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On the distribution of the poles of the
scattering matrix for two strictly

convex obstacles
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§1. Introduction

Let © be a bounded open set in R® with sufficiently smooth boundary
I We set Q=R*—O. Suppose that 2 is connected. Denote by ()
the scattering matrix for an acoustic problem
. ,
1.1) %t—l;—duzo in £ X(— oo, o)
u(x, t) =0 on I'X(— o0, c0)
3 5

where 4= FPyE Concerning the definition and the fundamental properties
j=1 0%

of #(z), see Lax and Phillips [6, Chapter V]. It is well known that it is
holomorphic in {z; Im 2<0} and meromorphic in the whole complex plane
C as £ (L*S%), L*(S?))® valued function (Theorem 5.1 of Chapter V, [6]), and
the problem to clarify the relationship between the geometric propoerties
of the obstacles and the location of the poles of the scattering matrix is
important and has been interested, but we know only a few works about
the existence of the poles [1, 3, 8§].
Assuming that

@:@1U@2, 51(]62:95,
1.2 and the Gaussian curvature of I'; the boundary of &3,
Jj=1,2 vanishes nowhere.

Bardos, Guillot and Ralston proved the existence of infinitely many poles
in a region {z; Imz<elog(|z|+1)} for any ¢>0.2 They introduced the
notion of pseudo-poles an; and used it to prove the above result, but it
was not considered the problem that the pseudo-poles do approximate the
actual poles of ¥ (2). In [3, 4] we gave a precise information on the location

1) Z(E, F) denotes the set of all linear bounded operator from E to F.
2) Though the condition (1.2) is assumed in [I], they used only a certain condition on the
Poincaré mapping at the periodic broken ray. Petkov gives a genelaization of [1].
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of the poles in Im 2<cy+¢; where ¢, and ¢, are constants determined by &,
and &, such that 0<c¢;<co/2, and this result shows that the pseudo-poles
@y for #=0 approximate the actual poles.

About a question how is the distribution of the poles in the outside of

{z; Im 2<cy+c;} we shall consider the behavior of #(z2) in {z ; Im2<<

—2-—co+c1} posing an additional assumption on &. Namely we like to show
the follovﬁng
THEOREM 1. Suppose that (1. 2) holds. Let a,&I';, j=1, 2 be the points
such that
diS (@1, @2> = Ial—azl .
If
1.3) I'y and I'y are umbilical at a; and a, respectively,

the scattering matrixz ¥(2) is holomorphic in

3 e .
{z; Im 2< 7C0+C1}—_U {2; |z—zj|<C(1+]]|)‘1/2}
j=—o
~ U
j=—o

{25 lz—zl <C+]j))
where

. . .3 . )
zjzzco+%], 57-217604—%], d=dis(®, B, .

Note that %, are nothing but «;;. Then means that for
O verifying (1.2) and (1.3) #(2) is holomorphic in {z; Im 2< %co-l—cl}

except small neighborhoods of pseudo-poles. As a matter of course we have
to answer a question that Z; do approximate the actual poles. When &,,
j=1,2 are balls, or &; are tangent to balls at a; of a high order, there
are no poles near Z;, This fact can be verified by checking the orders of
the convergences of asymptotic solutions constaucted in this paper. In other
cases, though it is not yet proved precisely, according to the form of asymp-
totic solutions of (1.1) it seems very sure to us that the poles of & (2) exist
near Z;. :

Let Re p>0 and g=C>*(I'). Denote by U(y) g the solution of a boundary
value problem
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(=D u=0 in 2

u=gq on [’
wue N H™Q).
m>0

Then Uy is = (C>(I"), C*(2))-valued holomorphic function in Re x>0.
Mizohata proved that U(y) can be prolonged into {¢; Re u<0} as a mero-
morphic function in the whole complex plane. follows from
the following theorem via Theorem 5.1 of Chapter V of [6].

THEOREM 2. Suppose that (1.2) and (1.3) are verified. Then U(y)
s holomorphic in a region

3 - :
@s={p¢; Re#>—-2—co—cl+e}— U {5 l—pl<CO+5)2
j=—0c0

= U_{#s lu—p) SCU+1j)78) —fus 11 <C

where p;=1z;, fi;=1%;, ¢ is an arbitrary positive constant and C, is a constant
depending on . Moreover an estimate

3, sup | D2(U(r) 9) (2)] < CR,m,ng 191147~ cr

18]<m z€Qp

holds for all pe2,, where Qr=02N{z; |z|<R}.
The plan of the proof of is essentially same as that of [3].

