solution x=x(s) ,

x(0)=d . Condition (1. 2) at sx(s) gives

|\{p, t\}(sx(s)|>\delta|H_{p}(sx(s))||

As sarrow 0 , s^{-1}dp(sx(s))arrow dp_{\overline{\rho}}(x’) , s^{-1}H_{p}(sx(s))arrow H_{p_{\overline{\rho}}}(x’) and dt(sx(s))arrow dt_{\overline{\rho}}(x’) , so

(1. 2) follows for p.-, with the constant \frac{1}{2}\delta>0 . This completes the proof of

the Lemma.

Now, extend t, as in (1. 2), to a Darboux coordinate system t, y, \tau, \eta near
p\in\Sigma(p)\backslash \Sigma_{1}(p) . It can be assumed that |\overline{o}=(0,0,0,\overline{\eta}),\overline{\eta}=(0, \cdots, 0,1) and

(2. 2) p=a\tau^{2}+b(t, y, \eta)\tau+c(t, y, \eta) , a\neq 0

Indeed suppose that a=0 . Then b\equiv 0 would contradict (1. 1) if c were
semidefinite, or (1. 2), of c had a simple zero. Thus db\neq 0 . Again because
of (1. 2) c=0 must imply b=0, so c=bm, with m another linear function.
Replacing the original Darboux coordinates by t, y’,\cdot\tau’ , \eta’ where dd =d\tau+dm

at \overline{\rho}, and then dropping the primes, reduces p- to rb. Such a product has
nilpotent Hamilton map unless the Poisson bracket \{\tau, b\}=\partial_{t}b\neq 0 . Using the
freedom to perturb t , say to t’=t+\epsilon\tau|\eta|^{-1}, and extending to new Darboux
coordinates t’ , y’ , \tau, \eta’ enusures (2. 2).

In view of (2. 2) the Malgrange preparation theorem can be applied to

p near \overline{\rho} , yielding

p=q\cdot(\tau^{2}+b’(t, y, \eta)\tau+c’(t, y, \eta))\backslash

where q\pm 0 . Dropping the elliptic factor q and passing to new Darboux
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coordinates, always fixing \overline{\rho} , t , y’ , \tau+\frac{1}{2}b’ , \eta jy’=Y(t, y, \eta) , \eta’=H(t, y, \eta)

ensures that

(2. 3) p=\tau^{2}-c(t, y, \eta)

For the Hessian polynomial of p at p,

(2. 4) p_{\overline{\rho}}=\tau^{2}-\overline{c}(t, y, \eta) , \overline{c}=c_{\overline{\mu}}

necessarily \overline{c}>0 . Indeed, \overline{c}\leq 0 violates (1. 1) for p- and a simple zero for
\overline{c} would violate (1. 2). Thus, p- is a hyperbolic polynomial and the discussion
of Ivrii & Petkov [5], or more particularly of H\"ormander [2], applies and
shows that under condition (1. 3), (see [2] Theorem 1. 4. 6)

(2. 5) p_{\overline{\rho}}=c^{2}-d^{2}-e, e\geq 0 , \{c, d\}\neq 0 , \{c, e\}=\{d, e\}=0 ,

for some linear functions c, d. Consider the vector

\nu=(\partial_{{}_{\tau}C}, \partial d)=-(H_{t}c, H_{t}d)f

Certainly \nu\neq 0 since otherwise, (2. 4) could not hold. In (2. 5) there is freedom
to make a hyperbolic linear transformation in c and d and a conformal
change in p. Thus, the orbits of \nu=(f, g) in R^{2} consist of O, |f|=|g| ,
|f|>|g| , |f|<|g| , with only the last two stable under perturbation of t.
It can therefore be arranged that \nu=(1,0) or (0, 1) . Making a scale change
and a canonical transformation to (t’, y’{}_{}C, \eta’) gives

p_{\overline{\rho}}=\tau^{2}-(t+\alpha(\tau, y, \eta)^{2}-\gamma(\tau, y, \eta), \gamma\geq 0 , \{t+\alpha, \gamma\}=0 .
and a further canonical transformation to (t’, y’, \tau, \eta’) , t’=t+\alpha(\tau/\eta_{n}, y, \eta/\eta_{n})

ensures that

(2. 6) p_{\overline{\rho}}=\tau^{2}-t^{2}-\gamma(y, \eta)’. \gamma\geq 0 .
Applying the preparation theorem and change of variables as before

gives (2. 3) in the more restricted from:

p=\tau^{2}-h(t, y, \eta)(t+a(y, \eta))^{2}-c(y, \eta) , da=\alpha=0 at \overline{\rho}, h(\overline{\rho})=1 ,
(2. 7)

c\geq 0 , c_{\overline{\rho}}=\gamma .
If a further change of Darboux coordinates is made to t’=t+a(y, \eta) , \tau’=\tau,
y=Y(\tau, y’, \eta’) , \eta=H(\tau, y’, \eta’) then

\partial_{\tau}^{2}c(Y, H)=\partial {}_{\tau}C(Y, H)=0 at \overline{\rho}

because \partial_{\tau}^{2}c=2c- (\partial_{\tau}(Y, H) , \partial_{\tau}(Y, H))=H_{a}^{2}\gamma at \overline{\rho} . Thus, in the new coordi-
nates

p|_{t=0}=\tau^{2}-c(Y, H)
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has two real (or one double) solution for each (y’, \eta’) near the base point.
Dropping the primes and applying the preparation theorem again

p=(\tau-b(t, y, \eta))^{2}-h(t, y, \eta)t^{2}-c(y, \eta)

where, as before, h(\overline{\rho})=1 , c\geq 0 and now, db(\overline{\rho})=0 . Finally changing to

new coordinates t, y’ , \tau’=\tau-b, \eta’ where y’=Y(t, y, \eta) , \eta’=H(t, y, \eta)dy=dy,
d\acute{\eta}=d\eta at \overline{\rho} , leads to the desired special form for p :

(2. 8) p=\tau^{2}-h(t, y, \eta)t^{2}-g(t, y, \eta) , h(\overline{\rho})=1 , g\geq 0 , \partial_{t}g=\partial_{t}^{2}g=0 at \overline{\rho} .

