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Lowerable vector fields for a finitely £-determined multigerm
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Abstract. We show that the module of lowerable vector fields for a finitely L-
determined multigerm is finitely generated in a constructive way.
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1. Introduction

Let K denote R or C. Throughout this paper, all mappings are of class
C® for K = R, and are holomorphic for K = C, unless otherwise stated.

Let S be a finite set consisting of r distinct points in K”. A map-
germ f : (K", S) — (KP,0) is called a multigerm. When r = 1, f is called
a monogerm. A multigerm f : (K", S) — (KP,0) can be identified with
{fr : (K™,0) — (KP,0)|1 < k <r}. Each fy is called a branch of f.

Let C), s (resp., Cp o) be the K-algebra of all function-germs on (K", S)
(resp., (KP?,0)) and my, s (resp., myo) be the ideal of C, g (resp., Cp )
consisting of function-germs (K", S) — (K, 0) (resp., (K?,0) — (K,0)). For
a non-negative integer 4, let mihs (resp., méyo) denote the ideal of (), s
(resp., Cp ) consisting of those function-germs on (K", S) (resp., (K?,0))
whose Taylor series vanish up to degree ¢ — 1.

For a multigerm f : (K", 5) — (K?,0), let f* : Cpo — Cy,s be
the K-algebra homomorphism defined by f*() = 1 o f. Set Q(f) =
Chn,s/f*myoCh s and 6(f) = dimg Q(f).

For a map-germ f : (K", S) — KP, let §(f) be the set of germs of
vector fields along f. The set §(f) has the natural C), s-module structure
and is identified with the direct sum of p copies of C), s. Set Os(n) =
0(idk»,5)) and Oo(p) = 0(id(kr o)), where idn g) (resp., idkr o)) is the
germ of the identity mapping of (K", S) (resp., (KP,0)). For a multigerm
f: (K", S)— (KP,0), following Mather [4, p. 141], define tf : 6s(n) — 6(f)
(resp., wf : 6o(p) — 6(f)) as tf(§) = df o & (vesp., wf(n) =no f), where df
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is the differential of f. Following Wall [5, p.485], set TR.(f) = tf(0s(n))
and TL.(f) = wf(0o(p)). For a multigerm f : (K", S) — (KP,0), a vector
field £ € Og(n) is said to be lowerable if df o & belongs to TR.(f)NTL.(f).
Let Lower(f) be the set of all lowerable vector fields for the multigerm f.
Then, Lower(f) has a C), g-module structure via f. The notion of lowerable
vector field, which was introduced by Arnol’d [1] for studying bifurcations
of wave front singularities, is significant in Singularity Theory (for instance,
see [3]).
In the paper, we investigate the following problem.

Problem 1 Let f: (K", S) — (KP,0) be a multigerm satisfying 6(f) < oo.
Then, is the module Lower( f) finitely generated? In the case that Lower(f)
is finitely generated, prove it in a constructive way.

Our first result is the following Proposition 2, which reduces Problem 1
to that of the finite generation on TR.(f) NTL.(f).

Proposition 2 Let f : (K", S) — (KP,0) be a multigerm satisfying 6(f) <
oo. Then, tf is injective.

We see that, in the complex analytic case, TR.(f)NTL.(f) is finitely gener-
ated, since C), o is Noetherian and TR.(f) NTL.(f) is a Cp g-submodule of
the finitely generated module 6(f). However, the algebraic argument gives
no constructive proof. Moreover, the finite generation of TR.(f) N T'L.(f)
has been an open problem in the real C*° case, as far as the authors know.

The main purpose of the paper is to give a constructive proof of the fol-
lowing theorem, which works well in both the real C*° case and the complex
analytic case.

Theorem 3 Let f: (K", S) — (KP,0) be a finitely L-determined multi-
germ. Then, TR.(f) NTL(f) is finitely generated as a Cp,o-module via
f-

Here, a multigerm f : (K™, S) — (KP,0) is said to be finitely L£-determined
if there exists a positive integer ¢ such that mfhse(f) C TL(f) holds. We
easily see that §(f) is finite if f is finitely £-determined. Thus, by combin-
ing Proposition 2 and Theorem 3, we have the following partial affirmative
answer to Problem 1.

Corollary 4 Let f : (K", S) — (KP,0) be a finitely L-determined multi-
germ. Then, Lower(f) is finitely generated as a C) o-module via f.
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Remark 5 According to Theorem 2.5 in [5, p.494], a monogerm f is
finitely £-determined if and only if f is finitely A-determined and 2n < p,
or f is an immersion-germ. Therefore, it seems impossible to apply our
results to the mappings appearing in [1], [3] unfortunately. However, by
using the argument of Theorem 3, it is possible even to construct explicit
generators of Lower(f) for a multigerm f. For example, we consider the
multigerm f = (f1, f2) : (K, S) — (K2,0) defined by

fi(z) = (2%, 2%),  fo(z) = (27, o).

It is not hard to show that mS ¢0(f) C TLc(f) holds. Thus, f is finitely £-
determined. By using the argument of Theorem 3, the C5 g-module Lower( f)
is generated by the following two vector fields:

(%), (32%)),  ((32%), (=%)).

