Integral Homology of the Moduli Space of Tropical Curves of Genus 1 with Marked Points

Ye LiU
(Received January 15, 2014; Revised December 11, 2014)

Abstract

Kozlov has studied the topological properties of the moduli space of tropical curves of genus 1 with marked points, such as its mod 2 homology, while the integral homology remained a conjecture. In this paper, we present a complete proof of Kozlov's conjecture concerning the integral homology of this moduli space.

Key words: tropical curve, moduli space, equivariant homology.

1. Introduction

Tropical curves are objects of interest in the field of tropical geometry. The moduli spaces of tropical curves with marked points were introduced by Mikhalkin in [6], [7] from the tropical geometric point of view. Kozlov, on the other hand, has investigated the same object from the topological point of view in [3], [4], [5]. In particular, he studied the genus 1 case in depth. Among other things, Kozlov showed the following property.

Theorem 1.1 (Kozlov) Let n be a positive integer, then the moduli space $T M_{1, n+1}$ of tropical curves of genus 1 with $n+1$ marked points is homotopy equivalent to a quotient space T^{n} / \mathbb{Z}_{2} of the n-torus, where \mathbb{Z}_{2} acts diagonally on $T^{n}=S^{1} \times \cdots \times S^{1}$ by conjugation of each factor S^{1} viewed as the unit circle of the complex plane. Therefore

$$
H_{*}\left(T M_{1, n+1}\right) \cong H_{*}\left(T^{n} / \mathbb{Z}_{2}\right)
$$

Using Theorem 1.1, Kozlov computed the mod 2 homology of $T M_{1, n+1}$. His result is as follows.

Theorem 1.2 (Kozlov) The mod 2 homology of $T M_{1, n+1}$ has the form

$$
\tilde{H}_{k}\left(T M_{1, n+1} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}^{\tilde{\mathcal{\beta}}_{k}\left(T^{n} / \mathbb{Z}_{2} ; \mathbb{Z}_{2}\right)}
$$

where
$\tilde{\beta}_{k}\left(T^{n} / \mathbb{Z}_{2} ; \mathbb{Z}_{2}\right)= \begin{cases}\binom{n-1}{k-1}+2\binom{n-2}{k-1}+\cdots+2^{n-k}\binom{k-1}{k-1}, & 2 \leq k \leq n \\ 0, & \text { otherwise }\end{cases}$
Kozlov also suggested a conjecture concerning the integral homology of $T M_{1, n+1}$. Our main result is a proof of his conjecture.

Theorem 1.3 The integral homology of the moduli space $T M_{1, n+1}$ of tropical curves of genus 1 with $n+1$ marked points has the form

$$
\begin{aligned}
\tilde{H}_{2 i}\left(T M_{1, n+1}\right) & \cong \mathbb{Z}_{2}^{a(i, n)} \oplus \mathbb{Z}^{b(i, n)}, & & 2 \leq 2 i \leq n \\
\tilde{H}_{j}\left(T M_{1, n+1}\right) & =0, & & \text { otherwise }
\end{aligned}
$$

where

$$
\begin{aligned}
a(i, n) & =\tilde{\beta}_{2 i+1}\left(T^{n} / \mathbb{Z}_{2} ; \mathbb{Z}_{2}\right), \\
a(i, n)+b(i, n) & =\tilde{\beta}_{2 i}\left(T^{n} / \mathbb{Z}_{2} ; \mathbb{Z}_{2}\right)
\end{aligned}
$$

In Section 2, we present the definition of the space $T M_{1, n+1}$ in study and explain Theorem 1.1. Then we focus on the space T^{n} / \mathbb{Z}_{2}. Section 3 consists of a description of a cellular structure of T^{n} / \mathbb{Z}_{2} that is suitable for our computation. In order to conclude our main theorem from the result of the mod 2 homology and the universal coefficient theorem, it suffices to show the following two claims.

- The homology group $H_{2 i+1}\left(T^{n} / \mathbb{Z}_{2}\right)$ is trivial for all i. (Proposition 5.1)
- The homology group $H_{2 i}\left(T^{n} / \mathbb{Z}_{2}\right)$ has no odd torsion nor higher 2torsion for $2 \leq 2 i \leq n$. (Proposition 5.2)

Section 4 and 5 are devoted to proving the two claims.
Throughout this paper, homology means integral homology unless otherwise specified, and \tilde{H} means reduced homology.

2. The moduli space of metric graphs of genus 1 with marked points.

Kozlov studied the topological properties of the moduli spaces of tropical curves with marked points in [3], [4], [5]. The contents of this section are taken from [4]. However our definitions and notations here are slightly different.