Namely, we approximate the fundamental solution of (1. 1) by a superposition
of asymptotic solutions. Since U(y) is nothing but the Laplace transform in
¢t of the fundamental solution, U(y) is approximated by a superposition of
the Laplace transform of asymptotic solutions. Therefore properties of the
Laplace transform of asymptotic solutions play an essential role to consider
U(y). Roughly speaking the asymptotically periodic property in ¢ of functions
produces the poles of their Laplace transform.

In this paper using the assumption (1. 3) we shall take out more precisely
the periodic properties in ¢ of asymptotic solutions than in [3]. This pro-
perties are stated in Propositions 2.1 and 2.5. Seeing that can
be derived from these propositions by the procedure used in we shall
prove only these propositions.

§ 2. Statement of the periodic properties in ¢ of asymptotic solutions

We denote by S;(9) the connected component containing a; of {zx; z&T,,
dis (x, L)<d} where L is a line passing a; and a,, Let m(x,¢; k) be an
oscillatory boundary data on I'; X R of the form



346 . M. Tkawa

2.1) m(z,t; k) =*¢@=0 flx 1)
where f(x, t)=Cy (S1(60) X (0, d/2)) for a sufficiently small §,>>0 and ¢ satisfies

the following conditions :

(2.2) There exists a real valued C* function ¢(x) defined in a neighbor-
hood % of S;(d,) in R® which satisfies [Fp|=1 in % and

p@D=9(@), L@>0 on S).

(2.3) The principal curvatures at z of %,(x)={¥; ¢¥)=¢(x)} with
respect to —F¢(x) are positive for all x&.S;(dy).

We shall construct an asymptotic solutions of the problem
[(Ju=0 in 2X(—o0, 00)
(2.4 u=m(x,t; k) on I'X(—o0, o)
supp « C 2 X (0, o)
following the procedure used in and [[3].

As remarked in the introduction we have to take out an asymptotically
periodic property in ¢ of them. In order to state this property we introduce
same spaces of sequences of functions in addition to spaces F(p), F'(p), K(p),
M, (p), (CH); & ,(p) defined in §6 of [3]. First we consider sequences of

functions defined in w X R where o is a domain surrounded by S;(d,), j=1, 2

and {x; dis(x, L)=4d,}. We set

F(P) - {{vq; ﬁq}zo:oEF(P) ; Sup sup eSCot/2

420 (x,t)eox R
(1D, vglx, 8)] +| D%, Bz, 2)] ) < 00 for all g}
R(p) ={{vp 0505 vel 1) = (W02 f(x, t—2dg),
¥(x, £) = (A% f(, t —2dg), f, F€Cs (X [0, o))

for ¢=p and v,=9,=0 fir q<p}.

M,(p) = {{“Uq, Voo EF(p); sup sup (1+2)7"eBeztent

q (x,t)

<|D§,tvq(x, t)l—i—lDﬁ,tﬁq(x, t)’><oo for all ﬁ}
and we define for v={v, J}7-o

[0llzm =supsup 3 eo2(|DE v,(x, ) +| D2l 1))

g (z,t) |Bl<m
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HUl |A?,.,m = sup sup Z (]_ +t)—re(3co/2_+cl‘)‘.;

q (x,t) |Bl<m

(D2, vz )| +| Dk (2 1))

REMARK 1. By the assumption on supports of v, and 9, v={v,, #i}..E
F is equivalent to

-~

sup sup (M)‘Wz(,Dﬁ,; Yyl t)’ + ’Dﬁ,z Ty, 1) D <oo

q (x,t)

and vEM, is equivalent to

sup sup q"(lﬁ)‘sq/za“I(’Dﬁ,t vy(z, t)‘ + iDﬁ,t Vgl 2) D <oo,

q (x,t)

