On the global existence and asymptotic behavior of solutions of reaction-diffusion equations

By Kyûya MASUDA (Received December 3, 1982)

1. Introduction

Let Ω be a bounded domain with smooth boundary Γ in \mathbb{R}^n . Let $\beta \geq 1$, and $\mu_j > 0$ (j=1,2). R. Martin posed a problem on the existence and uniform bounds of solutions $u = \{u_1, u_2\}$ of the reaction-diffusion equation of the form:

$$\begin{cases} \frac{\partial u_1}{\partial t} = \mu_1 \Delta u_1 - u_1 u_2^{\beta} \\ \frac{\partial u_2}{\partial t} = \mu_2 \Delta u_2 + u_1 u_2^{\beta} \end{cases} \quad x \in \Omega, \ t > 0$$

under various boundary conditions and non-negative initial data; this equation is related to the Rosenzweig-MacArthur equation in ecology (see J. Maynard-Smith [5]; D. Conway and A. Smoller [2]). N. Alikakos [1] obtained L^{∞} -bounds of solutions of (1) subject to the homogeneous Neumann boundary condition under the assumption $1 \le \beta < (n+2)/n$, and gave a positive partial answer to it. The purpose of the present paper is to give a complete answer to the problem of Martin.

We consider a solution $u = \{u_1, u_2\}$ of the more general type of reactiondiffusion equations

(2)
$$\frac{\partial u_j}{\partial t} = \mu_j \Delta u_j + f_j(u), \quad x \in \Omega, \quad t > 0 \quad (j = 1, 2);$$

subject to the boundary condition:

(3)
$$\alpha_j(x) \frac{\partial u_j}{\partial n} + \left(1 - \alpha_j(x)\right) u_j = 0, \ x \in \Gamma, \ (j = 1, 2);$$

and with the initial condition:

$$(4)$$
 $u_j|_{t=0} = a_j(x), \quad x \in \Omega \ (j=1,2),$

 $(\partial/\partial n)$ denotes differentiation in the direction of the exterior normal to Γ). Here we make the following assumptions:

Assumption 1. $\alpha_j(x)$ (j=1,2) is a non-negative C^2 -function on Γ such

that $0 \le \alpha_j(x) \le 1$ $(x \in \Gamma)$.

Assumption 2. $a_j(x)$ (j=1,2) is a non-negative C^2 -function on $\bar{\Omega}$, satisfying (3);

Assumption 3. $f_j(y)$ (j=1,2) is a C^1 -function on $\bar{R}^2_+ = \{y = (y_1, y_2); y_1 \ge 0, y_2 \ge 0\}$ such that

- i) $-f_1(y)$, $f_2(y)$ are non-negative and $f_1((0, s)) = f_2((s, 0)) = 0$ for $s \ge 0$;
- ii) there is a monotonically increasing function $\omega(s)$ $(s \ge 0)$ and a positive constant r with

We note that $f_1(y) = -y_1y_2^{\beta}$, $f_2(y) = y_1y_2^{\beta}$ (see (1)) satisfies the assumption 3. Our result is now given by the following

THEOREM. Let the assumptions 1, 2 and 3 hold. Then the initial-boundary value problem (2), (3), (4) has a unique global solution $u = \{u_1, u_2\}$. Moreover, u tends to some constant vector of the form $c = \{c_1, c_2\}$, as $t \to \infty$, uniformly on $\overline{\Omega}$, where $c_j \geq 0$ and $f_j(c_j) = 0$ (j=1, 2).

The following corollary follows immediately from the theorem above, and gives a complete answer to the problem of Martin.

COROLLARY. Let the assumptions 1 and 2 hold. Then the initial-boundary value problem (1), (3), (4) has a unique global solution $u = \{u_1, u_2\}$. Moreover, u tends to a constant vector $c = \{c_1, c_2\}$, as $t \to \infty$, uniformly on $\bar{\Omega}$, where $c_j \ge 0$, $c_1 c_2 = 0$, and

(6)
$$c_1+c_2=\int_0^\infty\int_r\left(\frac{\partial u_1}{\partial n}+\frac{\partial u_2}{\partial n}\right)dS_xdt+\int_{\varrho}\left(a_1(x)+a_2(x)\right)dx.$$

In the next two sections we shall give some a priori estimates, which are the core of the proof of our theorem. In the final section we shall give the proof of the theorem.

