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More on the annihilator graph of a commutative ring
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Abstract. Let R be a commutative ring with identity, and let Z(R) be the set of zero-
divisors of R. The annihilator graph of R is defined as the undirected graph AG(R)
with the vertex set Z(R)* = Z(R)\ {0}, and two distinct vertices z and y are adjacent
if and only if anngr(zy) # anng(xz) U anng(y). In this paper, we study the affinity
between annihilator graph and zero-divisor graph associated with a commutative ring.
For instance, for a non-reduced ring R, it is proved that the annihilator graph and
the zero-divisor graph of R are identical to the join of a complete graph and a null
graph if and only if annr(Z(R)) is a prime ideal if and only if R has at most two
associated primes. Among other results, under some assumptions, we give necessary
and sufficient conditions under which AG(R) is a star graph.

Key words: Annihilator graph, Zero-divisor graph, Associated prime ideal.

1. Introduction

Usually, after translating of algebraic properties of rings into graph-
theoretic language, some problems in ring theory might be more easily
solved. When one assigns a graph to a ring, numerous interesting algebraic
problems arise from the translation of some graph-theoretic parameters such
as clique number, chromatic number, diameter, radius and so on. There are
many extensive studies of this topic, see for example [1], [2], [3], [5] and [7].

Throughout this paper, all rings are assumed to be non-domain commu-
tative rings with identity. We denote by Min(R), Nil(R) and Z(R), the set
of all minimal prime ideals, the set of all nilpotent elements and the set of
zero-divisors elements of R, respectively. Let A C R. The set of annihilators
of A is denoted by anng(A) and by A*, we mean A\ {0}. The ring R is said
to be reduced, if Nil(R) = 0. A prime ideal P of R is called an associated
prime ideal, if anng(z) = P, for some non-zero element x € R. The set of
all associated prime ideals of R is denoted by Ass(R). For any undefined
notation or terminology in ring theory, we refer the reader to [4], [8].

Let G = (V, E) be a graph, where V = V(G) is the set of vertices and

E = E(G) is the set of edges. By G, we mean the complement graph of
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G. The girth of a graph G is denoted by gr(G). We write u — v, to denote
an edge with ends u,v. A graph H = (Vj, Ey) is called a subgraph of G
if Vo CV and Ey C E. Moreover, H is called an induced subgraph by Vj,
denoted by G[Vp], if Vo CV and Ey = {{u,v} € E|u,v € V}. Let G; and
G5 be two disjoint graphs. The join of G; and G5, denoted by G1 V Ga,
is a graph with the vertex set V(G V G2) = V(G1) U V(G3) and edge set
E(G1V G2) = E(G1) U E(Gy) U{uv|u € V(G1),v € V(G2)}. Also G is
called a null graph if it has no edge. For a vertex x in G, we denote the
set of all vertices adjacent to z by Ng(z). A complete bipartite graph of
part sizes m,n is denoted by K™". If m = 1, then the complete bipartite
graph is called star graph. Also, a complete graph of n vertices is denoted
by K™. For any undefined notation or terminology in graph theory, we refer
the reader to [9].

The annihilator graph of a ring R is defined as the graph AG(R) with
the vertex set Z(R)* = Z(R) \ {0}, and two distinct vertices x and y are
adjacent if and only if anng(zy) # anng(z) U anng(y). This graph was
first introduced and investigated in [5] and many of interesting properties of
annihilator graph were studied. For example, it was proved the annihilator
graph is a connected graph of diameter at most 2. Also, the author in
[5], studied some relations between two graphs AG(R) and I'(R), where
I'(R) is the zero-divisor graph of a ring R. The zero- divisor graph of a
ring R, denoted by I'(R), is a graph with the vertex set Z(R)* and two
distinct vertices x and y are adjacent if and only if xy = 0. In this article,
we continue the study of annihilator graphs associated with commutative
rings. Especially, we focus on the conditions under which the annihilator
graph is identical to the zero-divisor graph. For instance, for a non-reduced
ring R, it is proved that the annihilator graph and the zero-divisor graph of
R are identical to the join of a complete graph and a null graph if and only
if annr(Z(R)) is a prime ideal if and only if R has at most two associated
primes.