Definition 2.1 A finite graph G (allowing loops and multiedges) is called a metric graph if it is given an edge-length function

$$
l_{G}: E(G) \rightarrow(0, \infty)
$$

where $E(G)$ denotes the set of edges of G. For a nonnegative integer n, a metric graph G is called a metric graph with n marked points if it is given a marking function

$$
p_{G}:[n] \rightarrow \Delta(G),
$$

where $[n]:=\{1, \ldots, n\}$ for $n \geq 1$ and $[0]:=\emptyset, \Delta(G)$ is the space obtained by viewing G as a 1 -dimensional CW complex.

Let $M G_{n}$ denote the set of isometry classes of finite metric graphs with n marked points. Kozlov introduced a suitable topology for $M G_{n}$ and called the obtained topological space the moduli space of metric graphs with n marked points. Here we describe this topology in brief. The interested reader is referred to Subsection 3.1 of [4] for an explicit definition.

Let G be a metric graph with n marked points. Set $r(G):=\min d(x, y)$, where x, y run over the set of vertices and marked points, d is the standard metric on $\Delta(G)$ induced by l_{G}. (The explicit definition of this metric is given in Subsection 2.3 of [4].) Now for a number $\varepsilon \in(0, r(G) / 2)$, we define a set $N_{\varepsilon}(G)$ by saying that a metric graph H with n marked points is in $N_{\varepsilon}(G)$ if and only if

- the edges of H of lengths less than ε form a subforest;
- the graph G can be obtained from H by first shrinking all the edges of lengths less than ε and then varying the lengths of the remaining edges and positions of marked points by up to ε.

For an isometry class $[G]$, we set $N_{\varepsilon}([G]):=\left\{[H] \mid H \in N_{\varepsilon}(G)\right\}$. This is
independent of the choice of representatives. The topology of $M G_{n}$ can be given as follows: a subset $X \subset M G_{n}$ is open if and only if for every $[G] \in X$, there exists $\varepsilon \in(0, r(G) / 2)$ such that $N_{\varepsilon}([G]) \subset X$.

Definition 2.2 Let d be a positive real number. We define $T M_{n}(d)$ to be the subspace of $M G_{n}$ consisting of the isometry classes of all connected metric graphs G with n marked points, such that

- G has no vertices of valency 2 ;
- G has exactly n leaves (vertices of valency 1), and these are marked 1 through n;
- the lengths of the edges leading to leaves are equal to d.

Note that for arbitrary $d_{1}, d_{2} \in(0, \infty), T M_{n}\left(d_{1}\right)$ and $T M_{n}\left(d_{2}\right)$ are homeomorphic. So we could suppress d and just write $T M_{n}$. Furthermore $T M_{n}$ is homeomorphic to the moduli space of tropical curves with n marked points. The latter can be "considered" as $T M_{n}(\infty)$. See Section 3.5 of [4] for details.

Recall that the genus of a graph G is the first Betti number of $\Delta(G)$. It is known that the connected components of $T M_{n}$ are indexed by the genera of consisting graphs. We denote by $T M_{g, n}$ the connected component of $T M_{n}$ consisting of isometry classes of graphs of genus g. Remark that $T M_{g, n}$ is homeomorphic to the moduli space of tropical curves of genus g with n marked points.

For the case $g=1, T M_{1, n+1} \simeq S^{1} \times \cdots \times S^{1} / O(2)=T^{n+1} / O(2)$, where $O(2)$ acts on each S^{1} as orthogonal transformation and diagonally on T^{n+1}. We see that $T^{n+1} / O(2)$ is homeomorphic to T^{n} / \mathbb{Z}_{2} by fixing the last coordinate of a point on T^{n+1} to be $1 \in \mathbb{C}$. Hence we conclude Theorem 1.1 (See Section 4.1 of [4]).

Theorem 2.3 (Kozlov) We have the following homotopy equivalence,

$$
T M_{1, n+1} \simeq T^{n} / \mathbb{Z}_{2}
$$

where the nonidentity t of \mathbb{Z}_{2} acts on $T^{n}=S^{1} \times \cdots \times S^{1}$ as

$$
t\left(z_{1}, \ldots, z_{n}\right)=\left(\bar{z}_{1}, \ldots, \bar{z}_{n}\right)
$$

for z_{1}, \ldots, z_{n} on the unit circle of the complex plane. Therefore,

$$
H_{*}\left(T M_{1, n+1}\right) \cong H_{*}\left(T^{n} / \mathbb{Z}_{2}\right)
$$

From now on, we focus on the computation of $H_{*}\left(T^{n} / \mathbb{Z}_{2}\right)$.