2. L^p bounds of solutions

Here we shall give some a priori estimates for a solution u of (2), (3), (4) which is supposed to exist in the interval [0, T). We first see that u_j (j=1, 2) is non-negative;

(7)
$$u_j(x,t) \ge 0, x \in \Omega, 0 \le t < T, (j=1,2)$$

since the initial data $a_j(x)$ is non-negative, and since $f_j(u)$ has, by the assump-

tion 3 (i), the form: $f_j(u) = c_j(u) u_j$ where $c_j(u) = c_j(u(x, t))$ is some cotinuous function of x, t. By the maximum principle,

(8)
$$0 \le u_1(x, t) \le ||a_1||_{L^{\infty}}$$

since $f_1(u) \le 0$ by the assumption 3. To get the L^{∞} -bounds for u is the essential part of the proof of our theorem. This follows from the following key a priori estimate: for p>1,

$$(9)$$
 $||u_2(t)||_{L^p} \leq M_p$, $0 \leq t < T$,

 M_p being a constant independent of T (we shall simply write $u_j(t)$ for $u_j(x,t)$), which we shall prove in a series of lemmas; $||\cdot||_{L_p}$ denotes the usual L^p -norm over Ω . In doing so, we set

$$g_p(u_2) = (1 + u_2)^p$$
, $u_2 \ge 0$

for p>0. We note

$$(10) g_p'(u_2) \le (p/|p-1|)^{1/2} g_p(u_2)^{1/2} |g_p''(u_2)|^{1/2}$$

for $p \neq 1$. We denote the inner product of $L^2(\Omega)$ by (\cdot, \cdot) , and define $(\overline{r}b, c\overline{r}d)$ by:

$$(\nabla b, c\nabla d) = \sum_{i=1}^{n} \int_{\Omega} \frac{\partial b(x)}{\partial x_i} c(x) \frac{\partial d(x)}{\partial x_i} dx$$

for scalar functions b, c and d on Ω .

LEMMA 1. Let $u = \{u_1, u_2\}$ be a solution of (2), (3), (4) in [0, T). Then for w in $W^{1,2}(\Omega)$ and $0 \le t < T$,

(11)
$$\left(\Delta u_j(t), \, w \right) = \int_{\Gamma} \frac{\partial u_j(x, t)}{\partial n} \, w(x) \, dS_x - \left(\nabla u_j(t), \, \nabla w \right).$$

Moreover, if w is non-negative, then

(12)
$$\left(\Delta u_j(t), w\right) \leq -\left(\nabla u_j(t), \nabla w\right), \quad 0 \leq t < T,$$

 $(W^{1,2}(\Omega) \text{ is the usual Sobolev space}).$

PROOF. By integration by parts, we have (11). By (3) and (7), it is easy to see that

(13)
$$\partial u_j(x,t)/\partial n \leq 0$$
, $x \in \Omega$, $0 \leq t < T$, $j = 1, 2$,

from which (12) follows by (11).

LEMMA 2. Let u be as in Lemma 1. Then

11 1

(14)
$$\int_{a} u_{j}(x,t) dx - \int_{0}^{t} \int_{r} \frac{\partial u_{j}(x,s)}{\partial n} dS_{x} ds - \int_{0}^{t} \int_{a} f_{j}(u(x,s)) dx ds$$
$$= \int_{a} a_{j}(x) dx, \qquad 0 \le t < T, \ j = 1, 2.$$

PROOF. Integrating (2) with respect to x, t over $\Omega \times [0, t]$, we have, by (11) with w=1, (14).

