Hokkaido Mathematical Journal Vol. 46 (2017) p. 41-86

Differential systems associated with partial differential equations

of several unknown functions
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Abstract. From Realization Lemma established by N. Tanaka, differential systems
may be regarded as systems of first order differential equations. We characterize the
geometric structure of systems of second order partial differential equations of several
unknown functions in terms of differential systems and seek a system of equations the
Lie algebra of all infinitesimal automorphisms of which is simple.
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1. Introduction

We will treat with differential systems associated with systems of
second order partial differential equations of several unknown functions. A
differential system D on a manifold M is a subbundle of the tangent bundle
TM of M. Here, we assume that equations never contain an equation
of first order (Condition (R.0) in Section 2.4). According to Realization
Lemma, which is established by N. Tanaka ([19]), any differential system
corresponds to a system of differential equations of first order (Section
2.2). Regarded as a system of equations of first order, a system of partial
differential equations of second order is expected to be characterized as a
structure of differential systems with some conditions. K. Yamaguchi pro-
vided, in terms of differential systems, a geometric formulation of systems
of second and higher order partial differential equations of one unknown
function satisfying “submersion condition” such as Condition (R.0), where
this geometric structure is called a PD-manifold (R; D', D?) ([19]). In
contrast, we formulate the structure of systems of second order equations
of several unknown functions satisfying Condition (R.0) and characterize
as a triplet (R; D', D?) of differential systems D! and D? on a manifold
R, called a PD-manifold, satisfying the conditions from (R.1) to (R.6) in
Section 2.4. There exist subbundles F of D! satisfying F C D! in each
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case. As compared with one unknown function, such system F' is uniquely
determined for each system of equations of several unknown functions, and
moreover F' is completely integrable if the number of unknown functions
are more than three. We give an example of PD-manifolds of finite type
and show that it is associated with a pseudo-product GLA of irreducible
type (I,5), which was introduced by Y. Se-ashi ([13]). Finally, from the
viewpoint of parabolic geometry ([17], [26]), we seek a PD-manifold the
Lie algebra of all infinitesimal automorphisms of which is a simple graded
Lie algebra of type (X;,A;) over C. Such simple graded Lie algebras
g=mo® @gzo gp of type (X, A1) must satisfy that 4 = 3 and dimg_3 > 2,
where m = @;:1_ . Opis the negative part of g. From Dynkin diagram, we see
that the following types satisfy this necessary condition: (A;, {a;, a;, ax})
(I1<i<j<k<l(ik)#(10), (B,{a,a;}) B3<i<I), (C,{a,a})
2<i<li-1), (Di{or,}) B3<i<l-2), (D, {ai,aq}) B3<i<I-2),
(D17 {ah Q—1, al})v (E67 {044}), (E67 {alv a3})7 (E67 {a17 a5})7 (E77 {043}),
(E7’ {045}), (E77 {012, a7})v (E77 {a67 047}), (ES’ {QQ})’ (E87 {017}), (F4v {042})
and (G2, {a1}) up to Dynkin diagram automorphism. For (A;, {a;, a;, ax})
type, the differential system of type m corresponds to a system of second
order equations of i(l — k + 1) (> 2) unknown functions that does not
satisfy Condition (R.0), namely contains a system of equations of only
first order. We construct a model equation of this type in Section 2.6.1.
The simple Lie algebras of type (Ci,{a;,a1}), (Di,{cai,au}), (Eg,{a1,a3})
and (E7,{as,ar}) have pseudo-product structures ([26]). For the simple
Lie algebras of type (Bj,{a1,a;}), (Di,{a1,a;}), (Di,{a1,u—1,a:}),
(E67{a4})7 (Eﬁv{alﬂo%})? <E77{a3})7 (E7,{O¢5}), (E7,{042,047}),
(Es,{a2}), (Es,{azr}), (Fi,{az}) and (G2,{a1}), some of which be-
long to Gao-geometry ([22]), differential systems of type m correspond
to systems of second order equations of several unknown functions that
have no solutions (Proposition 2.10). While there are many examples of
PD-manifolds of simple graded Lie algebra of type (X;, A1) among systems
of equations of one unknown function, there are not among systems of
equations of several unknown function (Theorem 2.7). As can be seen in
the uniqueness of the differential system F', that appears to be the cause of
the number of unknown functions (Remark 2.5 in Section 2.4). Regardless
of Condition (R.0), a connection with Ga-geometry of PD-manifolds of
one unknown function and the geometry of (A;, {a, @, ax}) type deserve
further investigation.
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Now let us describe the contents of each sections. In Section 2 we
recall the definitions of differential systems and their covariant systems,
and the jet space (J(M,n),C) of first order. Realization Lemma plays
an important role in the characterization and identification of systems of
partial differential equations, which is stated in Section 2.2. In addition we
recall the jet space J2?(M,n) of second order, symbol algebras of differential
systems, the prolongation of symbol algebras and simple graded Lie algebras
in Section 2.3. In Section 2.4 we clarify the conditions that differential
systems associated with systems of second order partial differential equations
of several unknown functions with Condition (R.0) should satisfy, namely
the condition from (R.1) to (R.6). Conversely, these conditions characterize
such equations in terms of differential systems (Theorem 2.4). Section 2.5
shows an example of a PD-manifold the prolongation of the symbol algebra
of which is a pseudo-product GLA of irreducible type. In Section 2.6, by
the description of the gradation of each simple Lie algebra of type (X;, A1)
satisfying the necessary condition p = 3 and dimg_3 > 2, which are listed
above, we proof Theorem 2.7.

Throughout this paper, we work in C'°°-category or complex analytic
category.

2. Preliminaries

In this section we recall the definitions and notations of various differ-
ential systems and Realization Lemma, which are used in the whole of this

paper.

2.1. Differential systems and various systems

A differential system D (or (M, D)) is a subbundle of the tangent bundle
TM of a (real or complex) manifold M. A differential system D is locally
defined by linearly independent 1-forms w?, ..., " as follows:

D:{wlz'--:wrz()},

where r is the codimension of D. An integral element v of the differential
system D at a point x € M is a subspace of T,, M such that w®|, = 0 and
dw®|, =0 for all 1 < a < r. An integral manifold of the differential system
D is a submanifold ¢ : N — M such that *@w® =0foralll <a<7r. A
function f on M is a first integral of D if df = 0 (mod D*), where D+ is
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the annihilater subbundle of T*M defined by
DYz)={weT:M |w(X)=0for X € T,M} forxzec M.

The k-th derived system 0% D is defined inductively as follows: If 9*~1D
is a differential system, then

"D =8""'D 4 [0"'D, 9" D]

where 0*D is the space of sections of 3*D and [, | is Lie bracket for vector
fields, and we put 8°D = D for convention. Precisely, 0*D is defined in
terms of sheaves (see [19]). When 0D coincides with D, D is said to be
completely integrable.

On the other hand, the k-th weak derived system %) D of D is defined
inductively by

WD =o*k-Ip 1 D, 9*-ND],

where 99 D = D and 9®)D is the space of sections of d¥) D. Let D~(k+1) =
O* D for k > 0. Note that D72 = 90D = dD. A differential system
(M, D) is regular if D% is a differential system on M for all £ > 2. For
a regular differential system (M, D), it is known ([16, Proposition 1.1], [22,
Section 2.4]) that

1. There exists a unique integer p > 0 such that
D=D'CD?2?C...CcDH*1CpDH=...=DF

for all k£ > p,
2. [D7P, D=9 c D~P*9) for all p, ¢ > 0,

where D~P is the space of sections of D™P. Note that D™# is the smallest
completely integrable differential system that contains D.
The Cauchy characteristic system Ch(D) of D is defined by

Ch(D)(z) ={X € D(z) | Xsdw® =0 (mod w,,..., o)) for 1 <a<r}

at each point z € R. If Ch(D) is a differential system, it is a completely
integrable system contained by D. Let p : R — M be a map between
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manifolds R and M and assume p is of constant rank. Let C be a differential
system on M. Differential systems p;!(C) and Ker p, are defined by

p. H(O)(z) ={X € T,R | p.(X) € C(p(x))},
Kerp,(z) = {X € TR | p.(X) = 0},

for x € R. Note that Ker p, is completely integrable.

2.2. Jet space (J(M,n),C) of first order and Realization Lemma
Let M be a (real or complex) manifold of dimension m+n. Let J(M,n)
be the Grassmann bundle over M. Namely each fiber J(M,n), over x € M

is the Grassmannian Gr(7T,M,n) consisting of all n-dimensional subspaces
of T, M:

J(M,n)= | J(M,n); —— M
reM

where II is the canonical projection of J(M,n) onto M. The canonical
system C on J(M,n), which is a differential system of codimension m, is
defined by

C(u) =TI (u) for u e J(M,n),

where the right hand side means the inverse image of the n-dimensional
subspace u of Tyj(,)M under the differential of II at .

Next we will give a canonical coordinate system (z°, 2%, p? (1 < a < m,
1 <i < n))of J(M,n). Let us fix a point u, of J(M,n). Let (x%, 2% (1 <
a <m,1<1i<mn)) bea coordinate system on a neighborhood U of II(u,)
such that dx!,...,dz™ are linearly independent on u,. Let U be the set
of all elements u € II-*(U) such that dz! A --- A dz™|, # 0, which is a
neighborhood of u,. By taking functions p{ on Uforl < a < m and
1 <i < nso that dz®|, — 3, pl(u)da?l, = 0 for u € U and 1 < b < m,
we have achieved an inhomogeneous coordinate system (z°, 2%, p? (1 < a <
m, 1 <i<mn))onU. It follows that the canonical system C' restricted on
U is described by the 1-forms
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w? =dz% — Zp?dmi forl<a<m (2.2.1)
i=1

and the Cauchy characteristic system of C' is trivial, i.e. Ch(C') = {0}.