3. Cellular structures

We shall give T^{n} / \mathbb{Z}_{2} a cellular structure so that we could compute $H_{*}\left(T^{n} / \mathbb{Z}_{2}\right)$. First let us give a cellular structure to the unit circle S^{1} of \mathbb{C} as follows.

- 0-cells: e_{0}^{+}, e_{0}^{-}denoting $1,-1 \in S^{1}$ respectively.
- 1-cells: e_{1}^{+}, e_{1}^{-}denoting the upper and lower arcs joining -1 with 1 respectively with orientations given by the following boundary maps.
- boudary maps: $\partial e_{1}^{+}=\partial e_{1}^{-}=e_{0}^{+}-e_{0}^{-}$.

Thus $T^{n}=S^{1} \times \cdots \times S^{1}$ has been given a cellular structure as follows.

- k-cells $(0 \leq k \leq n): a_{1} \times \cdots \times a_{n}$
where $a_{i_{l}} \in\left\{e_{1}^{+}, e_{1}^{-}\right\}$for $l=1,2, \ldots, k$ with $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq$ n and $a_{j} \in\left\{e_{0}^{+}, e_{0}^{-}\right\}$for other j.
- boundary maps:

$$
\partial\left(a_{1} \times \cdots \times a_{n}\right)=\sum_{i=1}^{n}(-1)^{d_{0}+d_{1}+\cdots+d_{i-1}} a_{1} \times \cdots \times \partial a_{i} \times \cdots \times a_{n}
$$

where $d_{l}=\operatorname{dim} a_{l}$ for $l=1,2, \ldots, n-1$ and $d_{0}=0$. In particular, for $a_{1} \times \cdots \times a_{n}$ as above,

$$
\partial\left(a_{1} \times \cdots \times a_{n}\right)=\sum_{l=1}^{k}(-1)^{l-1} a_{1} \times \cdots \times \partial a_{i_{l}} \times \cdots \times a_{n}
$$

where $\partial a_{i_{l}}=e_{0}^{+}-e_{0}^{-}$.
Now consider $\mathbb{Z}_{2}=\{e, t\}$ acting on S^{1} by

- $e\left(e_{0}^{ \pm}\right)=e_{0}^{ \pm}, e\left(e_{1}^{ \pm}\right)=e_{1}^{ \pm}$.
- $t\left(e_{0}^{ \pm}\right)=e_{0}^{ \pm}, t\left(e_{1}^{ \pm}\right)=e_{1}^{\mp}$.

The group \mathbb{Z}_{2} acts on T^{n} diagonally, therefore we obtain an induced cellular structure of T^{n} / \mathbb{Z}_{2}.

- k-cells: $\overline{a_{1} \times \cdots \times a_{n}}$, where $a_{1} \times \cdots \times a_{n}$ is a k-cell of T^{n} as above and overline means \mathbb{Z}_{2}-orbit. Note that $\overline{a_{1} \times \cdots \times a_{n}}=\overline{t\left(a_{1} \times \cdots \times a_{n}\right)}$.
- Induced boundary maps:

$$
\begin{aligned}
& \bar{\partial} \overline{a_{1} \times \cdots \times a_{n}} \\
& \quad=\sum_{l=1}^{k}(-1)^{l-1}\left(\overline{a_{1} \times \cdots \times e_{0}^{+} \times \cdots \times a_{n}}-\overline{i_{l}} \overline{a_{1} \times \cdots \times e_{0}^{-} \times \cdots \times a_{n}}\right) .
\end{aligned}
$$

Let us denote the complement of $\left\{i_{1}, \cdots, i_{k}\right\}$ in $[n]$ by $\left\{j_{1}, \ldots, j_{m}\right\}$ with $j_{1}<\cdots<j_{m}(k+m=n)$. Then we introduce the following sets.

$$
\begin{aligned}
& A\left(i_{1}, \ldots, i_{k}\right) \\
& \quad=\left\{\overline{a_{1} \times \cdots \times a_{n}} \mid a_{i_{1}}=\cdots=a_{i_{k}}=e_{1}^{+}, a_{j_{1}}, \cdots, a_{j_{m}} \in\left\{e_{0}^{+}, e_{0}^{-}\right\}\right\}
\end{aligned}
$$