LEMMA 3. Let u be as in Lemma 1. Then

(15)
$$(g_{p}(u_{2}(t)), 1) - \mu_{2} \int_{0}^{t} \int_{\Gamma} \frac{\partial u_{2}(x, s)}{\partial n} g'_{p}(u_{2}(x, s)) dS_{x} ds$$

$$= (g_{p}(a_{2}), 1) - \mu_{2} \int_{0}^{t} (\nabla u_{2}, g''_{p}(u_{2}) \nabla u_{2}) ds + \int_{0}^{t} (f_{2}(u), g'_{p}(u_{2})) ds ,$$

$$0 \leq t \leq T .$$

Proof. By (2) with j=2, and (12),

$$egin{aligned} rac{d}{dt}ig(g_pig(u_2(t)ig),1ig) = & \left(g_p'ig(u_2(t)ig),rac{\partial u_2(t)}{\partial t}ig) \\ &= & \mu_2ig(g_p'ig(u_2(t)ig),\Delta u_2(t)ig) + ig(g_p'ig(u_2(t)ig),f_2ig(u(t)ig) \end{aligned}$$

Integrating the above inequality in t, we have, by (11), (15).

LEMMA 4. Let u be as in Lemma 1. Let $p \neq 1$. Then

$$\int_{0}^{t} \left(f_{2}(u), g_{p}(u_{2}) \right) ds \leq M + M \int_{0}^{t} \left(\nabla u_{2}, \left| g_{p}^{\prime \prime}(u_{2}) \right| \nabla u_{2} \right) ds$$

$$+ M \int_{0}^{t} \left(g_{p}^{\prime}(u_{2}), f_{2}(u) \right) ds$$

$$0 \leq t \leq T$$

M being a constant independent of T (which may depend on $||a_j||_{L^{\infty}}$, j=1,2)

PROOF. We shall denote by the same M various constant independent of T (which may depend on p, $||a_1||_{L^{\infty}}$, $||a_2||_{L^{\infty}}$). By (2) and (12), $(u_j=u_j(t))$

$$\frac{d}{dt} \left(u_{1} + u_{1}^{2}, g_{p}(u_{2}) \right) \\
= \left((1 + 2u_{1}) \left(\mu_{1} \Delta u_{1} + f_{1}(u) \right), g_{p}(u_{2}) \right) \\
+ \left(u_{1} + u_{1}^{2}, g_{p}'(u_{2}) \left(\mu_{2} \Delta u_{2} + f_{2}(u) \right) \right) \\
\leq -(\mu_{1} + \mu_{2}) \left(\nabla u_{1}, (1 + 2u_{1}) g_{p}'(u_{2}) \nabla u_{2} \right) - 2\mu_{1} \left(\nabla u_{1}, g_{p}(u_{2}) \nabla u_{1} \right) \\
+ \left(f_{1}(u) + 2u_{1} f_{1}(u), g_{p}(u_{2}) \right) - \mu_{2} \left(\nabla u_{2}, (u_{1} + u_{1}^{2}) g_{p}''(u_{2}) \nabla u_{2} \right) \right)$$

$$+(u_1+u_1^2, g_p'(u_2)f_2(u))$$

 $(\equiv I_1+I_2+I_3+I_4+I_5).$

We shall estimate each term on the right-side of (17). By the Schwarz inequality, (10), and (8),

$$I_1 + I_2 \le M(\nabla u_2, (1 + 2u_1)^2 | g_p''(u_2) | \nabla u_2)$$

 $\le M(\nabla u_2, | g_p''(u_2) | \nabla u_2).$

By the assumption 3 (i) and (ii), $(M_0 = \omega(||a_1||_{L^{\infty}})/(1+2||a_1||_{L^{\infty}}))$

$$I_3 \leq (1+2||a_1||_{L^{\infty}}) (f_1(u), g_p(u_2)) \leq -M_0^{-1}(f_2(u), g_p(u_2)).$$

By (8),

$$I_4 \leq M(\nabla u_2, |g_p''(u_2)|\nabla u_2); I_5 \leq M(g_p'(u_2), f_2(u)).$$

Collecting all the estimates above, we see:

the left hand side of
$$(17) \le -M_0^{-1} (f_2(u), g_p(u_2)) + M(g'_p(u_2), f_2(u)) + M(\overline{V}u_2, |g''_p(u_2)|\overline{V}u_2)$$
.