The theory of submanifolds of (J(M,n),C) is regarded as the geometry
of systems of first order differential equations. Indeed, for a system of (reg-
ular) first order differential equations F(x?, 2%,02%/0x") =0 (1 < a < N),
where z and 2% are independent variables and unknown functions (depen-
dent variables) respectively, we have the submanifold R of J(K™*™ n) de-
fined by F*(x?, 2%, p?) = 0, where K = R or C. Conversely, a submanifold R
of J(M,n) is locally defined by some functions F'“(z¢, 2%, p¢) with a canon-
ical coordinate system (z?, 2%, p%).

Realization Lemma ([19]) Let R and M be manifolds and a map p :
R — M. Let D be a differential system on R. Assume that p is of constant
rank and F = Ker p, is a subbundle of D of codimension n. Then there exists
a unique map v : R — J(M,n) satisfying p = Lo and D = ¢ 1(C).
Indeed 1) is defined by

Y(x) = pe(D(x)) forxze€R (2.2.2)
and satisfies
Ker ¢, (z) = F(z) N Ch(D)(x).

Here, the right hand side of (2.2.2) means the image of the differential p. of
the subspace D(z) of T, R, which is considered as a point of J(M,n).

Note that Realization Lemma holds in complex analytic category with
suitable modification.

This lemma also says “any differential system is considered as a system
of differential equations of first order.” In fact, for a given differential system
(M, D), let us choose p as the identity map id : M — M. Then ¢ : M —
J(M,n) is defined as (2.2.2), where n = rank D, and we have Ker, = {0}.
Therefore M is immersed into J(M,n) and ¥ (C) = D.
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2.3. Systems of second order partial differential equations of sev-
eral unknown functions

2.3.1 Jet space (J?(M,n),C?) of second order

First we will recall the jet space (J2(M,n),C?) of second order in order
to treat with systems of second order partial differential equations of sev-
eral unknown functions ([20]). For convention, we put J°(M,n) = M and
(JY(M,n),CY) = (J(M,n),C), and write the projection II : J'(M,n) —
M as II}. Let Q' = Ker(II})., which is the differential system of codimen-
sion mn. J2?(M,n) is a fiber bundle over J!(M,n) whose fiber J2(M,n),
over x € J'(M,n) consists of all n-dimensional integral elements u of C! at
x which is transverse to Q' (x) C T,,J*(M,n), namely uNQ*(z) = {0}. The
dimension of J2(M,n) is n +m + mn + m - ,Ha, where ,,H, = (m+"_1).

n

The canonical system C? is defined by
C%(u) = () (u) for u € J*(M,n),

where 113 : J?(M,n) — J'(M,n) is the canonical projection. For a point
u, € J?(M,n), we have a canonical coordinate system (z°,2% p¢ (1 < a <
m, 1 < i < n)) on a neighborhood U of T12(u,) in J*(M,n). Let U be
a neighborhood of wu, that consists of all points u € II7}(U) such that
dz' A <o ANdx™|, # 0. Let pg‘j for 1 <a<mand 1 <i, j<n be functions
on U such that dpbly — >0, 0% (u) da'l, = 0 for u € Uand1<b<m,
1 <j < n. Since dw®|, =0 for u € Uand1<b< m, we havepg’j :pé’»i for
1<b<m,1<i<j<n. Thus (2°,2%pf,p;(1<a<m,1<i<j<n))
forms a coordinate system on U, which is called the canonical coordinate
system of J?(M,n). The canonical system C? on U is given by
CP={w"=wl=01<a<m,1<i<n)}, (2.3.3)

where w?® = dz® — > plda’, wd = dp? — Y, _, p&.dzt.
2.3.2 Symbol algebras of regular differential systems

We will recall the symbol algebra m(z) of a regular differential system
(M,D) at = € M, introduced by N. Tanaka ([16]). Let D be a regular
differential system on a (real or complex) manifold M such that TM = D—*.
Set
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-1

m(z) = P ap(@),

g-1(x) = D7H(2), g—p(z) = D7P(x)/D7" (x) (p > 1).

Let m_, denote the projection of D~P(x) onto g_p(z). For X € g_,(z),
Y € g_4(x), the bracket product [X, Y] € g_(,44)(7) is well-defined by

[Xa Y] = ﬂ-—(p-i—q)([X? Y]z)a

where X and Y are vector fields taking values in D~P and D~9 respec-
tively such that 7_,(X,) = X and 7_,(¥,) = Y. Then m(z) is a nilpotent
graded Lie algebra over K = R or C with this bracket operation, such that
dimm(z) = dim M and satisfies the condition, called the generating condi-
tion,

0-p(2) = [g-pe1(2), g-1(@)] forp> 1.

The graded Lie algebra m(z) is called the symbol algebra of (M, D) at x.
Generally, m = @p<0 gp is called a fundamental graded Lie algebra of -
th kind if m is a nilpotent graded Lie algebra satisfying that g_, # 0 and
g_r = 0 for all £ > u, and the generating condition

g-p=I[0-pt1,0-1] forp>1.

For a fundamental graded Lie algebra m, (M, D) is of type m if the symbol
algebra m(z) of (M, D) is isomorphic to m at each = € M.

Conversely, given a fundamental graded Lie algebra m = @;:1_ . 9p of
p-th kind, we can construct a regular differential system (M (m), Dy,) of type
m, which is called the standard differential system of type m: Let M(m) be
the simply connected Lie group with Lie algebra m. Then we define a left
invariant subbundle Dy, of TM (m) by g_1. Then (M (m), Dy,) is a regular
differential system of type m.

Let m = @p <0 9p be a fundamental graded Lie algebra of p-th kind
over K. The prolongation g(m) = € 5 8p(m) of m is defined inductively as
follows ([21]):
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g—p forp>0,

vePo o0

1@
{

u([X, Y]) = [u(X), Y] + [X, u(Y)]},

g—p(m)
go(m)
ge(m) = Jue Popr@g;

p<0

u([X, Y]) = [u(X), Y] + X, u(Y)]}
for k > 0.

Now we will see that g(m) is a graded Lie algebra. The bracket operation
of g(m) is given as follows: First, for ug, uy € go, we define [ug, ug) € go by

[uo, up)(X) = ug(up(X)) — up(up(X)) for X € m.

Thus go(m) becomes a Lie algebra with this bracket operation. Moreover,
putting

[ug, X] = —[X, ug] = up(X) for up € go(m) and X € m,

we see that B, gp(m) is a graded Lie algebra.

Similarly, for ui € gr(m) (K > 0) and X € m, we put [ug, X] =
—[X, ug] = ur(X). For uy € gp(m) and w; € gi(m) (k, { > 0), by induction
on the integer k + [ > 0, we define [uk, u;] € gr4+i1(m) by

[uk, ul](X) = [uk, [ul, XH — [ul, [uk, XH for X € m.

Then it follows easily that g(m) is a graded Lie algebra with this bracket
operation.

It is known that the structure of the Lie algebra A(M(m), Dy,) of all
infinitesimal automorphisms of (M (m), Dy, ) can be described by g(m). Espe-
cially, A(M(m), Dy,) is isomorphic to g(m) when g(m) is finite dimensional.
For detail, see [16] and [21].

2.3.3 Symbol algebra ¢?(n,m) of (J?(M,n),C?)

We will recall the symbol algebra €2?(n,m) of the canonical system
(J2(M,n),C?) ([19]). Let M be a manifold of dimension m + n and
(J?(M,n),C?) the jet space of second order. Let us take the canonical
coordinate system (:Ei,z“,p‘;,p% (1<a<m,1<i<j<mn))ona neigh-
borhood U as in Section 2.3.1. Then we have a local coframe
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{w“,w?,dwi,dp?j(lgagm,1§i§j§n)},

where w® = dz% — Y pidat, wd = dp? — > p_, phda®. Let us take the
dual frame of this coframe

{8 o d 0

a,,i,(1ga§m,1§z’§j§n)},
0z Op} " dx* Opg

where

d 0
dri o az:

a=1k=1

Then we have

0 d] (4 14)0 1) 0
[ap‘“dw’“}_@“ 5>8pi (5'“ 6)(‘?19?’

9 d) 0
pe’ dxk | Foza

and

6(1)02:<8(Z‘1’8}?‘L’ciii(l<a<m’1<i<j<n)>7
i i

oFC? =TJ*(M,n).

Thus we see that the symbol algebra of (J?(M,n),C?) is isomorphic to
€2(n, m), which is defined as follows ([19]): Let V and W be vector spaces
of dimension n and m respectively. Set

Q:2(V7 W) = 62_3@62_2@Q:2_1,
2, =W, ,=WaV, ¢ =VaWaeSs2(V).