and
$B\left(i_{1}, \ldots, i_{k} ; j_{l}\right)=\left\{\begin{array}{l|l}\overline{a_{1} \times \cdots \times a_{n}} \left\lvert\, \begin{array}{c}a_{i_{1}}=\cdots=a_{i_{k}}=e_{1}^{+}, a_{j_{l}} \in\left\{e_{1}^{+}, e_{1}^{-}\right\}, \\ a_{j_{1}}, \ldots, a_{j_{l-1}}, a_{j_{l+1}}, \ldots, a_{j_{m}} \in\left\{e_{0}^{+}, e_{0}^{-}\right\}\end{array}\right.\end{array}\right\}$.
For later use, we prove the following proposition.
Proposition 3.1 Let k be a natural number. For $1 \leq i_{1}<i_{2}<\cdots<$ $i_{k} \leq n$, any k-chain c of T^{n} / \mathbb{Z}_{2} can be expressed by

$$
\begin{aligned}
c= & \sum_{\overline{a_{1} \times \cdots \times a_{n}} \in A\left(i_{1}, \ldots, i_{k}\right)} x\left(\overline{a_{1} \times \cdots \times a_{n}}\right) \overline{a_{1} \times \cdots \times a_{n}} \\
& +\sum_{\overline{a_{1} \times \cdots \times a_{n}} \notin A\left(i_{1}, \ldots, i_{k}\right)} x\left(\overline{a_{1} \times \cdots \times a_{n}}\right) \overline{a_{1} \times \cdots \times a_{n}},
\end{aligned}
$$

where $x\left(\overline{a_{1} \times \cdots \times a_{n}}\right) \in \mathbb{Z}$. If c is a k-boundary, then

$$
\sum_{\overline{a_{1} \times \cdots \times a_{n}} \in A\left(i_{1}, \ldots, i_{k}\right)} x\left(\overline{a_{1} \times \cdots \times a_{n}}\right)=0 .
$$

Proof. Since $(k+1)$-cells outside of

$$
\bigcup_{l=1}^{m} B\left(i_{1}, \ldots, i_{k} ; j_{l}\right)
$$

do not have cells in $A\left(i_{1}, \ldots, i_{k}\right)$ as faces, it suffices to compute the boundaries of cells in $B\left(i_{1}, \ldots, i_{k} ; j_{l}\right)$. Suppose $\overline{a_{1} \times \cdots \times a_{n}} \in B\left(i_{1}, \ldots, i_{k} ; j_{l}\right)$, then

$$
\begin{aligned}
& \bar{\partial} \overline{a_{1} \times \cdots \times a_{n}} \\
& =(-1)^{\#\left\{p \mid i_{p}<j_{l}\right\}}\left(\overline{a_{1} \times \cdots \times e_{0}^{+} \times \cdots \times a_{n}}-\overline{j_{l}} \overline{a_{1} \times \cdots \times e_{0}^{-} \times \cdots \times a_{n}}\right) \\
& \quad+\cdots
\end{aligned}
$$

where the omitted term is a linear combination of cells outside of $A\left(i_{1}, \ldots, i_{k}\right)$. Hence the desired result follows.

4. Further explorations

By exactly the same argument as in Section 4.6 of [4], we have the following exact sequence.

$$
\begin{aligned}
\cdots \rightarrow \tilde{H}_{k}\left(T^{n}\right) \xrightarrow{\left(q_{*}, q_{*}\right)} \tilde{H}_{k}\left(T^{n} / \mathbb{Z}_{2}\right) \oplus \tilde{H}_{k}\left(T^{n} / \mathbb{Z}_{2}\right) & \rightarrow \tilde{H}_{k}\left(T^{n+1} / \mathbb{Z}_{2}\right) \\
& \rightarrow \tilde{H}_{k-1}\left(T^{n}\right) \xrightarrow{\left(q_{*}, q_{*}\right)} \cdots
\end{aligned}
$$

where $q_{*}: \tilde{H}_{*}\left(T^{n}\right) \rightarrow \tilde{H}_{*}\left(T^{n} / \mathbb{Z}_{2}\right)$ is induced by the quotient map $q: T^{n} \rightarrow$ T^{n} / \mathbb{Z}_{2}. We denote the induced chain map by $q_{\#}: C_{*}\left(T^{n}\right) \rightarrow C_{*}\left(T^{n} / \mathbb{Z}_{2}\right)$.

Study of q_{*} requires a detailed discussion on $H_{*}\left(T^{n}\right)$. For $1 \leq i_{1}<$ $\cdots<i_{k} \leq n$, define a k-chain $\sigma_{i_{1}, \ldots, i_{k}}$ of T^{n} by

$$
\sigma_{i_{1}, \ldots, i_{k}}=c_{1} \times \cdots \times c_{n} \in C_{k}\left(T^{n}\right)
$$

where

- $c_{i_{l}}=e_{1}^{+}-e_{1}^{-}$for $l=1, \ldots, k$.
- $c_{j}=e_{0}^{+}$for other j.