Integrating the above inequality in t over [0, t], we get (16).

LEMMA 5. Let u be as in Lemma 1. Let $0 < \theta < 1$. Then

(18)
$$\int_0^t \left(f_2(u(s)), g_{k-\theta}(s) \right) ds \le M_k . \qquad 0 \le t < T, \ (k=1, 2, \cdots) ,$$

 M_k being a constant independent of T.

PROOF. We first show (18) holds for k=1. By (14) with j=1, the assumption 3 (ii), and (13), $(M_0'=\omega(||a_1||_{L^\infty}))$

(19)
$$0 \leq \int_0^t (f_2(u), 1) ds \leq -M_0' \int_0^t (f_1(u), 1) ds \leq M_0'(a_1, 1).$$

Hence the first and second terms on the left hand side of (14) with j=2 are bounded by some constant (independent of T). Hence the left hand side of (15) with $p=1-\theta$ is bounded by some constant (independent of T). Since the left hand side of (18) with k=1 is, by (16) with $p=1-\theta$, bounded by the left hand side of (15) with $p=1-\theta$, we see that (18) holds for k=1; note $g_p''(u_2)$ is negative for $p=1-\theta$. We suppose that (18) holds for k=m. Then since $g_p''(u_2)>0$ for p>1, it follows from (15) and (16) that

$$\int_0^t \left(f_2(u), g_p(u_2) \right) ds \le M_2 + M_2 \int_0^t \left(f_2(u), g_p'(u_2) \right) ds,$$

 M_2 being a constant independent of T, which shows (18) holds for $k = m+1-\theta$. By induction on k, the proof of the lemma is completed.

LEMMA 6. For any p>1, we have

(9)
$$u_2(t)|_{L^p} \leq M, \quad 0 \leq t < T,$$

 M_p being a constant independent of T.

PROOF. From (13), (15) and (18), the estimate (9) follows.

3. L^{∞} -bounds of solutions

A) Let $p>\max\{n,2\}$. We then define the operator $A_{j,p}$ in $L^p(\Omega)$ by:

$$\begin{split} D(A_{j,p}) = & \left\{ u \in W^{2,p}(\Omega) \; ; \; \alpha_j(x) \frac{\partial u}{\partial n} + \left(1 - \alpha_j(x) \right) u = 0 \; \text{ on } \; \Gamma \right\}; \\ A_{j,p}u = & - \mu_j \Delta u \end{split}$$

where $W^{2,p}(\Omega)$ is the usual Sobolev space; We shall simply write A_j for $A_{j,p}$ unless otherwise stated. Here we recall the basic properties of the A_j (For the detail see, e.g., H. Tanabe [7]). We know that the estimate

$$||u||_{2,p} \leq M\{||u||_{L^p} + ||A_ju||_{L^p}\}, \quad u \in D(A_j),$$

holds (M: constant) where $||\cdot||_{k,p}$ is the norm of the Sobolev space $W^{k,p}(\Omega)$. Furthermore, $-A_j$ generates the holomorphic semi-groups $\{e^{-tA_j}\}_{t>0}$ in $L^p(\Omega)$. We also know that the spectrum of A_j consists of non-negative eigenvalues $\{\lambda_i\}_{i=1}^{\infty}$ with finite multiplicity: $0 \le \lambda_1 \le \lambda_2 \le \lambda_3 \le \cdots$. Since any eigenvalue λ_i of $A_{j,p}$ is also eigenvalue of the self-adjoint operator $A_{j,2}$ in $L^2(\Omega)$, it is easy to see that the first eigenvalue λ_1 of A_j is positive if $\alpha_j(x) \not\equiv 1$; and zero if $\alpha_j(z) \equiv 1$. For $f \in L^p(\Omega)$, we set

$$P_{j}f = \begin{cases} \int_{a} f(x) \, dx / |\Omega| & \text{(if } \alpha_{j}(x) \equiv 1) \\ 0 & \text{(if } \alpha_{j}(x) \not\equiv 1) \end{cases}.$$

