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Linear Weingarten hypersurfaces

in locally symmetric manifolds
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Abstract. In this paper, we discuss with n-dimensional complete orientable linear
Weingarten hypersurface in locally symmetric manifold and obtain some rigidity re-
sults.
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1. Introduction

Recently, many researchers studied the minimal hypersurfaces or hyper-
surfaces with constant mean (or scalar) curvature in the locally symmetric
manifolds and the §-pinched manifolds, and obtained many rigidity results
about these hypersurfaces ([4], [10], [11] and the references therein). In this
paper, we modify Cheng-Yau’s technique to complete linear Weingarten hy-
persurfaces in locally symmetric manifolds and prove some rigidity theorems
under the hypothesis of the mean curvature and the normalized scalar cur-
vature being linearly related. More precisely, we have

Theorem 1.1 Let N™™ (n > 3) be a locally symmetric manifold sat-
isfying 1/2 < 6 < Ky < 1 and Kpiiint1i = co- Let M™ be an n-
dimensional complete orientable linear Weingarten hypersurface of N"T1,
such that r = aH 4+ b with b > 1. If H attains its maximum on M"™ and
S < 2y/n—1(20 — ¢p), then either M™ is totally umbilical hypersurface or
M™ has two distinct constant principal curvatures, one of which is simple.

When § = ¢y = 1, N*™! is a unit sphere S"*1(1), so we have the
following corollary by the theorem 1.1(2i) of [9].

Corollary 1.2 Let M™ be an n-dimensional complete orientable linear
Weingarten hypersurface of S"T1(1), such that r = aH + b with b > 1.
If H attains its mazximum on M™ and S < 2v/n — 1, then either M"™ 1is
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totally umbilical hypersurface or M™ is isometric to a Riemannian product

S"1(e) x SY(VI = ).

Theorem 1.3 Let N" ™! (n > 3) be a locally symmetric Einstein man-
ifold satisfying 1/2 < § < Ky < 1 and Kpy1int1i = co- Let M™ be an
n-dimensional complete noncompact orientable linear Weingarten hypersur-
face of N1 such that r = aH + b with b > 1. If S < 2¢/n — 1(25 — o)
and |VH| € LY(M), then either M™ is totally umbilical hypersurface or M™
has two distinct constant principal curvatures, one of which is simple.

2. Preliminaries

Let N™"*! be a locally symmetric manifold and M™ be an n-dimensional
complete and orientable hpersurface in N™"*!. For any p € M, we choose a
local orthonormal frame ey, ..., e,11 in N**1 around p such that ey, ..., e,
are tangent to M™. Let wq,...,wp+1 be the corresponding dual coframe.
We use the following standard convention for indices:

1<ABC,--<n+1, 1<ijk,---<n.

The structure equations of N1 are given by

de:—ZwAB/\wB7 wap +wpa =0, (2’1)
B
1
dwap = — ;WAC ANwes + 5 CZD€C€DKABCDOJC ANwp, (2.2)

where K pcp are the components of the curvature tensor of N t1.
Restricting these forms to M™, we have w,+1 = 0. Since 0 = dw,11 =
— > ; Wnt1i A w;, from Cartan lemma, we can write

Wntli = Z hijwj,  hij = hj;. (2.3)
J

Let B = Zl j hijwiwjen1 be the second fundamental form. We will denote
by h = (1/n) )", hiieny1 and by H = |h| = (1/n) >, hs; the mean curvature
vector and the mean curvature of M™, respectively.

