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Weierstrass’s function and chaos

By Masaya YAMAGUTI and Masayoshi HATA
(Received November 17, 1982)

In this paper, we discuss the relationship between the famous Weier-
strass’s everywhere non-differentiable continuous function and the chaotic
dynamical system. With this formulation, we can find an equation for which
Weierstrass’s function is a solution. This is a trial to combine two notions:
Fractals and Chaos. B. B. Mandelbrot introduced the first object in his book
[1] but he mentioned that he do not know how relate these two notions.*
Of course, we owe many nice ideas to this Mandelbrot’s book.

1. Introduction

It was proved by Weierstrass that the function:

(1. 1) W_{a,b}(x)= \sum_{n=0}^{\infty}a^{n} cos (b^{n}\pi x)

where 0<a<1 , b is an odd integer and ab>1+ \frac{3}{2}\pi , has no differential
coefficient for any value of x. Weierstrass’s result was generalized by G.
H. Hardy [2], who has proved that W_{a,b}(x) does not possess a finite dif-
ferential coefficient at any point x in any case in which 0<a<1 , b>1 and
ab\geq 1 .

Our starting point is just in the representation of \Psi^{n}(x) , which is an
n-fold iteration by \Psi(x)=4x(1-x) , that is,

(1. 2) \Psi^{n}(x)=\sin^{2} ( 2^{n} Arcsin \sqrt{x} )

This function \Psi(x) is called chaotic in the sense of Li-Yorke [10].
Combining (1. 1) and (1. 2), we have

(1. 3) \sum_{n=0}^{\infty}t^{n}\Psi^{n}(x)=\frac{1}{2(1-t)}-\frac{1}{2}W_{t,2}(\frac{2}{\pi} Arcsin \sqrt{x}) .

Perhaps one should think the left hand side of (1. 3) as a generating
function which generates the iterations of \Psi . More generally, it will be very
interesting and important to investigate the function:

(1. 4) F(t, x)= \sum_{n=0}^{\infty}t^{n}g((\psi^{n}(x))
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for given mappings \psi:Jarrow J and g : Jarrow R where J is some closed interval.
Intuitively, the non-smoothness of the function F(t, x) with respect to

x is corresponding to the sensitive dependence of initial value x for the
dynamical system \psi,

For example, if \psi(x)=4x(1-x) and g(x)=x, then F(t, x) is continuous
and non-differentiable function with respect to x in any case in which
\frac{1}{2}\leq t<1 by Hardy’s result. And the same holds if we choose

\psi(x)=\{

2x (0 \leq x<\frac{1}{2})

and q(x)=\cos\pi x .
2 (1-x) ( \frac{1}{2}\leq x\leq 1)

In the case in which

\psi(x)=

’

2x (0 \leq x<\frac{1}{2})

and g(x)=x ,

\backslash 2(1-x)
( \frac{1}{2}\leq x\leq 1)

the non-differentiablity of F(\frac{1}{2}, x) follows from the result of T. Takagi [3].

(Also see van der Waerden [4].)

2. Functional equation.

In previous section, we introduce the function:

(2. 1) F(t, x)= \sum_{n=0}^{\infty}t^{n}g(\psi^{n}(x)) , (t, x)\in(-1,1)\cross J ,

where \psi:Jarrow J, g:Jarrow R and J is a closed interval. One can easily find
that the function (2. 1) satisfies the functional equation:

(2. 2) F(t, x)=tF(t, \psi(x))+g(x) .

Conversely, let us consider this functional equation under suitable conditions.
Since F(0, x)=g(x) , we call g(x) an initial function for this equation. Then
we will prove the following.

THEOREM 2. 1. Suppose that g:Jarrow R is a bounded initial function
and that \psi:Jarrow J is a dynamical system. Then F(t, x) , which satisfies
(2. 2) and is bounded with respect to x for each t, is uniquely determined
and expressed by (2. 1) for - 1<t<1 .



Weierstrass’s function and chaos 335

PROOF. From (2. 2), we obtain

F(t, x)- \sum_{j=0}^{n}t^{j}g(\psi^{j}(x))=\dot{t}^{n+1}F(t, \psi^{n+1}(x))\backslash

for any n\in N. Taking the limit as narrow\infty , we are done.

COROLLARY 2. 2. Suppose that f:Jarrow R is a bounddd function and that
\psi:Jarrow J is a dynamical system. If we put

g_{s}(x)=f(x)-sf(\psi(x)) , |s|<1 ,

for x\in J, then we have

F(s, x)=f(x)

where F(t, x) is a unique solution of (2. 2) with a dynamical system \psi and
an initial function g_{s} .

The proof is straightforward.
For example, if J=[0,1] , f(x)=2x-x^{2} and

\psi(x)=\{

2x (0 \leq x<\frac{1}{2})

2 (1-x) ( \frac{1}{2}\leq x\leq 1)

’

then
g_{s}(x)=(2-4s)x+(4s-1)x^{2} .