The bracket operations of €2(n,m) is defined through the pairing between
V and V* such that V and W ® S?(V*) are abelian subspaces of €2 .
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2.3.4 Graded simple Lie algebras

Let g be a simple Lie algebra over C. Let us fix a Cartan subalgebra b
of g. Let ® be the root system of g relative to h and choose a simple root
system A of ®. Then we have the root decomposition of g:

g= (aé.; g-a) Dho (S‘; ga>7

where ®T denotes the set of positive roots and g, =
{X eg]|h, X]=a(h)X for h € h} for a« € ®. Let us take a non-empty
subset Aj of A. Then A; induces the following gradation:

9=EP o =P 9-0,

PEZ Q€D
go:(@ga)@n@(@ga), 6= D oo
ae<1>8L aECDP)L QECI);L

where

) nk:p}.

ap €AY

l
ot =Jof, @ = {a:anak €t
k=1

p=>0

Moreover, the negative part m = @p <0 9p of g is a fundamental graded Lie

algebra. Let 6 denote the highest root of ®*. Writing 6 = 22:1 ni(0)a; for
some n;(0) € Z>¢, we have

H= Z nk(0),

€A

where 1 denotes the integer such that g, # 0 and g_(,41) = 0, namely m
is of p-th kind.

When g is a simple Lie algebra of type X, let (X;, A1) denote the simple
Lie algebra g with the gradation defined by A;.

Conversely, it is known that the gradation of any simple graded Lie
algebra over C satisfying the generating condition is obtained from some
Ay CA:
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Theorem 2.1 ([21]) Letg= @pEZ gp be a simple graded Lie algebra over
C satisfying the generating condition §_(,41) = [8—p, 9-1] forp > 0. Let X;
be the Dynkin diagram of g. Then g = @pGZ gp 15 tsomorphic to a graded
Lie algebra (X;, A1) for some Ay C A. Moreover (X;, A1) and (X, A}) are
isomorphic if and only if there exists a diagram automorphism ¢ of X; such
that (A1) = Al

In Section 2.6 we will seek a simple graded Lie algebra that is isomorphic
to the prolongation of the symbol algebra of second order partial differential
equations (or PD-manifolds (R; D!, D?)) of several unknown functions.

2.4. Characterization of partial differential equations
Let M be a (real or complex) manifold of dimension m +n (m, n > 2).
Let R be a submanifold of J2(M,n) satisfying the condition

p: R — JY(M,n) is submersion (R.0)

where p is the restriction of the projection I1 : J2(M,n) — JY(M,n) to R.
This condition implies that the system of second order partial differential
equations never contains an equation of only first order. Let ¢ : R —
J%(M,n) be the inclusion. Let D! and D? be differential systems on R
defined by the pullback by ¢ of 9C? and C? respectively. Let ', ..., @™ and
@i,..., @™ be 1-forms on J?(M,n) such that 9C? = {@w?* =0 (1 <a <m)}
and C? = {@*=w?=0(1<a<m,1<i<n)}. Then it follows from
Condition (R.0) that these forms w®, w{ are linearly independent at each
point of R and that
D'={w"=0(1<a<m)},

) ' (2.4.4)
D={w=wi!=01<a<m,1<i<n)}.

K2
Here, by our abuse of notation, we write t*w as w. Thus we see that

D' and D? are differential systems of codimension

m and m + mn respectively. (R.1)

From (2.3.3), there exist 1-forms w!,...,w™ on R such that the forms w?,
wf and w* are linearly independent at each point and dw® = ), w' A @}
(mod @ (1 < b < m)). Therefore we have
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oD? c D'. (R.2)
Since Ch(D') = {@" =w! =w'=0(1<a<m,1<i<n)},
Ch(D?') is a subbundle of D? of codimension n. (R.3)

Since dw® Aw! A+ Aw™ =0 (mod @w® (1 < b<m)) for 1 <a<m, we
have

D' is of Cartan rank n. (R.4)
By applying Realization Lemma to p : R — J1(M,n) and D? we obtain
Ch(D') n Ch(D?) = {0}. (R.5)

Because, we have the unique map ¢ : R — JY(JY(M,n),n) such that
p=1I'"o1 and D? = ¢ 1(C), where I" : J*(J*(M,n),n) — J(M,n) is
the projection and C is the canonical system of J*(J*(M,n),n). In fact, the
structure equation of D! and Condition (R.0) yield that Ker p, = Ch(D') C
D2. By definition, for v € R, we see that v(v) is a n-dimensional integral
element of (J1(M,n),C') and transverse to Q* = Ker(I1}).(p(v)). Namely
Y(v) € J2(M,n). From the uniqueness of 1, it follows that ¢ = ¢. Therefore
we obtain (R.5) from Realization Lemma.

Furthermore we will see that there exists an additional differential sys-
tem F in the following lemma:

Lemma 2.2 Let R be a (real or complex) manifold and D, D? differential
systems satisfying four conditions from (R.1) to (R.4). Then there exists a
unique subbundle F' of D' of codimension n such that OF C D'. Moreover,
F satisfies F N D? = Ch(D?') and is, if m > 3, completely integrable.

Proof. D' and D? are locally expressed as follows:
D'={w*=0(1<a<m)},
D ={w"=wl=0(1<a<m,1<i<n)},

g where w?, w? are linearly independent 1-forms. Condition (R.2) implies

dw® = (modwb,wé?(l <b<m,1<j<n) forl<a<m,and thus
dw® expressed as
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dw® = Zﬂ'gj Aw?  (mod @’ (1 < c<m)) (2.4.5)
b,j

with some 1-forms 7. It follows from Condition (R.3) that Ch(D') =
{w“ =wi = ﬂ'gi =0(1<a,b<m,1<i< n)} Now we will choose 1-
forms w* from {7} in order that w®, w{, w* are linearly independent. From
Condition (R.4), we may take 1-forms w!, ... ,w" such that w! A---A@™A
WA AW # 0 and dow® =0 (mod @, w? (1 <b<m,1<j<n)).
Substituting Equation (2.4.5) into the second equation, we obtain 7r§j =
(mod @*, @, w* (1 < ¢ <m, 1<k <mn)). Thus, from Condition (R.3),
we achieve

Ch(D")={w*=w!=w'=0(1<a<m,1<i<n)} (2.4.6)

and see that w®, w?, w’ are linearly independent. On the other hand, Con-
dition (R.4) allows us to write

dw® = Zwi Ard  (mod w® (1 <b<m)) (2.4.7)

with some 1-forms 7¢. From Condition (R.2), we have 7¢ = 0 (mod =,
@b, wl (1 <b<m,1<j<n)). It follows from (2.4.6) and (2.4.7) that
Ch(D%') = {wa =ml=w'=01<a<m,1<i< n)}, which implies that
w®, ¢, w" are linearly independent. Compared with (2.4.6), we may write
=30 AY wh + >, Byw! (mod w* (1 < ¢ < m)) with some functions
A?g, Bg;. Substituting this into ), w'AT¢ =0 (mod w?, w? (1 <b<m,

1 <j <n)), we obtain Bf; = Bj;. Replacing Afbj wé? by w{, we achieve

dw® = Zwi Aw?  (mod w’ (1 <b<m)). (2.4.8)

Let F be a subbundle of D! of codimension n defined by
F:{wa:wi:O(lgagm,1§i§n)},

which satisfies OF C D'. Then it follows that F N D? = Ch(D'). Now
we will see the uniqueness and complete integrability of F. Let F' be an
another subbundle of D! of codimension n satisfying OF C D!. Write F =
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{w“ =0'=01<a<m,1<i< n)} with some 1-forms &f. Since OF C
D, we have dw® = 0 (mod w®, @ (1 <b<m, 1< j<n)). By Equation
(2.4.8), we obtain w’ =0 (mod w’, @w?, & (1 <b<m,1<j<n)). Thus
we may write w’ = Db sz w;? (mod w®, & (1 <c<m,1<j<n)) with
some functions sz . Substituting them into Equation (2.4.8), we have, for
1 <a<m, B = BY and ng = 0 if b # a. It follows from m > 2 that
Bflj:Oforlgagmandlgi,jgn. Thus we achieve F = F.
Assume m > 3. Since

0 = d’w®

EZdwi/\wf (mod w’, w? (1 <b<m,1<j<n)),
i

we have dw’ = 0 (mod w?, w?,wj(lgbgm,1§j§n))foreach1§a§
mand1 <i<n.Form >3, dw' =0 (mod @’ /(1 <b<m,1<j<n)),

which implies that F' is completely integrable. ([

The above discussion yields a formulation of systems of second order
partial differential equations of several unknown functions:

Definition 2.3 Let D', D? be differential systems on a (real or complex)
manifold R satisfying the conditions from (R.1) to (R.5) and the condition

F is completely integrable, (R.6)

where the differential system F' was defined in Lemma 2.2. Then we call the
triplet (R; D', D?) a PD-manifold.