The structure equations of M™ are
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dw; = — Zwij ANWwj, Wi +wj; = 0, (24)
=1
n 1 n
dwij = — ];Wik A Wij + B g_:l Rijriwr N wi. (2.5)

The Gauss equations are

Rijii = Kijr + (hakhji — hathji), (2.6)
n(n — 1)7“ = ZKijij + n2H2 - S, (27)
,J

where r is the normalized scalar curvature of M" and S =3, . h?j is the
norm square of the second fundamental form of M™.
The Codazzi and Ricci equations are

hiji = hiy = —Kpt1ijk, (2.8)

Knytijr = Kngtint1khj + Kngtignyihe — Z Koijihami, (2.9)

m

where the covariant derivative of h;; is defined by
Z hijkwk = dhij — Z hkjwki — Z hikwk]’. (2.10)
k k k
Similarly, the components h;jx; of the second derivative V2h are given by
Z hijklwl = dhijk - Z hljkwli - Z hilkwlj - Z hijlWlk. (2.11)
1 1 1 1
The Laplacian Ah;; of h;j is defined by
Ahig = hijgn.
k

By a simple and direct calculation, we have



32 X. Chao and P. Wang

Ah;; = Z [(hijere — hikjr) + (Rikgk — hikk;) + (hikkj — hikig) + hikij]
%

— Z Kn—l—lzk]k + Z hmszk]k + hmkRmz]k)

k,m
+ Z Ky 1kkij + Z Pocrij
k k
= (nH)ij + nHKp 1int15 — Z hij Kpy1knt1k + nHZ hikhij
k k

— Shi; + Z [hmiKmkjk: + hnj Konkirs + thmeijk] (2.12)
k

We choose a local frame of orthonormal vectors fields {e;} such that at
arbitrary fixed point p of M™

hij = Xidij, (2.13)

then it follows, at p, that

%AS: %ZAh =>"n k+ZhUAh”

4] 1,9,k ]
=3 W3+ > N(nH)y —S*+nHY A
7,k % i

+ nHZ )\ Kn—l—lzn—i—lz - SZ Kn+1zn+lz
- Z V2K jij- (2.14)

Set ¢;; = hij — Hd;j, it is easy to check that ¢ is traceless and

67 = (6:;)* = S —nH?, (2.15)

(2]

where ¢ denotes the matrix (¢;;). Moreover, |¢]> = S —nH? > 0 with
equality holds if and only if M™ is totally umbilical.
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Lemma 2.1 ([7]) Let uy,ug,...,u, be real numbers such that ), u; =0
and >, u? = (3. Then

_on-2 Z < 72 s
\/n(nfl ~/nn—-1) "
and equality holds if and only if at least n — 1 of u}s are equal.

Lemma 2.2 Let N be a locally symmetric manifold satisfying 1/2 <
6 < Ky <1 and M™ be an n-dimensional complete orientable hypersurface
of N"*1 with r = aH + b,a,b € R and (n — 1)a® + 4n(b—1) > 0. Then we
have

> by > n?VHP, (2.16)
i,k

and equality holds if and only if [VH|?> =0 or 4n%S = (2n’H —n(n —1)a)?.
Moreover, if (n — 1)a® + 4n(b— 1) > 0 and the equality holds in (2.16) on
M™, then H is constant on M™.

Proof. From Gauss equation, we have
S = Z Kijij + n2H2 - n(n — 1)7‘
()

= Z Kijij +n*H? —n(n —1)(aH +b). (2.17)

1,3

Since N™*1 is locally symmetric, taking the covariant derivative of the above
equation, we have

2 Z hijhijk = QTLQHHk - n(n - l)aHk
(2]
Therefore,
4S8 "hiy >4 Z <Z h”h”k> (2n2H — n(n —1)a)?|VH|?. (2.18)
4,3,k

We know from 0 < ¢ < Kj;;; <1 that
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(2n*H — n(n — 1)a)? — 4n?S
=4n*H? +n?*(n —1)%a* — 4n*(n — 1)aH
— 4n? ( Z Kijij +n*H?* —n(n —1)(aH + b)>
> 4n*H? +n?(n —1)%a® — 4n3(n — 1)aH
—4n*(n(n—1) + n*H? — n(n — 1)(aH + b))
=n%(n—1)%a® +4n3(n - 1)(b—1)
=n*(n—1)((n—1)a* + 4n(b— 1)) > 0. (2.19)