Therefore we obtain, using Theorem 2. 1 and Corollary 2. 2,

(2-4s) \sum_{n=0}^{\infty}s^{n}\psi^{n}(x)+(4s-1)\sum_{n=0}^{\infty}s^{n}(\psi^{n}(x))^{2}=2x-x^{2} .

In particular, we have

\sum_{n=0}^{\infty}\frac{1}{4^{n}}\psi^{n}(x)=\sum_{n=0}^{\infty}\frac{1}{2^{n}}(\psi^{n}(x))^{2}=2x-x^{2} , x\in[0,1]

These are expansions of an analytic function by using iterations of piecewise-
linear function \psi .

Compare that the function :

\sum_{n=0}^{\infty}\frac{1}{2^{n}}\psi^{n}(x) , x\in[0,1]

is everywhere non-differentiable by the result of T. Takagi.
As a second example, if J=[0,1] , f(x)=x and \psi_{r}(x)=rx (mod 1) , r>1 ,

then
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g_{s}(x)=(1-sr)x+s[rx] ,

where [x] denotes the greatest integer which does not exceed x. In parti-

cular, if s= \frac{1}{r}<1 , then we obtain, using Theorem 2. 1 and Corollary 2. 2,

\sum_{n=0}^{\infty}\frac{1}{r^{n+1}}[r\psi_{r}^{n}(x)]=x , x\in[0,1]

In the special case r=2, we have

\sum_{n=0}^{\infty}\frac{1}{2^{n+1}}\chi_{[\frac{1}{2},1]}(\psi_{2}^{n}(x))=x , x\in[0,1] ,

where \chi_{[\frac{1}{2},1]}(x) is a characteristic function of an interval [ \frac{1}{2},1] . This formula

is a well-known binary expansion.
Compare with the following formula:

\sum_{n=0}^{\infty}\frac{1}{2^{n-1}}\int_{0}^{\psi^{n_{(x)}}}\chi_{[\neq,1]}(y)dy=x , x\in[0,1]

obtained by the same method, where

\psi(x)=

2x (0 \leq x<\frac{1}{2})

2(1-x) ( \frac{1}{2}\leq x\leq 1)

As a final example, we put J=[0,1] and

\psi(x)=\{

3x (0 \leq x\leq\frac{1}{3})

0 ( \frac{1}{3}<x<\frac{2}{3}) .

3x-2 ( \frac{2}{3}\leq x\leq 1)

Note that

\bigcap_{n=0}^{\infty}\psi^{-n}([0,1])

is well-known Cantor’s ternary set. Then we can get Cantor’s function f(x),
which is not constant and has null derivative almost everywhere, as an
iteration expansion of \psi . In this case, by Corollary 2. 2, we have

g_{z}1(x)= \frac{1}{2}\chi_{[\#,1]}(x)
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where \chi_{[\frac{1}{3},1]}(x) is a characteristic function of [ \frac{1}{3}, 1]. Hence we conclude that

\sum_{n=0}^{\infty}\frac{1}{2^{n+1}}\chi_{[\frac{1}{3}.1]}(\psi^{n}(x))

is Cantor’s function.

3. Connection with ergodic theory

In this section, we will discuss the connection between the functional
equation (2. 2) and ergodic theory. Let (J, \mathscr{F}, P) be a probability space and
\psi be a transformation of J into itself. We assume that \psi is measure preserv-
ing. Then ergodic theorem states as follows.

THEOREM 3. 1. (Billingsley [5], p. 13) If g\in L^{1}(J) and \psi is ergodic, then

\lim_{narrow\infty}\frac{1}{n}\sum_{j=0}^{n-1}g(\psi^{j}(x))=\int_{J}gdP a. e.

On the other hand, G. H. Hardy has shown the following Tauberian
theorem.

THEOREM 3. 2. (Hardy [6], p. 154) Suppose that a_{n}=O(1) . If
\lim_{tarrow 1-0}(1-t)\sum_{n=0}^{\infty}a_{n}t^{n}=A ,

then it follows that

\lim\sum a_{j}=A\underline{1}n-1 .
narrow\infty nj=0

Furthermore, the converse is true.

Combining above two theorems, we have the following.

THEOREM 3. 3. Suppose that g:Jarrow R is a bounded function and \psi :
Jarrow J is ergodic. Then we have

\lim_{larrow 1-0}(1-t)F(t, x)=\int_{J}gdP a. e.

where F(t, x) is a unique solution of (2. 2) with an initial function g and
a dynamical system \psi .
As a example,

\psi(x)=

2x (0 \leq x<\frac{1}{2})

2(1-x) ( \frac{1}{2}\leq x\leq 1)
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is a measure preserving ergodic transformation on J=[0,1] with respect to
Lebesgue measure. Applying Theorem 3. 3, we obtain for Weierstrass’s
function W_{t,2}(x) ,

\lim_{larrow 1-0}(1-t)\sum_{n=0}^{\infty}t^{n} cos (2^{n} \pi x)=\int_{0}^{1} cos \pi xdx=0 a . e .