Proceeding to the quantization of this normal form for the principal symbol
gives :

(2. 9) PROPOSITION. Suppose P\in\Psi^{m}(X) is a classical pseudodifferential
operator with real principal symbol satisfying (1. 1), (1. 2) and (1. 3). Then,

there are Fourier integral operators

G, F:C_{c}^{\infty}(R^{a})arrow C_{c}^{\infty}(X)

associated to a local canonical diffeomorphism \chi : T^{*}R^{d}-arrow T^{*}X defifined near
(0, \overline{\in}) , e-\neg=(0, \cdots, 0,1) with \chi(0,\overline{\xi})=\beta , G, F being elliptic at (0, \overline{\xi}) and such that

(2. 10) F\cdot P\equiv S\cdot Q\cdot G near (’(0,\overline{\xi}),\overline{\rho})

where S\in\Psi^{0}(R^{a}) is elliptic and properly supported and

(2. 11) Q=D_{1}^{2}-H(x_{1}, x, D_{x’})x_{1}^{2}-C(x_{1}, x, D_{x’})

with H, C classical pseudodifffferential operators in R^{a-1} depending on x_{1} as
a C^{\infty} parameter, of order 2, and having symbols

(2. 12) h \geq\frac{1}{2}|\xi’|^{2}, g(x, \xi’)\geq 0 , D_{x_{1}}g(0,0,\overline{\xi}’)=D_{x_{1}}^{2}g(0,0,\overline{\xi}’)=g(0,0,\overline{\xi})=0

\overline{\xi}’=(0, \cdots, 0,1)\in R^{a-1} .

PROOF. In the discussion above, leading to (2. 8), it has been shown
how to construct the canonical diffeomorphism \chi . If F, G are chosen to
have essential supports very near ((0,\overline{\xi}),\overline{\rho}) and to be elliptic, with symbols
arranged to absorb the elliptic factors dropped in deriving (2. 8), then (2. 10)

holds for some Q’ having principal symbol as in (2. 11), (2. 12) and S=Id.
To remove the lower order terms, Q_{1}\in\Psi^{1}(R^{a}) , near (0, \overline{\xi}) , it is enough to
write, using the quantized from of the preparation theorem of Boutet de
Monvel

Q_{1}=(q_{0}(x_{1}, x’, D_{x})D_{x_{1}}+q_{1}(x_{1}, x’, D_{x’})+Q)R near (o, \overline{\xi})
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with R\in\Psi^{-1}(R^{a}) . Absorbing the factor Id+R into G in (2. 10) reduces the
first order terms of Q_{1} to a first order differential operator in x_{1} , with
pseudodifferential operator coefficients. Even the term q_{0}(x, D’)D_{x_{1}} can b\epsilon

removed by commuting (Id–q(x, D’)x_{1}) through Q, for an appropriate
choice of q. This gives the desired form (2. 11) with S=(Id-q(x, D’)x_{1})

and G absorbing the further elliptic factors.

3. Energy estimates

For a model operator (2. 11) satisfying (2. 12) the derivation of a priori
estimates is relatively straightforward following the classical methods and
incorporating ideas of Oleinik and Ivrii. Since the first variable, x_{1} , is dis-
tinguished below it is denoted by t, the remaining variables are written
y_{1} , \cdots , y_{n} , n=d-1 , and the corresponding canonical dual variables are denoted
\tau , \eta_{1} , \cdots , \eta_{n} .

Thus, consider the t-differential operator with classical pseudodifferential
coefficients of order two:

(3. 1) P=D_{t}^{2}-t^{2}H^{2}(t, y, D_{y})-G(t, y, D_{y})-F(t, y, D_{y})

where F, G, H all have Schwartz’ kernels supported in |y-y’| \leq\frac{1}{4} , H and

G are selfadjoint, F is of order one and

(3. 2) \sigma_{1}(H)\geq|\eta|+O(t) , \sigma_{2}(G)\geq 0 , \sigma_{2}(G)(0,0,\overline{\eta})=D_{t}^{2}\sigma_{2}(G)(0,0,\overline{\eta})=0

where \overline{\eta}=(0,0, \cdots, 0,1) . The estimtaes in t\leq 0 and t\geq 0 will be handled
separately, first in t\leq 0 .

As a suitable microlocalizing symbol near (t, y, \eta)=(0,0,\overline{\eta}) consider

(3. 3) \mu_{\epsilon}(t, y, \eta)=\varphi(\frac{t}{\epsilon}+\frac{1}{\epsilon}(|y|^{2}+|\frac{\eta}{|\eta|}-\overline{\eta}|^{2}))\rho(|\eta|)

Here \rho\in C^{\infty}(R;[0,1]) , with \rho(r)=1 in r\geq 1 , \rho(r)=0 in r< \frac{1}{2} , serves to

make \mu_{\epsilon} smooth near \eta=0 whereas \varphi\in C^{\infty}(R;[0,1]) has the properties

(3. 4) supp (\varphi)\subset(-\infty, \frac{3}{4}) , \varphi’\leq 0 , \varphi(r)=1 in r \leq\frac{1}{2} ,

\varphi^{\frac{1}{2}}"(-\varphi’)^{-_{2}^{1}-}\in C^{\infty}(R)1

Thus, \mu_{\epsilon} is constant on the parabolic surfaces t=a \epsilon-\epsilon(|y|^{2}+|\frac{\eta}{|\overline{\eta}|}-\eta|^{2}) , |\eta|

\geq 1 , and is decreasing in t .
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To allow for regularization and iteration in the estimates below the test
operator will depend on five parameters. Of these m\in R is an overall order
parameter, N\in N is a regularizing parameter, \epsilon>0 controls the parabolic
form of the (micr0-) support, \nu>0 further cuts off the support near t=-\nu

and k\in Z is a singular order parameter. For notational simplicity the de-
pendence on the parameters will be suppressed, in large part, below. Set

(3. 5) \chi_{\nu,N,m}(t, \eta)=(1+(1-sgn(m)\cdot\frac{|\eta|}{\nu})^{m}\cdot\exp( - \frac{1}{N}(1+\frac{t}{\nu}|\eta|))

and let

(3. 6) Tv(t, y)=(2 \pi)^{-n}\int e^{i(y-y’)\cdot\eta}am(T)(t, y,y’, \eta)v(t, y’)dy’d\eta

be specified by the amplitude

(3. 7) am (T)=\mu_{e}(t, y, \eta)\cdot\chi_{\nu,N,m}(t, \eta)\cdot\varphi(\begin{array}{l}-\underline{t}\nu\end{array}).\varphi(|y’|)