It follows (2.18) and (2.19) that

48> " hiy > (2n°H — n(n — 1)a)?|VH|* > 4n®S|VH|. (2.20)
@7,k

Thus either S =0and >, ;b ”k =n?|VH|? or ijrh zak > n?|VH|%
I£> 5 6h l]k = n?|VH|? from (2.18) and (2.19), we have

0<n’(n—1)((n—1)a®+4n(b—1))|VH|?
< (2n*H —n(n — 1)a)?*|VH|* — 4n*S|VH?

<48 iy —4n’S|VH[? = 4S< > B - 2|VH|2> =0.

W7,k 7,k

Then we conclude that |VH|? = 0 or 4n?S = (2n*H — n(n —1)a)?.
Moreover, if (n — 1)a? +4n(b—1) > 0 and Dkl ”k =n?|VH|?, from
(2.19) and (2.20), we have |[VH|? = 0 on M™ and, hence, H is constant on
M™. O
Following Cheng-Yau [3], as in [2], we introduce a modified operator L
acting on any C?- function f by

L(f) =Y <<”H -= ; 1a> Oij — hz‘j) fij, (2.21)

]
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where f;; is given by the following

Z fijw; = dfi + fjwij-
J

Lemma 2.3 Let N be a locally symmetric manifold satisfying 1/2 <
6 < Ky <1 and M be an n-dimensional orientable linear Weingarten
hypersurface with r = aH + b in N1, If b > 1, then L is elliptic.

Proof. Since r = aH + b and Ky < 1, from Gauss equation (2.7), we get
n(n —1)(aH +b) <n(n—1)+n*H?* - S,
ie.
S <n?H?*—n(n—1)(b—1)—n(n—1)aH. (2.22)
Since b > 1, we know that
n?*H? —n(n—1)aH — S >n(n—1)(b—1) > 0. (2.23)

Therefore H # 0. Thus we can assume H > 0 on M. So L is elliptic if
and only if nH — ((n —1)/2)a—\; > 0fori=1,2,...,n, where A.s are the
principal curvatures of M. From (2.22) we have

1

P —
a_n(n—l)H

(n*H? =S —n(n—1)(b—1)).

Consequently, we obtain

—1
nH—n2 a— N
1
> = (n2H2 B ) . .
_2nH(nH + S —2nH\; +n(n—1)(b—1))

:%1I{<<zj:)\j>2+zj:)\?2)\izj:)\j+n(n1)(b1)>
:2;}{((2)\j>2—|—2)\?+n(n—1)(()—1)).

J#i J#i
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Therefore, since b > 1, we conclude that L is an elliptic operator. O

3. The proof of theorems
Firstly, we give the following proposition.

Proposition 3.1 Let N" ™! (n > 3) be a locally symmetric manifold sat-
isfying 1/2 < § < Ky <1, Kpt1int1i = ¢o and M™ be an n-dimensional
complete orientable hypersurface of N1 with r = aH + b,a,b € R and
(n —1)a® 4+ 4n(b — 1) > 0. Then the following inequality holds

L(nH) > — S —2vn —1(26 — c)]|o|*. (3.1)

2\/n — [
Proof. From (2.21) we have
L(nH) = Z <<nH - %(n — 1)a> Sij — h?jﬂ) (nH);;
0.