Theorem 4.1 The chain $\sigma_{i_{1}, \ldots, i_{k}}$ is a k-cycle of T^{n}. Futhermore $H_{k}\left(T^{n}\right)$ is free with basis $\left\{\left[\sigma_{i_{1}, \ldots, i_{k}}\right] \mid 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}$.

Proof. It is immediate from Künneth formula.
Remark 4.2 The induced \mathbb{Z}_{2}-action on $C_{k}\left(T^{n}\right)$ is given by

$$
\begin{gathered}
e\left(\sum \lambda_{i} \tau_{i}\right)=\sum \lambda_{i} e\left(\tau_{i}\right)=\sum \lambda_{i} \tau_{i}, \\
t\left(\sum \lambda_{i} \tau_{i}\right)=\sum \lambda_{i} t\left(\tau_{i}\right) .
\end{gathered}
$$

Then we conclude

$$
\begin{aligned}
q_{\#}\left(t\left(\sum \lambda_{i} \tau_{i}\right)\right) & =q_{\#}\left(\sum \lambda_{i} t\left(\tau_{i}\right)\right)=\sum \lambda_{i} \overline{t\left(\tau_{i}\right)} \\
& =\sum \lambda_{i} \overline{\tau_{i}}=q_{\#}\left(\sum \lambda_{i} \tau_{i}\right)
\end{aligned}
$$

Proposition 4.3 The induced homomorphism

$$
q_{*}: H_{k}\left(T^{n}\right) \rightarrow H_{k}\left(T^{n} / \mathbb{Z}_{2}\right)
$$

is the 0-map if k is odd and is injective if k is even.
Proof. It suffices to investigate q_{*} applied to the basis.

$$
\left.\begin{array}{rl}
q_{*}\left(\left[\sigma_{i_{1}, \ldots, i_{k}}\right]\right)= & {\left[q_{\#}\left(\sigma_{i_{1}, \ldots, i_{k}}\right)\right]} \\
= & {\left[q_{\#}\left(c_{1} \times \cdots \times e_{1}^{+} \times \cdots \times c_{n}\right)-q_{\#}\left(c_{1} \times \cdots \times e_{i_{1}}^{-} \times \cdots \times c_{n}\right)\right]} \\
= & {\left[q_{\#}\left(c_{1} \times \cdots \times e_{1}^{+} \times \cdots \times c_{n}\right)\right.} \\
& +(-1)^{k} q_{\#}\left(c_{1} \times \cdots \times e_{1}^{-} \times \cdots \times\left(-c_{i_{2}}\right)\right. \\
& \left.\left.\times \cdots \times\left(-c_{i_{k}}\right) \times \cdots \times c_{n}\right)\right] \\
= & {\left[\begin{array}{ll}
q_{\#}\left(c_{1} \times \cdots \times e_{1}^{+} \times \cdots \times c_{n}\right) \\
i_{1}
\end{array}\right)} \\
& \left.+(-1)^{k} q_{\#}\left(t\left(c_{1} \times \cdots \times e_{1}^{+} \times \cdots \times c_{n}\right)\right)\right] \\
i_{1}
\end{array}\right) \quad \begin{aligned}
0, & k: \text { odd } ; \\
{\left[2 q_{\#}\left(c_{1} \times \cdots \times e_{1}^{+} \times \cdots \times c_{n}\right)\right], } & k: \text { even. } .
\end{aligned}
$$

Thus q_{*} is the 0-map if k is odd. To see the injectivity when k is even, take a chain

$$
\sigma=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x_{i_{1}, \ldots, i_{k}} \sigma_{i_{1}, \ldots, i_{k}} \in C_{k}\left(T^{n}\right)
$$

such that

$$
q_{\#}(\sigma)=q_{\#}\left(\sum x_{i_{1}, \ldots, i_{k}} \sigma_{i_{1}, \ldots, i_{k}}\right)
$$

is a k-boundary of T^{n} / \mathbb{Z}_{2}. We show that all the coefficients $x_{i_{1}, \ldots, i_{k}}$'s are 0 . We have already obtained
$q_{\#}(\sigma)=\sum x_{i_{1}, \ldots, i_{k}} q_{\#}\left(\sigma_{i_{1}, \ldots, i_{k}}\right)=\sum 2 x_{i_{1}, \ldots, i_{k}} q_{\#}\left(c_{1} \times \cdots \times e_{1}^{+} \times \cdots \times c_{n}\right)$,
where $q_{\#}\left(c_{1} \times \cdots \times e_{i_{1}}^{+} \times \cdots \times c_{n}\right)$ is of the form

$$
\begin{equation*}
\sum \pm \overline{e_{0}^{+} \times \cdots \times e_{1}^{+} \times \cdots \times e_{1}^{ \pm} \times \cdots \times e_{0}^{+}} \tag{*}
\end{equation*}
$$

which is a linear combination of $2^{k-1} k$-cells, with each cell having a coefficient 1 (resp. -1) if it contains even (resp. odd) number of e_{1}^{-}'s in its representative with the i_{1}-th component e_{1}^{+}.