Note that Condition (R.6) is satisfied automatically from (R.1) to
(R.4) unless m = 2. The following theorem implies that a PD-manifold
(R; D, D?) is regarded as a submanifold of (J2(M,n),C?):

Theorem 2.4 Let (R; D', D?) be a PD-manifold. Let F be the differential
system on R in Lemma 2.2. Assume that the space M = R/ F' of leaves of the

foliation is a manifold of dimension m+n. Then there exists an immersion
¢ : R — J?(M,n) satisfying D* = p;1(C?).
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JH(M,n) JHTN (M, n),n)
Y m ¢
R———> M = R/F R " JY (M, n)

Proof. Let p denote the canonical projection of R onto M. Then Kerp, =
F is a subbundle of D! of codimension n. By applying Realization Lemma
to p and D!, we see that there exists a unique map ¢ : R — J1(M,n)
satisfying p = 1§ o ¢ and D! = ¢1(C'), where 11§ : JY(M,n) — M
is the projection, and see that Ker, = Ch(D'). Moreover, by applying
Realization Lemma to the map v and D?, we see that there exists a map
o : R — JY(JY(M,n),n) as in the lemma. It follows from Condition (R.5)
that ¢ is an immersion. Finally we will show that ¢(v) is a n-dimensional
integral element of C' and ¢(v) N Ker(I1}).(¢(v)) = {0} for each v € R.
Since ¢(v) = ¥, (D?*(v)) and 9D? C D, we see that ¢(v) is a n-dimensional
integral element of C!. Tt follows from F N D? = Ch(D!) that ¢(v) N
Ker(I1}). (1(v)) = {0}. O

Remark 2.5 In the case of one unknown function, i.e. m = 1, we can also
consider a submanifold R of J*(M,n) satisfying Condition (R.0), where
dimM = n + 1. Let D' and D? be the restriction to R of 9C? and C?
respectively. Then D! and D? also satisfy the conditions from (R.1) to
(R.5) ([19]). However there are many subbundles F of D! of codimension n

such that OF C D'. In fact, there are independent 1-forms w, @, ..., w@n,
wl ... w" such that D! = {w =0}, D) ={w=w; =+ =w, =0} and
dw = Y, w' ANw; (mod @). Set F = {w=&'=---=0" =0}, where

O = Wt — Zj BY tz; for any functions B¥ satisfying B/* = B%. Then F
satisfies 9F C D? (of course, D? also satisfies 9D? C D). That is occurred
from the symmetric property of contact manifold.

Conversely, let R be a manifold and let D' and D? be differential sys-
tems on R satisfying the following conditions:

(R.1) D! and D? are differential systems of codimension 1 and n + 1 re-
spectively.

(R.2) OD* c D%

(R.3) Ch(D%) is a subbundle of D? of codimension n.
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(R.4) Ch(DY)(v) N Ch(D?)(v) = {0} at each v € R.

Then (R; D!, D?) is called a PD-manifold of second order, which is a char-
acterization of the structure of systems of second order partial differential
equations of one unknown function ([19], [22]). Compared with equations
of several unknown functions, those of one unknown function satisfy the
condition that D! is of Cartan rank n.

2.5. PD manifolds of finite type
We will seek an example of PD-manifolds of finite type by utilizing
fundamental graded Lie algebras and representation theory.

2.5.1 Symbol algebra of PD-manifold (R; D, D?)

We will define the symbol algebra s(x) = s_s(x) ®s_o(z) B s_1(x) of a
PD-manifold (R; D!, D?) at a point € R, following [19]. Let us fix a point
r€ Rand put D! = D2 D2 =D! and D=3 = TR. We set

s-3(x) = D7%(2)/D7*(x), s-2(2) =D7*(2)/D"(z), s-1(z) =D (a).

The bracket operation of s(z) is defined as follows: Let m_, denote the
projection of D™P(z) onto s_,(z) for 1 < p < 3. For X € s_,(x),Y €
s_q(x), the bracket product [X, Y] € 5_(,44)(2) is well-defined by

X, Y] = 7o (X, Vo),

where X and Y denote vector fields taking values in D™?(y) and D~%(y) at
cach point y € R respectively such that 7_,(X,) = X and 7_,(Y;) = Y.
Let f(z) = Ch(D')(z). It follows from (R.3) that f(x) is a subspace of
s_1(z) of codimension n. For X € s_q(z), since dw®(X,Y) = 0 for all

Y € D(z) if and only if [X, s_»(x)] = 0, we obtain
flx) ={X €s_1(x) | [X, s_2(x)] =0} . (2.5.9)

Let @? w? (1 <a <m, 1 <i<n) denote 1-forms defining D* and D? as
in (2.4.4). Since they are the restriction of the defining 1-forms of C?, we
see that s(x) is isomorphic to a graded Lie subalgebra of ¢2(n,m) satisfying
s_3(z) = €25, 5_o(x) = €2, and f(z) = Ch(0C?)(x) N T, R.

We assume Ch(D?') # {0}, namely f(z) # {0} at each point x € R in
what follows.
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If Ch(D') = {0}, applying Realization Lemma to the projection  :
R — M = R/F and D!, we have a map ¢ : R — J*(M,n) such that
7 =1} o4 and D' = ¢71(C'). Since Ker.(v) = F(v) N Ch(DY)(v) =
{0} for v € R and dim R = codim Ch(D!) = dim J*(M,n), R is locally
diffeomorphic to J(M,n). Therefore D? is completely integrable if R is
integrable.

Now we assume that there exists a n-dimensional integral element V' of
(R, D?) at each point z € R such that

s_i1(z) =V @&f(z),

where V' is an abelian subalgebra in s(x). By fixing a basis of s_3(z),
we identify s_s3(x) with a m-dimensional vector space W. It follows from
V N f(z) = {0} and (2.5.9) that s_5(z) is identified with W ® V* through
the bracket product [, | : s_2(z) X s_1(z) — s_3(z). Let p: f(z) —
W ® S?(V*) be a linear map defined by

p(f)(v1,v2) = [[f, v1], v2] € s_3(x) =W for f € f(x) and vy, vy €V,

which implies p(f)(v1,v2) = p(f)(ve,v1). Moreover, we see easily that p is
injective.
Thus, we obtain

s_3(z) =W, so(@) =WV, s_(z)=Vaei(),
f(x) Cc W e S*(V*).

In consequent two sections we will seek a PD-manifold (R; D', D?) of type
s=5_3®5_oPs_1, that is, PD-manifolds whose symbol algebra is isomor-
phic to

§=6_3D5 o2Ds5_1;

s 3=W, s o=WV" s ,=Vaf, (2510)

where W and V are vector spaces of dimension m and n, and f is a non-zero
subspace of W ® S?(V*). Here, especially we have

dims_5 =dims_3 - (dims_; — dimf),
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which will be utilized in Section 2.6.

2.5.2 Example of partial differential equations of finite type

We will consider an example of PD-manifolds (R; D', D?) of finite type
and see that it has a pseudo-product structure of irreducible type (I, S) ([13],
[25]):

Example 2.6 Let us consider the following system of second order partial
differential equations of two unknown functions z!, z? with three indepen-

dent variables x1, zo, x3 :

9z 9%z 0%t 0%
83:18:1:1 - 85628562 N 8%28373 N 81:381:3

=0 fora=1,2  (25.11)

Note that the system of equations of one unknown function

0%z B 0%z B 0%z B 0%z B
(%18951 - 81’281‘2 N 6(132(3(173 N 8.’1}38]}3 -

is known as a model equation of type (A4, {a1, @z, as}) ([22, Section 5.3]).
The system of equations (2.5.11) defines the submanifold R of J?(R%,2) and
differential system D on R as follows:

R={pl; =p5 =p33 =p33=0(a=1,2)}
D= (o' == o} =} = w} =} = o} =} = 0}

where (z°, 2%, pi,pg; (1 <a<2,1<4<j<3))is the canonical coordinate
system of J2(R?,2) and

wl =dzt — pldat — plda? — plda3,
w? =dz? — pidat — pida? — p3dad,
wi = dpi — plyda? — plyda3,

wy = dp; — pipda’,
w3 = dps — pigdz’,
wi = dp — pipda® — piyda’,
ws = dp3 — piyda’,

W3 = dpg - p%:a dz'.
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We obtain the symbol algebra m(z) = m of (R, D) at each point x as
follows:

m=g 3Dg-2®dg-1, g3=W, g2=WaV" g.1=Vaf
f=Wea o o) cWeS*(V,

where W and V is vector spaces of dimension 2 and 3 respectively, and
{el, e?, 63} is a basis of V*. Now we will see that the prolongation g(m) of
m is isomorphic to a pseudo-product GLA of irreducible type ([,.S) for some
simple graded Lie algebra [ of depth 1 and irreducible [-module S.

Let a = sl(2,R) and b = sl(3,R). Let us fix a Cartan subalgebra h®
of a (resp. h® of b) and let ®* (resp. ®°) be a root system of a (resp. b)
relative to b (resp. h?). Let us fix a simple root system A® = {a;} of ®¢
(resp. A® = {81, B2} of ®°). Then we have & = {£a;}, ®° = {£31, £/,
+(f1 + P2)} and the root decomposition of a (resp. b) relative to A® (resp.
A®):

a=b'e Pl b=b"e P g

aeda pedL

where g% = {X €a|[H, X]=a(H)X for H € h®} (resp. gg) is the root
space for a € ®* (resp. 3 € ®°). Let A} = {a1} = A% and A = {3} C
A®. They define gradations of a and b of depth 1 as follows:

a=a_1Dag>day, a+1 :gaiala aozbaa

b=b_1®bo®b1,  bri=glp Dolgup,) bo=0" ey Bap,
Let U be a vector space over R of dimension 2. Let [=1[_1 & [o & [; be the
reductive graded Lie algebra of depth 1 defined by

[=a®bogl(U), [a gl(U)]= b, gl(U)] =0,
11 =a11 Dby, lo=ay®bo®gl(U).

Note that the semisimple ideal =1l,0 [[_1, [1]@1; of [ coincides with a® b,
which is not simple (cf. [13], [25]).