There seems to be no results so far on lowerable vector fields for a multigerm
as far as the authors know.

In Section 2 (resp., Section 3), Proposition 2 (resp., Theorem 3) is
proved.

2. Proof of Proposition 2

It suffices to show that if a monogerm f : (K",0) — (KP,0) satisfies
0(f) < oo, then tf is injective.

Suppose that for £ € 6y(n), we have tf(£) = 0 on an open set U;
containing 0. Then, f is constant along any integral curve of £ on U;. Since
0(f) < oo holds, each integral curve of £ on an open set U, containing 0
must consist of a single point by Propositions 2.2 and 2.3 in [2, pp. 167-168].
Therefore, we have £ = 0 on U; NUsy. Thus, tf is injective. O

3. Proof of Theorem 3

Since f is finitely £-determined, there exists a positive integer ¢ such
that

iy, s0(f) € TLe(f) (1)
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holds and we have §(f) < co. Thus, Q(f) is a finite dimensional K-vector
space of dimension 0(f) for every k with 1 < k < r, where f; are the
branches of f. Then, there exist ¢ ; € Cpo, 1 < j < 6(fx), such that we
have

Q(fk) = <[‘pk,1]a [(Pkﬁ]? (R [Sok,é(fk)]>K :

We would like to find a finite set of generators for TR.(f) N TL.(f).
Let us take any element 77 = (7;,75,...,7,) € TR(f) N TL(f). Let
(x1,22,...,2y,) (resp., (X1,X2,...,X,)) be the standard local coordinates
of K™ (resp., KP) around the origin. For every k = 1,2,...,r, the vector
field 7, can be expressed as

O(Xiofe) O(Xiofe) — O(Xiofi)
ox1 Oxo o0z, Pik
0(Xz20 fr) O(X20 fi) d(X2 0 fr) ~
. . QOQ?]{
Ny = 0z 0z oz, .
Xpofi) OXpofn)  0(X,0f) Prk
o0xy 0xo Oxy,
for some (fﬁl,k? 62,]67 RN an,k' € Cn,O-

Then, by the preparation theorem, there exist ¢y, ; ; € Cp o such that
we have

Bik= Y, (Urijofu)Prs

1<5<5(fx)
Thus, 7;, can be simplified as follows:
Mo =Y (Vr,ij © fr)kiiis
]

where the symbol ), ; means the summation taken over all ¢ and j with
1 <i<mnand1<j<(fk), respectively, and & ; ; is the transpose of

(8(X10fk) 0(Xz 0 fr) ' a(‘X’Pofk)(pkj).

<Pk, 1 (Pk, .
&xi 7 (9:]31 7 ’ 8%1
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Note that & ; j € TRe(f) holds.
For a p-tuple of non-negative integers a = (aq, ag, ..., ), set

|Oé’2041+042+-"+0[p, XO‘:XlalXS‘Q...X;Vp7
and
i = (X1o0 fi)*"(Xoo0 fr)* - (Xp 0 fr).

Then, the function-germs 9y, ; ; € C}, o can be written in the form

Ui (X1, Xo, ..., Xp) = E Chyij,aX " + E Vi i jaX "
o<lal<t-1 =t

for some ¢y, i j,o € K and {Ek,i,j,a € Cp 0. Recall that ¢ is the positive integer
given in (1). We have

Ty = Z Z Chyig,o(fr€hig) + Z Z (Jkl]a o fi) (f§ &)

i.j 0<|al<t—1 07 lal=¢
Set

Ek,z}j,a = (07 07’ ) 07 fk(;lgk,i,ju 07 ey 0)

k entries

Note that & ; ;o € TRe(f) holds. Then, we have

n= Z Z Z Ck,i,j,ozgk,i,j,a—i_ Z Z Z ({Zk,i,j,aof)gk,i,j,a‘

1<k<r i,j 0<|a|<l—1 1<k<r i |a|=¢
We define the finite sets L and H of TR.(f) as follows:
L={&.jal0<]0]<0-1,1<k<r,1<i<n, 1<j<6(fe)}
H={&jollal=01<k<r1<i<n 1<j<6(fi)}.

Then, H C TR.(f) NTL(f) by (1). Therefore,
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E E E Ck,i,j,a§k,i,j,a

1<k<r i,j 0<|a|<e-1

belongs to V =TR.(f) NTL.(f) N Lk.
The set V is a finite dimensional K-vector space. Set dimg V' = m.
Then, there exist £ ,&,....,§ € TRe(f) NTLe(f) such that we have

V:<§1,§2,...,§m>K.

Clearly, we have V C <§ D £ o . Therefore, we see that

ol pec,
ﬁ € <§17§2 s ’§m>f*Cp,0 + Hf*Cp,O.
Thus, we have

TR(f)NTLAf) C <§1,§2, . ’§m>f*C,,,0 + Hpec,

The converse inclusion also holds, since {§ 1,§ o 3 m}UH is contained
in TRe(f)NTL(f). Thus, TR (f) NTLe(f) is finitely generated as a C, o-
module via f. O
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