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Lowerable vector fields for a finitely L-determined multigerm
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Abstract. We show that the module of lowerable vector fields for a finitely L-

determined multigerm is finitely generated in a constructive way.
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1. Introduction

Let K denote R or C. Throughout this paper, all mappings are of class
C∞ for K = R, and are holomorphic for K = C, unless otherwise stated.

Let S be a finite set consisting of r distinct points in Kn. A map-
germ f : (Kn, S) → (Kp, 0) is called a multigerm. When r = 1, f is called
a monogerm. A multigerm f : (Kn, S) → (Kp, 0) can be identified with
{fk : (Kn, 0) → (Kp, 0)| 1 ≤ k ≤ r}. Each fk is called a branch of f .

Let Cn,S (resp., Cp,0) be the K-algebra of all function-germs on (Kn, S)
(resp., (Kp, 0)) and mn,S (resp., mp,0) be the ideal of Cn,S (resp., Cp,0)
consisting of function-germs (Kn, S) → (K, 0) (resp., (Kp, 0) → (K, 0)). For
a non-negative integer i, let mi

n,S (resp., mi
p,0) denote the ideal of Cn,S

(resp., Cp,0) consisting of those function-germs on (Kn, S) (resp., (Kp, 0))
whose Taylor series vanish up to degree i− 1.

For a multigerm f : (Kn, S) → (Kp, 0), let f∗ : Cp,0 → Cn,S be
the K-algebra homomorphism defined by f∗(ψ) = ψ ◦ f . Set Q(f) =
Cn,S/f∗mp,0Cn,S and δ(f) = dimKQ(f).

For a map-germ f : (Kn, S) → Kp, let θ(f) be the set of germs of
vector fields along f . The set θ(f) has the natural Cn,S-module structure
and is identified with the direct sum of p copies of Cn,S . Set θS(n) =
θ(id(Kn,S)) and θ0(p) = θ(id(Kp,0)), where id(Kn,S) (resp., id(Kp,0)) is the
germ of the identity mapping of (Kn, S) (resp., (Kp, 0)). For a multigerm
f : (Kn, S) → (Kp, 0), following Mather [4, p. 141], define tf : θS(n) → θ(f)
(resp., ωf : θ0(p) → θ(f)) as tf(ξ) = df ◦ ξ (resp., ωf(η) = η ◦ f), where df
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is the differential of f . Following Wall [5, p. 485], set TRe(f) = tf(θS(n))
and TLe(f) = ωf(θ0(p)). For a multigerm f : (Kn, S) → (Kp, 0), a vector
field ξ ∈ θS(n) is said to be lowerable if df ◦ ξ belongs to TRe(f) ∩ TLe(f).
Let Lower(f) be the set of all lowerable vector fields for the multigerm f .
Then, Lower(f) has a Cp,0-module structure via f . The notion of lowerable
vector field, which was introduced by Arnol’d [1] for studying bifurcations
of wave front singularities, is significant in Singularity Theory (for instance,
see [3]).

In the paper, we investigate the following problem.

Problem 1 Let f : (Kn, S) → (Kp, 0) be a multigerm satisfying δ(f) < ∞.
Then, is the module Lower(f) finitely generated? In the case that Lower(f)
is finitely generated, prove it in a constructive way.

Our first result is the following Proposition 2, which reduces Problem 1
to that of the finite generation on TRe(f) ∩ TLe(f).

Proposition 2 Let f : (Kn, S) → (Kp, 0) be a multigerm satisfying δ(f) <

∞. Then, tf is injective.

We see that, in the complex analytic case, TRe(f)∩TLe(f) is finitely gener-
ated, since Cp,0 is Noetherian and TRe(f)∩ TLe(f) is a Cp,0-submodule of
the finitely generated module θ(f). However, the algebraic argument gives
no constructive proof. Moreover, the finite generation of TRe(f) ∩ TLe(f)
has been an open problem in the real C∞ case, as far as the authors know.

The main purpose of the paper is to give a constructive proof of the fol-
lowing theorem, which works well in both the real C∞ case and the complex
analytic case.