Let {w{} and {w}, @i} be fundamental weights relative to A® and
A®. Let T° (resp. T®) be the irreducible a-module (resp. b-module) with
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highest weight ¢ (resp. @$). Then S = T*@T°®U is a faithful irreducible
[-module and decomposed as follows:

—1
S=P S Ss=VeVel S.=Welfaolfely)al,
p=-—3
Sa=VieVyel,

where Vit = V(w$), V& = V(@ — an), VE = V() © V(wh — o), V¥ =
V(w$ — (B1 + B2)) and V()) is the weight space with weight . Since
dimS_3=2,dimS_5 =6 and dim[_; = 3, it follows from the property of
S (see [13, Proposition 4.3.1] or [25, Lemma 2.1 (4)]) that S_5 is isomorphic
to W®V* where W =5_3and V =[_;. Namely [_; ® S is isomorphic to
m. Moreover, by direct calculation, we can see that the prolongation of m
is isomorphic to [P S.

2.6. Partial differential equations of simple type

In this section everything will be considered in complex analytic cate-
gory. We will seek a simple graded Lie algebra of type (X;,A;) that the
negative part m is isomorphic to the symbol algebra of PD-manifolds of
m (> 2) unknown functions. A necessary condition for this is that m is of
third kind and dimg_3 > 2. From extended Dynkin diagrams (see Figure
2.1 at page 63), the following are the simple graded Lie algebras of type
(X1, Ay) satisfying this necessary condition (cf. [4]): (A, {as, aj, ax}) (1 <
i <j<k<l(i,k)# (1,0), (B,{a1,a;}) B3<i <), (Cr,{ay,q}) (2 <
i <1-1), (D,{a1,05}) B<i<1-2), (D,{a,q}) B3<i<1-2),
(Di; {a, qu1,u}), (B, {aa}), (Es, {an,as}), (B, {a1,a5}), (E7,{as}),
(E7, {045}), (E77 {042, 047}), (E77 {aﬁv OW})? (E87 {O@})7 (Esv {CM7}), (F47 {0‘2})7
(G2,{a1}) up to Dynkin diagram automorphism.

However, we will see that there exist no such simple graded Lie algebras.
Precisely, we state as follows:

Theorem 2.7 Lets = @;:1_3 s, be a fundamental graded Lie algebra
satisfying (2.5.10). Then, for any simple graded Lie algebra g = @pGZ Op
of type (X1, A1), s is never isomorphic to the negative part m = @p<0 9p
of g. In other words, there are no PD-manifolds of type s such that the
prolongation of s is isomorphic to some simple graded Lie algebra.

Note that, among (X;, A1) listed above, (C,{a;, aq}) (2 < i <1-1),
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(D, {au,a}) 3<i<1-2), (Es,{a1,a3}) and (Er,{as,ar}) appeared in
Theorem 2.3 (a) of [26]. That is, they are the prolongation of m =1[_; & S
for some pseudo-product graded Lie algebra of type ([,S). In the case of
(Cr{ai,aq}) 2<i<l-1)and (D, {o,}) (3 <i<1-2), according
to Case (3) and (9) in Section 3 of [26], since dimg_o = dim[_;(= dim V)
and f = S_1, m cannot be isomorphic to s satisfying (2.5.10). In the case
of (Fs,{a1,as}), according to Case (2) in Section 4 of [26], since dimg_5 -
(dimg_; —dimf) — dimg_o = |®3|- (|®]| — |[¥!|) — |®F| > 0, m cannot be
isomorphic to s satisfying (2.5.10). In the case of (E7, {as, a7}), according
to Case (4) in Section 4 of [26], since dimg_3- (dimg_; —dimf) —dimg_o =
|®3| - (|®7] — |¥7]) — |®F] > 0, m cannot be isomorphic to s satisfying
(2.5.10).

Thus it is enough to investigate the other types: (A;, {a;, o, o }) (1 <
i<j<k<l (k) #Q,1), (B,{o1,a:}) 3<i<I), (D {a1,0:}) (3<
i < 1= 2)’ (Dl7{a17al*1’al})’ (E67{a4})’ (Eﬁa {041,045}), (E7’ {043}),
(E7’ {Oé5}), (E77 {()‘2’ O‘7})a (E8> {QQ})7 (ESv {047}), (F4v {QQ})7 (G27 {011}).

Remark 2.8 Especially (B, {a1,as3}), (D, {a1,as}), (D4, {a1,as,a4}),
(Es; {aa}), (Er,{as}), (E7,{ag, ar}), (Es,{ar}), (Fi,{az}), (G2,{a}) are
appeared in Ga-geometry ([22, Section 6.2]). They arise as reductions of
some PD-manifolds associated with systems of second order partial differ-
ential equations of one unknown function. We will see that they has no
solutions as systems of second order partial differential equations of two
unknown functions in Proposition 2.10 at page 74.

Now we begin to prove Theorem 2.7. Let (X;, A;) be one of the other

types.
Let ®; = {a € ®] | g_o C f}. Note that f = @aecbf 9. Indeed, let

o € ®f \ ®; and let X_, € g_, be a non-zero vector for a € ®;. By
definition, there exists 8 € ®J such that o/ + 3 € <I>§r. Taking a non-zero
vector Y € g_g, we have [X_o, Y] #0. If X =37 4+ A%X_4 € f, then

we have A% = 0 since [X, Y] = 0. Therefore X € Doca, 8-a-
We divide each cases (X;, A1) into sequent subsections:
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Al :
2 2
B] H O
-1 @
2 2 1
C: O O
-0 @ [ a;
1
[(t5] 2
Dl :
(¢5)
-0
1 2 3 2 1
Es: O O
7] as (o7} (¢4 Qg
2 Qa2
-0
2 3 4 3 2 1
E;: O O
) @y a3 @y s [£7] @y
2 Oz
2 4 6 5 4 3 2
Es B O O
21 a3 @y s g ary ag -0
3 O2
2 3 4 2
Fy: O O
-6 431 sz asg @y
3 2
Go Cc==0—90
ay ws -0

Figure 2.1. The Extended Dynkin Diagrams
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2.6.1 (A {aiaj,ar})-type (1 <i<j<k<I (4 k) #(1,1))
We easily see that the decomposition of ® with respective to A; is

ot = &F U ®F U P, where

o ={ap+-Fa+ - toj+ o tat+otag | 1<p<i k<g<l},

o ={ap+- it tajtota,|1<p<i, j<qg<k}
U{ap+-daj+tap+-Fag|i<p<jk<q<l},

Of ={ap+- o+ ta|1<p<i<qg<j}
Ufop+ o+ +agli<p<j<qg<k}
Uf{ap+-+ap+-+ag | j<p<k<q<l},

Oy ={ap+ - Faj+-Fag|i<p<j<qg<k}.

Then we obtain |®F| = i(l — k+ 1), |25 = i(k —j) + (j — i) — k + 1),

F | =i(j—i)+ (G =) (k=) + (k—=7)( —k+1) and dim | = (j —4)(k — j).
Therefore we have

@3] (|2f | — dimf) — | @]

=G —-1D)G+1)G -0 —k+1)+i(k—75)(1—k)(I—-k+2)>0,
(2.6.12)

which implies that m cannot satisfy (2.5.10).
Now we will describe a model equation of the PD-manifold of type
(Ar,{, o, a1}). We have the following matrix representation of sl(l + 1,

C) = @;__,ap of type (Ar, {0, aj, ar}):

(/0]o]o]|oO
ololofo
g = ZeM(I—k+1,i
g-3 olololo ( + 7Z) ;
Z|0l0/0
0lololo o
o 0 01010 PleM(k_]7Z)a
72— B
Pl OO0 f e Mt — k41,5 —4)
(\ 0 [~ |0]0
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0101 0 [ON] ¥ ot
X 0 0 0 1 J—41),
g_1= ! X2€M(l—k+1,k3_j)a )
O O oty
L\ 0 [o[x2]0 hd
Lyl 0] 0]0\]| LieMii), Lye M3 —i,j—i),
B 0 L2 010 || Lye M(k—j.k—3j),
o= 0 Ts| 0 || Lae MU-k+1,01—k+1), ’
L\ ofo]o]|Ls S trL; =0

g ={X|Xeg,} forl<i<3,

where M (a,b) denotes the space of all a x b matrices.
Now we recall the formula for the Maurer-Cartan form on M (m) by
N. Tanaka ([16, Section 2.3]):

Proposition 2.9 Letm = @;:173 gp be a fundamental graded Lie algebra
of third kind over R and (M (m), Dy,) the standard differential system of type
m. Let u_, denote the projection of m onto g_, for p =1, 2, 3, which may
be regarded as a g_p-valued function on m. Let n_, be the g_,-component
of the Maurer-Cartan form of M(m). Then n_, is expressed as follows:

1 2 1
-3 = du—g = g [u-2, du_1] = g fu-y, du—g] + = [u—1, [u_1, du_1]},

N—2 = dU,Q - = [’U,,l, dufﬂ, (2613)

Here, M(m) is identified with m by f = p o S, where p denotes the
projection of the affine transformation group AF(m) of m onto m and
S : M(m) — AF(m) is the injective homomorphism induced by the in-
jective homomorphism s of m into the Lie algebra af(m) of all infinitesimal
affine transformations of m defined by

= 1y u or .
S(X)(Y)—X+p;0p+q[p(X)v ¢Y)] for X, Y €m

Note that the same can apply to a fundamental graded Lie algebra of
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suitable modifications.

Now we consider the holo-

morphic differential system D, on the simply connected complex Lie group
M (m). By definition, we have the standard differential system Dy, of type

m as follows:

Dy ={n-3=mn_-2=0}.