2. Main Results
We begin with the following lemma.
Lemma 2.1 Let R be a ring.
(1) Let x,y be distinct elements of Z(R)*, and suppose that Z(R) =
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anng(z) U anng(y). Then x — y is an edge of I'(R) if and only if
x —y is an edge of AG(R).
(2) Let x,y,z be elements of Z(R)*, and suppose that anng(x) = anng(y).
Then x—z is an edge of AG(R) if and only if y—z is an edge of AG(R).
(3) LetT(R) = Kb'™ for some n > 1 such that x is adjacent to every other
vertex. If anng(z) = anng(y) for some y € Z(R)*, then either x =y,
or T'(R) = AG(R) = K1,

Proof. (1) If x — y is an edge of I'(R), then by Part (2) of [5, Lemmad
2.1], x — y is an edge of AG(R). To prove the converse, assume that x — y
is an edge of AG(R). It is enough to show that zy = 0. Assume to the
contrary, zy # 0. Since anng(x)Uanng(y) C ann(zy), the equality Z(R) =
anng(x) U anng(y) implies that anng(zy) = anng(z) U anng(y). This
means that z — y is not an edge of AG(R), a contradiction.

(2) Suppose that x—z is an edge of AG(R). Then there exists an element
r € R such that rxz = 0, rz # 0 and rz # 0. The equality rxz = 0 together
with the assumption anng(x) = anng(y) imply that ryz = 0. Also, it is
clear that ry # 0. Thus r € anng(yz) \ anng(y) Uanng(z). Hence y — z is
an edge of AG(R). The converse is proved, similarly.

(3) is clear. O

By using Lemma 2.1, we provide a simple proof of [5, Theorem 3.17].

Theorem 2.2 ([5, Theorem 3.17]) Let R be a commutative ring such that
AG(R) #T'(R). Then the following statements are equivalent:

(1) T'(R) is a star graph;
(2) T(R) = K
(3) AG(R) = K3.

Proof. Since AG(R) # T'(R), (3) = (1) and (3) < (2) are obvious. We
have only to prove (1) = (3). Let a be the center of the star graph I'(R).
Since I'(R) is a star graph and AG(R) # I'(R), we deduce that |Z(R)*| > 3
and anng(x) = anng(y) = {0,a}, for every z,y € Z(R) \ {0,a}. Further-
more, by [3, Theorem 2.5] and [5, Theorem 3.6], Z(R) = anng(a) for a non-
zero element a € R. To complete the proof, we show that |Z(R)*| = 3. Sup-
pose to the contrary, a, b, ¢, z are distinct elements of Z(R)*. With no loss of
generality, one may assume that b—x is an edge of AG(R) (AG(R) # I'(R)).
Since annpg(b) = anng(c), Part (2) of Lemma 2.1 implies that ¢ — z is also
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an edge of AG(R). Similarly, the equality anng(c) = anng(x) shows that
c—bis an edge of AG(R). Since bx # 0 and anng(bx) # anng(b)Uanng(x),
we have annp(bxr) = anng(a). By Part (3) of Lemma 2.1, bx = a. Simi-
larly, cx = a and ¢b = a. Hance z(b —¢) = b(c —x) = ¢(b—x) = 0 and so
b—x=c—x=0b-—c=a, a contradiction. O

To prove Theorem 2.5, the following lemma is needed.
Lemma 2.3 Let R be a ring and x € Z(R)*. Then

(1) If anng(x) is a prime ideal of R, then Np(g)(z) = Nag(r)(z).
(2) If » € Nil(R)* and Npry(x) = Nag(r)(z), then anng(x) is a prime
ideal of R.

