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On the global existence and asymptotic behavior of

solutions of reaction-diffusion equations

By Kytya Masupa
(Received December 3, 1982)

1. Introduction

Let 2 be a bounded domain with smooth boundary I" in R*. Let $>1,
and ;>0 (j=1,2). R. Martin posed a problem on the existence and uniform
bounds of solutions « = {u;, uy} of the reaction-diffusion equation of the form :

_3;‘71 = yldul—ulug

(1) o xEQ, t>0
6t2 = ppdus+u ttf

under various boundary conditions and non-negative initial data ; this equation
is related to the Rosenzweig-MacArthur equation in ecology (see J. Maynard-
Smith [5]; D. Conway and A. Smoller [2]). N. Alikakos obtained L™-
bounds of solutions of (1) subject to the homogeneous Neumann boundary
condition under the assumption 1<g<(n+2)/n, and gave a positive partial
answer to it. The purpose of the present paper is to give a complete answer
to the problem of Martin.

~ We consider a solution z={u,, us} of the more general type of reaction-
diffusion equations

ou

(2) S = piduytfile), x€2, £>0 (j=1,2);
subject to the boundary condition :

ou . .
(3) a(2) 5t +(1—ay(@) u;=0, z€T, (7=1,2);

and with the initial condition :
(4) ujli—0 = aj(x), ze (7=1,2),

(3/on denotes differentiation in the direction of the exterior normal to I).
Here we make the following assumptions :

AssuMPTION 1. aj(x) (j=1,2) is a non-negative C:-function on I' such
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that 0<a;(2)<1 (z<I).

ASSUMPTION 2. ay(x) (j=1,2) is a non-negative C:-function on 2,
satisfying (3);

AssumPTION 3. f;(y) (j=1,2) is a C-function on R:i={y=,¥,;
Y120, ¥.>0} such that
) —fi), /2(u) are non-negative and f,((0, s) =fa((s, 0) =0 for s>0;
i) there is a monotonically increasing function w(s) (s>0) and a positive
constant r with

Fl) < o) ety ) ne
f2l) < w(yl)lfl(y)l _ 1 Yo 2,

We note that f,(y)=—v,¥5 f2,¥)=v:9¢ (see (1)) satisfies the assumption 3.
Our result is now given by the following

(5

THEOREM. Let the assumptions 1, 2 and 3 hold. Then the initial-
boundary walue problem (2), (3), (4) has a unique global solution u=/{u, us}.
Moreover, u tends to some constant vector of the form c={cy, cs}, as t—oo,
uniformly on 2, where ¢;>0 and f;(c;)=0 (j=1,2).

The following corollary follows immediately from the theorem above,
and gives a complete answer to the problem of Martin.

CoROLLARY. Let the assumptions 1 and 2 hold. Then the initial-
boundary value problem (1), (3), (4) has a unique global solution u={u, u}.
Moreover, u tends to a constant vector c={cy, cs}, as t—oo, uniformly on
Q, where ¢;>0, ¢,c,=0, and

(6) e S?Sr< %Z:; + %Z:: ) dedt-i—sn(al(x) +a2(x)> dzx.

In the next two sections we shall give some a priori estimates, which
are the core of the proof of our theorem. In the final section we shall give
the proof of the theorem.

2. L” bounds of solutions

Here we shall give some a priori estimates for a solution = of (2), (3),
(4) which is supposed to exist in the interval [0, 7). We first see that u;
(7=1, 2) is non-negative ;

(7) uyx, t) >0, z€82, 0<t<T, (j=1,2)

since the initial data a;(x) is non-negative, and since f;(«) has, by the assump-
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tion 3 (i), the form : f;(u)=c;(u) u; where c;(u)=c;(u(x,t)) is some cotinuous
function of x, . By the maximum principle,

(8) 0 <u(x t) <|lay|z

since fi(x)<0 by the assumption 3. To get the L®-bounds for u is the
essential part of the proof of our theorem. This follows from the following
key a priori estimate: for p>1,