Then P_j is the projection operator onto the eigenspace corresponding to the first eigenvalue $\lambda_1 = 0$ if $\alpha_j(x) \equiv 1$. Define the operator Q_j in $L^p(\Omega)$ by

$$Q_j = I - P_j$$

(I denotes the identity operator). Then

K. Masuda

Lemma 7. Let $0 < \theta \le 1$. For $0 \le s \le t$, we have

$$(20) ||e^{-tA_j}|| \leq M;$$

366

$$(21) ||Q_j e^{-tA_j}|| \leq M e^{-\beta t};$$

$$(22) ||A_{i}e^{-tA_{j}}|| \leq Mt^{-1}e^{-\beta t};$$

$$(23) ||e^{-tA_j} - e^{-sA_j}|| \le M(t-s)^{\theta} s^{-\theta} e^{-\beta s};$$

$$(24) || \nabla e^{-tA_j} - \nabla e^{-sA_j} || \le M(t-s)^{\theta/2} s^{-(\theta+1)/2} e^{-\beta s};$$

$$(25) ||e^{-tA_j}w - e^{-sA_j}w||_{L^p} \le M(t-s) e^{-\beta s}||A_jw||_{L^p}, \ w \in D(A_j);$$

$$(27) || \nabla e^{-tA_j} w - \nabla e^{-sA_j} w ||_{L^p} \le M(t-s)^{1/2} e^{-\beta s} || A_j w ||_{L^p}, \ w \in D(A_j),$$

(j=1,2) where M, β are positive constants independent of t; $||\cdot||$ denotes the operator norm in $L^p(\Omega)$.

PROOF. The proofs of the inequalities above are standard in the theory of semi-groups. We omitt the subscript j. Since the spectrum of AQ in $QL^p(\Omega)$ consists of positive eigenvalues, and since AQ=O, (21) and (22) follow from the representation of the holomorphic semi-groups by the Duford-Taylor integral. Since $Pe^{-tA}=P$, using (21) just proved, we have (20). (23) and (25) follow from (21), (22) and the following inequalities:

$$||e^{-tA}w - e^{-sA}w||_{L^{p}}^{\theta} \leq (t-s)^{\theta} \left\| \frac{I - e^{-(t-s)A}}{(t-s)A}Q \right\|^{\theta} ||Ae^{-sA}w||_{L^{p}}^{\theta};$$

$$||e^{-tA}w - e^{-sA}w||_{L^{p}} = ||e^{-tA}w - e^{-sA}w||_{L^{p}}^{\theta} ||e^{-tA}w - e^{-sA}w||_{L^{p}}^{1-\theta}.$$

Since A has a bounded inverse in $QL^p(\Omega)$, we have

$$||Qw||_{L^p} \leq M||Aw||_{L^p}$$
, $w \in D(A)$.

Hence, using the interpolation theorem:

$$||\nabla w||_L^2 p \leq M||Qw||_L p||w||_{2,p}$$

(see, e.g., S. Mizohata [6: Theorem 3.26]) we find

(28)
$$|| \nabla w ||_{L^p}^2 \leq M || Q w ||_{L^p} || A w ||_{L^p};$$

Hence, by (28),

$$|| \overline{V} e^{-tA} w - \overline{V} e^{-sA} w ||_{L^p} \leq M || e^{-tA} w - e^{-sA} w ||_{L^p}^{1/2} \| (I - e^{-(t-s)A}) A e^{-sA} w \|_{L^p}^{1/2}.$$

from which (24) follows by (22) and (23). Similarly, (27) can be proved by (29), (22), and (25).