With respect to the matrix representation of sl(l 4+ 1,C), we may write the

holomorphic functions u_,, as

0(0|0]0 0[0]0]0
0(0|0]0 0[0]0]0
U_3 = ) U2 = )
0(0|0]0 P 0]0]0
Z10(0]0 0| P[0]0
010010
X101 010
U_1 =
0O [F|O0]O
0 [0|X2]0
Substituting them for the formula, we have
01({0(0]|O0 0]01]0]0
01({0(0]|0 B 0]01]0]0
=0 fofolo | 2T el 0 Jofo |’
O [0|0]0 0 [62/0]0
and
Dy ={60¢ =6, =0, =0},
where

1 1 2 2
@0 - dZ - gPQXm —|— ngQPl - gXQdPl + gdPQXl

1
- X
+62

1
(FdX, — dFX;) — -

5 (XodF — dXoF)X,,
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1 1
9]_ :dP]_ - iFdX]_ 4’§Cl.};")(]_7

1 1
Oy =dPs, — §X2dF + ingF.

The exterior derivative of O is
1 1
dOg = —dXs A d<P1 + 2FX1> — d<P2 — 2X2F> ANdX;.

Putting

A~

. 1 N 1 N
P1:P1+§FX1, P2:P2—§X2F, X1 =-Xo, Xo=Xj,

we have

1. - A PO N DU
Oy = dZ — 3dXi(Pi + FXo) = 5(Py + XaF) dXy — 3 X1dF Xy

K0P+ AP,
0, = dP, — FdXs,
O, = dP, — dX F,
dOy = dX; AdP, — dPs A dXs,
dO1 = —dF A dXs,
dO, = dX; A dF.

67

Digressing from determinating of the model equation, we now show

theoretically that (M (m), Dy,) is immersed into a 2-jet space (J2(Q,n1), C?)

over some manifold (). From the structure equation of D,,, we have

ODw = {©p = 0},

Ch(0Dw) = {0 = 01 = Oy = dX; = dX, =0}, (2.6.14)

which are differential systems of codimension nz and n3 + ns + (ny — f)

respectively. Here, let n; = dimg_; for 1 <i <3 and f = dim . Putting
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F={6=dX, = dX, =0},

we see that I is a completely integrable differential system of codimension
n3 + (n1 — f). Let @ = M(m)/F be spaces of leaves of the foliation and
p: M(m) — @ the projection. Then Kerp, = F' is a subbundle of 0Dy,
of codimension n; — f. By applying Realization Lemma to p and 0D,,, we
see that there exists a unique map v : M(m) — JY(Q,n; — f) satisfying
p=Igoy and Dy, = 7 1(C), where Ilg : J*(Q,n1— f) — Q is the pro-
jection, and see that Ker ¢, = Ch(0Dy,). Moreover, by applying Realization
Lemma to ¢ and Dy,, we have a map ¢ : M (m) — J(JH(Q,n1—f),n1— f)
as in the lemma. Since Ker ¢, = Ker ¢, NCh(Dy,) = {0}, ¢ is an immersion.
Since p(v) = Y4 (Dn(v)) for v € M(m) and Dy, = ¥ (C'), we see that
©(v) is a (n1 — f)-dimensional integral element of C''. Moreover, it follows
from F'N Dy = Ch(0Dy) that o(v) N KerIlg, (¢ (v)) = {0}. Thus we have
o(v) € J3(Q,n1 — f). By the definition of ¢, we have Dy, = ¢, 1(C?). Note
that 1) = II30¢ is not a submersion, where I1? : J?(Q,n1—f) — J(Q,n1—
f) is the projection, since dim J'(Q,n; — f) —rankt = n3(ny — f) —na >0
(see (2.6.12)).

Jl(Qanl_f) Jl(Jl(Qanl_f)7n1_f)
S |
M(m) ——>Q=Mm)/F  M(m) ————J(Q,m — f)

Now we return to the calculation of the model equation. From F =
{@0 =dX] =dXs = 0}, we calculate

1, . 24 = 2 &~ 5 . .
@0 = d<Z — §X1FX2 + §X1P1 + 3P2X2> (mod Xm, dXQ)

Putting Z = Z — (1/3) X1 F X5 + (2/3) X, P, + (2/3) P, X5, we have achieved
a normal form of D,:

Op = dZ — dX, P, — PydXo,
O, = dP, — FdXs,
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Oy = dP, — dX, F.

From now on, fix index ranges 1 < o, 8 < i, i+1<m,n<yj, j+1<s,
t<k,and k+1<a,b<l+1. Setting

X1 = (x?), XQ = (y;n)7 F= (f'r?l)’ Z = (Zg), Pl = (p;;)v PQ = (qzm)a

we have

00 = (d: - S rhtst - S i)
t n a,
0, = <de -> f;‘idyZ> ,

0y = <dq§% =Y fhdsg )
t

Therefore we have a model equation of (A4;, {ay, aj,ar}) (1 <i<j<k<
l, (i, k) # (1, 1)) as follows:

a, m

gi{; :;E:O for a # b, a # 0,
022  0zb 028 Oz
dxg  0x%  Oyr  Oyp
9?28 0?28
(Ozgoxy 7 Oypoyn

where 2%, y7* and z¢ are independent variables and unknown functions re-
spectively.
Especially, a model equation of type (A4, {a1, az,as}) is

9n _ 0z 0n 0z _
8ZE2 - 8953’ 6:703 a 81'2 -
8221 8221 8222

8x18m1 N 89528952 - 8:E16:E1 - 07

where 1, o, x3 and 21, 2o are independent variables and unknown func-
tions respectively.
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2.6.2 (Bi,{a1,a;})-type (3 <i<1)

O ={og+ - +ap+20p1+-+20+ 420 | 1< p<i},
o ={ar+-Fa+-+op|i<p<l}
U{ar+- - +ai+- oy +20p00 ++ 2 | i <p<l}
U{ap + - +ag1+2a,+ +20+ 420 |1 <p<qg<i},
ofF ={a;+- -+, |1 <p<i}
Ufap+-+ai+ - +ag|l<p<i<qg<li}
Ufop 4+ +ait-+ag+2a1++20 [ 1<p<i<g<l}.

Then we see that ®; = (). In fact, for any a € @, there exists 3 € ®F
satisfying a + 3 € @3 according to the following list:

a € df B e dF
al+"'+ap
i 42042
(1<p<i—1) Qpt1 + -+ i1+ 205 + -+ 20
a1+t Q-1+ 205 + -+ 20

ap_‘_..._i_ai_‘_..._i_aq
l<p<i<g<l)

o041+ -+ 20 | a1t Fopt o Fait oy
(l<p<i<g<l)

Therefore we have f = {0}, which implies m cannot satisfy (2.5.10).

Now we will describe a model equation of the PD-manifold of type
(B, {ou,05}) (3<i<1). Let n =20+ 1 and let Ej be the identity matrix
of size k. We have

o(n,C) = {X € gi(n,C) | '’XJ +JX =0},

where
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J = E,_;
E;i 1

Then we have the following matrix representation of o(n,C) = @i:_3 gp of

type (B, {1, oi}):

o] o |o]o]o
o] o [o]olo
g_3 = ol o [o]o]o [|ZzeM@GE-1,1)},
z| o lololo
0]-zlololo
(/00| o |o|o
0lo] o [o]o || P eMmn-—2i1),
g0 = Plo] o Jofo ,
0lP| 0 [0]0 Py€o(i—1,C)
olol—tp|o]o
0olo] o 0 |o
xiJo] o | o Jol|| xemi-101),
g1 = 0 X,] 0 0 |0 ,
0]o0|-tx] 0 |o Xy e M(n—2i,i—1)
LN oo o [=xi]0
(/Lilo]o] o 0
0L 0] O 0 LieC,Lye M(i—1,i—1),
go = 0lo0Ls] 0 0 ,
ololo[-Zy] O Ls € o(n — 2i,C)
ololo] o [-,

gi={X|Xeg;} forl1<i<3.

With respect to the matrix representation of o(n,C), we may write the
projection u_, : m — g_,, as
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0| 0 |0]|0|0O 00| 0 |0O]O
0] 0 0|00 00| 0 |00
u_g=1\1 0] 0 (0]0]|0 |, u_o=\| P |0 0 |0[0 | (=
Z| 0 (0|0|0 0P| 0 |0]0
0|-*Z]0]0[0 010 |- |00
0|0 0 0 |0
Xi]0 0 0 (0
U_1 = 0 X2 0 0 0
010 |=X3 0 |0
01]0 0 X110
Substituting them for (2.6.13), we have
0 0 |0]0|0 010 0 |00
0 0 |0]0|0 010 0 |00
nas=1 0] 0 |0]0l0o |, nae=]®© 0] 0 [0]0
Oy 0 [0]0]0 062 0 |00
0 |-%©|0]0]0 0|0 |-%©1[0]0
and
Dy ={0g =06, =0, =0},
where

1 1 2 2
@0 - dZ - gPQXm - gth2P1 + thdel + gdP2X1

1 1
— EfXQ(XQdX1 —dX2X1) + 6(tXQaZX2 — d'X5X5) X1,

1 1
@1 == dP1 - §X2dX1 + idXQXl’
1

1
Oy = dP, + §tX2dX2 — 5cltXQXQ.

The exterior derivative of Qg is
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1 1
d®g = —d<P2 + 2tX2X2> ANdXq + thg VAN d(Pl + 2X2X1>.
Putting
. 1 . 1,
Py :1'31-1-59(2)(17 P2:P2+§X2X27
we have
1, 1, - 1,
Oy =dZ — g(Pg + ‘X9 Xo)dX; — ngg(Pl + XoX1) — 3 XodXo X1
2, . 2 .
+ 3 XodPy + gdPQXh
O, = dP, — X»dX,,
@2 = dpQ - th2X27

dOy = —dPy A dX; + d'Xs A dPy,
dO, = —dXo NdXq,
dOs = d'Xs A dXs.