On the other hand, computation shows that

t arrow.1-0hm(1-t)\sum_{n=0}^{\infty}t^{n} cos (2^{n}\pi x)

=\{

1 if x= \frac{q}{2^{p}} (q,p\in N)

- \frac{1}{2} if x= \frac{2}{3}+\frac{s}{2^{r}} (s, r\in N)

Note that this limit function still keeps the sensitivity of initial value for the
dynamical system \psi , since both \{\frac{q}{2^{p}}\} and \{\frac{2}{3}+\frac{s}{2^{r}}\} are dense sets in [0, 1] .

4. Operator theoretical approach.

In this section, we will deal with the functional equation (2. 2) from an
operator theoretical point of view. Let E be a complex Banach space of all
complex-valued bounded functions on a closed interval J with uniform norm.
And let L(E_{1}, E_{2}) denote a Banach space of all bounded linear operators
which map E_{1} into E_{2} where E_{1} and E_{2} are some closed subspaces of E.
Then, for a dynamical system \psi:Jarrow J, we will introduce a liiiear operator
T_{\psi} : Earrow E defined by

T_{\psi}(f)=f\cdot\psi for f\in E ,

where f\cdot\psi denotes the composition (f\cdot\psi)(x)=f(\psi(x)) . Plainly it follows
that T_{\psi}\in L(E, E) . More precisely, we have the following.

PROPOSITION 4. 1. Suppose that T_{\psi} maps E_{0} into itself, where E_{0} is
a closed subspace of E. Then

\sigma(T_{\psi}|_{E_{0}})\subset\{z;|z|\leq 1\}

where \sigma(T_{\psi}|_{E_{0}}) is a spectrum of T_{\psi} : E_{0}arrow E_{0} . Moreover, if E_{0} contains
constant functions, or if \psi maps J onto itself, then

\sup|\sigma(T_{\psi}|_{E_{0}})|=1

PROOF. Plainly we have, for any n\in N,
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||(T_{\psi}|_{E_{0}})^{n}||= \sup_{f\in E_{0}}\sup_{x||f||=1\in J}|f(\psi^{n}(x))|\leq 1

Conversely, if f^{*}\equiv 1\in E_{0} , then

||(T_{\psi}|_{E_{0}})^{n}||\geq||f^{*}\cdot\psi^{n}||=1

Or if \psi(J)=J, then

||(T_{\psi}|_{E_{0}})^{n}||\geq||f\cdot\psi^{n}||=1

for any f\in E_{0} such that ||f||=1 . This completes the proof.
By the above proposition, there exists the resolvent operator:

R(\lambda, T_{\psi})=(\lambda Id-T_{\psi})^{-1}\in L(E, E) for |\lambda|>1 ,

and is expressed in Laurent expansion at the origin as follows:

R( \lambda, T_{\psi})=\sum_{n=0}^{\infty}\frac{1}{\lambda^{n+1}}T_{\psi^{n}} .

Again this proves Theorem 2. 1 in section 2, since the functional equation
(2. 2) takes the form :

( \frac{1}{t}Id-T_{\psi})F(t, x)=\frac{1}{t}g(x)

and therefore

F(t, x)=( \frac{1}{t}Id-T_{\psi})^{-1}(\frac{1}{t}g(x))=\sum_{n=0}^{\infty}t^{n}g(\psi^{n}(x)) ,

as required. So we have the following.

PROPOSITION 4. 2.

F(t, x)= \frac{1}{t}R(\frac{1}{t}, T_{\psi})g for |t|<1 and g\in E ,

where F(t, x) is a unique solution of (2. 2) with an initial function g and
a dynamical system \psi .

PROPOSITION 4. 3. Suppose that \psi:Jarrow J is an onto and one-tO-One
mapping. Then

T_{\psi^{-1}}=T_{\psi}^{-1}\in L(E, E) and \sigma(T_{\psi}|_{E_{0}})\subset\{z;|z|=1\}

where E_{0} is any closed invarient subspace of E under T_{\psi} .
PROOF. Evidently we have
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T_{\psi^{-1}}\cdot T_{\psi}(f)=T_{\psi}\cdot T_{\psi^{-1}}(f)=f for any f\in Et

Also we have, for |\lambda|<1 ,

R( \lambda, T_{\psi})=-\frac{1}{\lambda}T_{\psi^{-1}}\cdot R(\frac{1}{\lambda}, T_{\psi^{-1}})=- \sum_{n=0}^{\infty}\lambda^{n}T_{\psi^{-n-1}} .