Theorem 3 Let f : (Kn, S) → (Kp, 0) be a finitely L-determined multi-
germ. Then, TRe(f) ∩ TLe(f) is finitely generated as a Cp,0-module via
f .

Here, a multigerm f : (Kn, S) → (Kp, 0) is said to be finitely L-determined
if there exists a positive integer ` such that m`

n,Sθ(f) ⊂ TLe(f) holds. We
easily see that δ(f) is finite if f is finitely L-determined. Thus, by combin-
ing Proposition 2 and Theorem 3, we have the following partial affirmative
answer to Problem 1.

Corollary 4 Let f : (Kn, S) → (Kp, 0) be a finitely L-determined multi-
germ. Then, Lower(f) is finitely generated as a Cp,0-module via f .
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Remark 5 According to Theorem 2.5 in [5, p. 494], a monogerm f is
finitely L-determined if and only if f is finitely A-determined and 2n ≤ p,
or f is an immersion-germ. Therefore, it seems impossible to apply our
results to the mappings appearing in [1], [3] unfortunately. However, by
using the argument of Theorem 3, it is possible even to construct explicit
generators of Lower(f) for a multigerm f . For example, we consider the
multigerm f = (f1, f2) : (K, S) → (K2, 0) defined by

f1(x) = (x2, x3), f2(x) = (x3, x2).

It is not hard to show that m6
1,Sθ(f) ⊂ TLe(f) holds. Thus, f is finitely L-

determined. By using the argument of Theorem 3, the C2,0-module Lower(f)
is generated by the following two vector fields:

((x3), (3x4)), ((3x4), (x3)).

There seems to be no results so far on lowerable vector fields for a multigerm
as far as the authors know.

In Section 2 (resp., Section 3), Proposition 2 (resp., Theorem 3) is
proved.

2. Proof of Proposition 2

It suffices to show that if a monogerm f : (Kn, 0) → (Kp, 0) satisfies
δ(f) < ∞, then tf is injective.

Suppose that for ξ ∈ θ0(n), we have tf(ξ) = 0 on an open set U1

containing 0. Then, f is constant along any integral curve of ξ on U1. Since
δ(f) < ∞ holds, each integral curve of ξ on an open set U2 containing 0
must consist of a single point by Propositions 2.2 and 2.3 in [2, pp. 167–168].
Therefore, we have ξ = 0 on U1 ∩ U2. Thus, tf is injective. ¤

3. Proof of Theorem 3

Since f is finitely L-determined, there exists a positive integer ` such
that

m`
n,Sθ(f) ⊂ TLe(f) (1)
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holds and we have δ(f) < ∞. Thus, Q(fk) is a finite dimensional K-vector
space of dimension δ(fk) for every k with 1 ≤ k ≤ r, where fk are the
branches of f . Then, there exist ϕk,j ∈ Cn,0, 1 ≤ j ≤ δ(fk), such that we
have

Q(fk) =
〈
[ϕk,1], [ϕk,2], . . . , [ϕk,δ(fk)]

〉
K .

We would like to find a finite set of generators for TRe(f) ∩ TLe(f).
Let us take any element η = (η1, η2, . . . , ηr) ∈ TRe(f) ∩ TLe(f). Let
(x1, x2, . . . , xn) (resp., (X1, X2, . . . , Xp)) be the standard local coordinates
of Kn (resp., Kp) around the origin. For every k = 1, 2, . . . , r, the vector
field ηk can be expressed as

ηk =




∂(X1 ◦ fk)
∂x1

∂(X1 ◦ fk)
∂x2

· · · ∂(X1 ◦ fk)
∂xn

∂(X2 ◦ fk)
∂x1

∂(X2 ◦ fk)
∂x2

· · · ∂(X2 ◦ fk)
∂xn

...
...

. . .
...

∂(Xp ◦ fk)
∂x1

∂(Xp ◦ fk)
∂x2

· · · ∂(Xp ◦ fk)
∂xn







ϕ̃1,k

ϕ̃2,k

...
ϕ̃n,k




for some ϕ̃1,k, ϕ̃2,k, . . . , ϕ̃n,k ∈ Cn,0.
Then, by the preparation theorem, there exist ψk,i,j ∈ Cp,0 such that

we have

ϕ̃i,k =
∑

1≤j≤δ(fk)

(ψk,i,j ◦ fk)ϕk,j .