Digressing from determinating of the model equation, we now show
theoretically that (M (m), Dy,) is immersed into a 2-jet space (J2(Q,n1), C?)
over some manifold (). From the structure equation of D,,, we have

0Dy = {6y =0},
Ch(0Dw) = {69 = 01 = O3 = dX; = d'X, = 0} = {0}, (2.6.15)

which are differential systems of codimension ng and ng + ng +n;. Here, let
n; =dimg_; for 1 <¢ < 3. Putting

F={6)=dX, =dX; =0} = {6 = dX; = dX, = 0},

we see that F' is a completely integrable differential system of codimension
n3 +ni. Let @ = M(m)/F be spaces of leaves of the foliation and p :
M(m) — @ the projection. Then Kerp, = F is a subbundle of 0Dy, of
codimension nq. By applying Realization Lemma to p and 0Dy, we see that
there exists a unique map ¢ : M(m) — J'(Q,n) satisfying p = Ilg o ¢
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and 0Dy, = ¥ (C), where Ilg : J'(Q,n1) — Q is the projection, and
see that Ker i, = F N Ch(0Dy) = {0}. Moreover, by applying Realization
Lemma to ¢ and Dy, we have a map ¢ : M(m) — J(J(Q,n1),n;1) as
in the lemma. Since Ker ¢, = Ker, N Ch(Dy,) = {0}, ¢ is an immersion.
Since p(v) = Y4 (Dn(v)) for v € M(m) and ¥, 1(C') = dDy,, we see that
©(v) is a ni-dimensional integral element of C!. Moreover, it follows from
F N Dy = {0} that p(v) N KerIlg, (¢(v)) = {0}. Thus we have p(v) €
J%(Q,n1). By the definition of ¢, we have Dy, = ¢;1(C?). Note that
dim J1(Q,n1) — dim M (m) = nzn; — ny > 0, namely ¢ is not submersion.

Now we return to the calculation of the model equation. From F =
{0p = dX; = dX; =0} = {09 = dX; = d'X3 = 0}, we calculate

1 2 A 2 .
@0 = d(Z — §tX2X2X1 + thgpl + 3P2X1) (mod Xm, thQ).

Putting Z = Z—(1/3)' X, X5 X1 +(2/3)' X5 Py 4+ (2/3) P, X1, we have achieved
a normal form of Dy,:

Op = dZ — d'Xo P, — Pyd X,
01 = dP, — X2dX;,
Oy = dPy — d'X5 X5.

Since (M (m), Dy,) is immersed into a 2-jet space J?(Q, n1), we should think
ni-dimensional integral elements and manifolds where dX; and dXs never
vanish. However, by d®; = —d X5 Ad X1, there are no such integral elements
and manifolds.

Now we generalize the above discussion as follows:

Proposition 2.10 Let m be a fundamental graded Lie algebra of third
kind and (M(m), Dy,) the standard differential system of type m. Assume
Ch(0Dw) = {0}. Then (M(m),Dy) is immersed into a 2-jet space
(J2(Q,n1),C?) and furthermore (M (m), Dy) has no ni-dimensional inte-
gral elements and manifolds, where n; = dimg_1.

Proof.  Let n_, be the g_,-component of the Maurer-Cartan form of M (m).
From (2.6.13) in Section 2.6.1, we have the structure equation of Dy,:
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dn-z = —[n-1, n-2],

2.6.16

dn—z = —%[77—17 n-1l, ( )

Therefore we have 0Dy, = {n—-3 = 0}. Let F = {n_35 =n_1 = 0}. It follows
from the above structure equation that F is completely integrable. Let
@ = M(m)/F be the space of leaves of the foliation and p : M(m) — @
the projection. By applying Realization Lemma to p and dD,,, we have a
unique map ¢ : M(m) — J'(Q,n1) such that p = llg o ¢ and Dy, =
Y1 (C), where Tg : JY(Q,n1) — Q is the projection. Then we have
Kervy, = F N Ch(0Dy) = {0}. Moreover, by applying Realization Lemma
to 1 and Dy, we have a map ¢ : M(m) — JY(J*(Q,n1),n1) as in the
lemma. Then ¢ is an immersion since Ker ¢, = Ker, N Ch(Dy) = {0}.
Since Dy, = ¥ 1(C1), p(v) is a ni-dimensional integral element of C'! for
v € M(m). It follows from F'N Dy = {0} that p(v) NKerllg (¢ (v)) = {0}
for v € M(m), which implies p(v) € J?(Q,n1). By definition of ¢, we see
that Dy, = ¢;1(C?). Thus we have found that (M (m), Dy,) is immersed
into (J?(Q,n1),C?). Regarding M(m) as a submanifold of J?(Q,n1), we
consider nq-dimensional integral elements v with the independence condition
n—1|, # 0. However, it follows from dn_ = —%[17_1, n—1] that Dy, has no
such integral elements. U

Jl(Qanl) Jl(Jl(Q7n1)vn1)

R

M(m) ——>Q=Mm)/F  M(m) ————J(Q,m)

2.6.3 (Dy,{a1,a;})-type (3<i<1—2)
CI’;':{041+'~-+Oép_1+204p+“'+20éi
+--~+2al_2+al—1+al|1<p§i}’
o ={ar+- ot tapi<p<l)
U{ar +-+ai+- -+ a2+ ar}

Ufar +- +ai+ -+ ap + 20,41
+ 2 2t ta |[i<p<l-3}
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U{ap + -+ ago1 + 200 + - + 20y
+o 2ot ta [ 1<p<qg<i},

f ={a1+ 4o, | 1<p<i}
Ufap+-F+ai+-Fa,|1<p<i<qg<l}
Ufap+-+ait+ - +aoto|l<p<i}

U{ap+ -+ a;+ - +ag1 + 20
+ 20t 1+ 1<p§z'<q§l—2},
Then we see that f = {0}, which implies that m cannot satisfy (2.5.10).
Let (M(m), Dy) be the standard differential system of type m. Since
f = {0}, we have Ch(0Dy,) = {0}. It follows from Proposition 2.10 that
(M(m), Dy,) is immersed into a 2-jet space (J2(Q,n1),C?), however Dy,
has no ni-dimensional integrable elements and manifolds. By counting the

number of roots in each ®;, we see that ¢ : M(m) — J*(Q,n1) as in
Proposition 2.10 is not submersion.

2.6.4 (Dy,{a1,q—1,01})-type

of ={a+--+au 1 +a}
U{ar+- 4 oap_1+20p 4+ + 200+ a1+og | 1 <p<Il-—2},
o ={ar+ -+ U{ar+ -+ o+ o}
Ufap+-+ar+a | 1<p<T—2}
U{ap+ -+ ag—1 + 24
+o 2 oty ta|l<p<g<l-1}
f ={a1+ 4o, |1<p<i—1}
Uf{ap+-- 4+ |1<p<i-1}
U{ap+-+aot+a|l<p<l-2}U{w},
Then we see that f = {0}, which implies that m cannot satisfy (2.5.10).
Let (M(m), Dy) be the standard differential system of type m. Since

f = {0} we have Ch(0Dy,) = {0}. It follows from Proposition 2.10 that
(M(m), Dy,) is immersed into a 2-jet space (J%(Q,n1),C?), however Dy
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has no ni-dimensional integrable elements and manifolds. By counting the
number of roots in each ®;, we see that ¢ : M(m) — J*(Q,n1) as in
Proposition 2.10 is not submersion.

2.6.5 (FEs,{as})-type
Let “ “ ¢ % “ denote the root ciay + - -+ + cgag of Eg.

@7 consists of the following roots:

12321 12321
1 2

@7 consists of the following roots:

01210 11210 01211 12210 11211 01221 12211

1 1 1 1 1 1 1
11221 12221
1 1

@ consists of the following roots:

00100 01100 00110 00100 11100 01110 01100

0 0 0 1 0 0 1
00111 00110 11110 11100 01111 01110 00111
0 1 0 1 0 1 1
11111 11110 01111 11111
0 1 1 1

Then we see that f = {0}, which implies that m cannot satisfy (2.5.10).

Let (M(m), Dy) be the standard differential system of type m. Since
f = {0}, we have Ch(0Dy,) = {0}. It follows from Proposition 2.10 that
(M(m), Dy,) is immersed into a 2-jet space (J?(Q,n1),C?), however Dy
has no n;-dimensional integrable elements and manifolds. By counting the
number of roots in each ®;, we see that ¢ : M(m) — JY(Q,n1) as in
Proposition 2.10 is not submersion.

2.6.6 (FEg,{a1,as5})-type
®7 consists of the following roots:

11221 12221 12321 12321
1 1 1 2
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@7 consists of the following roots:

11110 11111 11110 11111 11210 12210 11211

0 0 1 1 1 1 1
01221 12211
1 1

@ consists of the following roots:

10000 00010 11000 00110 00011 11100 01110

0 0 0 0 0 0 0
00111 00110 11100 01111 01110 00111 01111
0 1 1 0 1 1 1
01210 01211
1 1

Then we see that f = {0}, which implies that m cannot satisfy (2.5.10).