Note that the k-cell

$$
\alpha_{i_{1}, \ldots, i_{k}}=\overline{\cdots \times e_{1}^{+} \times \cdots \times e_{i_{p}}^{+} \times \cdots} \in A\left(i_{1}, \ldots, i_{k}\right)
$$

with all j_{l}-th components e_{0}^{+}is in $(*)$. Then $q_{\#}(\sigma)$ is of the form

$$
q_{\#}(\sigma)=2 x_{i_{1}, \ldots, i_{k}} \alpha_{i_{1}, \ldots, i_{k}}+\sum_{\beta \in A\left(i_{1}, \ldots, i_{k}\right)-\left\{\alpha_{\left.i_{1}, \ldots, i_{k}\right\}}\right.} y_{\beta} \beta+\cdots
$$

where the omitted term is a linear combination of cells outside of $A_{i_{1}, \ldots, i_{k}}$. Since $q_{\#}(\sigma)$ is a k-boundary of T^{n} / \mathbb{Z}_{2}, by Proposition 3.1,

$$
2 x_{i_{1}, \ldots, i_{k}}+\sum y_{\beta}=0
$$

One also observes that $q_{\#}(\sigma)$ does not contain cells with e_{0}^{-}, in particular β as above. Thus

$$
y_{\beta}=0
$$

for all $\beta \in A\left(i_{1}, \ldots, i_{k}\right)-\left\{\alpha_{i_{1}, \ldots, i_{k}}\right\}$ and we conclude

$$
x_{i_{1}, \ldots, i_{k}}=0
$$

This completes the proof.

5. The integral homology

We are ready to prove the two claims mentioned in the introduction.
Proposition 5.1 The homology $H_{2 i+1}\left(T^{n+1} / \mathbb{Z}_{2}\right)$ is trivial for nonnegative integer i.

Proof. We prove this by induction on n.
For $n=1$, it is evident to see that T^{2} / \mathbb{Z}_{2} is homeomorphic to sphere S^{2}, hence the proposition follows. Then suppose it is true for T^{n} / \mathbb{Z}_{2}. We derive an exact sequence from ($*$)

$$
0 \rightarrow \tilde{H}_{2 i+1}\left(T^{n+1} / \mathbb{Z}_{2}\right) \rightarrow \tilde{H}_{2 i}\left(T^{n}\right) \xrightarrow{\left(q_{*}, q_{*}\right)} \cdots
$$

Proposition 4.3 shows that $\operatorname{Ker} q_{*}=0$. Therefore,

$$
\tilde{H}_{2 i+1}\left(T^{n+1} / \mathbb{Z}_{2}\right) \cong \operatorname{Ker}\left(q_{*}, q_{*}\right)=0
$$

The induction is complete.
The homology in even dimension is more complicated. Our aim now is to show the following proposition.

Proposition 5.2 The homology $H_{2 i}\left(T^{n} / \mathbb{Z}_{2}\right)$ has no odd torsion nor higher 2 -torsion for $2 \leq 2 i \leq n$.

Proof. Set $X=T^{n}$ and $G=\mathbb{Z}_{2}=\{e, t\}$. We would like to study the structure of $H_{2 i}(X / G)$. Denote by V the 0 -skeleton of X. Then G acts trivially on V. Thus we consider $V=V / G$ as a subspace of X / G. By the long exact sequence of the pair $(X / G, V)$, it is immediate that

$$
H_{2 i}(X / G) \cong H_{2 i}(X / G, V)
$$

Since G acts freely on $X-V$,

$$
H_{2 i}^{G}(X, V) \cong H_{2 i}(X / G, V)
$$

where H_{*}^{G} means G-equivariant homology (cf. [1, Section VII.7]). Recall the long exact sequence of equivariant homology of the pair (X, V) (cf. Section 7 of [2])

$$
\cdots \rightarrow H_{k}^{G}(V) \rightarrow H_{k}^{G}(X) \rightarrow H_{k}^{G}(X, V) \rightarrow H_{k-1}^{G}(V) \rightarrow \cdots
$$