(9) |, <M,  0<:<T,

M, being a constant independent of T (we shall simply write u;(t) for
uj(x,t)), which we shall prove in a series of lemmas; || « ||z, denotes the
usual L?-norm over £. In doing so, we set

gp(uz) = (1 +u2)p ’ uy; >0
for p>0. We note
(10) 0 () < (P =112 (| 07 (s

for p#1. We denote the inner product of L*®) by (-, +), and define (F5,
crd) by :

1/2

0b(x)

2 0x;

od(x)

ax,-

Vb, 7 d) = zl S c(x) dz

for scalar functions b, ¢ and d on £.

LEMMA 1. Let u={wu,, uy} be a solution of (2), (3), (4) in [0, T). Then
for w in W¥Q) and 0<t<T,

(11) (dus(t), w) = S%%jf—tl w(a) dS,—(Fus(t), Pw) .

Moreover, if w is non-negative, then
(12) (dus(0), w) < —(Fusle) Paw),  0<e<T,
(W) is the usual Sobolev space).

Proor. By integration by parts, we have [11]. By (3) and (7), it is easy
to see that

(13) ouj(z, t))on <0, ze, 0<t<T, j=1,2,
from which follows by [11).

LEMMA 2. Let u be as in Lemma 1. Then
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(14) Sguj(x, 1 dx—S:SFa—u’a(—-—)dS ds—S S Fi(u(z, s)) dads

:S aj(x)dx,_ 0St<T,]:1’2 . |
2 '

Proor. Integrating (2) with respect to z, ¢ over 2x[0,r], we -have,
by with w=1, (14).

LEMMA 3. Let u be as in . Then
t( ous(z, s
(00(s0). 1) = | 255 g3l o) diSeds

(15) = (golaah 1)~ | (P 5 ) Pats) s+ ( fita) g5(a) s,
0<z<T.
ProoF. By (2) with j=2, and [12},

(om0 1) = (a3 wate), P2
= (0 (1s0)), D))+ (1 (a8, Fo(w®)
Integrating the above inequality in #, we have, by [11), [I5].
LEMMA 4. Let u be as in [Lemma 1. Let p#1. Then

[} (it ) ds < M+ ], <Vu2,|gp w|7u) s

16
16) + M (ghlaa) fola) s
0T
M being a constant independent of T (which may depend on ||aj||z», j=1, 2)

Proor. We shall denote by the same M various constant independent
of T (which may depend on p, ||a||z=, ||@llz~). By (2) and [12), (u;=u;(#)

% (2es+ 222, gy (1))
— (14 20) (s s+, 0500
+ (w18, ¢} () (1 dun+ (1))
(17) < — (et 1) (P, (L4 201y) @ (te) V) — 20 (P, 0 (1) V)

+( A+ 2001 fi(a0), 0 at)) — g Ptz (t1+03) 0 (1) P ts)
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+ (w18, g o)
(=L+ L+ L+ L+1).

We shall estimate each term on the right-side of . By the Schwarz
inequality, (10}, and (8), .

L+ L < M(Vatg, (14201 05 ()| P )
< M(Pus, |03 ()| Pa)
By the assumption 3 () and (i), (Mo=o(||a/|z=)/(1+2l|a]z=))
L (142 @) (fila), gp(m) < — M falts), gp() -

By (8),

L < M(Pus, |05 (wa)|Fats) 5 T < M(gh(aa), fo(a0) -
Collecting all the estimates above, we see:

the left hand side of (17) < — M;*( falw), gp(as)) + Mg} (et falw))
+ M(V |g;,'<u2)|7u2) .

Integrating the above inequality in ¢ over [0,¢], we get [16).

LEMMA 5. Let u be as in [Lemma 1. Let 0<0<1. Then
t
18 [(AEO) g ds <M. 0<I<T, k=12,

M, being a constant independent of T.