Proof. (1) By Part (2) of [5, Lemma 2.1], it is enough to show that
Nac(r)(z) € Npry(x). Assume to the contrary,  —y is an edge of AG(R)
such that zy # 0. Therefore, there exists an element r € R such that
rey = 0, re # 0 and ry # 0. Thus ry € anng(z). Since anng(z) is a
prime ideal of R and y ¢ anng(x), we have r € anng(z), a contradiction.
So Nr(r) (%) = Nac(r) (2)-

(2) Assume that z € Nil(R)* and Nr(g)(z) = Nagr)(z). Then by
[5, Theorem 3.10], Nil(R)* C Nagm)(x). If 2* # 0, then 2* = 0 and
r(x+2?%) = 0. Thus 22+ 2% = 22 = 0, which is impossible. So #? = 0. Now,
we show that annpg(z) is a prime ideal of R. To prove this, let ab € anng(z),
a ¢ anng(z) and b ¢ anng(x). Thus x # a and x # b. Since xab = 0 and
ax # 0 and bx # 0, we have a,b € Z(R)*. If ab # 0, then z is adjacent to a
in AG(R) which contradicts the assumption Np(g)(z) = Nag(r)(x). Hence
ab =0 and so b € anng(a) \ anng(x). Since x € anng(z) \ anng(a), by
Part (4) of [5, Lemma 2.1], z — a is an edge of AG(R), a contradiction. [

In light of Lemma 2.3, we have the following corollary.

Corollary 2.4 Let R be a ring. If I'(R) = AG(R), then for every x €
Nil(R)*, anng(z) € Ass(R).

Let R be a ring and ¥ = {anng(xz) | 0 # = € R}. Recall that the
set of all maximal elements of ¥ (under C) is a subset of Ass(R). We set
¥* =%\ {(0)}. Now, we are ready to present the following result.

Theorem 2.5 Let R be a ring such that for every edge of AG(R), say x—y,
either anng(x) € Ass(R) or anng(y) € Ass(R). Then I'(R) = AG(R).
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Proof. 1t follows from Part (1) of Lemma 2.3. O
Corollary 2.6 Let R be a ring. If ¥* = Ass(R), then I'(R) = AG(R).

Proposition 2.7 Let R be a non-reduced ring such that Z(R) is not an
ideal of R. Then ¥* # Ass(R).

Proof.  The result follows from Corollary 2.6 and [5, Theorem 3.15]. [

If R is a reduced ring, then the converse of Theorem 2.6 is also true
(see [5, Theorem 3.6]). The annihilator graph of a reduced ring has been
studied extensively in [5] and it has been characterized all reduced rings
R that I'(R) = AG(R). So in the rest of this paper, almost everywhere,
we assume that R is a non-reduced ring. We are interested in characterize
non-reduced rings whose annihilator and zero-divisor graphs are identical.
Therefore, the following question is posed:

Question 2.8 Let R be a non-reduced ring and x—y be an edge of AG(R
IfT(R) = AG(R), then is it true either anng(x) € Ass(R) or anng(y)
Ass(R)?

).
€

In what follow, we provide some examples for which the Question 2.8
has an affirmative answer.

Example 2.9 (1) [5, Example 2.7] Let R = Zg. Then 2 — 6 is an edge
of AG(R) and anng(2) = anngr(6) ¢ Ass(R). On the other hand, T'(R) #
AG(R).

(2) [5, Example 2.8] Let R = Zg x Z4 and let a = (0,1) and b = (1,2).
Then a —b is an edge of AG(R), anng(a) ¢ Ass(R) and anng(b) ¢ Ass(R).
Also, it is known that I'(R) # AG(R) and so the Question 2.8 has an
affirmative answer.

(3) [5, Example 3.22] Let D = Z,[X,Y, W], I = (X2,Y2, XY, XW)D
be an ideal of D, and let R = D/I. Tt is not hard to check that if a — b is an
edge of AG(R), then either anng(a) € Ass(R) or anng(b) € Ass(R). Since
I'(R) = AG(R), the Question 2.8 has an affirmative answer.