- <nH _ %(n - 1)a>A(nH) - Z hiE (nH )

7]

_ (nH _ %(n — 1)a)A<nH ~ %(n - 1)a) =Y B (nH);,

ihj

— ;A(nH — %(n — 1)61,)2 — ‘V(nH — %(n - l)a)

— Z hn'H nH);

2

1 1 o, 2 ntl(
= 2A<nH — i(n— 1)a> —n°|VH| Zh (nH);;.  (3.2)

i,

Since the scalar curvature R of locally symmetric manifold is constant.
Then, from

= 22 Kyttint1i + ZKW = 2nco + Z Kijig

2%} 2]
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we know that Z K;j;; is constant. Therefore, from Gauss equation and
r=aH + b, Wehave

AS = A(ZK”” + n2H2 — TL(TL — 1)7">

= A(n?H?* —n(n —1)(aH +D))
= An*H? —n(n —1)aH)

2
= A(nH - %(n - 1)a> . (3.3)
From (2.14), (3.2) and (3.3), we get

L(nH) = fAS—nz\VH\Z Zh"“ (nH)i;

ﬂ]

= thk—n2|VH|2 SZ+TLHZ)\3—|—Z ')2Kijij
7]7 7]
+nH Z NiKptting1i — S Z Kyytiny1i- (3.4)

On the other hand, putting u; = A\; — H, we can obtain
Then, for any € > 0, we have

~S*+nHY A =-S+nHY puf+3nHS - 20°H*

> —;%mw +nH2GP - g
-2 1
> B2 (et Lo o o - o'

(3.5)
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When n > 3, taking € = (n +2y/n — 1)/(n — 2) in (3.5), we get

n

— 52 H N>
o Z YTo2vn—1

(nH?|g|* + |o]*) = — Slgl*. (3.6)

n
2vn—1
Since N is a é-pinched manifold, we have

> (i = X))’ Kijij > 52 (i — A\j)% = 2nd|¢|?, (3.7)

1,

At the same time, using the curvature condition, we get

TLHZ )\iKn—f—lin-i-li -S Z Kn+1in+1i = nco(n2H2 — S) = —7’LCO|¢|2. (38)

From (3.4), (3.6), (3.7), (3.8) and Lemma 2.2, we see that

L(nH) > —ncol¢|* +2n8||* - N%SW
= =[5~ 2Vn =120 — co)] 0" (3.9)

2\/n — .

Proof of theorem 1.1.  From (3.1) and the assumption S < 2y/n — 1(26 —
o), we get

L(nH) > — [S 2v/n — 1(20 — co)]|9|* > 0. (3.10)

2\/n -

Since Lemma 2.3 guarantees that L is elliptic and as we are supposing that
H attains its maximum on M", from (3.10) we conclude that H is constant
on M™. Thus (3.10) become an equality. If S < 2v/n —1(20 — ¢p), then
|#|> = 0 and M™ is totally umbilical. If S = 2v/n — 1(2§ — ¢g), then all
the equalities to obtain (3.10) become equalities. Especially the equality in
Lemma 2.1 holds, we have that M™ has two distinct principle curvature, one
of which is simple. Since H and S are constants, it is easy to know that M™
has two distinct constant principal curvatures, one of them being simple. [J

Lemma 3.2 ([1]) Let X be a smooth vector field on the n-dimensional
complete noncompact oriented Riemannian manifold M™, such that divy; X
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does not change sign on M™. If |X| € LY(M), then divy X = 0.

Proof of theorem 1.3.  Firstly, we easily obtain from (2.21) that
L(nH) = divy (P(VH)), (3.11)

where P = (n?H — (n(n — 1)/2)a)I —nA and I denotes the identity operator
and A denotes the second fundamental form of M™.

Moreover, since nH? < S < 2y/n — 1(2§ — ¢y), then H and A are both
bounded on M™. Therefore, the operator P is bounded, and noticing the
assumption |VH| € £(M), we have

|P(VH)| € £'(M). (3.12)

Thus, from (3.1), (3.12) and using Lemma 3.2, we obtain that L(nH) = 0
on M™. Then we can reason as in the proof of Theorem 1.1 to conclude that
either |¢|> = 0 and M™ is totally umbilical, or S = 2v/n — 1(26 — ¢g) and

M™ has two distinct principle curvatures, one of which is simple. O
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