For m fixed \epsilon , \nu in a compact subset of (0, \infty) x(0, \infty) and N\geq 1T lies in
a bounded subset of C_{c}^{\infty}(R_{t} ; \Psi_{c}^{m}(R^{n})) , having in particular uniformly compact
support in all variables. Moreover, as Narrow\infty T converges in C_{c}^{\infty}(R;\Psi_{c}^{m^{l}}(R^{n}))

for any m’>m . Such a family of operators will simply be called a bounded
family of order m. The basic test operators are given by

(3. 8) S=S_{k}=(-t)^{2k+1}A^{2} , A= \frac{1}{2}(T+T^{*}) , k\in N ,

a bounded selfadjoint family of order 2m.
Now, proceed to compute the form of

(3. 9) Q=D_{t}\cdot S\cdot P-P^{*}\cdot S\cdot D_{t}

Inserting the formula (3. 1) for P shows that

(3. 10) Q=Q_{1}+Q_{2}+Q_{3}+Q_{4}+Q_{6}

where

(3. 11) Q_{1}=-D_{t}\cdot[D_{t}, S_{k}]\cdot D_{t}

(3. 12) Q_{2}=-H\cdot[D_{t}, S_{k+1}]\cdot H

(3. 13) Q_{3}=-D_{t}\cdot S_{k}\cdot G\cdot S_{k}\cdot D_{t}

(3. 14) Q_{4}=-D_{t}\cdot[S_{k+1}, H]\cdot H+H\cdot[H, S_{k+1}]\cdot D_{t}-[D_{t}, H]\cdot S_{k+1}\cdot H-H

S_{k+1}\cdot[D_{t}, H]

(3. 15) Q_{6}=-D_{t}\cdot S_{k}F+F^{*}S_{k}\cdot D_{t} .
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Let B’ be the bounded family of order m defined by the amplitude

am (B’)= \mu_{\epsilon}(t, y, \eta)\cdot\chi_{\nu,N,m}(t, \eta)\cdot\varphi(\frac{t}{\nu})\cdot\varphi(|y’|) ,

where \psi\in C_{c}^{\infty}(R;[0,1]) has support in [ \frac{1}{4}, 1] and is identically equal to one

on supp (\varphi’) . Set B= \frac{1}{2}(B’+(B’)^{*}) . Thus, B localizes near t=-\nu . Note
also that using the strict G[mathring]_{a}rding inequality, and modifying F in (3. 1), it can
always be assumed that

\langle Gu, u\rangle\geq 0

(3. 16) PROPOSITION. There exists \overline{\epsilon}>0 and \overline{k}\geq 2 such that if u\in C^{\infty}([-\nu, 0] ;
C^{-\infty}(R^{n}))k\geq\overline{k},\overline{\epsilon}\geq\epsilon’>\epsilon>0,\overline{\epsilon}\geq\nu>0 , m’\in R then

||(-t)^{k}A_{m,*,N}D_{t}u||^{2}+||(-t)^{k+1}A_{m+1,*,N}u||^{2}+\langle(-t)^{2k}GA_{m,.,N}u , A_{m,.,N}u\rangle

+{\rm Im}\langle u, Qu\rangle\leq C\{||B_{m,e’,2N}D_{t}u||^{2}+||B_{m+1,e’,2N}u||^{2}+||u||_{m’}^{2}+||D_{t}u||_{m’}^{2}

(3.17)
+||(-t)^{k}A_{rn-\frac{1}{2}\prime\epsilon’2\prime N}D_{t}u||^{2}+||(-t)^{k\dagger 1}A_{m+\frac{1}{2}\prime e’,2N}u||^{2}

+\langle(-t)^{2k}GA_{m_{2}^{1}\text{\’{e}}’2N}---\prime\prime u, A_{m_{-}-} 2’1_{-\text{\’{e}}’2N},u\rangle\}

Here, norms and inner products are in L^{2}((-\nu, 0)\cross\{|y|<1\}) except that the
subscript m’ indicates the norm in L^{2}((-\nu, 0) ; H^{m’}(|y|<1)) . The constant
C in in (3. 17) can be taken independent of N and also of \epsilon, \epsilon’ . \nu, m’ over
a compact subset of the parameter ranges.

In the proof, the imaginary part of the inner product (u, - Qu\rangle will
be estimated from below. In this estimation systematic use is made of the
uniformity, on bounded sets, of the symbol calculus, of L^{2} boundedness of
operators of order zero and of the strict G[mathring]_{a}rding inequality. Thus, suppose
that R is a bounded family of order 2m with amplitude

(3. 18) am (R)= \sum_{finite}a_{p}\cdot(\frac{|\eta|}{N})^{p}.\chi_{\nu,N,2m}

where a_{p} is independent of N, of order zero, with support in

supp (am(A_{m,\text{\’{e}}}))\cap supp(\varphi’ (\begin{array}{l}-\underline{t}\nu\end{array})) .

Then, using the symbol calculus, for any \epsilon’>\epsilon ,

(3. 19) R=B_{m,\epsilon’2N}\cdot M\cdot B_{m,e’,2N}+R_{m’}

where M is a bounded family of order zero and R_{m’} is a bounded family of
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the preassigned order m’ . Similarly, if R’ is a bounded family of order
2m-1 , with amplitude of the form (3. 18), with 2m replaced by 2m-1 , and
the a_{p}’s supported in supp (am(A_{m,\epsilon})) then, again for \epsilon’>\epsilon ,

(3. 20) R’=B_{m-\frac{1}{2},\epsilon’,2N’}M’\cdot B_{m-\frac{1}{2},\text{\’{e}}’,2N}.+A_{m-\frac{1}{2},\epsilon’,2N}\cdot M’\cdot A_{m\frac{1}{2}\epsilon’,2N}+R_{m\prime}’

with M’, M’ bounded families of order zero. From this it follows that
terms such as \langle(-t)^{2k}LD_{t}u, D_{t}u\rangle , L=R or R’ are bounded by the right
side of (3. 17). Such division will be used freely below. In general, J will
be used to denote terms which can be bounded above by the right of (3. 17).