This completes the proof.
Let K be a closed cone of all non-negative real-valued functions in E.

Then it should be noted that T_{\psi} is a positive operator which maps K into
itself. The dual operator T_{\psi^{*}} is also a positive operator which maps dual
cone K^{*} into itself and, roughly speaking, is corresponding to Perron-
Frobenius operator. (See Y. Takahashi [7].)

In general, T_{\psi} is not a completely continuous operator in E. In fact,
we have the following.

PROPOSITION 4. 4. Suppose that E_{C} is the set of all continuous functions
on J. If a dynamical system \psi:Jarrow J satisfies the following two conditions:

(1) \psi\in E_{C}

(2) there exists a sequence \{p_{n}\}_{n\geq 0}\subset J such that \psi(p_{n+}J=p_{n} for any
n\geq 0 and p_{2}\neq p_{1}=p_{0} , then

\sigma(T_{\psi}|_{E_{C}})=\{z;|z|\leq 1\}

PROOF. Assume that there exists a solution f\in E_{C} of the equation:

f(\psi(x))=\lambda f(x)+g(x)

for any g\in E_{C} and for some fixed 0<|\lambda|<1 . Then inductively we have, for
any m\in N,

\lambda^{m}\{f(p_{m})-f(p_{0})\}=\sum_{k=1}^{m}\lambda^{k-1}\{g(p_{0})-g(p_{k})\}1

Hence, taking the limit as marrow\infty , we get

\sum_{k=1}^{\infty}I_{k}(g)\equiv\sum_{k=1}^{\infty}\lambda^{k}\{g(p_{0})-g(p_{k})\}=0 for any g\in E_{C} .

Now let g_{M} denote a function on \{p_{1},p_{2}, \cdots,p_{m-1}\} such that
g_{M}(piJ =0, g_{M}(p_{k})=-e^{-ik\theta} (2\leq k\leq M-1)

and

r^{M-1}< \frac{1}{2}

for sufficiently large integer M where \lambda=re^{i\theta} . By Tietze’s extension theorem,
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we get \overline{g}_{M}\in E_{C} , which is an extension of g_{M} to the interval J such that
|\overline{g}_{M}(J)|\leq 1 . Then

\sum_{k=1}^{M-1}I_{k}(\overline{g}_{M})=\sum_{k=1}^{M=1}r^{k}=\frac{r-r^{M}}{1-r}

and

| \sum_{k=M}^{\infty}I_{k}(\overline{g}_{M})|\leq\sum_{k=M}^{\infty}r^{k}=\frac{r^{M}}{1-r}

Hence

| \sum_{k=1}^{\infty}I_{k}(\overline{g}_{M})|\geq\frac{r-r^{M}}{1-r}-\frac{r^{M}}{1-r}=\frac{r-2r^{M}}{1-r}>0 .

This contradiction completes the proof.
Finally, in connection with Theorem 3. 3, we will discuss the following

limit :

(4. 1) \lim_{tarrow 1-0}(1-t)\sum_{n=0}^{\infty}t^{n}T_{\psi^{n}}

where T_{\psi} maps E_{0} into itself and E_{0} is a closed subspace of E. From
Proposition 4.2, one can easily find that if R(z, T_{\psi}|_{E_{0}}) has a pole at z=1,
then the limit (4. 1) exists in L(E_{0}, E_{0}) with operator norm and is equal to
the residue of R(z, T_{\psi}|_{E_{0}}) at z=1, that is,

\lim_{larrow 1-0}(1-t)\sum_{7l=0}^{\infty}t^{n}T_{\psi^{n}}=\frac{1}{2\pi i}\int_{C}R(z, T_{\psi}|_{E_{0}})dz in L(E_{0}, E_{0})

where C is a sufficiently small circle about z=1 . Note that the order of a
pole of R(z, T_{\psi}|_{E_{0}}) at z=1 must be equal to unity, since we have

||R(z, T_{\psi}|_{E_{0}})|| \leq\frac{1}{|z|-1} for |z|>1

In this case, E_{0} is decomposed as follows:

E_{0}=\{f\in E_{0} ; f=T_{\psi}(f)\}\oplus(Id-T_{\psi})(E_{0})

and the limit operator (4. 1) is a projection to the fixed points set of T_{\psi} in E_{0} .
As a example, we take J=[0,1] and \psi(x)=0 . In this case, we have

T_{\psi}(f)=f(0) for f\in E

and one may think that T_{\psi} is Dirac’s \delta-function. Then we obtain, for \lambda\neq 0,1 ,

R( \lambda, T_{\psi})=\frac{1}{\lambda(\lambda-1)}T_{\psi}+\frac{1}{\lambda}Id\in L(E, E)
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and R(\lambda, T_{\psi}) has two poles at \lambda=0 and \lambda=1 .
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