(4) [5, Example 3.23] Let D = Z,[X,Y,W], I = (X2,Y2, XY, XW,
YW?3)D be an ideal of D, and let R = D/I. Thenlet x = X + I,y =Y +1
and w = W + I be elements of R. We have w — w? is an edge of AG(R),
anng(w) ¢ Ass(R) and anng(w?) ¢ Ass(R). Moreover, it is known that
I'(R) # AG(R).
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In the following theorem, for a non-reduced ring R, we provide condi-
tions under which I'(R) = AG(R).

Theorem 2.10 Let R be a non-reduced ring. Then the following state-
ments are equivalent:

(1) D(R) = AG(R) = K" VK", where n = |Nil(R)*| and m = |Z(R) \
Nil(R)};

(2) anngr(Z(R)) is a prime ideal of R;

(3) ¥* = Ass(R) and |X*| < 2.

Proof. (1) = (2) With no loss of generality, one may assume that m # 0.
Since I'(R) = K™V fm, every vertex of K™ is adjacent to all other vertices
of I'(R) and there is no edge between vertices of K. Thus annp(Z(R)) =
V(K™) U {O} zy # 0 and anng(x) = anng(y) = annr(Z(R)), for every
z,y € V(K"). Now, we show that anng(Z(R)) is a prime ideal of R. To see
this, let zy € anng(Z(R)), x ¢ anng(Z(R)) and y ¢ annr(Z(R)). Thus
x # y, and hence Z(R) = anng(zy) # anng(z) Uanng(y) = anng(Z(R)).
Therefore, © — y is an edge of AG(R), a contradiction. So, annr(Z(R)) is a
prime ideal of R.

(2) = (1) Assume that anng(Z(R)) is a prime ideal of R. Thus zy = 0,
for all z,y € anng(Z(R)), and zy # 0, for all z,y € Z(R) \ anng(Z(R)).
Now, it is not hard to see that T'(R)[anngr(Z(R))*] and T'(R)[Z(R) \
anngr(Z(R))] are two subgraph of I'(R) such that I'(R)[anng(Z(R))*] is
complet e, N'(R)[Z(R)\annr(Z(R))] is null and I'(R) = I'(R)[annr(Z(R))*]

VI'(R)[Z(R) \ anng(Z(R))]. To complete the proof, we have only to show
that T'(R) = AG(R). Let x,y be non-adjacent vertices of I'(R). Then
z,y,xy € Z(R) \ anng(Z(R)). Since anng(Z(R)) is a prime ideal of R, we
conclude that ann(x) = ann(y) = anng(zy) = anng(Z(R)), ie., z,y are
not adjacent in AG(R), as desired.

(2) = (3) Since anng(Z(R)) is a prime ideal of R, for every = €
Z(R)*, either anng(x) = anng(Z(R)) or anngr(x) = Z(R). Hence ¥* =
{annr(Z(R)),Z(R)} and so ¥* = Ass(R) and |X*| < 2.

(3) = (2) Let anng(x) and anng(y) be elements of ¥*. Since ¥* =
Ass(R), by Corollary 2.6, I'(R) = AG(R) and hence it follows from [5, The-
orem 3.15] that Z(R) is an ideal of R. This, together with the fact Z(R) =
anng(z) U anng(y) imply that either anng(x) C anng(y) or anng(y) C
anng(z). With no loss of generality, suppose that anng(z) C anng(y).
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Thus Z(R) = anng(y). Now, we have only to show that anng(z) =
anngr(Z(R)). We consider the following two cases:

Case 1. Let a,b € anngr(z). Then either anng(a) = anng(z) or
anng(a) = Z(R). Thus ab = 0.

Case 2. Let a € anng(z) and b ¢ anng(z). Then it is easily seen that
anng(b) = anng(x) and so ab = 0.

The proof is complete. O

Theorem 2.11 Let R be a non-reduced ring and |X*| < 2. IfI'(R) =
AG(R), then ¥* = Ass(R).