The other way in which terms are shown to be in J is that although
of order 2m they have the support properties of R’ above, but have negative
symbols. Then in the division to get (3. 20), the symbols of M’ and M’
can be taken negative, modulo terms of order zero. The bound from above
is now a consequence of the strict G[mathring]_{a}rding inequality. Note also that integra-
tion by parts, even in the t -variable, is possible in the inner products obtained
from (3. 11)-(3. 15) since the presence of the factor (-t)^{2k+1}, k\geq 2 , annihilates
all boundary terms at t=0. As a simple example of the type of estimates
derived below consider the interpolation result:

(3. 21) LEMMA. If u\in C^{\infty}([-\nu, 0] ; C^{-\infty}(R^{n})) then

(2k+1)||(-t)^{k}A_{m+_{\frac{1}{2}\prime}*,N}u||^{2}\leq||(-t)^{k}A_{m,.,N}D_{t}u||^{2}+||(-t)^{k-1}A_{m+1,\epsilon},Nu||^{2}+J

PROOF. Consider

U=-i[D_{t}, (-t)^{2k+1}A_{m+_{2}-^{1_{-\prime}}\cdot,N]}^{2}

(3. 22) =(2k+1) (-t)^{2k}A_{m+\frac{1}{2}}^{2}-i(-t)^{2k+1}[D_{t}, A_{m+\frac{1}{2}}]A_{m+\frac{1}{2}}-i(-t)^{2k+1}

A_{m+\frac{1}{2}}\cdot[D_{t}, A_{m+\frac{1}{2}}]

Since A_{m+\frac{1}{2}}^{2}=A_{m}\cdot A_{m+\frac{1}{2}}+R_{2m}, with R_{2m} of the form (3. 18), it follows from
Schwartz’ inequality that

|\langle Uu, u\rangle|\leq||(-t)^{k}A_{m,.,N}D_{t}u||^{2}+||(-t)^{k+1}A_{m+1,\epsilon,N}u||^{2}+J

Now, the symbol of - i[D_{t}, A_{m+\frac{1}{2}}] is positive, except for the term arising

from differentiation of \varphi(_{-}\frac{t}{\nu}) , so applying the estimates discussed above,

-Im\langle(-t)^{2k+1}[D_{t}, A_{m+\frac{1}{2}}]A_{m+-_{2}^{1_{-}u,u\rangle}}=J_{j}

which proves the Lemma.
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PROOF OF PROPOSITION 3. 16. Fixing m’\langle\langle m , \langle u, - Qu\rangle can be decom-
posed using (3. 10) and (3. 11)-(3. 15). The positive contributions come from
Q_{1} , Q_{2} and Q_{3} . As in (3. 22),

(3. 23) -i[D_{t}, (-t)^{2k+1}A^{2}]=(2k+1) (-t)^{2k}A_{m}^{2}+(-t)^{2k+1}F+(-t)^{2k\dagger 1}R

where F=F_{(1)}^{2}+F_{(2)}^{2}+F_{(3)}^{2}, with F_{(j)}= \frac{1}{2}(E_{(j)}+E_{(j)}^{*}) and E_{(j)} defined by

am (E_{(1)})^{2}= \frac{2}{\epsilon}(-\varphi)(\frac{t}{\epsilon^{2}}+\frac{1}{\epsilon}(|y|^{2}+|\frac{\eta}{|\eta|}-\overline{\eta}|^{2}))\cdot\rho|\eta|\cdot\mu_{e}\cdot\chi_{\nu,N,2m} .
(\begin{array}{l}-\underline{t}\nu\end{array}) \varphi(|y’|)

(3. 24)
am(E_{(2)})^{2}= \mu_{\epsilon}^{2}\cdot|\frac{2m|\eta|}{\nu}|.\chi_{\nu,N,2m-1\varphi}. (\begin{array}{l}-\underline{t}\nu\end{array}) .\varphi(|y’|)

am(E_{(3)})^{2}= \mu_{\epsilon}^{2}\cdot(\frac{|\eta|}{N\nu}).\chi_{\nu,N,2m}.\varphi(\begin{array}{l}-\underline{t}\nu\end{array})\varphi\cdot(|y’|)

and R contains the terms arising from differentiation of \varphi(\begin{array}{l}-\underline{t}\nu\end{array}) as well as
a bounded family of order 2m-1 arising from the extraction of” the square
roots, using the calculus. Using (3. 19) and (3. 20) the terms from R can
be absorbed into J. Thus,

Im\langle u, - Q_{1}u\rangle=(2k+1)||(-t)^{k}A_{m,\epsilon,N}D_{t}u||^{2}

(3. 25)
+ \sum_{j=1}^{3}||(-t)^{k+-_{2}^{1}-}F_{(f)}D_{t}u||^{2}-J

The same type of argument applies easily to Q_{2} , except that k is in-
creased to k+1 , so

Im\langle u, - Q_{2}u\rangle=(2k+3)||(-t)^{k+1}A_{m,\epsilon},{}_{N}Hu||^{2}

(3. 26)
+ \sum_{j=1}^{3}||(-t)^{k+3/2}F_{(j)}Hu||^{2}-J

Similar arguments can again be applied to Q_{3} , but some care needs to
be exercised with the commutators. To do this, write

(3. 27) -Q_{3}=[D_{t}, (’-t)^{2k\dagger 1}AGA]+D_{t} . (-t)^{2k+1}R_{1}-(-t)^{2k+1}R_{1}^{*}\cdot D_{t}

where R_{1}=A\cdot A , G is a bounded family of order 2m+1 . Setting

(3. 28) Q_{3}’=-i(2k+1)AGA, Q_{3}’=Q_{3}-Q_{3}’ ,

(3. 29) Im\langle u, - Q_{3}’u\rangle=(2k+1) \langleAu, GAu\rangle .
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Let \pi stand for the sum of the positive terms on the right in (3. 25), (3. 26)

and (3. 29); then if \overline{\epsilon}>0 is small enough,

\langle3‘ 30) Im\langle u ,^{-Q_{3}’u\rangle\geq-} \frac{1}{4}\pi-J

Consider first the terms coming from R_{1} in (3. 27). The part of R_{1} of order
2m clearly gives a contribution in J, so it suffices to replace R_{1} by another
operator with the same principal symbol, uniformly in N ; this can be taken
of the form :

(3. 31) R_{1}’= \sum_{f=1}^{3}F_{(j\rangle}G_{(f)}\cdot A ,

where G_{(j)} is bounded of order one, with (\sigma_{1}(G_{(f)}))^{2}\leq\delta\sigma_{2}(G) , where \delta\downarrow 0

as \overline{\epsilon}\downarrow 0 and the inequality for a smooth positive function, f,

|df|^{2}\leq Cf

has been used. Thus, using the strict G[mathring]_{a}rding inequality,

|\langle D_{t}u ,
(-t)^{2k+1}R_{1}u \rangle|\leq r^{2}\sum_{j=1}^{3}||(-t)^{k+\frac{1}{2}}F_{(f)}u||^{2}+\frac{3\delta}{r^{2}}\langle(-t)^{2k+1}Au, GAu\rangle

+ \frac{3\delta}{r^{2}}C||(-t)^{k}A_{m+\frac{1}{2}}u||^{2}+J ,

which, in view of Lemma 3. 21, gives a bound of the tye type (3. 30) for

this part of Q_{3}’ for any positive constant replacing \frac{1}{4} , if \overline{\epsilon}>0 is small enough.