Let q>2. Let f(t), $0 \le t < T$, be an L^q -function of t with values in $L^p(\Omega)$. We then define the function $v_j(t)$ by:

(30)
$$v(t) = e^{-tA_j} a_j + \int_0^t e^{-(t-s)A_j} f(s) ds, \quad j = 1, 2.$$

Then:

Lemma 8. Let v_j , f be as above. Let $0 < \theta < 1 - 2/q$. We have; $(0 \le s \le t < T)$

(31)
$$\|v_{j}(t)\|_{L^{p}} \leq M + M \int_{0}^{t} \|f(\sigma)\|_{L^{p}} d\sigma;$$

(32)
$$\|Q_{j}v_{j}(t)\|_{L^{p}} \leq Me^{-\beta t} + M \int_{0}^{t} e^{-\beta(t-\sigma)} \|f(\sigma)\|_{L^{p}} d\sigma ;$$

$$\| \nabla v_j(t) \|_{L^p} \le M e^{-\beta t} + M \! \int_0^t (t-\sigma)^{-1/2} e^{-\beta (t-\sigma)} \, \| f(\sigma) \|_{L^p} \, d\sigma \, ;$$

(34)
$$\|v_{j}(t) - v_{j}(s)\|_{L^{p}} \leq M(t-s) + M\{(t-s)^{\theta_{1}} + (t-s)^{\theta}\} \left(\int_{0}^{t} \|f(\sigma)\|_{L^{p}}^{q} d\sigma\right)^{1/q};$$

$$(\theta_{1} = 1 - 1/q)$$

(35)
$$\| \nabla v_j(t) - \nabla v_j(s) \|_{L^p} \le M(t-s) + M \{ (t-s)^{\theta_2} + (t-s)^{\theta_3} \} \left(\int_0^t \| f(\sigma) \|_{L^p}^q d\sigma \right)^{1/q}$$

$$(\theta_2 = \theta/2 \; ; \; \theta_3 = 1/2 - 1/q) \; .$$

PROOF. (31) and (32) follow easily from (20), (21). We shall show (35). We omitt the subscript j, and write v, A, etc. for v_j , A_j , etc. We have

(36)
$$v(t) - v(s) = \int_{s}^{t} Pf(s) \, ds + Q(e^{-tA} - e^{-sA}) \, a + \int_{s}^{t} Qe^{-(t-\sigma)A} f(\sigma) \, d\sigma + \int_{0}^{s} Q(e^{-(t-\sigma)A} - e^{-(s-\sigma)A}) f(\sigma) \, d\sigma , \qquad (\equiv I_{1} + I_{2} + I_{3} + I_{4})$$

By (28) and (22), we see

$$(37) || \overline{V}e^{-tA}|| \le Mt^{-1/2}e^{-\beta t}$$

We have: $VI_1=0$. By (25), $||VI_2||_{L^p} \leq M(t-s)$. By (37) and the Hölder inequalty,

$$\begin{split} || \overline{V} I_3 ||_{L^p} & \leq M \! \int_s^t (t-\sigma)^{-1/2} e^{-eta(t-\sigma)} \left\| f(\sigma)
ight\|_{L^p} d\sigma \ & \leq M (t-s)^{ heta_3} \! \left(\int_0^t \! \left\| f(\sigma)
ight\|_{L^p}^q d\sigma
ight)^{\!1/q}. \end{split}$$

By (24) and the Hölder inequality,

$$|| \overline{V} I_4 ||_{L^p} \leq M (t-s)^{\theta_2} \Bigl(\int_0^t \Bigl\| f(\sigma) \Bigr\|_{L^p}^q \, d\sigma \Bigr)^{1/q} \, .$$

Collecting all the estimates above, we get (35). Similarly, using (23), (25), and (37), we can prove (33) and (34).

LEMMA 9. Let v_j , f be as in Lemma 8. Suppose that f(t) is Hölder continuous for t $(0 \le t < T)$:

(38)
$$\|f(t) - f(s)\|_{L^p} \le L(|t - s|^{\theta_1} + |t - s|^{\theta_2})$$

where L, θ_4 , θ_5 are constants, $0 < \theta_4$, $\theta_5 \le 1$. Then $v_j(t) \in D(A_j)$, and

(39)
$$\|A_{j}v_{j}(t)\|_{L^{p}} \leq M + ML + M \|f(t)\|_{L^{p}}$$

 $(0 \le t < T)$, M being a constant independent of T, f. Moreover, for any $\varepsilon > 0$ we have $(\varepsilon \le s < t < T)$

$$\begin{aligned} \|A_{j}v_{j}(t)-A_{j}v(s)\|_{L^{p}} &\leq M(t-s) \varepsilon^{-1} + ML\left((t-s)^{\theta_{i}} + (t-s)^{\theta_{i}}\right) \\ &+ M(t-s) \varepsilon^{-1} \|f(t)\|_{L^{p}}. \end{aligned}$$

(For the proof, see T. Kato [4: Lemma IX 1.28]).