Proof.  Assume that z,y € Z(R)* and ¥* = {anng(z),anngr(y)}. So
Z(R) = anng(x) Uanng(y). Since I'(R) = AG(R), by [5, Theorem 3.15],
Z(R) is an ideal of R and so either anng(x) C anng(y) or anng(y) C
anng(z). With no loss of generality, suppose that anng(z) C anng(y).
Since Z(R) = anng(y), we have only to show that anng(z) is a prime ideal
of R. Let ab € anng(z), a ¢ anng(z) and b ¢ anng(z). If ab # 0, then z—a
is an edge of AG(R), by definition, and thus za = 0 (since I'(R) = AG(R)),
which is impossible. So a € anng(b). On the other hand, we know that
anng(b) = anng(z) or anngr(b) = anng(y). If anng(b) = anng(z), then
ar = 0, a contradiction. If anng(b) = anng(y), then it is easily seen that
bx = 0, again we get a contradiction. Hence ¥* = Ass(R). U

To characterize non-reduced rings whose annihilator graphs are star, the
following lemma is needed.

Lemma 2.12 Let R be a non-reduced ring and © € Z(R) \ Nil(R). If
" = 2" where n is a positive integer, then gr(AG(R)) < 4.

Proof. Since 2" = z"*! for some z € Z(R) \ Nil(R), there exists an
element e € Z(R)* such that e = €. So by Brauer's Lemma (see [6, 10.22]),
R = Re x R(1 —e). Hence we may assume that R = Ry x Ry. With no loss
of generality, one may assume that there exists a € Nil(Ry)* and a? = 0.
Therefore, (1,0)(0,a) = (1,0)(0,1) = (0,0) and (1,a)(0,1) = (0,a). Thus
anng((0,a)) # anng((1,a))Uanng((0,a)). So (1,0)—(0,1)—(1,a)—(0,a)—
(1,0) is a cycle of length four. O

Theorem 2.13 Let R be a non-reduced ring such that R is not ring-
isomorphic to Zox B, where B = 7y or B = Zs[X|/(X?). Then the following
statements are equivalent:
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gr(AG(R)) = o0;
AG(R) is a star graph;

G(R) is a bipartite graph;

G(R) is a complete bipartite graph;

¥ = Ass(R) = {anng(z), anng(y)}, for some z,y € Z(R). Fur-
thermore, if anng(x) = anng(y), then |anng(z)| = |Z(R)| = 3.
And if anng(x) # anng(y), then ¥* = {Z(R), anng(Z(R))} and
lanng(Z(R))*| = 1.

Proof. (2) = (3) is clear and (3) = (4) follows from [5, Theorem 2.2].

(5) = (1) If |Z(R)| = 3, then obviously AG(R) = K?. Moreover, if
lanng(Z(R))*| = 1, then the result follows from Theorem 2.10.

(1) = (2). By [5, Theorem 3.10], |Nil(R)*| < 2. First assume that
|INil(R)*| = 2 and Nil(R)* = {a,b}, for some elements a,b € R. It is easy
to see that a = —b, and thus anng(a) = anng(b). Since gr(AG(R)) = oo, by
Part (2) of Lemma 2.1, AG(R) = K"!. Now, assume that Nil(R)* = {a},
for some a € R. Thus Nil(R) is a minimal ideal of R and so anng(a) is a
maximal ideal. We show that Z(R) = anng(a). Assume to the contrary,
there exists © € Z(R)\ anng(a). Since anng(a) is a prime ideal, anng(z) C
anng(a). Let y € anng(x) (since xa # 0 so y # a). If y™ = y" 1, for some
positive integer n, then Lemma 2.12 implies that gr(AG(R)) < 4, which is
a contradiction. Also, if y™ # y"T1, then x —y™ —a — y" ! — z is a cycle of
length four, a contradiction. So Z(R) = anng(a) and hence a is adjacent to
all other vertices. This, together with gr(AG(R)) = oo, implies that AG(R)
is a star graph.