We have for v={(22)%*g(x, t —2dq), (A)¥2§(x, t —2dq)}s>p
C(1gln(@ X R)+[Glm(wX R)) <|[v]|5,n
<C(Igln(@X R)+|flm(0 X R)) .
Let (CH)} be a subset of (CH), of all the elements {f} jen, satisfying

sup jH(A)2a~1 | fP —(fO+(IDFO)| (oxR)<oo

JEN,
for all m. We set
‘{f(j)}jEN+'(0H)(1),m - ’f(oo)‘m+|f(°°)lm O
+ sup I a | P — (o +(A2F)| (@XR).
0< j<oo
We define (CH); for s>2 inductively by the following way: Suppose that
(CH);_, is defined. We say that {fY9}; oy, s&(CH), belongs to (CH)} when

there exists {g“s-}; v, s—E(CH)}_; and a linear continuous operator B?

from Cy(w X R) into (CH)! such that |
{ﬁJs—"j)}jeN+ = ngu""'l) fOI' a]] Js_IEN+s_l s

and we set

(o)

: T ] {f(Js_“w)}"s—IEN+s_‘{(UH)Q—I’”‘
+sup j—l(ﬂ)—jlza—j({fus_,,j) ___(f‘(Js_l,OO)
J

TN ) N

— | { fTg—1, s_l[
(CHY,m ‘ U }Js—x€N+ cmf | ,m

(CHY_;,m*
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We say W={w""}; cn sE % 4(p) belongs to .« 3(p) when if we set
w0 = (S99 (z, 1 —2dg), (R F (2,0 —2dg)

T+

we have

{fY9}sen, {f(Js)}JseN_l_"E(CH)g ,

and we set

W llagm = {f )

(OH)g,m+ ' {f(Jx)}

We say W= {@9} s, en, s €%:(p) when for each J;

(CIm -

B = {(22)3‘1/21““’3’ (z, t —2dg), ('u)Sq/zf‘(Js) (z, t—ZdQ)}q>|J -
and we have {f99)}, {f“?}&(CH), and we set

Wllgym =|{F9} gy, mt [ (P2}

We can define &%p; 2z), #Up; I), 9:(p; 2r) and Zy(p; I') by replacing
@ by 2z or I', and we denote for We & (p; 2z) the seminorm as W l.4cap me

The result we like to show concerning the asymptotic solution of (2. 4)
is the following

(CHgp,m "

ProPOSITION 2.1. For an oscillatory boundary data m(x,t; k) of the
form (2.1) verifying (2. 2) and (2. 3) there exists u(x, t ; k) with the following

properties
(i) ul(z, o5 k)= 3 (w3 D@ 15 R)

and u={ug, flg}q=0 is decomposed as

N .
u=wy+Wy+ 2+ 2. k"’{ 2 (w7 +w)
r=1

JTGN+
p & J T
+ 5 N (w2
h=01=0J, _peNL —

where
w,< K(0), ®,=K(0), z,&M(0),
W, ={w9} s en,r€#2(0; Lx), W, ={®Y"}s,en,r€%-(0; 2p)
Wons= Wk }a, _pen, €0l 2a)
W0 = B5 i} s, pew, -+ EFralls )

z2E My (0) .
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They have estimates

HW H&O(IJR) m+” Wr”zr(aR) m+||zr”M”(DR) m<CR r mk Bm+2r

W nilloa_co )m+||thler T >m<Cerallr hkmBm+2r
r—h R’ > h 4R >

where

B = |¢ln(S1(00)+ | £ In($1(0) X R) .
(ii) (aa—;—4>u(x,t;k);o in Qx(—o00, ),
(iii) u(z, t; k)—m(x, t; k)

k“Nifq(x,t;k) on I'XR
g=0

EVS Filzt; k) on xR
q=0

and f ={f, fds-0 is decomposed as

£=, 5 ORI S S (R R P
where
={f§¥"}sen, NEJVN(O F) FN—‘ {fzv ¥} ven, NE?N(O r),
szhz—{anN?h)}JN e N-nE Y 4l T)
Funi= {80y pen 5-1E%xall; T),
fNEMzN(O, I)
and

WF ¥y m+ | 5| Fg o m+ 1 f 5] |13 00y, m < Cor o K™ By ov )
9\' N N
1 Ewp,ully_pirr m | \F Wille gy m<SCrmE™ 1t V" By ooy -

Next we consider the Laplace transform of «(x, t;‘k) in the above pro-
position. Let .S be an operator from F into C*(w X R) defined by

(S7)(20) = 5 (fulw ) =Filw )

for f'={fp fdes- We denote the Laplace transform of w(z, #) by w(z, Y, i. e.,

w(zx, Y =S e “w(zx,t)dt.