B) We now proceed to the derivation of L^{∞} -bounds of solutions. Let $p>\max\{n,2\}$. M denotes, as before, various constants independent of T (which may depend on p, $||a_j||_{2,p}$). We have:

LEMMA 10. Let $u = \{u_1, u_2\}$ be as in Lemma 1. Then

$$(43) \qquad \int_0^t \left\| f_j \left(u(s) \right) \right\|_{L^p}^{3p} ds \leq M$$

for $0 \le t < T$; j = 1, 2.

PROOF. We claim: $(0 \le t < T; j=1, 2)$

(44)
$$||f_j(u(t))||_{L^q} \leq M \quad (q \geq 1);$$

(45)
$$\int_0^t \|f_j(u(s))\|_{L^p}^{3p} ds \leq M \int_0^t |(f_j(u(s)), 1)| \|u(s)\|_{L^{(3p-1)/2}}^{3p-1} ds ;$$

$$|| \nabla u_j(t) ||_{L^p} \leq M.$$

Indeed, by (5), (8), and (9), (44) holds for j=2. By the Hölder inequality,

(45) with j=2 follows from (44), and hence we have, by (19), (43) with j=2. Since $u_j(t)$ satisfies (30) with f(t) replaced by $f_j(u(t))$:

(47)
$$u_{j}(t) = e^{-tA_{j}} a_{j} + \int_{0}^{t} e^{-(t-s)A_{j}} f_{j}(u(s)) ds$$

it follows from (33), (43) with j=2, and the Hölder inequality that (46) holds for j=2. (42) with j=2 now follows from (46), (9) and the Sobolev lemma. On the other hand, (42) with j=2, and (8) give (44) with j=1. Hence by the Hölder inequality, we have (45) with j=1, which shows (43) with j=1. From (45), (33), we can see, as before, that (46), (42) hold for j=1. By (34) and (43), $(q=3p; \theta=1/4)$

$$\|u_j(t) - u_j(s)\|_{L^p} \leq M(t-s) + M(t-s)^{2/3} + M(t-s)^{1/4}$$

and so

$$\left\| f_j \! \left(u(t) \right) - \! f_j \! \left(u(s) \right) \right\|_{L^p} \leq M(t-s) + M(t-s)^{2/3} + M(t-s)^{1/4} \; .$$

By (39) and (44), we have (41).

4. The proof of the theorem

Let p>n+1. Let T>0. Set $X_1=C([0,T];W^{1,p}(\Omega))$. Then X_1 is the Banach space with an appropriate norm. We define a sequence $\{u^{(k)}\}_{k=1}^{\infty}$ in $X_1\times X_1$ inductively by : $(u^{(k)}=\{u_1^{(k)},u_2^{(k)}\})$