Proor. We first show holds for £=1. By (14) with j=1, the
assumption 3 (i), and [13), (M{=wo(|ail|z=)) ' ~

a9 o<|(Aw1)d< - [[(Ale 1) ds < My 1)

Hence the first and second terms on the left hand side of (14) with j=2
are bounded by some constant (independent of T'). Hence the left hand side
of with p=1—6 is bounded by some constant (independent of 7). Since
the left hand side of with k=1 is, by with p=1—8, bounded by the
left hand side of with p=1—6, we see that holds for k=1; note
g% (uy) is negative for p=1—6. We suppose that holds for k=m. Then
since ¢ (u) >0 for p>1, it follows from and that
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[[ (e, 05009 s < Mot ML ( filad, gp(a) s,

M, being a constant independent of 7, which shows [18] holds for k=
m-+1—6. By induction on k, the proof of the lemma is completed.

LEMMA 6. For any p>1, we have
(9) |t <M, o<i<T,

M, being a constant independent of T.
Proor. From (13}, and [18), the estimate (9) follows.

3. L™ -bounds of solutions

A) Let p>max {n,2}. We then define the operator'Aj;,, in L?(Q) by:
D(A;,) = {uEW“’(Q) ; aj(x)-;% +<1—aj(x)> #=0 on P} ;

Ajpte= —pdu

where W??(Q) is the usual Sobolev space; We shall simply write A; for
A;, unless otherwise stated. Here we recall the basic properties of the
Aj; (For the detail see, e.g., H. Tanabe [7]. We know that the estimate

llulle,p < M{Jldllzp+ || Asullzr),  wED(A),

holds (M : constant) where ||+||;., is the norm of the Sobolev space W*2(2).
Furthermore, — A; generates the holomorphic semi-groups {e7*4i},.,in L?(9).
We also know that the spectrum of A; consists of non-negative eigenvalues
{4;};>, with finite multiplicity : 0<2, <2 <2< ---. Since any eigenvalue 2; of
A;, is also eigenvalue of the self-adjoint operator A;, in L*%), it is easy
to see that the first eigenvalue 2, of A, is positive if a;(x)%#1; and zero if
a;j(z)=1. For feL?(), we set

| frdzior @ al@=1)
0 (f a;(x)£1).

Then P; is the projection operator onto the eigenspace corresponding to the
first eigenvalue 4,=0 if a;(x)=1. Define the operator Q; in L?(2) by

Qj———I—P,-

Pif=

(I denotes the identity operator). Then
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LEmMMA 7. Let 0<0<1. For 0<s<t, we have

(20) le™*44|| < M

(21) 1Qje~ 4| < Me™;

(22) | Aze™4|| < Me™le™

(23) |le™t4i —e~24i|| < M(t —s)’s~%e ™ ;

(24) |Pe—tdi —Pe~s4i|| < Mt —s)¥/2s~@+D/2gs

(25) le~t45 w—e~4520]| .0 < Mt —s) e || A;wllp, weED(A,);
(27) IPe~t4i v —Fe=*4i || 1o < M(t—s)V2e|| A wl| 2, wED(A,),
(

J=1,2) where M, B are positive constants independent of t; ||-|| denotes
the operator norm in LP(9).

Proor. The proofs of the inequalities above are standard in the theory
of semi-groups. We omitt the subscript j. Since the spectrum of AQ in
QL?(9) consists of positive eigenvalues, and since AQ =0, and
follow from the representation of the holomorphic semi-groups by the Duford-
Taylor integral. Since Pe~*4=P, using just proved, we have [20).
and follow from [21), and the following inequalities :