—00

‘We prepare two lemmas whose proof can be achieved by the almost same
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procedure as in § 8 of [3]. _
LEMMA 2.2. Let f€M,0) and set w(x,t)=Sf(x,t). Then W(x, p) is
holomorphic in I={u; Re p>—3c/2—c)} and for any ¢>0

sup l’(f")(', ,U) ‘m<w) < Cs,m,cllf”ﬂs,m

#ng'
where D7 ={p; Re p=>—3co/2—c1+¢}. |
LEMMA 2.3. Let W={w"9}; ey s€ Z(p) and set

w(x, t) = ), SWY9,

TN, 0

Then
w(zx, f) = (e~ 3 A(W)*1B()! Gz, p)

I+j<s

where
A(#) = (1 —He“"”d)“l, B(#) = <1 _(22’)3/26—2/@)_1

and G, (z, ), j+I<s, are C*(d)-valued holomorphic functions in & and
have estimates

sup |G 1(+, 1], (0) <Com||Wllagm  for all j, 1.

pezg
LEMMA 2.4. Let W={0}; cn sEY,(p) and set

w(x, t)= 2, SwY?.

TN, ®

Then
@ (2, ) = (2 4) 5 Al B+ Gl 1)

J+1<s

where G, is C°(@)-valued holomorphic function in & and has estimates

sup |Gyu(+s 4)],,(@) < Coml [ Wilg -

ned A

With the aid of the above lemmas we have from [Proposition 2. 1] the following

ProposITION 2.5. For flx,t) € Cy(S8,(60) X(0, d/2)) and ¢(x) satisfying
(2.2) and (2.3), there exists d(x, p; k) of the form

d(x, ps k)= i kY AW B(prds sz, p; k)

j=0 l+s<j+1

(o]

verifying for all ye.@’—j U ({us} U{ds) an equation
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(2—V)da(x, p; k) =0 in 2,
a(x, p; k) — e f(z, p—ik)
=k 3 AW B(dysx, ¢ k) on I

l+s<N+1
where 1, 4(x, 13 k) are C°(Q)-valued holomorphic functions defined in D
with estimates

Sup ‘d.i,l,s(°3 ©; k) ‘m('QR) < Crm,« Brigwsn -

Hes €

§ 3. Outline of the proof of Propesition 2.1.

As it is well known the propagation of solutions of high frequencies of
the wave equation [ Ju=0 is approximated by the geometric optics. This
suggests us that the periodic properties of solutions of (2.4) are generated
by the existemce of a periodic broken ray of the geometric optics in .
Under the assumption (1.2) the periodic broken ray in £ is unique, namely
the broken ray shuttling between a; and a, Therefore it is essential to
construct asymptotic solutions of (2. 4) near the segment a;a, and to examine
their behavior. Following § 3 of we choose 0<9,<0;< d, so that Lemmas
3.3 and its corollary of hold. We look for a function u(x, ¢ ; k) satisfying
[Ju=0 asymptotically in @ X R and u=m on I'X R in the following form

oo

(3.1) w(z t; B)=3 (ulzt; B—(xt; B),

q=0
U (x, t; k) = e*oq @0 g}o (k)" v, 4(x, t)
iz, t; B) = eiragp@= i(ik)—r B, o(28) -
Note that
— et*eo=d [y,
= 26 {(Ppul?~1) vt Tyvrs = or-ad)

holds where we set v_j (x, t)=v_s,4(x, £)=0 and

9
Ty =25, +20gn(2)-V +dp,

f [V psgl =1 in
] Tqu,q: Dvr_l’q' in (!)XR, 7‘:0, 1, ey N
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are verified we have

[ Jug = €22 ({R)~Y vy, .

Then we require (3.2) so that #, may satisfy [ Ju=0 asymptotically when
k—co. Similarly we require for 4,

f (P pagu1| =1 in o

3.3
(3.3) | Ty#re=#r1y in wXR, 7=0,1,.,N

. 0
Where Tq:Z?t‘ +2‘7§02q+1’7+ A@zq.f.l.