(4) = (5). Let AG(R) be complete bipartite. By [5, Corollary 2.10],
I'(R) = AG(R). It follows from the proof of (1) = (2) that |[Nil(R)*| < 2.
If INil(R)*| = 2, then it is easy to see that ¥* = Ass(R) = {anng(x)}
and |anng(z)| = |Z(R)| = 3. So, assume that |Nil(R)*| = 1. For the
unique element a € Nil(R)*, by Theorem 2.3 (2), anng(a) is a prime
ideal of R. Now, let x € Z(R) \ anngr(a). Since AG(R) is a complete
bipartite graph and T'(R) = AG(R), we infer that anng(a) = anng(z).
Since |Nil(R)*| = 1 and za # 0, we conclude that za = a and so
r —1 € anng(a) = anng(z). Thus z = 22 and hence by Brauer's Lemma
(see [6, 10.22]), R is a decomposable ring. This contradicts [5, Theo-
rem 3.15]. Therefore, Z(R) = anng(a). Now, it is not hard to see that
anng(z) = anng(Z(R)), for every a # x € Z(R)*, and |X*| = 2. Thus by

\V)

N N S S
=~ W
— — —— ~— ~—

at
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Theorem 2.11, ¥* = Ass(R) = {Z(R), anng(Z(R))}. O

Theorem 2.13, [5, Theorem 3.6] and [5, Theorem 3.16] lead to the fol-
lowing corollaries.

Corollary 2.14 Let R be a ring. Then AG(R) is a complete bipartite
graph if and only if one of the following statements holds:

(1) Nil(R) = (0) and |[Min(R)| = 2;
(2) Nil(R) # (0) and either AG(R) = K", or AG(R) = K?3, where
1 <n<oo.

Theorem 2.13 provides an alternate proof for [5, Theorem 3.18|.

Corollary 2.15 ([5, Theorem 3.18]) Let R be a non-reduced commutative
ring with |Z(R)*| > 2. Then the following statements are equivalent:

(1) AG(R) is a star graph;

(2) gr(AG(R)) = oo

(3) AG(R) =T'(R) and gr(I'(R)) = oc;

(4) Nil(R) is a prime ideal of R and either Z(R) = Nil(R) = {0, —w, w}
(w # —w) for some nonzero w € R or Z(R) # Nil(R) and Nil(R) =
{0, w} for some non-zero w € R (and hence wZ(R) = {0});

(5) Either AG(R) = K or AG(R) = K1°°;

(6) Either T'(R) = K%' or T(R) = K1°°.

Proof. (1) = (2) and (1) = (3) are clear and (2) = (1) and (3) = (1)
follow from Theorem 2.13.

(1) & (4) It is easy to see that AG(R) is a star graph if and only if
cither T(R) = AG(R) = K2V K" or I'(R) = AG(R) = K' VK. Now, by
Theorem 2.10, AG(R) is a star graph if and only if Nil(R) is a prime ideal
of R and one of the following holds:

(i) Z(R) = Nil(R) = {0, —w,w} (w # —w), for some non-zero w € R.
(ii) Z(R) # Nil(R) and Nil(R) = {0, w}, for some non-zero w € R (put
|Nil(R)*| = n in Theorem 2.10).

(5) = (1) is obvious and (1) = (5) follows from the proof of Theorem
2.13.

(1) = (6) is easily obtained by Theorem 2.13 and its proof.

(6) = (1) is obvious by [5, Theorem 3.17]. O



116 M. J. Nikmehr, R. Nikandish and M. Bakhtyiari

Let  be a vertex of AG(R) which is adjacent to every other vertex. In
the following theorem, we provide conditions under which x is adjacent to
every other vertex in I'(R).

Theorem 2.16 Let R be a ring and ¥ = {anng(x)|0 # = € R}. Then
the following statements are equivalent:

(1) z is adjacent to every other vertez in I'(R);
(2) anng(z) is a maximal element of ¥ and x is adjacent to every other

vertex in AG(R).

Proof. (1) = (2) Suppose that x is adjacent to every other vertex in I'(R).
Then by Part (2) of [5, Lemma 2.1], = is adjacent to every other vertex in
AG(R). Also, by [3, Theorem 2.5], anng(z) is a maximal element of 3.