The part remaining of Q_{3}’ to be estimated is

Q_{3}’=-(-t)^{2k+1}[D_{t}, A]GA-(-t)^{2k+1}A[D_{t}, G]A

(3. 32)
-(-t)^{2k+1}AG[D_{t}, A]

The corresponding contribution to (3. 30) of the first and third terms has
positive principal symbol, except for a term which can be absorbed in J
using (3. 19). For the second term in (3. 32) Schwartz’ inequality gives

|\langle(-t)^{2k+1}Au , G_{t}’Au \rangle|\leq r^{2}||(-t)^{k+1}AHu||^{2}+\frac{1}{r^{2}}\langle(-t)^{k}(G_{t}’)^{2}Au , Au\rangle+J

Using the strict G[mathring]_{a}rding inequality and the bound on the symbol of (G_{t}’)^{2}

in terms of the symbol of G, and also Lemma 3. 21, this shows

|\langle(-t)^{2k+1}Au , C_{t}’Au\rangle|\leq\delta(\epsilon)\pi+J

where \delta(\epsilon)\downarrow 0 as \overline{\epsilon}\downarrow 0 .
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Consider then the first and third terms in (3. 32). The symbol calculus

shows that these can be rewritten in the form

(3. 33) (-t)^{2k+1}( \sum_{j=1}^{3}F_{(j)}GF_{(j)}+\sum_{j,p=1}^{3}F_{(p)}L_{pf}F_{(j)}+LA_{m+\frac{1}{2}}+R’)

where L_{pj}, L and R’ are bounded families of orders 1, m+ \frac{1}{2} and 2m

respectively. The first sum is positive and the third term is bounded by

\delta||(-t)^{k}A_{m+\frac{1}{2}-}u||^{2}+\frac{C}{\delta}||(-t)^{k+1}Lu||^{2}

and since Lemma 3. 21 applies to the fifirst term, this in turn is bounded by

\delta\pi+J. Observe from the proof of Lemma 3. 21 that the additional positivity

in U gives a bound

\sum_{j=1}^{3}||(-t)^{k+\frac{1}{2}}F_{(j)}H^{\frac{1}{2}}u||^{2}\leq\delta\pi+J

Using this the second sum in (3. 33) can be bounded above. The final term

in (3. 33) is in J, so (3, 30) is established.

The final two terms in Q, Q_{4}, Q_{5} are easily bounded in the form

(3. 34) | \langle u, - Q_{j}u\rangle|\leq\frac{C}{k}\pi+J k\geq 2 , j=4,5,

for some C independent of k,\overline{\epsilon} . This completes the proof of (3. 17), if

\overline{k}>4C, and \epsilon>0 is small enough.

(3. 35) REMARK. Examination of the estimates above shows that the choice

of \overline{k} is governed by the ratio of the subprincipal symbol of P to the effectively

hyperbolic eigenvalue of the Hamilton map.

(3. 36) PROPOSITION. There exist \overline{\epsilon}>0 and H \geq 2 such that if u\in C^{\infty}([0, \nu] ;

C^{-\infty}(R^{n})) vanishes at t=0 to order H+2, k=-k’ in (3. 8), \overline{\epsilon}\geq\epsilon>\epsilon’>0 ,

\epsilon\geq\nu>0 , m’\in R then

||t^{k}A_{m,e,N}D_{t}u||^{2}+||t^{k+1}A_{?n+1,*,N}u||^{2}+\langle t^{2k}GA_{m,e,N}u , A_{m,.,N}u\rangle

(3. 37)
+Im\langle u, Qu\rangle\leq C\{||t^{k}A_{m-\frac{1}{2},.2N}\prime\prime D_{t}u||^{2}+||t^{k+1}A_{m+\frac{1}{2}\prime\cdot\prime}\prime 2Nu||^{2}

+\langle t^{2k}GA_{m--,.2N}\underline{1}’,u2 ’
A_{m-\frac{1}{2},\epsilon’,2N}u\rangle+||u_{m’}^{2}||+||D_{t}u||_{m’}^{2}\}

Here, the norms and inner products are over (0, \nu)\cross\{|y|\leq 1\} , and are in L^{2}

except for the last two which are in L^{2}((0, \nu);H^{m’}) . The constant C can

be taken independent of N and of the other marameters on compact sets.
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PROOF. The proof of the basic estimate (3. 37) is left to the reader,
since it very similar to the proof of (3. 17). The absence of the initial value
terms, appearing as B in (3. 17), is reflected in the assumption that u vanishes
to high order at t=0. It is important to note that the order of vanishing
is determined by the choice of k, not by the choice of order of the remain-
der, m’t

4. Propagation of singularities

In order to prove Theorem 1. 7, using the microlocal energy estimates
deduced in Section 3, it is necessary to have a qualitative description of the
rays of P. Note that the definition of a ray is invariant under symplectic
transformation so it can be assumed that p takes the form (2. 8). Away
from the zeros of g, which parametrize the double characteristics of p, the
rays are bicharacteristics. Set

\Sigma_{\pm}(p)=\{(t, y, \tau, \eta);p=0 , \pm\tau\geq 0\}

Then, \Sigma_{+}\cap\Sigma_{-}=\Sigma_{2}(p)=\{(0, y, 0, \eta) ; g(0, y, \eta)\}=0\} .
Consider the local bicharacteristic flow on \Sigma_{\pm}\backslash \Sigma_{2} , reparameterized by t.