In order to hold wu,(x,t;k)=m(x,t;k) on Si(6)XR it suffices to be
satisfied

f @o(x) = ¢(x) on 5;()
lvo,o(x, t) =f(x, t), Vro(x,2) =0 for »>1, on S;(6,) X R.
For a,(x,t; k)=wu,(x, t; k) on S,(0,) X R it suffices to hold

(3.4) :

f Pag11(T) = @o( ) on S,(dy)

3.5 '
(8.5 | Trg(x, t) = 0y 4(x, 2) on S5,(d;) X R for r>0.
For wug,(x,t; k)=, (x,t; k) on S;(6) X R it suffices to hold

f Pagi2(T) = Pag41(X) on .5;(0)

3.6 :
(3.6) | Vpgr1(Z, t) = Dy oz, 8) on .S5;(0,) X R for »>0.

Thus if we can construct ¢, v,q 9, as (3.2)~3.5) are satisfied u(x, t; k)
defined by (3.1) verifies

J[]u=0(k‘”) in oXR
| w=m(zx,t;k) on S@)XR.

Now let us construct ¢, ¢=0,1,2, --- successively as follows:
Poold) =1 in o
{ Pl =9(@) >0 on S(o)
and for ¢>1
Polz) =1 in
[ ) = pen(2) Jla) =~ () on S0

where 7n denotes the unit outer normal of I" and
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[2 when ¢ is odd

when ¢ is even.

We choose as the amplitude function v,, ¥, the solution of
J Tv,=0 in oXR
| vo=f on I'xR

and for r>1

JTvrzljv,_l in oXR
| v,=0 on I'XR

where we use the notation of Definition 6.2 of and we set

Uy = {vr,w ﬁr,q};c,:O

F={f0 00, folz, t) =f(x, ), fo=0 for g=>1.

After this we look over the behaviors of sequences {pgi-0r {Vr.p Trabazo-
For the sake of economy of pages we shall use freely the notations and

results in without explanations.

3.1. Convergence of ¢, for g—oo

By chec.,king the considerations in § 3 of we have

LEMMA 3.1. Suppose that I'y and I'y are umbilical at a; and a, respec-
tively. Let ¢w and (. are the functions defined in §3 and §4 of [3]-
Then the wave front of ¢. passing a, and that of (., passing a, are umbili-
cal at a, and a, respectively.

Applying the implicit function theorem we have the following lemma,
which is an improvement of Lemmas 3.1 and of [3].

LeEMMA 3.2. Let i(o) and j(o) be S*-valued C®-functions defined on
S,(8,) satisfying Condition C of § 7 of [2]. Let o, & of S,(6,) be corresponded
to nE.S,(0,) by relations

2(y) =y(o)+ (o) i(0)
=y(#)+h() i),
and let r(n) and s(p) be St-valued C*-functions defined on S(d;) by

r(p) =i(0)—2(i(e) m(y) m(n),

s(n) = (@) —2(3(@) - m(n) m().
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Thén there exist 2X2 matrix valued C* functions E(i;e,7) and F(i;0,1)
of 6€.5,(0;) and t in a neighborhood of the origin of R? which is deter-
mined by i(+) only, such that

(i) d—o=E(i; 0 P(j@)~i@)) P(je) i),
E(i;0,0) = —-l(a)[Y(i ;0)+ (o) I(a)]_l,

(ii) P(r(n)—s(n) = F(i; 0, P(j(8)—i(3)) ) P(j(e)—i(®)).,
F(i;0,0)=Y(i;0)[ Y(i;0)+1(0) IO)] .