I,__ e" t—84

(t—s)A Q

9

e ew—e* 4wt < (¢ 1Ae 4t

et 20— e 20l |9 = [le=H4 e~ ot le~H4 w4 o5
Since A has a bounded inverse in QL?(Q), we have
IQuwlz» < Mi|Awlizz,  weD(4).
Hence, using the interpolation theorem :
P wllir < M||Qwl|z2||wlls,»
(see, e.g., S. Mizohata [6: Theorem 3. 26]) we find
(28) P wlze < M||Quwl|z2 || Aw||z7 ;
29  [IPwlle < M||Aw]».
Hence, by [28),
Ve t4w—Fet4aw]|p < Mlle™4mw— e~ o] V3] (I— e=¢-94) Aem4 w"lL/; :

from which follows by and [23). Similarly, can be proved by
(29}, [22), and [25). |
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Let ¢>2. Let f(t), 0<t<T, be an Lt-function of ¢ with values in
L?(2). We then define the function v,(t) by :

(30) v(t) = e t4i aj+S:e;(“8)Aff(s) ds, j=12.
Then :* -
LEMMA 8. Let v;, f be as above. Let 0<6<1—2/q. We have; (og
s<t<T) .
B) - osto], < M+M{ | flo)],p do
@ Q] < Mewt M ero] o), dos
(33) Po,(0)],0 < Me#+ M| (t—o) e~ | flo)] o
39 Joo—v0), < Me—9+Mle—sr+e—sr)({|raf,de) s
6, =1—1/q) |
(35) [Postt)— 7o), < Me—9+ M{e =~} ([ | rolpdo)

@, =0/2; 6,=1/2—1/q) .

Proor. (31) and (32) follow easily from (20), (21). We shall show (35).
We omitt the subscript j, and write v, A, etc. for v;, A; etc. We have

o(f) —v(s) = S:Pf(s) ds+Q(et4—e ) a—l—SiQe‘“"’"‘ (o) do

36) ,,
+ SOQ("_(‘“”)A —e¢24) flo) do (=L+L+L+1)

By and [22], we see
(37) IPet4|| < MzV2e#
We have: FI,=0. By [25), WLl »<M(t—s). By and the Hélder

inequalty,

WElr < M (¢—a =2 £lo)] oo
< Mie—5( (| ol do)

By and the Hélder inequality,
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7Ll < Mie—s({ |7 to).

Collecting all the estimates above, we get (35). Similarly, using [23), (25),
and [37), we can prove and [(34).

LEmMMA 9. Let v, f be as in Lemma 8. Suppose that f(t) is Holder
continuous for t (0<t<T):

(38) |7 s < L(2=s1%+12—s])
where L, 6, 05 are constants, 0< 6, 0,<1. Then v,(¢)€D(A;), and
(39) | 4500, < M+ ML+ M|f@)|,,

(0<¢t<T), M being a constant independent of T, f. Moreover, Sfor any
>0 we have (e<s<t<T)

(40) "Ajlvj(t)—Ajv(S)uLp < M—s) e+ ML((t—s)"‘+(t—S)’5>
+Me—s) 1| fie)]

(For the proof, see T. Kato [4: Lemma IX 1. 28]).
B) We now proceed to the derivation of L®-bounds of solutions. Let

p>max {n,2}. M denotes, as before, various constants independent of T
(which may depend on p, ||a,|ly,). We have:

?

LEemMA 10. Let u={u, ug} be as in Lemma 1. Then

(41) u;(t) "2,10 <M;
(42) u;t)] . < M;
43 [ () s <M

Sfor 0<i<T; j=1, 2.
Proor. We claim: (0<t<T; j=1, 2)

(44) @) <M @=1;
(45) [l (o) Erds < M) £ (), 1) Juto o s
(46) J7uso),, < M.

Indeed, by (5), (8), and (9), holds for j=2. By the Hélder inequality,
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with j=2 follows from [44), and hence we have, by (19), with j —2.
Since u;(t) satisfies with f(t) replaced by f;(u(t)):

(47) u;(t)=e*ia j—l-S:e‘“'s’Af fi <u(s)> ds

it follows from {33}, with j=2, and the Holder inequality that holds
for j=2. with j=2 now follows from [46), (9) and the Sobolev lemma.
On the other hand, with j=2, and (8) give with j=1. Hence by
the Hélder inequality, we have with j=1, which shows with j=1.
From [[45), [33), we can see, as before, that [46), hold for j=1. By

and [43), (¢=3p; 0=1/4) |
s 6)— 9] p < M2 =)+ Mg s+ Mg =™

and so

R VACOR (w(9))], < Mt —9)+ Mle—ss+ Ml =5
By and [44), we have [41).