Since \tau=\pm(ht^{2}+g)_{E}^{1} on \Sigma_{\pm} , the Hamilton vector field can be reduced to

(4. 1) \partial_{t}\pm\frac{1}{2}(ht^{2}+g)^{-2}-^{1}-H_{c}’ , H_{c}’= \sum_{j=1}^{p}\partial_{\eta_{j}}c\partial_{y_{j}}-\partial_{y_{j}}c\partial_{\eta_{j}} , c=t^{2}h+g\iota

This is C^{\infty} in t\neq 0 and integration of it defines diffeomorphisms
(4. 2) F_{\pm}(t, s) : R^{2n}arrow R^{2n} t, s<0 or t, s>0 ,

by F_{\pm}(t, s)(y, \eta)=(y’, \eta’) if the integral curve of (4. 1) with initial point (s, y, \eta)

passes through (t, y’, \eta’) .
(4. 3) Lemma. The limits \lim_{t\uparrow 0}F_{\pm}(t, s) : R^{2n}arrow R^{2n} , s<0 and \lim_{t\downarrow 0}F_{\pm}(t, s) :
R^{2n}arrow R^{2b}ms>0 , are locally uniform and defifine surjective maps.

PROOF. Let \gamma(t)=(t, Y(t), H(t)) be the integral curve of (4. 1) with
initial point (s, y, \eta) , s<0 . Certainly \gamma(t) is C^{\infty} in t<0 and since

| \frac{d}{dt}(Y, H)|\leq C|dc|/(t^{2}+g)^{-\frac{1}{2}}\leq C’

is uniformly bounded in t<0 . It follows that \lim_{t\downarrow 0}\gamma(t) exists, and that \gamma :
[s, 0]arrow R^{2n} is continuous. Clearly the curve depends continuously on the
initial point (y, \eta) , proving the existence and uniformity of the limits. Sur-
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jectivity follows too since each F_{\pm}(t, s) , t<0 , is surjective.

In particular this shows that through each point of \Sigma_{2} pass at least
four distinct rays.

With \nu>0 fixed, consider the microlocal influence domain :

D_{-\nu}(\rho)=\{\rho’\in\Sigma(p);t(\rho’)=-\nu and there is a ray from \rho’ to \rho\}

As a consequence of Lemma 4. 3,

(4. 4) \lim_{a\downarrow 0}\bigcup_{|\rho-\overline{\mu}|<d}D_{-\nu}(\rho)=D_{-\nu}(\overline{\rho}) ;

so that if N is an open neighbourhood of D_{-\nu}(\overline{\rho}) there is a neighbourhood
N’ of p such that D_{-\nu}(\rho)\subset N for all \rho\in N’ .

PROOF OF THEOREM 1. 7. It is enough to show that if \overline{\rho}\in\Sigma_{2}(p) ,
\overline{\rho}\not\in WF (Pu) and for some \nu>0 , sufficiently small, D_{-\nu}(\overline{\rho})\cap WF(u)=\phi then
\overline{\rho}\not\in WF(u) . In Proposition 3. 16 the operator representing the initial data,

B, has essential support in - \nu\leq t\leq-\frac{1}{4}\nu , |y|^{2}+| \frac{|\eta|}{\eta}-\overline{\eta}|^{2}<\nu . The rays

through this set meet \Sigma_{2} in a neighbourhood of (0,0,0,\overline{\eta}) , the radius of
which tends to 0 with \nu . Thus, using (4. 4) for \nu>0 sufficiently small,

D_{-\nu}(\overline{\rho})\cap WF(u)=\phi\Rightarrow Bu , BD_{t}u\in C^{\infty} ,

uniformly as Narrow\infty .

It can always be assumed that WF(u) lies in a small neighbourhood of
(o ,o,o,_{\overline{\eta})} , so u\in C^{\infty}([-\nu, 0] ; C^{-\infty}(BJ)\cap C^{2}([-\nu, 0] ; H^{m’}(B_{1})) for some m .
Now, Proposition 3. 16 can be applied and iterated, showing that for any m,

||(-t)^{k}A_{m,e,N}D_{t}u|| , ||(-t)^{k+1}A_{m+1,e,N}u||\leq C .
uniformly in N. The limit as Narrow\infty shows that

||(-t)^{k}A_{m,\epsilon,\infty}D_{t}u||,\cdot ||(-t)^{k+1}A_{m+1,*,\infty}u||<\infty

Now, from the pseudodifferential equation, Pu=f, it follows t\acute{h}at

(-t)^{k+1}A_{m,*,\infty}D_{t}^{p}u\in L^{2}((-\nu, 0)\cross B_{1}) for all p and m

and hence that A_{m,*,\infty}u\in C^{\infty}([-\nu, 0]\cross B_{1}) .

In particular this shows that all the Cauchy data of A_{m,*,\infty}u at t=0
are C^{\infty}, so can be removed to any order without affecting the singularities.
Thus, Proposition 3. 36 can be applied in the same way to conclude that



386 R. Melrose

A_{m,*,\infty}u\in C^{\infty}([-\nu, \nu]\cross B_{1}) for \epsilon, \nu>0 sufficiently small.
Thus, \overline{\rho}\not\in WF(u) proving the local, and hence the global, form of the pr0-
pagation of singularities stated in Theorem 1. 7.

5. Cauchy problem

Suppose that P\in Diffff^{m}(X) is effectively hyperbolic at x- and hence in an
open neighbourhood of \overline{x} . We shall first compactify the problem by modify-
ing P suitably away from \overline{x} . Observe that, because of (1. 9), it can be
assumed that

(5. 1) P=D_{t}^{m}+ \sum_{j=1}^{m}P_{j}(t, x, D_{x})D_{tj}^{m-j}

where P is weakly t hyperbolic; i . e . the symbol of P has real roots

(5. 2) p= \sigma_{m}(P)=\tau^{m}+\sum_{j=1}^{m}p_{j}(t, x, \xi)\tau^{m-j}=\prod_{k=1}^{m}(\tau-\mu j(t, x, \xi))’.
with the \mu_{j} real throughout the region |t|<\epsilon, |x_{e}|<\epsilon, \xi\in R^{n} .