(i) There exists an R*-valued C*-function p(i;o,) of ¢=Si(8;) and t in
a neighborhood of the origin of R?, which is determined by i(+) only, such
that

h@) = Uo)+2(i; 0, P(i@)—i(®) ) P(j(#)—i(2)
Pli30,0)=(2(0)+i(0), (0)-4(0))-

CoroLLARY. There exist E(i;0,7), F(i;0,t) and p(i;a,71) such that

(i) 6—0=E(i; 0, P(j(0)—i(d))) P(j(o)—i(o))
E(i50,0= ~U0)[ Y50 +1(0) I(0)] 7,
(i) P(rt)—stm) = F (i 0, P(j(0)—i(a) ) P(j(0) (o)

F(i;0,0)=Y(i;0)[Y(i;0+10) 10)] ™,

i h(@) = Ue)+5(i 3 0, P(j(0)—i(a))) P(j(0) = (o)
5(i30,0) =(2(o)+i(e), -9L(0)-il0).
With the aid of the above lemmas we have

ProrosiTiON 3.3. Let ¢(x) be a function satisfying Condition C and
let ¢, @1, s @ -+ be the sequence of phase functions defined for ¢(x).
Then there exist R*-valued C* functions &(x) and &(x) defined in o such that

‘Vgﬂzq‘(VSDoo‘Hu)qf) ‘m(w) < Cm(lza)q ,

lV 902q+1_<‘7 ¢°°+(ZZ)(1§> lm(w) < Cn(Aa)
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hold for all m=0,1,2,---.

PrROOF.  Set Voy(y(0) =1i(0), Veagi1(2(n) =74(n), Vpuo(y(0)) =ics(0) and V.,
(2())=rw(n). Applying of and of its corollary step by

step we have
(iy—1en) (0) = F (o3 Wago(0)s Plrg—72) Wiq0(0))) Plrg—7) Wagol0))
= F(reo; Wagol0)s Plry—r) Wagol0)

F (i Waga(0)y Pligs—fe) Wg1(6))) Pligmr—iee) Wag(0))

=FyeFyeeosFyoFyppo o o By Pliy— i) (W ag 29-1(0))
where
F(res W s(0), Plr—72) Ways(0))) for j=21
= Fliws Yas(0), Plips—in) @s(0))) for j=2141,
and

~

- Flizss Vaars(0) Pligui—io) Wagars(0))  for g+j=21+1 |
q”_{F(rq_l; Vagge1(0)s Plrooi—7) Wagers(0))) for q+j=21.
Recall that we have
¥0,5(0)— Vo s(0)| <Cat  for 0<j<gq
and
Pliy1—in)| < Ct,
Then it holds that
{Fj—F<roo; v, o), O>‘<Caq for j even

P(rou—r.)|<Cat  for 2I1<gq.

Fj=F(iw; ¥ 4(0),0) <Cat  for j odd.
Note that
{F(roo; ¥, (o), O)—ZI

< Ca’
|F oo ¥ 5(0), 0) —AI| < C

follow from F(i,; 0,0) =4I, F(r.; 0,0)=1I and |¥, ;(6)|<Ca’. Therefore
a sequence of matrix valued function
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+ - F(roo 7 wm,o(0>’ O) F(loo 7 wm,l(g)’ 0) F(roo ; Wm,Zj(o)’ 0)
&0 = : : :

converges to &t(g) as j—oo and we have

F, /, F, .,
121 ¢

< Cal.

Similarly by using
| X (@ V) — Agg| <Cat*i - for 0<j<q
we can find a 2 X2 constant matrix &~ such that

Fous F0£+2 Fo
A A A

—$‘|<Ca‘1 for all ¢.

Thus we have

P(iy— i) (0) = (201 (% () 6 +O(a),
which implies that the required estimate holds for m=0. For the other
cases we can prove it by the same process.
3.2. Convergence of broken rays

By using (i) of and [Proposition 3.3 we have a sharp form
of Proposition 4.6 of [3].

ProrosiTION 3.4. For 0<j<gq

|PX_j(, V) — (A Buo() + 277 Ey) P|, (S1(8)) < Cn(oa?

(PX_j(+, Vpags) — (4 Eeo( )+ 4707 Ey) P (S2(30)) < Cu(Zocr)

hold, where 2,=(A0)V?, E.(x), Eoo(x) are 2X2 matrix valued C* functions
defined on S,(8,) and S,(8s) respectively, and E, E, are 2x2 constant matrices.