(2) = (1) Suppose that anng(x) is a maximal element of ¥ and x is
adjacent to every other vertex in AG(R). To complete the proof, we consider
the following two cases:

Case 1. Let x € anng(z). We claim that Z(R) = anng(z). Assume
to the contrary, y € Z(R) \ anng(x). So zy # 0 and since anng(x) is a
maximal element of 3, we conclude that anng(zy) = anng(y) U anng(z),
a contradiction. Hence Z(R) = anng(x) and so the claim is proved. Thus
x is adjacent to every other vertex in I'(R).

Case 2. Let z ¢ anng(x). Since anng(x) is a prime ideal of R,
a™ # 0, for every positive integer n. If x # 2, then anng(x) S anng(x?),
a contradiction. Thus z = 22 and so R =& Rz x R(1 — z). Hence we
may assume that R = Ry X Ry where (1,0) adjacent to every other vertex.
Now, we show that Ry = Zs and R, is an integral domain. To see this, let
a € Ry \ {0,1}. Obviously, (1,0)(a,0) = (a,0), i.e., (1,0) is not adjacent
to (a,0), a contradiction. Also, if Z(R3) # 0, then for any z € Z(Ry)*,
(1,0)(1,z) = (1,0). That means (1,0) is not adjacent to (1,x) which is
impossible. Thus Ry 2 Zy and Rs is an integral domain. Now, by [3,
Theorem 2.5], x is adjacent to every other vertex in I'(R). O

Proposition 2.17 Let R be a non-reduced ring and for every x € Z(R)*,
set ¥, = {anng(z%)}, where i € N. Then the following statements are
equivalent:

(1) AG(R) is a complete graph and || < oo, for every x € Z(R)*;
(2) Z(R) = Nil(R).
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Proof. (2) = (1) is easily obtained by [5, Theorem 3.10].

(1) = (2) Suppose that € Z(R) \ Nil(R). If 2" = 2"!, where n
is a positive integer, then by the proof of Lemma 2.12, AG(R) is not a
complete graph, a contradiction. So z¢ # z't!, for every i € N. Since
|X.| < 0o, anng(x?) = anng(xiTh), for some i € N. This implies that z — z°
is not an edge of AG(R), unless xz* = z*t! = 0, a contradiction. Thus
Z(R) = Nil(R). O

In view of above proposition, we have the following corollary.

Corollary 2.18 Let R be a non-reduced ring such that Z(R) # Nil(R),
and let AG(R) be a complete graph. Then:

(1) T(R) # AG(R);
(2) R is not a Noetherian ring.

Proof. (1) By Theorem 2.17, there is an element x € Z(R)* such that
|¥.| = 0o, and so z ¢ Nil(R). If 2™ = 2™*!, where n is a positive integer,
then by proof of Lemma 2.12, AG(R) is not a complete graph, a contradic-
tion. So x? # x't1, for every i € N. Now, z — 2° is not an edge of I'(R).
Hence T'(R) # AG(R)

(2) Suppose that x € Z(R) \ Nil(R). Since AG(R) is a complete graph,
|¥2] = oo, and so the chain anng(z) C anng(z?) C -+ C anng(z?) C ---
will not stabilize. Thus R is not a Noetherian ring. O

We close this paper with the following example which is devoted to the
study of relation between two graphs I'(Z,,) and AG(Z,,).

Example 2.19 Let R = Z,,. If Z,, is not local, then I'(Z,,) = AG(Z,,) if
and only if n = pq for distinct prime numbers p,q. Moreover in this case
[(Z,) = Kp~1a=1 If Z, is local, then T'(Z,) = AG(Z,) if and only if
n = p?, where p is a prime number. Moreover in this case I'(Z,) = KP~!.
For instance it is easy to see that I'(Z1g) = K'* = AG(Z10). Also, for local
rings Zgs and Zg, we can easily check that I'(Zgs) = K* = AG(Zas), but
F(Zg) = K1’2 7é K3 = AG(Zg)
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