Consider the projection of the set of doubly characteristic points:

(5. 3) \Sigma_{2}’=\{(t, x, \xi)\in[-\epsilon, \epsilon]^{n+1}\cross S^{n-1} ; \mu_{j}(t, x, \xi)=\mu_{k}(t, x, \xi) some j\neq k\}

By assumption (1. 11), p has at most double roots. Select, using the com-
pactness of \Sigma_{2}’ , a finite covering by open sets

(5. 4) \Sigma_{2}’=\bigcup_{r=1}^{R}U_{r}

where each U_{r} as here has a base point \rho_{r} at which \mu_{J}(\rho_{r})=\mu_{k}(\rho_{r}) if andonly if k=j+1 and j\in J_{r} , which defines the index set J_{r}\subset\{1, \cdots, -1\} ,
and in addition \mu_{j}<\mu_{j+1} throughout \overline{U}_{r} if j\not\in J_{r} . Thus in \overline{U}_{r} the roots areseparated either singly or in pairs. Srandard arguments with the pseud0-
differential operator calculus give a factorization of P microlocally over each
U_{r} , in the sense that

(5. 5) P\equiv(D_{t}-M_{1}(t, x, D_{x}))\cdots((D_{t}-A_{j}(t, x, D_{x}))2-R_{f}(t, x, D_{x}))\cdots

where each simple root \mu_{j} correspond to a first order factor with M_{f}\in\Psi^{1}

depending smoothly on t and each j\in J corresponds to a second order factor:
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\sigma_{1}(M_{j})=\mu_{j}(t, x, \xi)j, j-1\not\in J_{r} ; \sigma_{1}(A_{f})=\frac{1}{2}(\mu_{j}+\mu_{j-1}) ,
(5. 6)

\sigma_{2}(R_{j})=\frac{1}{4}(\mu_{j}-\mu_{j-1})^{2}, j\in J_{r}

Equality in (5. 5) is modulo operators of the form

\sum_{j=0}^{m-1}Q_{f}(t, x, D_{x})D_{t}^{j}

with coefficients Q_{j}\in\Psi^{m-j} depending smoothly on t and of order -\infty in
a conic neighbourhood of \overline{U}_{r} . The order of the factors in (5. 5) is fixed so
the full factorization is determined modulo errors of the same type.

By refining the partition of unity (5. 4) if necessary we can assume that
for some 1\leq R’\leq R , the U_{r} with r\geq R’ cover the boundary t=\pm\epsilon or x_{j}=\pm\epsilon

and that |t|> \frac{1}{2}\epsilon , or |x_{j}|> \frac{1}{2}\epsilon for some j on these U_{r} . Choosing a positive
elliptic operator Q\in\Psi^{2}(R^{n}) and a microlocal partition of unity \varphi_{r}\in\Psi^{0}(R^{n}) ,
depending smoothly on t and subordinate to the covering U_{r} the operator
P_{r} given by the product on the right in (5. 5) can be modified by replacing
R_{j} by R_{j}+\delta Q\varphi_{r}, \delta>0 , j\in J_{r} . Calling this modified operator P_{r,\delta,j} set first
(5. 6) P’ \equiv\sum_{r>R’}\varphi {}_{rr}P+\sum_{r<R’}\varphi {}_{r}P_{r}+\varphi_{R’}P_{r,\delta,j}

for j\in J_{R’} the smallest element. Repeat the factorization and next modify
the second R_{j} in P_{R’} , keeping \delta small. Repeat the process successively for
all j\in J_{r} , \gamma\geq R’ , eventually giving the effectively hyperbolic operator P’ .
By construction P=P’ in a neighbourhood of \overline{x} and P’ has only simple
roots near the boundary. We next extend P’ by extending the coefficients
be periodic of period say T=3\epsilon and so that on the torus P’ has simple
zeros outside the set \overline{D}_{\frac{1}{2}\text{\’{e}}} ,

D_{\frac{1}{2}e}=\{|t| , |x_{j}|< \frac{1}{2}\epsilon\}

Finally, cutting off the supports of the coefficients of P’ near the diagonal
and adding a suitable term of order - oo in the coefficients we can insure
that the resulting operator P’ is of the form (5. 1), is strictly hyperbolic
outside D_{e} and extends P in the sense that
(5. 7) P\varphi=P’\varphi in D_{\frac{1}{2}e} if supp (\varphi)\subset D_{\frac{1}{2}\epsilon} .

Repeating this procedure, but in addition adding terms \epsilon^{2}\varphi_{\Gamma}Q to the R_{j}

in the factorization of P over U_{r}, r<R’ , we obtain an operator P\epsilon of the
form (5. 1) which is strictly hyperbolic as a periodic t -differential operator
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with x-pseudodifferential coefficients for \epsilon\neq 0 on the torus and which is C^{\infty}

in \epsilon and has P_{0}=P_{r}’

(5. 8) PROPOSITION. If P’ is as above, the extension of an effectively hyper-
bolic differential operator (5. 1), then there exists L and for each s, s’\in R

C_{s,s’} such that if u\in C^{-\infty}(R\cross T^{n}) has support in [-R, \infty)\cross T^{n} and P’u\in H^{s}

((-\infty, T)\cross T^{N}) then u\in H^{s-L}((-\infty, T)\cross T^{n}) and

(5. 9) ||u||_{s-L}\leq C_{s,s’}(||P’u||_{s}+||u||_{s’})

with the Sobolev norms taken over (-\infty, T)\cross T^{n} .

PROOF. Since P’ is everywhere effectively hyperbolic and strictly hyper-
bolic outside a compact set it is clear from the discussion in Section 3, 4
above that the regularity of u microlocally near any point (t, x, \tau, \xi) with
t<T depends only on the regularity of P’u and of u along the backward
rays (if any) through this point, at least if \xi\neq 0 . Since t increases strictly
along a ray there can be only a fixed finite number of crossings of the
doubly characteristic variety along such a ray between t=-T and t=T,

and therefore only a fixed finite loss of derivatives, L. This gives the estimate
(5. 9), microlocally in t<T, \xi\neq 0 . Although P’ is not quite a pseudodifferential
operator near \xi=0 , not even microlocal, it is very much elliptic there so no
difficulty arises from that region. Finally near t=T the estimates (5. 9),

which involve Sobolev norms on half-spaces, are the standard estimates for
strictly hyperbolic operators (5. 1). Thus, the derivation of (5. 9) is completely
standard.

We further remark that the estimates (5. 9) hold with P’ replaced by
P_{\epsilon} and the constants C_{s,s’} independent of |\epsilon|<1 ; it is only necessary to

observe that the reductions on Section 2 and subsequent estimates in Section
3 can be made uniform in \epsilon . Of course, for \epsilon\neq 0 estimates (5. 9) for P.
holds with L=1-m, but not uniformly as \epsilon\downarrow 0 .