To decide $H_{2 i}^{G}(X, V)$, we have to know $H_{*}^{G}(V)$ and $H_{*}^{G}(X)$. For $H_{*}^{G}(X)$, there is a spectral sequence (cf. [1, Section VII.7])

$$
E_{p q}^{2}(X)=H_{p}\left(G ; H_{q}(X)\right) \Rightarrow H_{p+q}^{G}(X)
$$

We compute $H_{p}\left(G ; H_{q}(X)\right)$ now, where $H_{q}(X)$ is a G-module. Note that the generator t of G acts on $H_{q}(X)$ as multiplication by $(-1)^{q}$, in fact it is a consequence of the fact that t acts on $H_{1}\left(S^{1}\right)$ as multiplication by -1 together with Künneth formula.

Set $N=t+e$. Note that $N g m=N m\left(g \in G, m \in H_{q}(X)\right)$ and $N H_{q}(X) \subseteq H_{q}(X)^{G}$. Then N induces a map

$$
\bar{N}: H_{q}(X)_{G} \rightarrow H_{q}(X)^{G} .
$$

where $H_{q}(X)_{G}$ and $H_{q}(X)^{G}$ denote the group of co-invariants and the group of invariants of $H_{q}(X)$ respectively. We conclude (cf. [1, Section III.1, Example 2])

$$
H_{p}\left(G ; H_{q}(X)\right) \cong \begin{cases}H_{q}(X)_{G}, & p=0 \\ \operatorname{Coker} \bar{N}, & p \geq 1 \text { odd } \\ \operatorname{Ker} \bar{N}, & p \geq 2 \text { even }\end{cases}
$$

To be precise,

- If q is even. The group G acts trivially on $H_{q}(X)$, hence by definition, both $H_{q}(X)_{G}$ and $H_{q}(X)^{G}$ are $H_{q}(X)$ itself.

$$
\bar{N}: H_{q}(X)=H_{q}(X)_{G} \xrightarrow{t+e} H_{q}(X)^{G}=H_{q}(X)
$$

is multiplication by 2 . Thus

$$
H_{p}\left(G ; H_{q}(X)\right) \cong \begin{cases}\mathbb{Z}_{\binom{n}{q}}, & p=0 \\ \mathbb{Z}_{2}^{\binom{n}{q}}, & p \geq 1 \text { odd } \\ 0, & p \geq 2 \text { even }\end{cases}
$$

- If q is odd. The co-invariants $H_{q}(X)_{G}$ is the quotient of $H_{q}(X) \cong \mathbb{Z}\binom{n}{q}$ with respect to its submodule generated by twice of its each element, then $H_{q}(X)_{G} \cong \mathbb{Z}_{2}^{\binom{n}{q}}$. On the other hand, nothing of $H_{q}(X)$ is fixed by $t \in G$ except 0 , hence $H_{q}(X)^{G}=0$.

$$
\bar{N}: \mathbb{Z}_{2}^{\binom{n}{q}} \cong H_{q}(X)_{G} \xrightarrow{t+e} H_{q}(X)^{G}=0
$$

is the 0-map. Thus

$$
H_{p}\left(G ; H_{q}(X)\right) \cong \begin{cases}\mathbb{Z}_{2}^{\binom{n}{q}}, & p \geq 0 \text { even } \\ 0, & \text { otherwise }\end{cases}
$$

We summarize the results as follows.

$$
\begin{aligned}
E_{p q}^{2}(X) & =H_{p}\left(G ; H_{q}(X)\right) \\
& \cong \begin{cases}\mathbb{Z}_{\binom{n}{q}}, & (p, q)=(0,2 j), j \geq 0 \\
\mathbb{Z}_{2}^{\binom{n}{q}}, & (p, q)=(2 i, 2 j+1) \text { or }(2 i+1,2 j), i, j \geq 0 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

One easily checks that the spectral sequence collapses at the E^{2}-page. Hence we have computed

$$
H_{2 i}^{G}(X) \cong E_{0,2 i}^{\infty}(X) \cong E_{0,2 i}^{2}(X) \cong \mathbb{Z}^{\binom{n}{2 i}}
$$

Now for V, we have

$$
H_{k}^{G}(V) \cong H_{k}(G)^{\oplus \# V} \cong \begin{cases}\mathbb{Z}^{2^{n}}, & k=0 \\ \mathbb{Z}_{2}^{2^{n}}, & k \geq 1 \text { odd } \\ 0, & \text { otherwise }\end{cases}
$$