4. The proof of the theorem
Let p>n+1. Let T>0. Set X,=C([0, T]; W*2(Q2)). - Then X, is the

Banach space with an appropriate norm. We define a sequence {#®},2; in
X, x X; inductively by : (u® = {u®, u$®})

uP(t) =eia;;

U () = ufp (t)+S:e—(:—s>Ajfj<u<k) (s)) ds
By the standard argument, we can see from that {&® ()} is a
Cauchy sequence in XX X; i T is sufficiently small. Let u(?) be the limit
of the Cauchy sequence {«®} in X; X Xi. Then the u(t) is cleary a solution
of (47). Hence, in the same way as in the proof of [Lemma 9, we can show
that u;()€D(A,), Aju,(t) is Holder continuous for 0<t< T, u,(t) is con-
tinuously differentiable for 0<¢<T, its derivative du(f)/dt is Holder con-
tinuous for 0<t<T, and u,(t) satisfies the (abstract) equation in Lr(Q):
du,;(t)/dt + Aju;(O) =f;(u(t)) with u;(0)=a; On the other hand this implies
that »;eWt?(2x[0, T)). Hence, by the Sobolev imbedding theorem, u is
Hélder continuous on 2x(0, T, and so is f3(«(¢)). Hence, by the existence
and regularity theorem for solutions of paraboic equation (see S. Ito
a classical solution v; of dv,/ot=p;dv;+fi(u(z, #)) with conditions (3) and (4)
exists and coincides with %;; compute d||v; () —u;(B)l|3/dt. This implies %;
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is a classical solution of (2), (3) and (4). The uniqueness of solution can
be proved by a routin argument. Since we have a priori bounds we
have actually a unique global solution ; note it suffices to assume that a,E
W2r(Q).

We finally show the asymptotic behavior in ¢ of the solution of (2), (3),
(4). By [43], the right-hand sides of (32), with f(z) replaced by f;(u(t))
tend to zero as t—oo. Hence ||Q;u;(t)||»—0, [|P2;(t)||,p—0 as t—oo. By
the Sobolev imbedding theorem, Q;u;(t) converges to zero as t— oo, uniformly
on Q. By [13) [13) and the assumption 3 (i), the second and third terms on the
right-hand side of (14) with j=1 are monotone and bounded, and hence
are convergent for t—oco. Hence (u,(f), 1) converges to some non-negative
constant @ as t—oco. By [19), (f3(u(t)),1) is integrable on [0, o0), since
—(f1(#(#), 1) is integrable on [0, o). Hence by (14) with j=2, (uy(2), 1)
converges to some non-negative constant @, as ¢—co. Hence, P,-uj(t) con-
verges to ¢; as t—oo, where ¢;=a,/|Q|. Hence, u;(t) converges to c; as
t—oo, uniformly on 2; ¢;>0. Note ¢;=0 if a;(x)<1 for some x,=I.
Since || f;(u(t))|[}% is, by [43), integrable on [0, o), there is a sequence {t},
tending to the infinity, such that || £;(x(z))||.»—0. Since uj(t)—c;, uniformly
on 2 (as t—oo), we have: 1 f5(e)llz»=0 (c={cy, ca}), which implies £;(c)=0
Thus the proof of the theorem is completed.

PROOF OF THE ¢OROLLARY. It suffices to show (6). Adding (14) with
J=1, and (14) Wlth J=2, and letting ¢ tend to the infinity, we have (6);
note f;(u)+fa(u) =
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