$$u_j^{(1)}(t) = e^{-tA_j}a_j;$$

$$u_j^{(k+1)}(t) = u_j^{(1)}(t) + \int_0^t e^{-(t-s)A_j} f_j(u^{(k)}(s)) ds$$

By the standard argument, we can see from (31)-(35) that $\{u^{(k)}(t)\}$ is a Cauchy sequence in $X_1 \times X_1$ if T is sufficiently small. Let u(t) be the limit of the Cauchy sequence $\{u^{(k)}\}$ in $X_1 \times X_1$. Then the u(t) is cleary a solution of (47). Hence, in the same way as in the proof of Lemma 9, we can show that $u_j(t) \in D(A_j)$, $A_j u_j(t)$ is Hölder continuous for 0 < t < T, $u_j(t)$ is continuously differentiable for 0 < t < T, its derivative du(t)/dt is Hölder continuous for 0 < t < T, and $u_j(t)$ satisfies the (abstract) equation in $L^p(\Omega)$: $du_j(t)/dt + A_j u_j(t) = f_j(u(t))$ with $u_j(0) = a_j$. On the other hand this implies that $u_j \in W^{1,p}(\bar{\Omega} \times [0,T))$. Hence, by the Sobolev imbedding theorem, u is Hölder continuous on $\bar{\Omega} \times (0,T)$, and so is $f_j(u(t))$. Hence, by the existence and regularity theorem for solutions of paraboic equation (see S. Itô [3]) a classical solution v_j of $\partial v_j/\partial t = \mu_j \Delta v_j + f_j(u(x,t))$ with conditions (3) and (4) exists and coincides with u_j ; compute $d||v_j(t) - u_j(t)||_{L^2}^2/dt$. This implies u_j

is a classical solution of (2), (3) and (4). The uniqueness of solution can be proved by a routin argument. Since we have a priori bounds (41), we have actually a unique global solution; note it suffices to assume that $a_j \in W^{2,p}(\Omega)$.

We finally show the asymptotic behavior in t of the solution of (2), (3), (4). By (43), the right-hand sides of (32), (33) with f(t) replaced by $f_{t}(u(t))$ tend to zero as $t\to\infty$. Hence $||Q_ju_j(t)||_{L^p\to0}$, $||\nabla u_j(t)||_{L^p\to0}$ as $t\to\infty$. By the Sobolev imbedding theorem, $Q_j u_j(t)$ converges to zero as $t \to \infty$, uniformly on $\bar{\Omega}$. By (13) and the assumption 3 (i), the second and third terms on the right-hand side of (14) with j=1 are monotone and bounded, and hence are convergent for $t\rightarrow\infty$. Hence $(u_1(t), 1)$ converges to some non-negative constant α_1 as $t\to\infty$. By (19), $(f_2(u(t)), 1)$ is integrable on $[0, \infty)$, since $-(f_1(u(t)), 1)$ is integrable on $[0, \infty)$. Hence by (14) with j = 2, $(u_2(t), 1)$ converges to some non-negative constant α_2 as $t\to\infty$. Hence, $P_ju_j(t)$ converges to c_j as $t\to\infty$, where $c_j=\alpha_j/|\Omega|$. Hence, $u_j(t)$ converges to c_j as $t\to\infty$, uniformly on $\bar{\Omega}$; $c_j\ge 0$. Note $c_j=0$ if $\alpha_j(x_0)<1$ for some $x_0\in\Gamma$. Since $||f_j(u(t))||_{L^p}^{3p}$ is, by (43), integrable on $[0, \infty)$, there is a sequence $\{t_k\}$, tending to the infinity, such that $||f_j(u(t_k))||_{L^p} \to 0$. Since $u_j(t) \to c_j$, uniformly on $\bar{\Omega}$ (as $t\to\infty$), we have: $||f_j(c)||_{L^p}=0$ $(c=\{c_1,c_2\})$, which implies $f_j(c)=0$. Thus the proof of the theorem is completed.

PROOF OF THE COROLLARY. It suffices to show (6). Adding (14) with j=1, and (14) with j=2, and letting t tend to the infinity, we have (6); note $f_1(u)+f_2(u)=0$.

References

- [1] N. D. ALIKAKOS: L^p bounds of solutions of reaction-diffusion equations Comm. in Partial Differential Equations, 4, 827-868 (1979).
- [2] D. E. CONWAY and A. J. SMOLLER: Diffusion and the predator-prey interaction, SIAM J. Appl. Math., 33, 673-686 (1977).
- [3] S. Itô: A boundary value problem of partial differential equations of parabolic type. Duke Math. J., 24, 299-312 (1957).
- [4] T. KATO: Perturbation Theory for Linear Operators. Springer (1966).
- [5] J. Maynard-SMITH: Models in Ecology. Cambridge, University Press (1974).
- [6] S. MIZOHATA: The Theory of Partial Differential Equations. Cambridge, University Press (1973).
- [7] H. TANABE: Equations of Evolution, Pitman (1979).

Mathematical Institute Tohoku University Sendai 980, Japan