Let (M(m), Dy) be the standard differential system of type m. Since
f = {0}, we have Ch(0Dy,) = {0}. It follows from Proposition 2.10 that
(M(m), Dy,) is immersed into a 2-jet space (J2(Q,n1),C?), however Dy,
has no ni-dimensional integrable elements and manifolds. By counting the
number of roots in each ®;, we see that ¢ : M(m) — J*(Q,n1) as in
Proposition 2.10 is not submersion.

2.6.7 (Er,{as})-type

Let (Cl e C7) denote the root ciaq + - -+ + cray of Er,

q)?f consists of the following roots:

134321 234321
2 2

®J consists of the following roots:

122100 122110 122210 123210 123210 122111

1 1 1 1 2 1
122211 122221 123211 123221 123211 123321
1 1 1 1 2 1

123221 123321 124321
2 2 2
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@] consists of the following roots:

010000 110000 011000 111000 011100 011000

0 0 0 0 0 1
111100 111000 011110 011100 111110 111100
0 1 0 1 0 1
011111 011110 111111 111110 011111 111111
0 1 0 1 1 1
012100 112100 012110 112110 012210 112210
1 1 1 1 1 1
012111 112111 012211 112211 012221 112221
1 1 1 1 1 1

Then we see that f = {0}, which implies that m cannot satisfy (2.5.10).

Let (M (m), Dy) be the standard differential system of type m. Since
f = {0}, we have Ch(0Dy,) = {0}. It follows from Proposition 2.10 that
(M (m), Dy,) is immersed into a 2-jet space (J2(Q,n1),C?), however Dy,
has no ni-dimensional integrable elements and manifolds. By counting the
we see that ¢ : M(m) — JY(Q,n;) as in
Proposition 2.10 is not submersion.

2.6.8 (E7,{as})-type
@;{ consists of the following roots:

number of roots in each ®;

)

123321 123321 124321 134321 234321
1 2 2 2 2

@7 consists of the following roots:

012210 112210 122210 123210 123210 012211

1 1 1 1 2 1
112211 012221 122211 112221 122221 123211
1 1 1 1 1 1

123221 123211 123221
1 2 2
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@ consists of the following roots:

000100 001100 000110 011100 001100 001110

0 0 0 0 1 0
000111 111100 011110 011100 001110 001111
0 0 0 1 1 0
111110 111100 011111 011110 001111 111111
0 1 0 1 1 0
111110 011111 111111 012100 112100 012110
1 1 1 1 1 1
122100 112110 122110 012111 112111 122111
1 1 1 1 1 1

Then we have f = {0}, which implies that m cannot satisfy (2.5.10).

Let (M(m), Dy) be the standard differential system of type m. Since
f = {0}, we have Ch(0Dy,) = {0}. It follows from Proposition 2.10 that
(M (m), Dy,) is immersed into a 2-jet space (J2(Q,n1),C?), however Dy,
has no ni-dimensional integrable elements and manifolds. By counting the
we see that ¢ : M(m) — JY(Q,n1) as in
Proposition 2.10 is not submersion.

2.6.9 (E7,{az,ar})-type
@;” consists of the following roots:

number of roots in each ®;"

1

123211 123221 123321 124321 134321 234321
2 2 2 2 2 2

@7 consists of the following roots:

001111 011111 111111 123210 012111 112111

1 1 1 2 1 1
012211 122111 112211 012221 122211 112221
1 1 1 1 1 1

122221 123211 123221 123321
1 1 1 1
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@] consists of the following roots:

000001 000000 001000 000011 011000 001100

0 1 1 0 1 1
000111 111000 011100 001110 001111 111100

0 1 1 1 0 1
011111 011110 111111 111110 012100 112100

0 1 0 1 1 1
012110 122100 112110 012210 122110 112210

1 1 1 1 1 1
122210 123210

1 1

Then we see that § = {0}, which implies that m cannot satisfy (2.5.10).

Let (M(m), Dy,) be the standard differential system of type m. Since
f = {0}, we have Ch(0Dy) = {0}. It follows from Proposition 2.10 that
(M(m), Dy,) is immersed into a 2-jet space (J?(Q,n1),C?), however Dy
has no ni-dimensional integrable elements and manifolds. By counting the
number of roots in each ®;, we see that ¢ : M(m) — J'(Q,n1) as in
Proposition 2.10 is not submersion.

2.6.10 (Es, {ag})—type
Let “ “ g2 % “ 7% denote the root ciaq + - -+ + cgag of Eg.

@;{ consists of the following roots:

1354321 2354321 2454321 2464321 2465321 2465421 2465431
3 3 3 3 3 3 3
2465432
3

@7 consists of the following roots:

1232100 1232110 1232210 1233210 1243210 1343210 2343210
2 2 2 2 2 2 2

1232111 1232211 1233211 1232221 1243211 1233221 1343211
2 2 2 2 2 2 2

1243221 1233321 2343211 1343221 1243321 2343221 1343321
2 2 2 2 2 2 2

1244321 2343321 1344321 1354321 2344321 2354321 2454321
2 2 2 2 2 2 2
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@ consists of the following roots:

0000000 0010000 0110000 0011000
1 1 1 1
1111000 0111100 0011110 1111100
1 1 1 1
0111111 1111111 0121000 1121000
1 1 1 1
0122100 1221100 1122100 1222100
1 1 1 1
0122110 1221110 1122110 0122210
1 1 1 1
1232110 1232210 1233210 0121111
1 1 1 1
1221111 1122111 1222111 1122211
1 1 1 1
1122221 1232211 1222221 1233211
1 1 1 1

1110000
1
0111110
1
0121100
1
1232100
1
1222110
1
0122111
1
0122221
1
1232221
1

0111000
1
0011111
1
1221000
1
0121110
1
1122210
1
1121111
1
1232111
1
1233221
1

0011100
1
1111110
1
1121100
1
1121110
1
1222210
1
0122211
1
1222211
1
1233321
1

Then we see that f = {0}, which implies that m cannot satisfy (2.5.10).

Let (M(m), Dy,) be the standard differential system of type m. Since
f = {0}, we have Ch(0Dy,) = {0}. It follows from Proposition 2.10 that
(M(m), Dy,) is immersed into a 2-jet space (J2(Q,n1),C?), however Dy,
has no ni-dimensional integrable elements and manifolds. By counting the
number of roots in each ®;, we see that ¢ : M(m) — J*(Q,n1) as in
Proposition 2.10 is not submersion.

2.6.11 (Es,{ar})-type
q)?f consists of the following roots:

2465431 2465432
3 3

®J consists of the following roots:

0122221 1122221 1222221 1232221
1 1 1 1

1233321 1243221 1233321 1343221
1 2 2 2

1244321 2343321 1344321 1354321
2 2 2 2

2354321 2454321 2454321 2464321
3 2 3 3

1232221
2

1243321
2

2344321
2

2465321
3

1233221
1

2343221
2

1354321
3

2465421
3

1233221
2

1343321
2

2354321
2
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@] consists of the following roots:

0000010 0000110 0000011 0001110

0 0 0
0111110 0011111 0011110
0 0 1
1111111 1111110 0111111
0 1 1
1221110 1122110 0122210
1 1 1
1232210 1232110 1233210
1 2 1
2343210 0121111 0122111
2 1 1
1222111 1122211 1232111
1 1 1
1233211 1233211 1243211
1 2 2

0
1111110
0
1111111
1
1222110
1
1232210
2
1121111
1
1222211
1
1343211
2

0000111
0
0111111
0
0121110
1
1122210
1
1233210
2
0122211
1
1232111
2
2343211
2

0011110
0
0111110
1
1121110
1
1222210
1
1243210
2
1221111
1
1232211
1

83

0001111
0
0011111
1
0122110
1
1232110
1
1343210
2
1122111
1
1232211
1

Then we see that f = {0}, which implies that m cannot satisfy (2.5.10).
Let (M(m), Dy) be the standard differential system of type m. Since
f = {0}, we have Ch(0Dy) = {0}. It follows from Proposition 2.10 that
(M(m), Dy,) is immersed into a 2-jet space (J?(Q,n1),C?), however Dy,
has no ni-dimensional integrable elements and manifolds. By counting the
see that ¢ : M(m) — J(Q,n1) as in
Proposition 2.10 is not submersion.

number of roots in each @;F, we

2.6.12 (Fy,{az2})-type

Let (¢1 c2 ¢3 cq4) denote the root ciaq + -+ + cqay of Fy.

<I>§r consists of the following roots:

1342 2342

@7 consists of the following roots:

1220 1221 1231 1222 1232 1242
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@ consists of the following roots:

0100 1100 0110 1110 0111 1111
0120 1120 0121 1121 0122 1122

Then we see that f = {0}, which implies that m cannot satisfy (2.5.10).

Let (M(m), Dy) be the standard differential system of type m. Since
f = {0}, we have Ch(0Dy,) = {0}. It follows from Proposition 2.10 that
(M(m), Dy,) is immersed into a 2-jet space (J2(Q,n1),C?), however Dy,
has no ni-dimensional integrable elements and manifolds. By counting the
number of roots in each ®;, we see that ¢ : M(m) — J*(Q,n1) as in
Proposition 2.10 is not submersion.

2.6.13 (Ga2,{a1})-type

We have ®F = {3a1 + 29, 31 + s}, 5 = {201 + s}, & =
{a1, a1 + a2}. Then f = {0}, which implies that m cannot satisfy (2.5.10).
For more detail, we refer to [5], [16], and [21].
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