An immediate consequence of (5. 9) is that

ker (P’)=\{u\in C^{-\infty}(-\infty, T)\cross T^{n} ; supp(u)\subset[-T,\cdot T)

(5. 10)
\cross T^{n} , Pu=0\}

is a finite dimensional subspace of C^{\infty}((-\infty, T]\cross T^{n}) and that

ran (P’)=\{\in C^{-\infty} (-\infty, T)\cross T^{n} ; Pu=f where supp (u)
(5. 11)

\subset[-T, T)\cross T^{n}\}
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is a closed subspace of finite codimension. Indeed, ker (P’) is closed in C^{-\infty}

and by repeated application of (5. 9), a subsapce of C^{\infty}((-\infty, T]\cross T^{n}) hence
has finite dimension. Similarly, if f_{n}\in ran(P’) then there is a unique solution
of Pu_{n}=f_{n} , with u_{n} supported in t\geq-T and in some fixed complement to
ker (P’) . If f_{n}arrow f in C^{-\infty} then f_{n}arrow f in some space H^{s}((-\infty, T)\cross T^{n}) , it
follows that u_{n} is bounded in H^{s-L-1} since if not v_{n}=u_{n}/||u_{n}||_{s-L-1} would
have a weakly convergent subsequence in H^{s-L-1} with limit v, Fv=]imf_{n}/||u_{n}||

=0, so v\in ker(P’) . However, from (5. 9) it follows that the sequence v_{n} is
bounded in H^{s-L} , so strongly convergent in H^{s-L-1} and therfore, ||v||_{s-L-1}=1

which contradicts the assumption that each u_{n} is in the fixed complement to
ker (P’) . These results and duality show that P’ is a Fredholm operator on
the space of distributions on (-\infty, T)\cross T^{n} with support in t\geq-T, whereas
to complete the proof of Theorem 1. 12 we need to show this in t\geq\overline{t} .

Apply the remarks above to (P’)^{*} with the t variable reversed, thus

ran ((P’)^{*})=(P’)^{*}\{w\in C^{-\infty}((-T, \infty)\cross T^{n}) ; w=0 in t>T\}

has a finite dimensional complement A\subset\{w\in C^{\infty}([-T, \infty)\cross T^{n}) ; w=0 in
t>T\} . For each \epsilon\neq 0 set

(5. 12) K_{\epsilon}=(P_{\hat{o}}^{*})^{-1}A ,

a subspace of C^{\infty} of fixed dimension k=\dim A , for \epsilon\neq 0 , since the Cauchy
problem for P_{\epsilon}^{*} is uniquely solvable. Now, we wish to show that

if f\in ran(P’) has f=0 in t<\overline{t} then u with u=0 in t<\overline{t} and(5. 13)
Pu=f

To see this, choose an orthonormal basis of K_{\epsilon} in L^{2}((-T,, T)\cross T^{n}) , e_{j}^{\epsilon} ,
j=1 , \cdots , k . Passing to a sequence \epsilon(m)-0, we can ensure that e_{j}^{\epsilon(m)}arrow e_{j}

weakly in L^{2} . Now,

P_{\epsilon}^{*}e_{j}^{\epsilon}=, \sum_{j=1}^{k}c_{jf}^{\epsilon},a_{j’}

if \{a_{j}\} is a basis of A. The topologies induced on A from the various
Sobolev spaces are all the same, so a_{jj}^{\epsilon(m)}, converge as \epsilon(m)arrow 0 , in fact they
converge to zero since A does not meet ran (P’*) ; in any case it follows
from the estimates (5. 9) applied to P_{c}^{*} uniformly in \epsilon that e_{j}^{e(m)}arrow e_{j} in C^{\infty}.
Of course, the e_{j} are just a basis of ker (P^{*}) . Given \overline{t}\in(-T, T) choose
\overline{t}’\in(- T. T) with \overline{t}’<\overline{t} , consider the restriction of K_{\epsilon} to [\overline{t}’, T]\cross T^{n} and
repeat the orthonormalization and convergence arguments, only now (5. 9) is
not available so we only know that ej^{(m)}(\overline{t}’)arrow e_{j}(\overline{t}’) weakly in L^{2}((\overline{t}’, T)\cross T^{n})
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but uniformly with all derivatives on any compact subset of (-d, T] \cross T^{n} .
The dimension of the corresponding space of constraints is k(-t)\leq k, i.e .
j=1, \cdots , k(-t) .

Now, if f is as in (5. 13) and in addition f(e_{f}(\overline{t}’))=0 , j=1 , \cdots , k(\overline{t}’) ,

which makes sense since e_{f}(\overline{t}’)\in C^{\infty}((\overline{t}’, \infty)\cross T^{n})vani^{ls}hes in t>T,\cdot then we

can find f_{m}arrow f such that supp (f_{m}^{\backslash })\subset\{t\geq-t\} and f_{m}(e_{j}^{(m)} (\overline{t}’))=0 . Indeed, simply

set

f_{m}=f- \sum_{j}f(e_{j}^{(m)}(-t))\overline{e}_{j}^{(m)}(\overline{t}’)

where \overline{e}_{j}^{(n)}
’

(\overline{t}

’ ) is e_{f}^{(m)}(\overline{t}
’ ) extended to be zero in t<\overline{t}’, still in L^{2}. Set u_{m}=

P^{-1}.f_{m}, u_{m}=0 in t<-T_{:} and note from the construction above that

(5. 14) u_{m}(A)=0 .

To see this just note that the P^{\star}.ej span A, by definition, and u_{m} has support

in t<\overline{t}’, from the properties of strictly hyperbolic iperators, and is in C^{\infty}

near t=\overline{t}’. Thus,

u_{m}(P^{*}e_{j}^{(m)})=u_{m}(P^{*}\overline{e}_{\grave{j}}’(m)\overline{t}’))=f_{m}(\overline{e}_{j}^{(m)}(\overline{t}’))=0 .

Now, (5. 14) shows that the u_{m} lie in a fixed complement to ker (P), namely

the annihilator of A, so from (5. 9) applied to P_{\epsilon} , uniformly in \epsilon , it follows
that as marrow\infty , \epsilon(m)arrow 0 , u_{m}arrow u in C^{-\infty} . Since f_{m}arrow f we have shown that
if u\in ran(P’) has support in t\geq\overline{t} and \overline{t}’<\overline{t} then there is a solution u of

P’u=f with u supported in t\geq t’ . The finiteness of the kernel of P’ shows
that this solution stabilizes as \overline{t}’\uparrow\overline{t} , so we have proved (5. 13).

The remainder of the proof of Theorem 1. 12 is now straightforward.
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