ProposiTiON 3.5. For 0<j<gq
PX g5 Vo) —(PA;+ 287 Fo( ) |, (S1(82) < CrlToat
PX_gg14(s Ppn) — (P A+ 287 Fo()) m($2(80)) < CrlToct?

hold where F., and F., are 2Xx2 matrixz valued C= Sunctions defined on
S1(05) and Sy(6,) respectively.
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3.3. On solutions of the transport equations
Let v={v, U5 be the solution of

36 | Tv=0 in oXR
(3.6) | v=f on SG)XR

for f'={fp 0}7-0 such that f;(x, 1)=f(x, 1) €C7(51(d,) X (0, d/2)) and f;=0 for
all g#j. Taking account of the difference of Definitions 5.1 and 6.2 of
we have from Lemma 5.1 of

04, £) = Aad@) A1 ( X1 (%, Poom))-+- oy ( X sgras (@, P n)
(X sgsas(® Py t—hagas())
(2, 2) = Aogsa(2) oo Xa(2, P pagsd)- Ao Xcagrnsos (2 Ppagu))
S(Xotgres(2 V), £ = hagens(a) -
LEMMA 3.6. We have for j<gq
) Aagea (X Vi) oy (X g+, P
— W () by A o () €5)], ($1(80) < C(Ba)e

)A2q+1( ') A2q<X—1(” V§02q+1)>" 'A2j<X—2q+2j—1(', V§02q+1>>
— W (8 +) b A8 ina(+) 4], (S2(09)) < C(Bat?

where aw(x), dw(X); do1(X), duwi(x) are C° functions and b;, c; and &; are
constants such that

1b;—1] < Ca¥, |c;—co| < Ca¥, |&;— &0 < Ca¥ ®
LemMma 3.7. It holds that for all j<q
hagas(+) = (2(q—5) d+ ol +)) m (S:(89) < Cnlo)t?

’h2q+1,2j('>“((2q4‘ 1—2§) d+ ool ‘))

where jo(x) and j..(x) are C* functions.

o (15:(6)) < Crl(a)e-

Then we have

ProprosITiON 3.8. The solution v of the equation (3. 6) is decomposed as

3) When @}, j=1,2 are tangent to a ball at a; of a high order ae,1(x) and dw,1(x) vamshes
identiaclly. This implies that the poles of #(z) do not exist near £;.
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where we

flz, t) to u
M,(j) respe

CoroL
decomposed

Next ¢
v

ProPros

where

and we ha

r— {vr,q’ ﬁ'r,

M. lkawa

v=w+w+z

K(j), weK(j) and z&M,(j), and the correspondances from
, W, z are continuous for C7(Si(3;)x(0,d/2)) into K(j), K(j),
ctively. ~

N

LARY. The solution of the transport equation vy={vygq Do qq-0 15

as

v, = Wy Wo~+ 20, wo= K(0), W,=K(0), zo& M;(0).

onsider the solutions of higher order transport equation, that is,
doos 7=1,2, -+, N.

SITION 3. 9. We have for r>1

S (WP +BY) + 2,

U, =
Jen, "

+3

—(J‘r—h)

(‘Ir—-h)‘
+wr,h,l

oo
Z Z ryh,l

=0 Jy_p€N

),

r— h(w

W, = (@) en, € #2(0), W,={@\"}; Eyre%.(0),
Won, = {wr, ()

W1 = B3}y, pew, - EG (D) ,

z,E M,,(0)

r—

- 0
Rl }JT heN_*_’—"ecﬂSV/—

ve estimates
||Wr||ﬂ2,m’ HWerr,m’ llezr,m
HWr,h,lH:a*)_h,ms HWr,h,l“z,—h,m

Cr,m Bm+2r ’

<
< Cr,mal """ Byar -

In order to prove the above proposition the following two lemmas are

fundamental.

LEmMa 3.10. Let g K(p).

ts decompo:

and W=

CONtinuous.

{w

The solution v of

J T.v=g in oXR
| v=0 on SG)XR
sed as
v=Fw?, w9 eK(pt)
=0 :
P} jen, € 1 p). Moreover the correspondance from g to W is
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Lemma 3.11. Let geK(p). The solution v of

Jva:g in oXR
| v=0 on S@E)xR

s decomposed as

b= g;ow(ﬁ, > <R (p+j),
and
W= WP} jen, €%1(p) -
The correspondance from g to W is continuous.

Using these lemmas we can derive Proposition 3.9 by an almost same
procedure as in §6 of [3]. _

Proposition 2.1 is derived from Propositions 3.3 and 3.9 by the same
reasoning as in § 7 of [3].
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