Thus, ηk can be simplified as follows:

ηk =
∑

i, j

(ψk,i,j ◦ fk)ξk,i,j ,

where the symbol
∑

i, j means the summation taken over all i and j with
1 ≤ i ≤ n and 1 ≤ j ≤ δ(fk), respectively, and ξk,i,j is the transpose of

(
∂(X1 ◦ fk)

∂xi
ϕk,j ,

∂(X2 ◦ fk)
∂xi

ϕk,j , . . . ,
∂(Xp ◦ fk)

∂xi
ϕk,j

)
.
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Note that ξk,i,j ∈ TRe(fk) holds.
For a p-tuple of non-negative integers α = (α1, α2, . . . , αp), set

|α| = α1 + α2 + · · ·+ αp, Xα = Xα1
1 Xα2

2 · · ·Xαp
p ,

and

fα
k = (X1 ◦ fk)α1(X2 ◦ fk)α2 · · · (Xp ◦ fk)αp .

Then, the function-germs ψk,i,j ∈ Cp,0 can be written in the form

ψk,i,j(X1, X2, . . . , Xp) =
∑

0≤|α|≤`−1

ck,i,j,αXα +
∑

|α|=`

ψ̃k,i,j,αXα

for some ck,i,j,α ∈ K and ψ̃k,i,j,α ∈ Cp,0. Recall that ` is the positive integer
given in (1). We have

ηk =
∑

i,j

∑

0≤|α|≤`−1

ck,i,j,α(fα
k ξk,i,j) +

∑

i,j

∑

|α|=`

(
ψ̃k,i,j,α ◦ fk

)
(fα

k ξk,i,j).

Set

ξk,i,j,α = (0, 0, . . . , 0, fα
k ξk,i,j︸ ︷︷ ︸

k entries

, 0, . . . , 0).

Note that ξk,i,j,α ∈ TRe(f) holds. Then, we have

η =
∑

1≤k≤r

∑

i,j

∑

0≤|α|≤`−1

ck,i,j,αξk,i,j,α +
∑

1≤k≤r

∑

i,j

∑

|α|=`

(
ψ̃k,i,j,α ◦ f

)
ξk,i,j,α.

We define the finite sets L and H of TRe(f) as follows:

L =
{
ξk,i,j,α | 0 ≤ |α| ≤ `− 1, 1 ≤ k ≤ r, 1 ≤ i ≤ n, 1 ≤ j ≤ δ(fk)

}
,

H =
{
ξk,i,j,α | |α| = `, 1 ≤ k ≤ r, 1 ≤ i ≤ n, 1 ≤ j ≤ δ(fk)

}
.

Then, H ⊂ TRe(f) ∩ TLe(f) by (1). Therefore,
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∑

1≤k≤r

∑

i,j

∑

0≤|α|≤`−1

ck,i,j,αξk,i,j,α

belongs to V = TRe(f) ∩ TLe(f) ∩ LK.
The set V is a finite dimensional K-vector space. Set dimK V = m.

Then, there exist ξ
1
, ξ

2
, . . . , ξ

m
∈ TRe(f) ∩ TLe(f) such that we have

V =
〈
ξ
1
, ξ

2
, . . . , ξ

m

〉
K.

Clearly, we have V ⊂ 〈
ξ
1
, ξ

2
, . . . , ξ

m

〉
f∗Cp,0

. Therefore, we see that

η ∈ 〈
ξ
1
, ξ

2
. . . , ξ

m

〉
f∗Cp,0

+ Hf∗Cp,0 .

Thus, we have

TRe(f) ∩ TLe(f) ⊂ 〈
ξ
1
, ξ

2
, . . . , ξ

m

〉
f∗Cp,0

+ Hf∗Cp,0 .

The converse inclusion also holds, since
{
ξ
1
, ξ

2
, . . . , ξ

m

}∪H is contained
in TRe(f)∩TLe(f). Thus, TRe(f)∩TLe(f) is finitely generated as a Cp,0-
module via f . ¤
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