Recall the long exact sequence of the equivariant homology of the pair (X, V)

$$
\cdots \rightarrow H_{k}^{G}(V) \rightarrow H_{k}^{G}(X) \rightarrow H_{k}^{G}(X, V) \xrightarrow{\partial_{k}} H_{k-1}^{G}(V) \rightarrow \cdots
$$

For $k=2 i \geq 2$, we derive the following short exact sequence

$$
0 \rightarrow \mathbb{Z}^{\binom{n}{2 i}} \rightarrow H_{2 i}^{G}(X, V) \rightarrow \mathbb{Z}_{2}^{\mu_{i}} \rightarrow 0
$$

for some integer $0 \leq \mu_{i} \leq 2^{n}$ with $\operatorname{Im} \partial_{2 i} \cong \mathbb{Z}_{2}^{\mu_{i}}$, being a subgroup of $H_{2 i-1}^{G}(V) \cong \mathbb{Z}_{2}^{2^{n}}$. We see that $H_{2 i}^{G}(X, V)$ has no odd torsion nor higher 2-torsion.

Finally, together with Theorem 1.1, we complete the proof of Theorem 1.3 by showing the following theorem.

Theorem 5.3 (Conjecture 4.4 of [4]) The integral homology of T^{n+1} / \mathbb{Z}_{2} is of the form

$$
\begin{aligned}
\tilde{H}_{2 i}\left(T^{n+1} / \mathbb{Z}_{2}\right) & \cong \mathbb{Z}_{2}^{a(i, n+1)} \oplus \mathbb{Z}^{b(i, n+1)}, & & 2 \leq 2 i \leq n+1, \\
\tilde{H}_{j}\left(T^{n+1} / \mathbb{Z}_{2}\right) & =0, & & \text { otherwise. }
\end{aligned}
$$

where

$$
\begin{align*}
a(i, n+1) & =\tilde{\beta}_{2 i+1}\left(T^{n+1} / \mathbb{Z}_{2} ; \mathbb{Z}_{2}\right), \tag{1}\\
a(i, n+1)+b(i, n+1) & =\tilde{\beta}_{2 i}\left(T^{n+1} / \mathbb{Z}_{2} ; \mathbb{Z}_{2}\right) . \tag{2}
\end{align*}
$$

Proof. By Proposition 5.1 and Proposition 5.2, it suffices to show that the two equations hold. They are obtained from the universal coefficient theorem. For $2 \leq 2 i \leq n+1$,

$$
\begin{aligned}
\tilde{H}_{2 i}\left(T^{n+1} / \mathbb{Z}_{2} ; \mathbb{Z}_{2}\right) & \cong \tilde{H}_{2 i}\left(T^{n+1} / \mathbb{Z}_{2}\right) \otimes \mathbb{Z}_{2} \\
\tilde{H}_{2 i+1}\left(T^{n+1} / \mathbb{Z}_{2} ; \mathbb{Z}_{2}\right) & \cong \operatorname{Tor}\left(\tilde{H}_{2 i}\left(T^{n+1} / \mathbb{Z}_{2}\right), \mathbb{Z}_{2}\right)
\end{aligned}
$$

These two isomorphisms imply (2) and (1) respectively.

References

[1] Brown K. S., Cohomology of Groups. Springer-Verlag New York Inc, New York, 1982.
[2] Eilenberg S., Homology of Spaces with Operators. I. Trans. Amer. Math. Soc. 61 (1947), 378-417.
[3] Kozlov D. N., Moduli Spaces of Metric Graphs of Genus 1 with Marks on Vertices. Topology Appl. 156 (2008), 433-437.
[4] Kozlov D. N., The Topology of Moduli Spaces of Tropical Curves with Marked Points. The Asian Journal of Mathematics 13 (2009), 385-404.
[5] Kozlov D. N., Moduli Spaces of Tropical Curves of Higher Genus with Marked Points and Homotopy Colimits. Israel Journal of Mathematics 182 (2011), 253-291.
[6] Mikhalkin G., Moduli Spaces of Rational Tropical Curves. Proceedings of Gökova Geometry-Topology Conference, Gökova Geometry/Topology Conference (GGT), Gökova, (2006), pp. 39-51.
[7] Mikhalkin G., Tropical Geometry and Its Applications. International congress of Mathematicians, Vol. II, Eur. Math. Soc., Zürich, (2006), pp. 827-852.

Graduate School of Science
Hokkaido University
Kita Ku, Sapporo 060-0810, Japan
E-mail: liu@math.sci.hokudai.ac.jp

